

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING FROM NOISY PREFERENCES: A SEMI-SUPERVISED LEARNING APPROACH TO DIRECT PREFERENCE OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Human visual preferences are inherently multi-dimensional, encompassing aspects of aesthetics, detail fidelity, and semantic alignment. However, existing open-source preference datasets provide only single, holistic annotations, resulting in severe label noise—images that excel in some dimensions (e.g., compositional) but are deficient in others (e.g., details) are simply marked as “winner” or “loser”. We theoretically demonstrate that this compression of multi-dimensional preferences into binary labels generates conflicting gradient signals that misguide the optimization process in Diffusion Direct Preference Optimization (DPO). To address this label noise from conflicting multi-dimensional preferences, we propose Semi-DPO, a semi-supervised learning approach. We treat pairs with consistent preferences across all dimensions as clean labeled data, while those with conflicting signals are considered noisy unlabeled data. Our method first trains a model on a clean, consensus-filtered data subset. This model then acts as its own implicit classifier to generate pseudo-labels for the larger, noisy set, which are used to iteratively refine the model’s alignment. This approach effectively mitigates label noise and enhances image generation quality, achieving better alignment with multi-dimensional human preferences. Experimental results demonstrate that Semi-DPO significantly improves alignment with multi-dimensional human preferences, achieving state-of-the-art performance without requiring additional human annotation or the need to train a dedicated reward models.

1 INTRODUCTION

Diffusion models (Ho et al., 2020) have achieved remarkable success in text-to-image (T2I) generation (Ramesh et al., 2022; Pernas et al., 2024; Ramesh et al., 2021). However, aligning T2I diffusion models with human preferences typically requires training with separate reward models, creating significant computational bottlenecks (Wang et al., 2024; Wu et al., 2023a; Xu et al., 2023). To address this limitation, Diffusion-DPO (Wallace et al., 2024) adapts the direct preference optimization (DPO) approach from large language models (LLMs) (Rafailov et al., 2023), eliminating the need for explicit reward models by optimizing directly on preference pairs. However, Diffusion-DPO overlooks a fundamental distinction: while human visual preferences are inherently multi-dimensional (Zhang et al., 2024), annotated datasets collapse this into binary choices. This destabilizes training by creating contradictory signals that penalize learning desirable attributes from “loser” images while simultaneously rewarding undesirable ones in “winner” images.

As shown in Figure 7: for the prompt “*A vast green grassland with blue sky and two white clouds, a mother cow and her calf both eating grass, natural landscape, extremely detailed, 4k resolution, perfect lighting, fine textures*”, Image A may excel in semantic alignment and composition but appear aesthetically flat, while Image B may excel in texture but lack semantic alignment. When a human annotator is forced to choose, their judgment may hinge on a single dimension, yet the label is recorded as an overall preference. *This produces a noisy, contradictory signal, as the model is implicitly taught to prefer all attributes of the winning image, including its flaws.*

Collapsing multi-dimensional preferences into a single binary label introduces a critical challenge for Diffusion-DPO training: dimensional conflicts across the dataset cause conflicting gradient sig-

