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Abstract
Test-time adaptation (TTA) addresses the ma-
chine learning challenge of adapting models to
unlabeled test data from shifting distributions in
dynamic environments. A key issue in this on-
line setting arises from using unsupervised learn-
ing techniques, which introduce explicit gradi-
ent noise that degrades model weights. To invest
in weight degradation, we propose a Bayesian
weight enhancement framework, which gener-
alizes existing weight-based TTA methods that
effectively mitigate the issue. Our framework
enables robust adaptation to distribution shifts
by accounting for diverse weights by modeling
weight distributions. Building on our framework,
we identify a key limitation in existing methods:
their neglect of time-varying covariance reflects
the influence of the gradient noise. To address this
gap, we propose a novel steady-state adaptation
(SSA) algorithm that balances covariance dynam-
ics during adaptation. SSA is derived through the
solution of a stochastic differential equation for
the TTA process and online inference. The re-
sulting algorithm incorporates a covariance-aware
learning rate adjustment mechanism. Through
extensive experiments, we demonstrate that SSA
consistently improves state-of-the-art methods in
various TTA scenarios, datasets, and model archi-
tectures, establishing its effectiveness in instabil-
ity and adaptability.

1. Introduction
Machine learning algorithms have achieved remarkable suc-
cess due to the ability of deep neural networks (DNNs) to
model large-scale data (Krizhevsky et al., 2012; Simonyan
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& Zisserman, 2014; He et al., 2016; Hinton et al., 2012).
This success rests on the critical assumption that the test
data adhere to the same distribution as the train data used to
pre-train the source model (Goodfellow et al., 2016; Mur-
phy, 2023). However, in real-world applications, models
often encounter dynamic environments in which the data
distribution changes over time, making this assumption dif-
ficult to hold (Hendrycks & Dietterich, 2019b; Koh et al.,
2021). For example, autonomous driving systems face ex-
ternal factors such as weather variability and internal is-
sues such as sensor degradation, resulting in substantial
performance degradation. Even models with robust training
pipelines often exhibit high sensitivity to distribution shifts,
with minor deviations causing a significant drop in accuracy
(Quinonero-Candela et al., 2008; Sun et al., 2017). Conse-
quently, robust online adaptation mechanisms are essential,
ensuring reliable performance in dynamic settings.

Test-time adaptation (TTA) is an online adaptation tech-
nique that updates a model using unlabeled test samples
drawn from a new data distribution through unsupervised
learning. TTA methods often rely on the model’s own pre-
dictions to drive adaptation, employing entropy minimiza-
tion loss (Wang et al., 2020). However, in dynamic envi-
ronments with complex, time-varying distribution shifts,
these unsupervised approaches face significant challenges.
One critical issue is weight degradation, where reliance on
explicit gradient noise—caused by inaccurate model pre-
dictions—corrupts the weights over time (Boudiaf et al.,
2022; Chen et al., 2022; Gong et al., 2022; Niu et al., 2023).
Recent research has introduced weight-based TTA methods
that mitigate this issue by enhancing model weights during
adaptation (Wang et al., 2022; Niu et al., 2022; 2023; Mars-
den et al., 2023; Lee & Chang, 2024), typically by averaging
current model weights with the pre-trained source weights.

In this study, we propose a Bayesian weight enhancement
framework that unifies and generalizes existing weight-
based TTA methods by explicitly modeling the enhanced
weight distribution. Our framework, rooted in Bayesian
deep learning (Murphy, 2023), offers a principled approach
to improving robustness to distribution shifts. Under this
framework, existing weight-based methods can be viewed
as special cases that assume time-invariant covariance in
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Figure 1. (Top) Test-time adaptation process. The blue circles
indicate that the weight, ŵk, evolves over time. The black ar-
rows denote gradients, gk, emitted at arbitrary discrete time steps
tk ∈ {t0, t1, . . . , tK}. (Bottom) Bayesian weight enhancement
with steady-state adaptation. Bayesian weight enhancement aligns
weights to the source model ŵ0 for enhanced weight ûk. Steady-
state adaptation balances the variance σ2

k and adjusts the step size
∆tk by calculating αk from the variance.

the weight distribution. However, the TTA methods in dy-
namic environments introduce the explicit noise arising from
changes in the data distribution, and covariance reflects the
evolution of the noise over time. This covariance repre-
sents the stability and adaptability of the learning process:
excessive covariance destabilizes learning by overshoot-
ing optimal solutions, while insufficient covariance reduces
adaptability, trapping the model in suboptimal states (Jas-
trzebski et al., 2017; Zhu et al., 2018; Wu et al., 2020). These
challenges make balancing covariance a critical aspect of
improving TTA performance.

To address these challenges, we draw on stochastic dif-
ferential equation (SDE) approximations (Li et al., 2019;
2021), which provide a theoretical foundation for modeling

the dynamics of weight distributions in stochastic gradi-
ent descent (SGD). Using this foundation, we propose the
steady-state adaptation (SSA) algorithm, which dynami-
cally regulates covariance during TTA to ensure stability
and adaptability. SSA is derived in three steps: (1) model-
ing the transition weight distribution via the SDE approx-
imation of SGD, (2) performing online inference for the
posterior weight distribution using this transition model,
and (3) adjusting weight updates to maintain steady-state
covariance. Our algorithm introduces a covariance-aware
learning rate adjustment mechanism that increases learn-
ing rates under low noise for enhanced adaptability and
decreases them under high noise for improved stability. We
validate SSA in various TTA scenarios, demonstrating its
consistent improvements over state-of-the-art methods. In
addition, SSA addresses common challenges such as per-
formance degradation in increasing learning rates (Zhao
et al., 2023), providing a robust and principled solution in
dynamic environments.

2. Background
In this section, we summarize previous studies as the basis
for our proposed framework and algorithm. Related works
are provided in Appendix 6.

Weight-Based Test-time Adaptation TTA is an online
learning paradigm designed to adapt a pre-trained source
model to unlabeled test samples drawn from a shifted dis-
tribution. However, traditional TTA methods are prone to
weight degradation in dynamic environments with evolving
diverse distribution shifts (Boudiaf et al., 2022; Gong et al.,
2022; Niu et al., 2022; Lee et al., 2024). This degradation
occurs because explicit gradient noise from unsupervised
learning accumulates damage to the model weights over
time. Weight-based TTA methods provide a complementary
approach by directly addressing weight degradation. Instead
of relying solely on noisy gradient updates, these methods
continually integrate the pre-trained source weights into the
current model during adaptation. At each time step k, the
current weights ŵk are adjusted by averaging them with the
pre-trained source weights ŵ0 as follows:

ŵ = aŵk + (1− a)ŵ0, (1)

where 0 ≤ a ≤ 1 is a weighting factor that determines the
balance between the current and source weights. Several
state-of-the-art weight-based TTA methods adopt this prin-
ciple: SAR (Niu et al., 2023) resets the model weights to the
source weights (i.e., a = 0) when the exponential moving
average of the total loss falls below a predefined threshold.
ROID (Marsden et al., 2023) employs a moving average
approach with a small a, anchoring the weights close to the
source weights. CMF (Lee & Chang, 2024) introduces a
”hidden source weight” by averaging the source and model
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weights over time with an additional parameter similar to a.
This hidden weight is then further averaged with the current
model weights to produce ŵ. These methods improve TTA
performance in dynamic environments by mitigating weight
degradation during adaptation.

Approximating SGD with SDEs SGD is a cornerstone of
deep learning optimization, and its behavior can be effec-
tively analyzed by approximating its discrete updates using
SDEs (Li et al., 2019; 2021; Malladi et al., 2022). SDE
approximations offer a theoretical framework for how the
gradient noise of covariance influences optimization dynam-
ics, convergence, and generalization. The introduction of
SDE approximations provided key insights into the average
behavior of SGD, linking covariance to convergence prop-
erties (Li et al., 2019). Subsequent work validated these
approximations for discrete SGD updates, showing how
learning rate adjustments influence covariance and, in turn,
the optimization trajectory (Malladi et al., 2022). Specifi-
cally, increasing learning rates amplify the noise, promoting
exploration of flatter minima, while lower learning rates
suppress the noise, stabilizing optimization but risking con-
vergence to sharp minima. These studies are particularly
relevant for TTA, where shifting data distributions cause
excessive changes in covariance, significantly affecting the
performance of the model. SDE approximations thus serve
as a powerful tool for understanding and addressing these
covariance dynamics, providing a foundation for robust op-
timization in the presence of distribution shifts.

3. Methodology
In this section, we start by introducing the notation and
problem formulation, followed by the Bayesian weight en-
hancement framework and the proposed SSA algorithm.
The framework with our algorithm is presented in Algo-
rithm 1.

3.1. Problem Formulation

We consider a DNN model f : X → Y , parameterized
by an arbitrary weight ŵ ∈ Rd, which maps input data
x ∈ X to a predicted label probability p(y|x,w) where
y ∈ Y and d is the dimensionality of the weight space.
Given a well-trained source model f(.; ŵ0) pre-trained on
labeled source data {(xn, yn) ∼ D0 : n = 1 : N0}, the
objective of TTA is to adapt the model to unlabeled test data
xk ∼ Dk, where Dk represents a dynamically evolving
new distribution. This adaptation is required at each discrete
time step k ∈ {1, 2, 3, . . . ,K}, under Dk ̸= D0.

In the TTA process, the unsupervised objective is the ex-
pected risk G(·) at each time step k, defined as:

G(ŵk) = Exk+1∼Dk+1

[
ℓ
(
f(xk+1; ŵk)

)]
, (2)

Algorithm 1 Bayesian Weight Enhancement Framework
with Steady-State Adaptation

Require: Learning rate η, Source model f(.; ŵ0), A =
aI, σ2

λ

Initialization m0 = ŵ0,P0 = 0, ĝ0 = 0
for k = 1 to K do

gk ← ∇mk
G(mk)

Steady-state adaptation:
ḡk ← 1

k (gk + ĝk−1)

σ2
k ← 1

d tr
(
(gk − ḡk)(gk − ḡk)

⊤
)

αk ←
√
σ2
λ/(η

2σ2
k) ▷ Eq. (19)

m+
k+1|k ←mk −αkηgk ▷ Eq. (20)

P+
k+1|k ← Pk+α2

kη
2Σk ▷ Eq. (21)

ĝk ← (αkgk + ĝk−1)

Bayesian weight enhancement:
mk+1 ←m+

k+1|k+A(ŵ0−m+
k+1|k) ▷ Eq. (17)

Pk+1 ← (I−A)P+
k+1|k ▷ Eq. (18)

end for

where ℓ(.) is typically an entropy-based loss function:

ℓ
(
f(xk+1; ŵk)

)
= −

∑
y∈Y

p(y|xk+1,wk) log p(y|xk+1,wk).

(3)
The predictive distribution p(y|xk,wk) represents the
model output for input xk, where the weights are iteratively
optimized via SGD:

ŵk+1 = argmin
ŵk

G(ŵk). (4)

This sequential weight update process produces a time series
of weights {ŵ1, ŵ2, . . . , ŵk}. However, due to the absence
of ground-truth labels in the TTA settings, the reliance on
unsupervised learning introduces explicit noise into the gra-
dient estimates. This explicit gradient noise accumulates
over time, leading to weight degradation, which ultimately
compromises model performance, especially in dynamic
environments characterized by significant and evolving dis-
tribution shifts.

The primary goal of this paper is to mitigate the effects of
the explicit noise caused by the unsupervised nature of the
TTA process. To achieve this, we aim to derive an enhanced
weight sequence {û1, û2, . . . , ûk} where ûk represents a
refined weight estimate at the time step k. This enhanced
weight sequence is designed to restore and improve model
performance under dynamic distribution shifts, offering a
robust solution to the challenges of weight degradation.
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3.2. Bayesian Weight Enhancement with Time-Invariant
Covariance

Bayesian deep learning provides a principled approach to
represent model weights as probability distributions rather
than deterministic values (Polson & Sokolov, 2017; Wilson,
2020; Wilson & Izmailov, 2020; Khan, 2019). This rep-
resentation enables the consideration of multiple plausible
weight configurations simultaneously, which enhances the
robustness of distribution shifts and the explicit gradient
noise (Wortsman et al., 2022; Rame et al., 2022). These
properties make Bayesian approach particularly well suited
for the TTA methods, where models adapt to evolving data
distributions in dynamic environments while maintaining
stability against noise.

Using Bayesian model averaging, the posterior predictive
distribution is expressed as:

p(y|xk,wk,wk+1) =

∫
p(y|xk,u)p(u|wk,wk+1)du,

(5)
where p(u|wk,wk+1) ∝ p(wk+1|u)p(u|wk). To com-
pute the posterior weight distribution p(u|wk,wk+1), we
approximate both likelihood and prior terms using linear
Gaussian models:

p(wk+1|u) = N (wk+1|ŵ0, R), p(u|wk) = N (u|ŵk, Q),
(6)

where R = σ2
rI, Q = σ2

q I and I ∈ Rd×d is the identity
matrix. The formulation results in the posterior distribution
that is also Gaussian:

p(u|wk,wk+1) = N (uk|m,P). (7)

The posterior mean and covariance are given by:

m = (I−A)ŵk +Aŵ0, P = AR, (8)

and A = Q(Q + R)−1. Recent weight-based TTA meth-
ods, such as ROID and CMF, have achieved performance
improvements by setting A close to 0. This setting corre-
sponds to the case where σ2

q ≪ σ2
r . Furthermore, for a

well-trained source model with σ2
r → 0, the covariance P

becomes 0. In the limit where P→ 0, the posterior distri-
bution p(uk|w0,wk) reduces to a Dirac delta δ(uk −m).
Under these conditions, the posterior predictive distribution
in Eq. (5) is simplified to p(y|xk,m), where m represents
the updated weight that combines information from both the
current and the source weights.

From the perspective of our framework, existing weight-
based TTA methods can be interpreted as specific cases of
the posterior weight distribution under the assumption of
time-invariant covariance. However, dynamic environments
frequently induce variability in model performance due to
data distribution shifts, which result in changes in gradient

noise over time. This evolving noise profile directly affects
the covariance of the weight distribution (Jastrzebski et al.,
2017; Zhu et al., 2018; Wu et al., 2020), capturing the trade-
off between adaptability and stability during training.

3.3. Steady-State Adaptation

In this section, we introduce the SSA algorithm, which
integrates the dynamics of SGD using an SDE approxima-
tion, applies Bayesian filtering to compute the posterior
weight distribution, and ensures steady-state covariance.
The detailed derivations are provided in Appendix A.

Transition Weight Distribution with Time-varying
Covariance In many TTA methods, the SGD optimizer
serves as the backbone to update model weights. We
adopt the SDE approximation to capture the temporal
dynamics of the weight and their covariance during the
TTA process (Li et al., 2019). This approximation provides
a continuous-time stochastic representation of SGD. For a
small learning rate η, the weight dynamics during TTA can
be expressed as:

dut = −gtdt+
√
ηΣ

1/2
t dWt, (9)

where dWt is standard Brownian motion, gt represents the
gradient of the loss function ∇G(ût), and Σt = σ2

t I de-
scribes the covariance matrix derived from the gradient
(Malladi et al., 2022). The time-varying variance σ2

t is com-
puted as σ2

t = 1
d tr

(
1
t

∑t
τ=1 (gτ − ḡτ )(gτ − ḡτ )

⊤
)
, where

ḡt = 1/t
∑t

τ=1 gτ is the mean gradient, tr(·) is the trace
operator. Covariance reflects the variability of the gradient
and serves as an indicator of optimization stability.