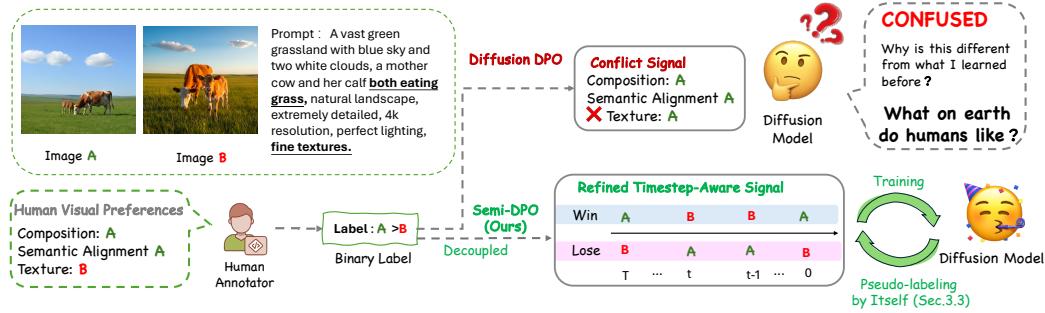


Figure 1: **Resolving label noise from multi-dimensional preferences.** Standard Diffusion-DPO learns from a noisy, conflict signal created when a binary label ($A \succ B$) collapses multi-dimensional preferences (e.g., A's composition vs. B's texture). Our method, Semi-DPO, resolves this by decoupling the conflict into refined timestep aware signals via self-training, leading to a more robust alignment.

nals leading to suboptimal convergence. We formalize this phenomenon in our theoretical analysis 3.2. To address this challenge, we reformulate the problem through the lens of **learning with noisy labels (LNL)** (Zhang et al., 2017; Song et al., 2022). A dominant paradigm for tackling LNL is to reframe it as a **semi-supervised learning (SSL) problem**, where noisy samples are treated as an unlabeled set that requires relabeling. Within this paradigm, iterative self-training stands out as a powerful and widely adopted methodology. It involves training a classifier on a small clean set and using it to generate pseudo-labels for the larger unlabeled set, progressively refining the model (Xie et al., 2020; Li et al., 2020; Arazo et al., 2019). Inspired by this, we treat dimensionally conflicted samples as our unlabeled set. The central question for this approach then becomes *which model should serve as the classifier for generating these pseudo-labels*.

Our answer lies within the *diffusion model* itself. We leverage the fact that the DPO loss compels the model to distinguish between preferred and dispreferred samples, effectively turning it into an implicit preference classifier. This inherent capability allows the diffusion model to generate fine-grained pseudo-labels for dimensionally conflicted data without requiring any architectural changes. Furthermore, echoing research (Hertz et al., 2022) on the hierarchical nature of the diffusion process, where early stages govern global composition and later stages refine local details. This hierarchy allows us to reframe a single, conflicting preference label (e.g., A's good composition vs. B's good texture) as a series of non-conflicting, timestep-conditional preferences. Therefore, we apply this implicit classifier across the diffusion timeline. This transforms a single noisy preference signal into fine-grained, timestep-conditioned pseudo-labels, effectively decoupling noisy conflicting signals.

To this end, we propose **Semi-DPO**, a two-stage framework. In the first stage, **Multi-Reward Consensus**, we partition the dataset by using a consensus of diverse, pre-trained reward models to filter the data. A preference pair is added to a clean labeled set only if all models unanimously agree with the human label; otherwise, it is assigned to a noisy, unlabeled set requiring relabeling. This process designates about 21% of the Pick-a-Pic V2 dataset as clean. In the second stage, **Iterative self-training**, we initially train the model on the clean labeled dataset. The trained model then generates timestep-conditional pseudo-labels for the noisy unlabeled dataset. To mitigate confirmation bias and model drift (Zhang et al., 2021; Cascante-Bonilla et al., 2021; Xie et al., 2020), only high-confidence pseudo-labels are selected for retraining with a composite objective anchored to the clean set. This creates a virtuous cycle, synergistically improving the model's alignment with multi-dimensional human preferences.

In summary, our main contributions are: (1) We provide a theoretical analysis proving that conflicting dimensional signals in holistic labels cause conflicting gradient signal during Diffusion-DPO training, leading to suboptimal convergence. (2) We propose Semi-DPO, a novel self-training framework that reframes the preference alignments as semi-supervised learning under label noise, leveraging timestep-conditional pseudo-labeling to generate fine-grained signals that decouple conflicting preference dimensions. (3) We demonstrate through extensive experiments that Semi-DPO achieves state-of-the-art performance, significantly improving the model's ability to generate images that align with complex, multi-dimensional human preferences without extra annotation costs or fine-tuning with an explicit reward model.