The temporal evolution of the weight distribution p(ut) is
governed by the Fokker-Planck-Kolmogorov (FPK) equa-
tion:

∂p(ut)

∂t
=

d∑
i=1

∂p(ut)

∂wi
t

[gt]i +
1

2

d∑
i=1

d∑
j=1

∂2p(ut)

∂wi
t∂w

j
t

η
[
Σt

]
ij
,

(10)
where [·]i and [·]ij represent the i-th element of a vec-
tor [·], and (i, j)-th element of a matrix [·], respectively.
Since gt and Σt are generally intractable, we solve the FPK
equation by assuming a Gaussian approximation p(ut) ≈
N (ut|mt,Pt) and applying a Taylor expansion to linearize
the dynamics. As the results, the mean and covariance
evolve as follows:

dm
dt

= −gt,
dP
dt

= PG⊤t + GtP + ηΣt, (11)

and Gt is the Jacobian matrix of gt w.r.t. ut. In this situation,
the transition distribution p(ut|us) is derived by solving this
equation for the interval 0 < s < t and the initial conditions
ms = ŵk and Ps = 0 (Särkkä & Solin, 2019). For a small
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interval s = kη and t = (k + 1)η, we can approximate the
gradients and covariance as a constant within each step k,
leading to Gt = 0. In this situation, the transition weight
distribution is derived as:

p(uk+1|uk) ≈ N (uk+1|mk+1|k,Pk+1|k), (12)

where mk+1|k = ŵk−gk∆t,Pk+1|k = σ2
k∆t2I with gk =

∇G(ŵk), σ2
k = 1

d tr
(
(gk − ḡk)(gτ − ḡk)

⊤
)

, and the step
size is ∆t = η.

This transition distribution aligns the evolution of the mean
with the discrete TTA process, while the covariance reflects
the influence of gradient noise. The covariance serves as a
measure of noise shape in the weight updates, highlighting
the interplay between noise and optimization dynamics
during TTA.

Online Posterior Weight Distribution Inference
To perform an online inference of the posterior weight dis-
tribution in our Bayesian weight enhancement framework,
we adopt a Bayesian filtering approach (Särkkä & Svensson,
2023). The approach provides a recursive mechanism
for computing the posterior distribution at each discrete
time step by incorporating the prior distribution and the
likelihood of new observations. This mechanism enables
efficient computation of the posterior distributions in online
learning.

Given the posterior weight distribution at the previous
time step, p(uk|w0:k), the one-step-ahead posterior dis-
tribution p(uk+1|w0:k) is computed using the Chapman-
Kolmogorov equation (Murphy, 2023):

p(uk+1|w0:k) =

∫
p(uk+1|uk)p(uk|w0:k)duk

= N (uk+1|m+
k+1|k,P+

k+1|k),
(13)

where p(uk+1|uk) is the transition distribution given in Eq.
(12). Starting from the initial condition m0 = ŵ0 and
P0 = 0, the mean and covariance are updated as:

m+
k+1|k = mk − gk∆t, (14)

P+
k+1|k = Pk +Σk∆t2. (15)

Using our Bayesian framework, the likelihood
p(wk+1|uk+1) is modeled as p(wk+1|u) in Eq. (6),
the posterior weight distribution is derived as:

p(uk+1|w0:k+1) =
1

Zk
p(wk+1|uk+1)p(uk+1|w0:k)

= N (uk+1|mk+1,Pk+1),
(16)

where Zk =
∫
p(wk+1|uk+1)p(uk+1|w0:k)duk+1. The

mean and covariance of this distribution are updated as:

mk+1 = m+
k+1|k +Ak(ŵ0 −m+

k+1|k), (17)

Pk+1 = (I−Ak)P+
k+1|k, (18)

where Ak is the Kalman gain (Särkkä & Svensson, 2023)
defined as Ak = P+

k+1|k(P
+
k+1|k + R)−1. The term Ak

adjusts the influence of the source weight ŵ0 based on the
relative magnitude of the covariance P+

k+1|k and R. This
adjustment ensures that the posterior mean incorporates both
the current weight and the source weight, similar to the exist
weight-based TTA.

In the TTA process, the gradients gk are estimated
from unlabeled test samples, leading to explicitly noisy
covariance estimates Σk. This explicit noise introduces
fluctuations in the one-step-ahead covariance P+

k+1|k and,
consequently, Ak. Such fluctuations destabilize the weight
update process (Kloeden et al., 1992), impairing the ability
to adapt effectively to new data samples, particularly under
significant distribution shifts. These challenges underscore
the need for a robust mechanism to regulate covariance
dynamics.

Balancing Covariance TTA methods are sensitive
to learning rate adjustments. High learning rates exacerbate
covariance, leading to abrupt performance drops due to
instability (Zhao et al., 2023). In contrast, excessively low
learning rates can trap the model in local optima, resulting
in significant performance degradation (Niu et al., 2023;
Lee et al., 2024). To address these competing challenges,
we propose a dynamic algorithm that calculates a step size
∆tk to balance covariance based on the posterior weight
distribution.

To achieve this balance, we introduce a scalar αk > 0 to
parameterize the step size as αkη. The dynamic step size
is computed to satisfy the condition Pk+1 ≈ Pk, ensuring
that the covariance remains near its steady-state. Given that
all covariance matrices in Eqs. (15) and (18) are scalar
multiples of the identity matrix, i.e., Pk = pkI, Σk = σ2

kI
and R = σ2

rI, the steady-state condition is simplified to:

αk =

√
σ2
λ

η2σ2
k

, (19)

where σλ =
√

p∞/(σ2
r − p∞), and p∞ represents pk in

the steady-state regime. Substituting αkη into ∆t in Eqs.
(14) and (15), the enhanced mean and covariance of the
one-step-ahead posterior distribution are derived as follows:

m+
k+1|k = mk − αkηgk, (20)

P+
k+1|k = Pk + α2

kη
2Σk. (21)

These updates are then applied to Eqs. (17) and (18) to calcu-
late the posterior weight distribution. Under the steady-state
condition, Ak in Eq. (17) stabilizes and becomes A = aI
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Table 1. Average error rates (%) and standard deviations in covariate shift (γ = ∞) on ImageNet-C. Red fonts indicate performance
degradation with respect to Source.

Adaptation Order (→)
Method NOISE BLUR WEATHER DiGiTAL Avg.

gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

Source 43.9 43.3 43.4 69.7 78.3 59.6 69.1 40.1 44.3 36.3 26.5 50.6 67.6 60.6 43.4 51.8
TENT 43.8 42.9 43.1 70.1 77.9 59.4 69.3 42.2 48.7 45.9 28.9 50.4 68.0 63.3 45.3 53.3±0.22
LAME 45.4 43.7 44.5 72.1 90.7 60.6 89.3 91.5 96.5 99.7 26.7 95.9 96.1 63.3 44.7 70.7±0.14
RoTTA 43.9 43.3 43.3 69.7 77.8 59.4 68.7 39.8 42.5 35.9 26.2 49.8 66.6 60.2 43.4 51.4±0.02

SAR 44.2 43.8 43.7 69.7 77.5 57.1 66.8 41.2 41.4 42.0 26.4 51.6 64.3 57.2 42.1 51.3±0.35
EATA 44.3 43.8 43.5 69.0 74.3 56.8 64.2 39.8 44.2 46.3 25.4 45.3 61.2 54.1 40.7 50.2±0.06
DeYO 43.6 41.9 40.8 66.3 70.7 54.7 63.4 38.3 38.3 36.8 24.5 43.2 55.5 49.3 39.5 47.1±0.16
ROID 42.8 40.4 39.8 63.0 63.2 49.7 56.7 36.8 36.2 31.5 24.8 39.7 57.1 47.3 36.6 44.4±0.13
+SSA 43.0 40.8 39.8 62.8 64.2 49.5 55.5 36.8 35.7 31.1 24.4 39.8 54.8 45.6 35.3 43.9±0.11
CMF 42.9 40.3 39.8 64.0 63.4 49.5 55.1 36.7 34.9 32.4 23.4 38.4 52.0 44.9 35.6 43.5±0.04
+SSA 42.7 39.9 39.4 63.1 60.5 47.7 51.9 37.1 33.9 31.1 22.8 37.9 49.8 43.0 33.1 42.2±0.16

where a > 0 is a constant scalar. Consequently, the pro-
posed algorithm seamlessly integrates with existing weight-
based methods by inheriting the time-invariant covariance
behavior described in Eq. (8).

By adopting a tiny initial step size η, the covariance
Pk+1 in Eq. (18) remains sufficiently small, ensuring
that the posterior weight distribution is well-suited for the
Bayesian weight enhancement framework. Within this
framework, the posterior predictive distribution is simplified
to p(y|xk+1,mk+1), enabling efficient inference without
requiring sampling.

4. Experiments
4.1. Experimental Setup

Datasets and Metrics We evaluated our method using
two widely recognized datasets, ImageNet-C (Hendrycks
& Dietterich, 2019a) and D109 (Marsden et al., 2023),
for distribution shifts in dynamic environments (Niu
et al., 2023; Marsden et al., 2023). ImageNet (Deng
et al., 2009) consists of 1,281,167 training samples and
50,000 testing samples. ImageNet-C extends ImageNet
by applying 15 types of corruption at five severity levels.
These corruptions are categorized into four groups: NOISE,
BLUR, WEATHER, and DIGITAL. Consistent with prior
studies (Niu et al., 2022; 2023; Marsden et al., 2023),
we focused on the highest corruption level (level 5) to
evaluate robustness against severe image degradation. The
D109 dataset features five domains representing natural
distribution shifts derived from DomainNet (Peng et al.,
2019). It includes 109 classes that overlap with ImageNet,
enabling cross-domain evaluations. The evaluation metrics
were the mean and standard deviation of error rates
computed across five random seeds to ensure robust
performance measurement.

Scenarios For evolving distribution shifts over time, we
leveraged several dynamic scenarios. In the covariate shift

scenarios, sequentially arranged domains modeled time-
correlated changes, where input samples were streamed
domain by domain (Boudiaf et al., 2022; Wang et al., 2022;
Yuan et al., 2023). The label shift scenarios were conducted
by presenting sequential input samples drawn from specific
label classes over time. Using a Dirichlet distribution
parameter γ, we controlled the concentration of local label
distributions; lower values γ formed label-specific clusters,
while γ = ∞ reproduced covariate shifts (Gong et al.,
2022; Niu et al., 2023; Zhou et al., 2023). To evaluate the
long-term stability of adaptation, we introduced periodic
scenarios in which the domains followed a repeating
sequence of covariate shifts. Each sequence was repeated
up to 15 times to assess long-term adaptation behavior. In
addition, we designed various order scenarios in which
groups were presented in various orders to examine
the order dependency of the TTA methods. For these,
we created four group sequences (Order-1 to Order-4)
to evaluate robustness under unpredictable distribution
changes.

Implementation Details For all experiments, we
used the base version of VisionTransformer (ViT) (Dosovit-
skiy et al., 2020) with the self-supervised data2vec (D2V)
model (Baevski et al., 2022) as the backbone, consistent
with previous works (Niu et al., 2023; Marsden et al., 2023;
Lee & Chang, 2024). Source models were pre-trained on the
ImageNet training dataset using publicly available weights
to ensure reproducibility. Following previous studies (Li
et al., 2018; Niu et al., 2022; 2023; Marsden et al., 2023;
Lee & Chang, 2024), we limited the trainable weights to
normalization layers, employing either batch normalization
(Ioffe & Szegedy, 2015) or layer normalization (Ba et al.,
2016), depending on the model architecture. Comparative
methods were implemented using their official codebases
and hyperparameters as described in their respective papers,
ensuring alignment with the standard TTA benchmark
(Marsden & Döbler, 2022). The models were trained with a
batch size of 64 and a learning rate of 0.00001 using the
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Table 2. Average error rates (%) and standard deviations in label shifts (γ = 0.1) on ImageNet-C. Red fonts indicate performance
degradation with respect to Source.

Adaptation Order (→)
Method NOISE BLUR WEATHER DiGiTAL Avg.

gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

Source 43.9 43.3 43.4 69.7 78.3 59.6 69.1 40.1 44.3 36.3 26.5 50.6 67.6 60.6 43.4 51.8
TENT 44.0 43.5 43.8 70.8 78.3 59.9 68.8 42.4 52.0 56.5 30.2 64.7 68.7 63.2 44.7 55.4±1.58
LAME 45.7 43.7 45.2 72.4 88.0 60.2 87.5 89.1 95.0 99.7 27.1 95.7 95.0 63.2 44.2 70.1±0.04
RoTTA 43.5 41.2 40.8 68.4 71.1 56.3 64.4 39.1 38.3 38.6 28.3 65.4 67.5 67.4 49.4 52.0±0.06

SAR 43.9 41.7 40.9 68.4 71.8 55.0 63.4 39.3 39.1 38.8 25.3 44.8 58.0 49.9 39.3 48.0±0.10
EATA 43.5 40.5 39.6 61.7 62.0 48.1 56.0 36.7 36.0 32.9 23.0 37.1 53.2 44.5 34.7 43.3±0.03
DeYO 41.3 38.8 38.8 60.8 61.0 52.3 70.6 42.5 40.3 40.8 26.1 64.3 66.4 48.1 42.9 49.0±2.83
ROID 40.6 39.4 39.3 54.8 55.4 46.4 53.1 35.5 34.7 30.0 23.7 36.1 48.0 41.4 34.9 40.9±0.10
+SSA 40.5 38.8 38.7 54.3 53.8 45.0 51.9 34.7 34.1 29.5 23.0 35.7 45.1 39.5 33.2 39.9±0.04
CMF 40.3 38.5 38.4 52.7 49.9 42.5 46.4 34.0 32.8 28.6 22.2 34.4 42.1 38.6 31.6 38.2±0.05
+SSA 39.8 37.6 37.6 50.4 46.1 39.9 42.0 32.1 31.1 27.5 21.1 33.9 36.4 33.7 29.4 35.9±0.04

Table 3. Average error rates (%) and standard deviations in label shifts (γ = 0.0) on ImageNet-C. Red fonts indicate performance
degradation with respect to Source.

Adaptation Order (→)
Method NOISE BLUR WEATHER DiGiTAL Avg.

gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

Source 43.9 43.3 43.4 69.7 78.3 59.6 69.1 40.1 44.3 36.3 26.5 50.6 67.6 60.6 43.4 51.8
TENT 44.1 43.7 44.0 71.1 79.2 61.6 69.8 43.2 53.1 55.9 30.8 48.7 69.4 69.1 58.9 56.2±0.98
LAME 30.5 29.8 30.2 49.4 62.4 39.9 50.3 31.3 34.3 31.4 22.7 39.9 55.9 41.4 34.5 38.9±0.07
RoTTA 43.8 42.0 42.0 69.9 74.5 59.3 67.4 40.3 39.5 40.2 29.0 74.5 72.4 72.8 51.5 54.6±0.04

SAR 44.2 41.8 41.0 67.6 71.7 54.8 63.5 39.2 39.0 38.2 25.6 67.5 66.0 57.9 39.0 50.5±1.38
EATA 44.2 41.4 40.8 64.7 66.7 52.2 60.5 39.7 40.6 39.4 24.8 46.0 55.4 49.7 38.3 47.0±0.11
DeYO 41.5 38.9 38.9 61.7 61.3 51.8 72.0 42.2 41.6 39.7 26.5 56.4 57.1 47.3 41.4 47.9±0.57
ROID 12.2 11.8 11.6 32.5 33.5 18.4 30.1 12.4 11.6 9.8 7.3 12.6 25.1 15.3 13.0 17.1±0.32
+SSA 12.2 11.8 11.5 32.6 29.6 18.3 28.9 11.9 11.3 9.6 7.1 12.1 23.2 14.1 11.5 16.4±0.14
CMF 12.4 12.0 11.9 28.8 23.9 15.6 22.4 11.2 10.2 8.9 6.3 11.3 17.9 13.0 9.7 14.4±0.24
+SSA 12.3 11.4 11.3 29.2 20.5 14.5 19.4 10.5 9.7 8.3 6.1 10.0 14.6 10.8 8.7 13.1±0.29

Table 4. Average error rates (%) comparison with various methods
in the periodic scenario.