108 **2 RELATED WORKS**

110 **Diffusion Models and Diffusion Alignment.** In recent years, diffusion models (Ho et al., 2020;
 111 Song & Ermon, 2019; Song et al., 2021) have achieved remarkable success in text-to-image gen-
 112 eration. These models are traditionally trained on large-scale text-image datasets scraped from the
 113 web. However, they are not well-aligned with human preferences. To achieve better alignment,
 114 T2I adapted Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) from
 115 the LLM domain (Dai et al., 2023; Miao et al., 2024; Clark et al., 2024), which requires training
 116 an explicit reward model on human preference data to guide diffusion model optimization. How-
 117 ever, developing reliable reward models remains computationally expensive and requires large-scale
 118 annotated datasets (Xu et al., 2023; Wu et al., 2023a; Wang et al., 2024), creating a significant bot-
 119 tleneck. Inspired by Direct Preference Optimization (DPO) (Rafailov et al., 2023) in LLMs, recent
 120 work has adapted this approach to T2I alignment, eliminating the need for an explicit reward model.
 121 Methods like Diffusion-DPO (Wallace et al., 2024) directly optimize diffusion models on human-
 122 annotated preference pairs by maximizing the relative probability of preferred images. Follow-up
 123 work on Diffusion-DPO falls into two categories: offline (Li et al., 2024; Zhu et al., 2025; Lee et al.,
 124 2025; Hong et al., 2024) and online methods (Liang et al., 2024; Black et al., 2023; Zhang et al.,
 125 2025; Yang et al., 2024). *We provide detailed comparisons between online and offline diffusion DPO*
 126 *methods in Appendix 6.5 and discuss how Semi-DPO relates to existing work in Appendix 6.6.*

127 **Noise Data & Semi-Supervised Learning.** The success of deep learning models largely depends
 128 on large-scale, high-quality annotated datasets. However, common data collection methods—such
 129 as web scraping and crowdsourcing (e.g., Amazon Mechanical Turk)—inevitably introduce label
 130 errors (Song et al., 2022). Due to their high capacity, deep neural networks can memorize these
 131 incorrect labels, which degrades generalization (Zhang et al., 2017; Song et al., 2022). To address
 132 this challenge, a dominant paradigm reframes learning with noisy labels (LNL) as a semi-supervised
 133 learning (SSL) problem (Arazo et al., 2019). This approach partitions training data into a clean
 134 labeled dataset and a noisy unlabeled dataset (Li et al., 2020; Han et al., 2018; Yu et al., 2019;
 135 Wei et al., 2020). This partitioning strategy has been applied in several influential frameworks. Co-
 136 teaching (Han et al., 2018) trains two networks that select small-loss samples for each other. Noisy
 137 Student Training (Xie et al., 2020) employs self-training where a teacher generates pseudo-labels
 for a larger, noised student model, enabling it to learn more robust representations.

138 **3 METHOD**

139 **3.1 PRELIMINARIES**

140 **Diffusion Models.** Diffusion Models are latent variable models designed to learn the reverse of a
 141 fixed, T -step Markovian noising process. The forward process, q , is defined as $q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) :=$
 142 $\mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$, which admits a closed-form sampling distribution at any timestep t :
 143 $q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$, where $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$.

144 The model learns the reverse process, $p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{c})$, by training a network $\epsilon_\theta(\mathbf{x}_t, t, \mathbf{c})$ to predict
 145 the noise component ϵ from a noised sample \mathbf{x}_t . This is achieved by optimizing a simplified objective
 146 on the negative log-likelihood:

$$\mathcal{L}_{\text{DM}} = \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[w(t) \left\| \epsilon - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t, \mathbf{c} \right) \right\|_2^2 \right] \quad (1)$$

147 Generation is performed via ancestral sampling, starting from $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ and iteratively applying
 148 the learned reverse transition.

149 **Reinforcement Learning from Human Feedback (RLHF).** A prevalent approach for model align-
 150 ment is Reinforcement Learning from Human Feedback (RLHF). For text-to-image (T2I) models,
 151 human preference data is collected as paired comparisons $(\mathbf{x}_0^w, \mathbf{x}_0^l, \mathbf{c})$, where \mathbf{x}_0^w and \mathbf{x}_0^l represent
 152 the preferred (“winning”) and dispreferred (“losing”) final images for a given text prompt \mathbf{c} .