Method
Round Source EATA DeYO ROID CMF SSA

1 50.2 47.1 44.4 43.3 42.2
2 46.6 45.6 44.3 42.0 40.8
3 45.1 45.6 44.3 41.7 40.6
4 44.2 45.7 44.3 41.6 40.4
5 43.7 47.2 44.3 41.6 40.2
6 43.3 47.4 44.3 41.5 40.2
7 43.1 48.6 44.3 41.5 40.4
8 42.9 49.3 44.3 41.5 40.2
9 42.7 50.9 44.3 41.4 40.3

10 42.7 54.3 44.4 41.4 40.4
11 42.6 57.2 44.3 41.4 40.3
12 42.5 54.3 44.3 41.4 40.4
13 42.4 55.2 44.4 41.4 40.2
14 42.3 57.0 44.3 41.4 40.4
15

51.8

42.3 60.0 44.3 41.4 40.3
Avg. 51.8 43.8±2.14 51.0±4.88 44.3±0.03 41.6±0.50 40.5±0.51

SGD optimizer. By default, SSA was integrated with CMF,
setting the hyperparameter a = 0.01, following the ROID
and CMF configurations. The steady-state scale factor σ2

λ

was set to 10−12.

4.2. Effectiveness

The performance of TTA methods in the covariate shift
scenario on ImageNet-C is summarized in Table 1. Weight-
based TTA methods, particularly ROID and CMF, demon-
strated significantly better performance compared to other

approaches. This result supports our hypothesis that leverag-
ing weight distributions and incorporating multiple weights
with consistent mixing ratios enhances robustness in dy-
namic environments. By incorporating the proposed SSA
algorithm, these methods achieved state-of-the-art perfor-
mance in all domains, except the snow domain. Tables
2 and 3 present the performance of the TTA methods in
the label shift scenario, with the intensities set to γ = 0.1
and γ = 0.0, respectively. In both cases, SSA consistently
improved the average performance of ROID and CMF, high-
lighting its effectiveness in addressing significant label im-
balances. Similar trends were observed on the D109 dataset
(detailed in Appendix B), where SSA consistently enhanced
the robustness of weight-based methods. These results un-
derscore the generalizability of SSA to different datasets
and adaptation scenarios.

4.3. Stability

Table 4 presents the performance of various TTA methods
in the periodic scenario as the number of rounds increases.
Initially, EATA lags in performance but improves rapidly
over successive rounds, eventually surpassing ROID. How-
ever, CMF consistently outperforms both EATA and ROID
in all rounds, achieving higher average performance. By
integrating SSA, CMF further improves, maintaining supe-
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Figure 2. Average error rates (%) comparison with various meth-
ods in various order scenario.

Figure 3. Average error rates (%) of different methods as learning
rate increase.

rior performance throughout the adaptation process. These
results highlight the ability of SSA to balance high adapt-
ability with long-term stability, making it a reliable solution
for scenarios that require sustained performance.

4.4. Adaptability

Figure 2 illustrates the performance of TTA methods in four
different group orders. While CMF generally outperforms
ROID, it exhibits vulnerabilities in certain cases. Specifi-
cally, CMF underperforms in the NOISE domain for Order-2
and Order-3 and shows degraded performance in the DIG-
ITAL domain for Order-4, as indicated by the red dotted
boxes. By integrating SSA, these limitations are effectively
mitigated, with SSA achieving the highest performance
across all groups and orders compared to existing methods.
These results demonstrate the adaptability of SSA to unpre-
dictable distribution shifts, reinforcing its robustness and
versatility in handling diverse and dynamic environments.

5. Analysis
We conducted an in-depth analysis of sensitivity to learning
rates, computational efficiency, and the role of covariance
in driving its performance. These analyses provide insights
into the core mechanisms and effectiveness of SSA.

Learning Rate Sensitivity A common challenge
for TTA methods is the instability caused by increasing

Table 5. Average error rates (%) and elapsed time comparison of
methods with and without SSA in covariate shift.

Method Time Relative Time (%) Avg.

TENT 1565.2 0.0 53.3±0.22
TENT+SSA 1580.7 1.0 49.3±0.30

ROID 1732.3 0.0 44.4±0.13
ROID+SSA 1790.4 3.4 43.9±0.11

CMF 1751.4 0.0 43.5±0.04
CMF+SSA 1827.4 4.3 42.2±0.16

Figure 4. Comparison of variance evolution with and without SSA.

learning rates (Zhao et al., 2023). As shown in Figure 3,
when the learning rate exceeded 0.00004, both ROID and
CMF experienced significant performance degradation. In
contrast, SSA effectively mitigated this instability, maintain-
ing stable performance even at learning rates up to 15 times
the default value. Beyond this threshold, SSA’s performance
also declined due to violations of the small learning rate
assumption inherent to the SDE approximation. Despite
this limitation, SSA significantly improved the stabil-
ity of existing methods across a wide range of learning rates.

Efficiency Efficiency is a essential consideration
for TTA methods, as they operate in an online learning
setting where computational overhead must be minimized.
Table 5 reports the elapsed time and relative time for
various TTA methods under the covariate shift scenario.
SSA-enhanced methods exhibited minimal relative time
increases of 1.0%, 3.4%, and 4.3% compared to their re-
spective baselines, while delivering significant performance
improvements. Notably, SSA boosted TENT’s performance
by 4.0%, effectively mitigating weight degradation with
minimal additional computational cost. These results
highlight SSA’s efficiency, as it enhances adaptation by
refining the existing trajectory of weight updates without
requiring additional optimization steps.

Covariance Profile The core mechanism of SSA
lies in balancing covariance. Figure 4 illustrates the
evolution of the scalar variance pk of the posterior
covariance Pk over the adaptation process in the covariate
shift scenario on ImageNet-C. Throughout the process,
the variance remained consistently within the range
of 10−7 to 10−4, demonstrating its consistently small
magnitude. This result supports the theoretical assertion of
our framework that a small variance must be maintained.
For TENT, SSA effectively reduced both the variance and
its fluctuations, leading to a stabilized adaptation process.
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In the case of CMF, SSA slightly increased the variance,
but simultaneously controlled its variability, thereby
enhancing the stability. These results empirically validate
the hypothesis that covariance is a critical factor influencing
TTA performance and demonstrate the effectiveness of SSA
in dynamically balancing covariance.

6. Related Works
Sample-based Test-time Adaptation TTA is an online
learning paradigm that adapts a pre-trained source model to
unlabeled test samples drawn from a different distribution.
Many TTA methods rely on entropy minimization, using
model outputs as target probability to facilitate unsupervised
adaptation (Wang et al., 2020). However, in dynamic
environments characterized by diverse changing distribution
shifts, these methods are prone to model collapse (Boudiaf
et al., 2022; Gong et al., 2022; Niu et al., 2023; Press
et al., 2024). Model collapse typically arises from explicit
gradient noise, which is introduced by unreliable model
predictions, leading to weight degradation over time.
To mitigate these issues, sample-based TTA methods
reduce the influence of test samples associated with poor
predictions (Niu et al., 2022; Lee et al., 2024; Marsden
et al., 2023). These methods attempt to filter out unreliable
samples by selecting high-confidence samples during
adaptation. However, their dependence on unreliable model
output, which becomes increasingly corrupt under extreme
distribution shifts, limits their overall effectiveness. As a
result, these methods remain vulnerable to performance
degradation in highly dynamic or extreme shifts. In
contrast, weight-based TTA methods (Niu et al., 2022;
2023; Marsden et al., 2023; Lee & Chang, 2024) alleviate
this problem by continuously averaging the source weight
with the current weight. This approach addresses weight
degradation and integrates naturally into our proposed
Bayesian weight enhancement framework.

Bayesian Deep Learning Highly flexible models
such as DNNs can represent a wide range of functions,
each with different generalization properties. Considering
these multiple models improves accuracy in new data
distributions. This concept is often implemented through
Bayesian model averaging, where model weights are
treated as samples drawn from a weight distribution (Polson
& Sokolov, 2017; Wilson, 2020; Wilson & Izmailov,
2020; Khan, 2019). The weight distribution is commonly
approximated as a Gaussian distribution centered around
local modes (Chaudhari & Soatto, 2018). Since weights
obtained via SGD tend to cluster around regions with
good generalization properties, averaging multiple SGD
samples collected at regular intervals improves robustness
to distribution shifts (Izmailov et al., 2018; Garipov
et al., 2018; Madry et al., 2017). These approaches have

empirically demonstrated robustness to out-of-distribution
data, particularly in fine-tuning large foundation models
(Wortsman et al., 2022; Rame et al., 2022). However, the
study of time-dependent weight distributions under unsu-
pervised learning, where explicit gradient noise can arise,
remains an underexplored area. Our research addresses this
gap by theoretically deriving the weight distribution using
SDE approximations and Bayesian filtering and further
demonstrating its empirical effectiveness in improving
model performance.

Bayesian Filtering Bayesian filtering is a recursive
Bayesian inference method for predicting and updating
time-evolving observations. Kalman filtering, in particular,
performs exact Bayesian inference under the assumption of
linear Gaussian models (Cheng et al., 2019; Abuduweili
& Liu, 2020). For nonlinear observations, extensions such
as Extended Kalman Filtering (EKF) and Iterated EKF
have been developed (Kloeden et al., 1992; Bell & Cathey,
1993). These techniques have been applied to DNN outputs,
where Kalman filtering is performed with linearized
approximations (Puskorius & Feldkamp, 2001). Our
approach shares this idea by using linearization from Eq.
(24) and substituting local gradient and covariance terms
with observed constants. The validity of this substitution
is confirmed through experiments in various scenarios,
datasets, and models. Another Bayesian inference approach,
particle filtering, can also capture complex weight distri-
butions (Huang et al., 2022). However, particle filtering
requires sampling weights, which introduces significant
computational overhead. In contrast, SSA directly leverages
the mean of the posterior weight distribution, leveraging the
small-variance characteristic of TTA processes. This SSA
behavior ensures computational efficiency, making SSA a
practical and scalable solution for TTA.

7. Conclusion
In this paper, we addressed the weight degradation prob-
lem in the TTA process caused by explicit gradient noise
and introduced the Bayesian weight enhancement frame-
work, which generalizes existing weight-based TTA meth-
ods effective in mitigating the problem. Building on this
probabilistic framework, we identified a key limitation in
weight-based approaches: their neglect of time-varying co-
variance, which captures changes in gradient noise. To
address this, we theoretically derived the covariance using
the SDE approximation and Bayesian inference, leading to
the development of the SSA algorithm. The algorithm con-
sistently improved the performance of the state-of-the-art
TTA method by dynamically balancing covariance across
diverse datasets, scenarios, and model architectures. These
results highlight the covariance dynamics that drive TTA
performance in dynamic environments.
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A. Technical Details and Derivation
In this section, we discuss the integration of SSA and SSA into a unified algorithm. In addition, we examine the validity of
the SDE approximation and provide a detailed derivation of the SSA.

A.1. Continual Momentum Filtering with SSA

Algorithm 2 Continual Momentum Filtering with Steady-State Adaptation
Require: Learning rate η, Source model f(.; ŵ0)
Require for SSA: σ2

λ, A = aI
Require for CMF: β, S = sI
Initialization m0 = ŵ0,P0 = 0, ĝ0 = 0, h0 = ŵ0, Q0 = 0
for k = 1 to K do
gk ← ∇mk

G(mk)

Steady-state adaptation:
ḡk ← 1

k (gk + ĝk−1)

σ2
k ← 1

d tr
(
(gk − ḡk)(gk − ḡk)

⊤
)

αk ←
√
σ2
λ/(η

2σ2
k)

m+
k+1|k ←mk − αkηgk

P+
k+1|k ← Pk + α2

kη
2Σk

ĝk ← (αkgk + ĝk−1)

Continual momentum filtering:
h+
k+1|k ← βhk + (1− β)ŵ0

Q+
k+1|k ← β2Qk + S

Bt = Q+
t|t−1(β

2Q+
t−1|t−1 + 1)−1

hk+1 ← h+
k+1|k +Bt(m

+
k+1|k − h+

k+1|k)

Qk+1 ← (I−Kt)Q+
k+1|k

Bayesian weight enhancement framework :
mk+1 ←m+

k+1|k +A(hk+1 −m+
k+1|k)

Pk+1 ← (I−A)P+
k+1|k

end for

Algorithm 2 details the integration of SSA with CMF forming a unified TTA algorithm. SSA achieves state-of-the-art
performance when combined with CMF in various scenarios by effectively regulating weight dynamics. CMF utilizes
Kalman filtering to update the source model with the current weight, resulting in the hidden source weight distribution
p(wk+1|uk+1). In contrast, SSA estimates p(uk+1|w0:k) using the transition weight distribution derived from SDE and
the Chapman-Kolmogorov equation in Eq. (13). These two distributions are naturally integrated into Eq. (16), where SSA
replaces the fixed source weight ŵ0 with the hidden source weight ht+1 obtained through CMF. This integration seamlessly
combines two different methods, allowing SSA to take advantage of the flexible source weight derived from CMF for
improved adaptability.

A.2. Validity of SDE Approximation in TTA Process

The validity of the SDE approximation for SGD arises from the requirement that the learning rate η be sufficiently small
(Zhu et al., 2018; Li et al., 2021). In the TTA process, the connection between discrete time steps and continuous time is
defined as t = kη, where k denotes the iteration step. This mapping ensures that discrete updates in TTA can reasonably be
modeled as a continuous stochastic process when η is small. TTA methods typically update less than 1% of a model’s total
weights (Yuan et al., 2023; Niu et al., 2022; Marsden et al., 2023). This TTA setting indicates that the learning rates for 99%
weight are zero. Furthermore, TTA methods adopt learning rates in the range of 10−5 to 10−6, which are approximately 100
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times smaller than the learning rates commonly used for training source models (i.e., 10−3 to 10−4) (Steiner et al., 2021;
Wang et al., 2020; 2022). This nature of low learning rates across TTA methods ensures that the gradient noise introduced
by SGD remains manageable and aligns with the assumptions of the SDE approximation. Consequently, the small learning
rates widely adopted in TTA provide strong empirical and theoretical support for the validity of the SDE approximation in
this context.