153 First, a reward function $r(\mathbf{x}_0, \mathbf{c})$ is trained to model these preferences using the Bradley-Terry model,
 154 where the likelihood of preferring \mathbf{x}_0^w over \mathbf{x}_0^l is given by:

$$p_{\text{BT}}(\mathbf{x}_0^w \succ \mathbf{x}_0^l \mid \mathbf{c}) = \sigma(r(\mathbf{x}_0^w, \mathbf{c}) - r(\mathbf{x}_0^l, \mathbf{c})) \quad (2)$$

155 where $\sigma(\cdot)$ is the sigmoid function. Subsequently, the diffusion model policy p_θ is optimized to
 156 maximize the expected reward, regularized by a KL-divergence term to prevent large deviations

162 from a reference policy p_{ref} , with $\beta > 0$ controls the KL penalty strength:
 163

$$\mathcal{L}_{\text{RLHF}} = \mathbb{E}_{p_{\theta}(\mathbf{x}_0 | \mathbf{c})} [r(\mathbf{x}_0, \mathbf{c})] - \beta \mathbb{D}_{\text{KL}} [p_{\theta}(\mathbf{x}_{0:T} | \mathbf{c}) || p_{\text{ref}}(\mathbf{x}_{0:T} | \mathbf{c})] \quad (3)$$

166 **Direct Preference Optimization for Diffusion Models.** Direct Preference Optimization (DPO)
 167 simplifies RLHF by re-parameterizing the reward function directly in terms of the policy and ref-
 168 erence models, thus bypassing the need for an explicit reward model. When adapting this concept
 169 to diffusion models by framing the denoising process as a Markov Decision Process, the implicit,
 170 time-step-wise reward function can be expressed as:
 171

$$r(\mathbf{x}_{t-1}, \mathbf{c}) = \beta \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c})}{p_{\text{ref}}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c})} \quad (4)$$

173 Substituting this reward definition into the Bradley-Terry likelihood yields the conceptual Diffusion-
 174 DPO loss, which is optimized directly with respect to the policy parameters θ :
 175

$$\mathcal{L}_{\text{DPO-Diffusion}} = -\mathbb{E} \left[\log \sigma \left(\beta \log \frac{p_{\theta}(\mathbf{x}_t^w | \mathbf{x}_t^w, \mathbf{c})}{p_{\text{ref}}(\mathbf{x}_t^w | \mathbf{x}_t^w, \mathbf{c})} - \beta \log \frac{p_{\theta}(\mathbf{x}_t^l | \mathbf{x}_t^l, \mathbf{c})}{p_{\text{ref}}(\mathbf{x}_t^l | \mathbf{x}_t^l, \mathbf{c})} \right) \right] \quad (5)$$

178 The expectation is taken over the preference dataset \mathcal{D} and timesteps $t \in [1, T]$, where the noisy
 179 states \mathbf{x}_t are sampled from the forward noising process.
 180

181 3.2 CONFLICTING GRADIENTS SIGNAL FROM MULTI-DIMENSIONAL PREFERENCES

183 **Diffusion-DPO Gradient Formulation.** To understand the training dynamics, we begin by decom-
 184 posing the per-sample, per-timestep DPO gradient, $\nabla_{\theta} \mathcal{L}_{\text{DPO}}^{(t)}$.
 185

$$\nabla_{\theta} \mathcal{L}_{\text{DPO}}^{(t)} = - \underbrace{(1 - \sigma(z_{\theta}^{(t)})) \cdot \beta}_{f_{\theta}^{(t)}} \underbrace{(\nabla_{\theta} \log p_{\theta}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, \mathbf{c}) - \nabla_{\theta} \log p_{\theta}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, \mathbf{c}))}_{\Delta \phi_{\theta}^{(t)}} \quad (6)$$