A.3. Transition Distribution from SDE Approximation

In this section, we derive the transition weight distribution from the SDE approximation of the TTA process. The
approximation for SGD in the TTA process is expressed as:

dut = −g(u, t)dt+
√
ηΣ(u, t)1/2dWt, (22)

where g(w, t) and Σ(w, t) are gt and Σt = σtI in Eq. (9). For this SDE, the evolution of the weight distribution p(ut) is
governed by following the FPK equation:

∂p(ut)

∂t
=

d∑
i=1

∂p(ut)

∂wi
t

[g(u, t)]i +
1

2

d∑
i=1

d∑
j=1

∂2p(ut)

∂wi
t∂w

j
t

η
[
Σ(u, t)

]
ij
, (23)

where [·]i and [·]ij represent the i-th element of a vector [·], and (i, j)-th element of a matrix [·], respectively. Since
g(u, t) and Σ(u, t) are generally intractable, we approximate p(ut) as a Gaussian distribution N (ut|m,P) following the
Gaussian assumed density approximation from (Särkkä & Solin, 2019). However, this approximation requires the efficient
computation of an n-dimensional Gaussian integral. Following Theorem 9.2 and Algorithm 9.4 from (Särkkä & Solin, 2019),
we linearize (via Taylor series) the gradient g(m, t) and approximate the

√
ηΣ(u, t)1/2 around the mean m as:

g(u, t) ≈ g(m, t) + G(u, t)(u−m),
√
ηΣ(u, t)1/2 ≈ √ηΣ(m, t)1/2, (24)

where G(u, t) represents the Jacobian matrix of g(u, t) with respect to u. Thus, the mean and covariance are derived as
follows:

dm
dt

= −g(w, t),
dP
dt

= PG⊤t + GtP + ηΣ(u, t). (25)

In this context, the transition weight distribution can be constructed using a linear Gaussian model (Särkkä & Solin,
2019). For arbitrary intervals 0 < s < t with initial conditions ms = ŵk,Ps = 0, the transition distribution is given by
p(ut|us) ≈ N (uk+1|mt|s,Pt|s). For the discrete interval s = kη and t = (k + 1)η, the discrete transition distribution
p(uk+1|uk) simplifies to N (uk+1|mk+1|k,Pk+1|k). Over this small interval, g(u, t) and Σ(u, t) can be constant, denoted

as gk = ∇G(ût) and σ2
k = 1

d tr
(
(gk − ḡk)(gk − ḡk)

⊤
)

, where Gt is approximated as 0. Consequently, Eq. (25) is reduced
to linear ordinary differential equations, yielding the mean and covariance at discrete time k:

mk+1|k = ŵk −
∫ t

s

gkdt = ŵk − gk∆t, Pk+1|k =

∫ t

s

ησ2
kI = σ2

k∆t2I, (26)

where ∆t = η. This transition distribution is combined with Bayesian filtering to derive the posterior weight distribution in
Eq. (16).

A.4. Balancing Covariance

To maintain the covariance of the weight posterior distribution near the steady-state, it is necessary to satisfy Pk+1 ≈ Pk.
Since all covariance matrices Pk+1 and Pk in Eqs. (15) and (18) are scalar multiples of the identity matrix, we can consider
only the scalar term (i.e., variance) in Pk = pkI, Σk = σ2

kI and R = σ2
rI. At steady-state, the variance no longer changes

between steps:
pk = pk+1 = p∞. (27)

Substituting this into the scalar forms of Eqs. (15) and (18), we have:

p∞ = (p∞ + σ2
k∆t2)

(
1− p∞ + σ2

k∆t2

p∞ + σ2
k∆t2 + σ2

r

)
= (p∞ + σ2

k∆t2)
σ2
r

p∞ + σ2
k∆t2 + σ2

r

(28)
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Rearranging this equation yields:

p∞(p∞ + σ2
k∆t2 + σ2

r) = σ2
r(p∞ + σ2

k∆t),

p2
∞ + p∞σ2

k∆t2 + p∞σ2
r − p∞σ2

r − σ2
kσ

2
r∆t2 = 0

p2
∞ − σ2

k(σ
2
r − p∞)∆t2 = 0

(29)

From this, the step size ∆t is derived as:

∆t =

√
p∞

σ2
k(σ

2
r − p∞)

, (30)

where p∞ < σ2
r . To define the dynamic step size ∆tk = αkη where η is the base learning rate, we rewrite αk as:

αk =

√
σ2
λ

η2σ2
k

. (31)

where σλ =
√

p∞/(σ2
r − p∞). This result is substituted into ∆t in Eqs. (14) and (15), ensuring that the posterior weight

distribution in Eq. (16) maintains the steady-state condition, thus balancing covariance. Importantly, under the steady-state
condition, Ak converges to A = aI with a fixed scalar a > 0, representing time-invariant covariance. Consequently, the
proposed algorithm integrates naturally with weight-based TTA methods described in Eq. (7), maintaining compatibility
while improving stability and adaptability.

B. Experiments Details
B.1. Experimental Setup

Our experiments were conducted using a single NVIDIA GeForce RTX 3090 GPU. This section outlines the specific
experimental settings used in our study. To ensure robustness and reproducibility, the evaluation metrics include the mean
and standard deviation of error rates across five random seeds (1, 2, 3, 4, and 5).

Datasets The datasets used in our experiments were selected to evaluate the effect of diverse classes, corruption types,
and natural distribution shifts commonly encountered in real-world scenarios. ImageNet-C was employed as a standard
benchmark for evaluating robustness against corruption. ImageNet consists of 1,281,167 training samples and 50,000
testing samples, while ImageNet-C extends ImageNet by applying 15 types of corruption (e.g., Gaussian noise, shot noise,
defocus blur, frost, and JPEG compression) at five severity levels. Consistent with previous studies (Boudiaf et al., 2022;
Niu et al., 2022; 2023; Marsden et al., 2023; Lee & Chang, 2024), we used severity level 5, treating each type of corruption
as a distinct domain. To further assess model performance under natural distribution shifts, we utilized D109, derived
from DomainNet. D109 includes five domains (clipart, infograph, painting, real, and sketch) and comprises 109 classes
that overlap with ImageNet. For an additional exploration of natural distribution shifts, we incorporated the Rendition
and Sketch datasets in the covariate shift scenario. Rendition contains 30,000 images of 200 ImageNet classes rendered
in artistic styles, collected from Flickr and curated via Amazon Mechanical Turk. The Sketch dataset consists of 50,000
black-and-white images, with 50 sketches for each of the 1,000 ImageNet classes, constructed using Google image queries.

Compared Methods We compared SSA with several state-of-the-art TTA methods, each employing different
strategies to improve adaptation to distribution shifts. TENT (Wang et al., 2020) updates trainable weights using
entropy minimization loss, allowing the model to adjust its predictions to reduce uncertainty in test samples. LAME
(Boudiaf et al., 2022) adapts to label distribution shifts by modifying model outputs rather than updating the model
weights, ensuring stable adaptation without direct changes of parameters. RoTTA (Yuan et al., 2023) employs a
student-teacher approach with cross-entropy objectives and data augmentation to improve robustness against shifting
distributions. EATA (Niu et al., 2022) follows an entropy-based objective while excluding high-entropy samples based
on a predefined threshold, preventing noisy gradient updates from degrading model performance. SAR (Niu et al.,
2023) integrates sample exclusion with sharpness-aware minimization to avoid sharp local optima. Additionally, SAR
monitors the model loss and resets the model to its source state if the loss exceeds a predefined threshold. DeYO
(Lee et al., 2024) employs a sample selection strategy based on pseudo-label probability differences and entropy. It
identifies high-confidence samples by applying object-destructive transformations and measuring prediction changes.
ROID (Marsden et al., 2023) incorporates an entropy objective that accounts for label distribution diversity, while
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excluding low-confidence samples during training. Additionally, ROID continuously averages the source weight
with the current weight to enhance stability during adaptation. CMF (Lee & Chang, 2024) uses Kalman filtering
to dynamically update the source weight by mixing it with the current weight. The updated source weight is then
further integrated with the target weight, ensuring smooth adaptation while preserving knowledge from the pre-trained model.

Implementation Details Our experiments were implemented using the base version of ViT (Dosovitskiy et al.,
2020) with the self-supervised D2V model (Baevski et al., 2022) as the backbone, following previous work (Niu et al.,
2023; Marsden et al., 2023; Lee & Chang, 2024). In addition, we used SwinTransformer (Liu et al., 2021) as an alternative
architecture. All source models were pre-trained on the ImageNet training dataset using publicly available weights to ensure
reproducibility. For all experiments, we adhered to the hyperparameters specified in the TTA benchmark (Marsden &
Döbler, 2022) and followed the official implementations and values reported in the original papers of each method. If
hyperparameters were unavailable for a specific dataset or model, we adjusted them accordingly. All experiments used the
SGD optimizer with a momentum of 0.9. The learning rates were set as follows: 0.00001 for D2V, 0.00025 for ViT, and
0.000005 for EATA. Swin used the same learning rate as ViT, while SAR employed the SAM optimizer with a learning rate
of 0.001 for both ViT and Swin. For CMF, we used (β, s) = (0.99, 0.005). Following ROID and CMF, we set the SSA
hyperparameter a = 0.01. The steady-state scale factor σ2

λ was set to 10−12, and SSA was applied once η2σ2
k reached half

of this factor.