189 where $z_{\theta}^{(t)} := \beta \left(\log \frac{p_{\theta}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, \mathbf{c})}{p_{\text{ref}}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, \mathbf{c})} - \log \frac{p_{\theta}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, \mathbf{c})}{p_{\text{ref}}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, \mathbf{c})} \right)$. This decomposition shows that the
 190 Diffusion-DPO update adjusts the model’s parameters along the direction of the feature difference,
 191 $\Delta \phi_{\theta}^{(t)}$, aiming to increase the log-probability of the preferred sample relative to the dispreferred one.
 192 While this update mechanism is effective for clean preference pairs, its behavior becomes problem-
 193 atic in the presence of multi-dimensional conflicts. Detailed derivation is provided in Appendix 6.1.
 194 We now analyze how these conflicts impact the Diffusion-DPO training process.
 195

196 **The Source of Conflicting Signals in Preference Optimization.** In this section, we provide a theo-
 197 retical analysis for the training instability outlined previously. We demonstrate how collapsing multi-
 198 dimensional preferences into binary labels mathematically guarantees the presence of conflicting
 199 gradient signals, leading to suboptimal convergence. Our analysis begins by partitioning the dataset
 200 based on whether a sample’s preference along a specific dimension aligns with its holistic label. For
 201 a given dimension k (e.g., composition), let the reward difference be $\Delta r_k := r_k(\mathbf{x}_0^w, \mathbf{c}) - r_k(\mathbf{x}_0^l, \mathbf{c})$.
 202 This partitions the dataset into an alignment set \mathcal{A}_k (where the dimensional preference matches the
 203 holistic label, $\Delta r_k > 0$) and a conflict set \mathcal{C}_k (where the dimensional preference opposes the holistic
 204 label, $\Delta r_k < 0$), occurring with probabilities $p_{a,k}$ and $p_{c,k}$, respectively.
 205

206 To analyze the training dynamics, we define the per-sample gradient $g_{\theta}^{(t)} := -f_{\theta}^{(t)} \cdot \Delta \phi_{\theta}^{(t)}$, and
 207 the oracle direction, $v_k(\theta, t) := \text{sign}(\Delta r_k) \Delta \phi_{\theta}^{(t)}$. The oracle direction represents the ideal update
 208 direction for improving dimension k . For an aligned pair in \mathcal{A}_k , v_k is the standard Diffusion-
 209 DPO update direction. However, for a conflicting pair in \mathcal{C}_k , v_k points in the opposite direction,
 210 representing the corrective update that should have been applied for this specific dimension.
 211

212 We then examine the inner product the inner product defined as $\langle -g_{\theta}^{(t)}, v_k(\theta, t) \rangle$. This quantity
 213 measures how well the actual gradient update aligns with the ideal oracle direction. A positive value
 214 indicates that the update is making progress on dimension k , while a negative value indicates the
 215 update is actively degrading performance on that dimension. *Therefore, the variance of this inner
 product serves as a direct mathematical measure for the severity of conflicting signals that cause
 training instability.*

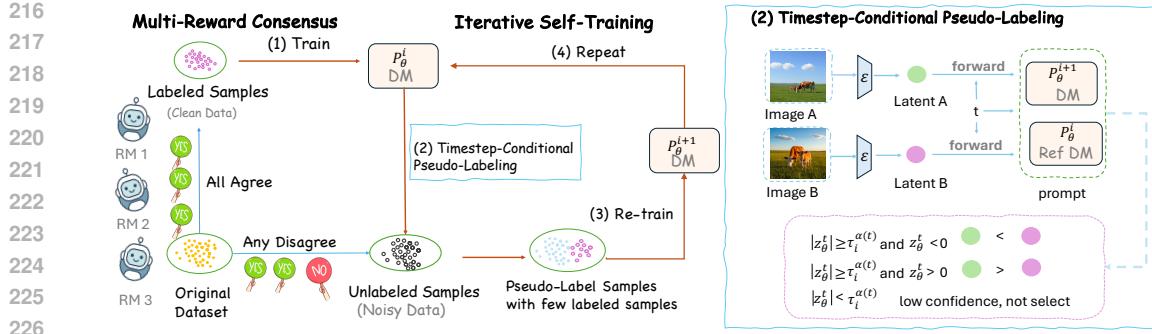


Figure 2: Semi-DPO framework for resolving label noise. Stage 1 (**Multi-Reward Consensus**): A committee of reward models partitions the original dataset into a small, clean labeled dataset (based on unanimous agreement) and a large, noisy unlabeled dataset. Stage 2 (**Iterative Self-Training**): (1) An initial model is trained on the clean labeled set. (2) This model then generates pseudo-labels for the noisy unlabeled set. A pseudo-label is accepted if its confidence score (the logit magnitude $|z_\theta^t|$) exceeds a dynamic threshold $\tau_i^{\alpha(t)}$. The sign of the logit, $\text{sign}(z_\theta^t)$, determines how the new label is applied: a positive sign keeps the original “winner” and “loser” assignment for the image pair, while a negative sign swaps them. (3-4) The model is then retrained on the high-confidence pseudo-labels and the original clean set, and this cycle is repeated until convergence.

As we prove in Appendix 6.2, this variance is bounded below by:

$$\text{Var}[\langle -g_\theta^{(t)}, v_k(\theta, t) \rangle] \geq p_{a,k} p_{c,k} \cdot (m_{a,k}^{(t)} + m_{c,k}^{(t)})^2 \quad (7)$$

where $m_{a,k}^{(t)}$ and $m_{c,k}^{(t)}$ are the expected magnitudes of the gradient updates conditioned on the alignment and conflict sets, respectively. This inequality reveals the mechanism behind the instability. The product term $p_{a,k} p_{c,k}$ is greater than zero if and only if a conflict set exists ($p_{c,k} > 0$), which mathematically guarantees that the training signal must contain updates that are both aligned with and opposed to the oracle direction. This co-existence gives rise to gradients with inconsistent directions updates from \mathcal{C}_k that directly oppose the “oracle” updates desired for dimension k .

Conflicting gradient signals force the model’s parameters to oscillate, with the update direction frequently reversing. This behavior introduces two critical issues: (1) it renders the learning process highly inefficient, as progress from one step is largely negated by the next, impeding the minimization of the loss function. (2) this constant directional conflict makes the training instability, and the model struggles to find a consistent optimization path, leading to suboptimal convergence.

3.3 THE SEMI-DPO FRAMEWORK

Our theoretical analysis shows that collapsing multi-dimensional conflicts into single binary labels generates conflicting gradient signals, causing suboptimal convergence. To address this, we reframe the alignment task as a semi-supervised learning (SSL) problem designed to handle these noisy labels. We detail our proposed framework in the following section.

Data Partitioning via Multi-Reward Consensus. To obtain a clean labeled set ($\mathcal{D}_{\text{labeled}}$) for stable cold-start training, we filter the original dataset \mathcal{D} using a multi-reward consensus approach. This approach is motivated by existing work that reveals strong correlations between widely-used reward models and different dimensions of human preference Zhang et al. (2024) (see Table 6 and Figure 4). For instance, CLIP Score (Radford et al., 2021) demonstrates a strong correlation with the semantic alignment dimension, while Aesthetic Score (Schuhmann, 2022) is highly correlated with the aesthetics dimension (detailed explanation provided in Appendix 6.8). We employ a set of K pre-trained models $\{r_k\}_{k=1}^K$. A preference pair (c, x_0^w, x_0^l) is included in $\mathcal{D}_{\text{labeled}}$ only if all reward models unanimously agree with the holistic label, i.e., $\forall k, \Delta r_k = r_k(x_0^w, c) - r_k(x_0^l, c) > 0$. The remaining data, which contains dimensional conflicts, forms the noisy unlabeled set $\mathcal{D}_{\text{unlabeled}}$. This filtering step yields a high-quality dataset that provides an unambiguous initial gradient direction.