B.2. Additional Experiments
Table 6. Average error rates (%) and standard deviations in covariate
shift (γ = ∞) on D109. Red fonts indicate performance degrada-
tion with respect to Source.

Adaptation Order (→)Method clipart infograph painting real sketch Avg.

Source 48.7 72.9 41.2 20.5 56.7 48.0
TENT 49.1 77.5 51.4 31.2 79.4 57.7±0.08
LAME 98.7 99.6 96.4 51.3 99.1 89.0±0.14
RoTTA 48.6 72.6 40.7 19.9 53.9 47.2±0.01

SAR 48.3 74.4 42.9 20.3 56.5 48.5±0.10
EATA 47.9 71.6 40.0 19.7 54.1 46.6±0.05
DeYo 47.2 74.5 41.3 19.8 51.3 46.8±0.56
ROID 43.5 68.5 37.7 19.3 50.4 43.9±0.04
+SSA 43.7 67.0 36.9 18.8 47.9 42.9±0.06
CMF 43.0 66.5 36.3 18.5 47.3 42.3±0.11
+SSA 42.1 65.3 35.8 18.2 46.0 41.5±0.06

Table 7. Average error rates (%) and standard deviations in label
shifts (γ = 0.1) on D109. Red fonts indicate performance degrada-
tion with respect to Source.

Adaptation Order (→)Method clipart infograph painting real sketch Avg.

Source 48.7 72.9 41.2 20.5 56.7 48.0
TENT 49.1 77.4 51.3 31.7 79.7 57.8±0.06
LAME 69.8 94.5 57.6 32.7 68.3 64.6±0.25
RoTTA 48.7 72.7 40.9 20.2 55.4 47.6±0.03

SAR 48.4 74.6 43.5 20.3 56.4 48.6±0.02
EATA 47.8 71.5 39.9 19.8 53.7 46.5±0.06
DeYo 47.3 74.4 40.6 19.7 51.0 46.6±0.40
ROID 35.0 63.1 28.1 12.9 41.0 36.0±0.08
+SSA 35.3 61.3 27.4 12.6 38.1 34.9±0.07
CMF 34.4 60.3 26.6 12.1 36.8 34.1±0.13
+SSA 33.7 59.2 26.4 12.0 35.5 33.4±0.06

Table 8. Average error rates (%) and standard deviations in label
shifts (γ = 0.0) on D109. Red fonts indicate performance degrada-
tion with respect to Source.

Adaptation Order (→)Method clipart infograph painting real sketch Avg.

Source 48.7 72.9 41.2 20.5 56.7 48.0
TENT 49.2 77.1 51.5 32.6 80.9 58.2±0.04
LAME 26.0 68.8 19.2 8.0 26.7 29.7±0.15
RoTTA 48.7 72.9 41.1 20.5 56.7 48.0±0.01

SAR 48.7 75.4 46.8 20.1 56.6 49.5±0.05
EATA 47.9 71.5 39.6 19.7 54.0 46.5±0.14
DeYo 48.9 75.8 45.1 20.7 52.2 48.5±0.39
ROID 25.3 55.5 21.6 10.5 33.1 29.2±0.04
+SSA 25.4 52.9 21.7 10.5 30.7 28.3±0.05
CMF 24.9 52.8 20.4 10.2 30.9 27.8±0.12
+SSA 24.4 51.3 20.4 10.0 30.6 27.4±0.21

Table 9. Average error rates (%) and standard deviations on Rendi-
tion and Sketch. Red fonts indicate performance degradation with
respect to Source.

Method Rendition Sketch
Source 46.6 60.4
TENT 46.0±0.03 60.3±0.06
LAME 86.7±0.39 86.9±0.37
RoTTA 46.5±0.01 60.1±0.03

SAR 45.9±0.05 60.2±0.07
EATA 45.8±0.09 58.6±0.08
DeYo 42.9±0.07 60.4±0.62
ROID 41.4±0.08 55.7±0.02
+SSA 40.3±0.13 54.5±0.07
CMF 39.7±0.11 53.3±0.06
+SSA 38.8±0.12 52.5±0.07

Tables 6, 7, and 8 present results omitted from Section 4.2. SSA consistently improved ROID and CMF performance in all
scenarios in the D109 dataset, demonstrating its robustness in handling natural distribution shifts. We further evaluated TTA
methods under a prolonged long one-domain natural shift scenario. Table 9 reports the performance of various methods on
the Rendition and Sketch datasets. In this scenario, SSA significantly improved ROID and CMF performance, achieving
state-of-the-art results. These results provide empirical evidence that SSA is not only effective in addressing data corruption
but also robust in handling natural distribution shifts, reinforcing its reliability in diverse adaptation environments.
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B.3. Additional Experiments: Real-world Scenario

Table 10. Average word error rates (%) and standard deviation in the real-world speech recognition scenario on TED.

Method Source Pseudo Label TENT CMF SSA
Avg. WER 12.4±0.00 12.1±0.03 11.9±0.02 11.8±0.05 11.5±0.01

Table 11 compares the performance of various TTA methods in a real-time speech recognition scenario on TEDLIUM3
(Hernandez et al., 2018), which consists of streamed talk recordings. The TEDLIUM3 test dataset includes speeches by 11
experts, each delivering talks on different topics. We used the speech version of D2V that was pre-trained in LibriSpeech
(Panayotov et al., 2015). Following the CMF setup, we measured the average word error rate (WER) of the model in
an environment where multiple speakers sequentially deliver speech. These results show that SSA achieved the best
performance compared to competing TTA methods, demonstrating its effectiveness in adapting to speaker variations in
real-time speech recognition.

B.4. Additional Analysis: Various Model Architectures

Table 11. Average error rates (%) and standard deviation for various model architectures in covariate shift on ImageNet-C.

Model Source ROID CMF SSA
ViT 60.2 45.0±0.08 44.9±0.08 44.6±0.05

Swin 64.0 47.2±0.15 46.6±0.12 46.0±0.07
D2V 51.8 44.8±0.04 43.5±0.04 42.2±0.16

Table 11 compares the performance of TTA methods across different model architectures in the covariate shift scenario. The
results show that SSA achieved state-of-the-art performance across all tested architectures, demonstrating its adaptability
and effectiveness. Notably, SSA remained highly effective even for models with lower source model performance, such as
Swin, where it achieved substantial improvements. This suggests that SSA is particularly beneficial where the base model
struggles with adaptation.

B.5. Additional Analysis: Validity of Steady-State Scale Factor

Figure 5. Average error rates (%) for various the steady-state scale factor.

The steady-state scale factor σ2
λ determines the baseline for covariance regulation in SSA. To analyze its impact, we

varied this factor by multiplying σ2
λ by log(Variance Scale), adjusting the scale accordingly. Figure 5 presents the average

error rates in the covariate shift scenario for different variance scales. The results show that SSA maintained consistent
performance for Variance Scale values ranging from 2 to 10,000, demonstrating its robustness in a wide range of covariance
conditions. These results highlight the reliability and adaptability of SSA, confirming that its performance remains stable
even under significant variations in the steady-state scale factor.
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C. Limitation and Future Works
One limitation of our current approach was the reliance on a linear Gaussian model to represent the weight distribution.
Although this choice provides computational efficiency and analytical tractability, it can limit the flexibility of the model in
capturing more complex weight behaviors. However, our empirical results demonstrated that SSA significantly improves
performance in various scenarios, model architectures, and TTA methods with fixed hyperparameters. For future work, we
aim to explore weight distributions that can model a broader range of weight dynamics. By extending beyond the linear
Gaussian assumption, we seek to enhance the adaptability and robustness of our approach in more complex and rapidly
evolving environments.
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