Timestep-Conditional Pseudo-Labeling. Our pseudo-labeling strategy stems from a key insight: the DPO loss function is equivalent to a binary cross-entropy loss. This means the training process implicitly trains a binary classifier at each timestep to distinguish between the denoising predictions associated with the preferred and dispreferred samples. Consequently, the per-timestep margin, $z_\theta^{(t)}$,

functions as the logit for this implicit classifier. This provides a principled signal for self-training, where the sign of the logit, $\text{sign}(z_\theta^{(t)})$, determines the predicted preference, and its magnitude, $|z_\theta^{(t)}|$, serves as the confidence score (see Figure 2, right).

Dynamic Timestep-Conditional Thresholding. Our experiments find that the model’s confidence and prediction accuracy are not uniform over the diffusion timesteps (Table 7). Therefore, instead of a single fixed threshold for pseudo-labeling, we employ a dynamic strategy. We partition the timeline into N distinct intervals, $\{I_j\}_{j=1}^N$, and assign a unique threshold to each. This dynamic threshold, $\tau_{i-1}^{\alpha(t)}$, is updated at each training iteration and is specific to the interval $\alpha(t)$ containing timestep t . Consequently, a pseudo-label is used for retraining only if its confidence score $|z_{\theta_{i-1}}^{(t)}|$ exceeds the corresponding threshold for its specific time interval, as shown in Figure 2 right.

Iterative Self-Training with a Composite Objective. The iterative self-training process begins with a “cold-start” phase. We first train an initial model, p_θ^0 , using only the clean labeled set $\mathcal{D}_{\text{labeled}}$. This step is crucial as it provides a stable and reliable foundation for the self-training loop. The training objective at this stage consists solely of the anchor loss (defined in Eq. 9). For each subsequent iteration i , we leverage the model from the previous step, p_θ^{i-1} , to generate pseudo-labels for the noisy unlabeled set $\mathcal{D}_{\text{unlabeled}}$. The new model, p_θ^i , is then trained using the composite objective (defined in Eq. 8) that combines a stable, anchoring signal from the clean set with a learning signal from high-confidence pseudo-labels (see Figure 2, left). These principles are formalized in our composite objective for the iterative refinement stage ($i > 0$):

$$\mathcal{L}_{\text{Semi-DPO}}^{(i)}(\theta) = \mathcal{L}_{\text{labeled}}(\theta) + \mathcal{L}_{\text{unlabeled}}^{(i)}(\theta) \quad (8)$$

The two loss components are defined as:

Anchor Loss ($\mathcal{L}_{\text{labeled}}$). The standard Diffusion-DPO loss on the clean labeled set, which acts as a ground-truth regularizer to prevent model drift.

$$\mathcal{L}_{\text{labeled}}(\theta) = \mathbb{E}_{(c, x_0^w, x_0^l) \sim \mathcal{D}_{\text{labeled}}} \left[-\log \sigma(z_\theta^{(t)}) \right] \quad (9)$$

Pseudo-Label Loss ($\mathcal{L}_{\text{unlabeled}}^{(i)}$). The DPO loss on a filtered subset of the noisy data, using pseudo-labels generated by the model from the previous iteration (p_θ^{i-1}).

$$\mathcal{L}_{\text{unlabeled}}^{(i)}(\theta) = \mathbb{E}_{(c, x_0^w, x_0^l) \sim \mathcal{D}_{\text{unlabeled}}} \left[\mathbb{I}(|z_{\theta_{i-1}}^{(t)}| > \tau_{i-1}^{\alpha(t)}) \cdot (-\log \sigma(\hat{z}_\theta^{(t)})) \right] \quad (10)$$

In Eq. 10, the indicator function $\mathbb{I}(\cdot)$ filters for high-confidence predictions using the dynamic threshold $\tau_{i-1}^{\alpha(t)}$. The new preference pair $(x_{\text{pseudo}}^w, x_{\text{pseudo}}^l)$ used to compute the loss term $\hat{z}_\theta^{(t)}$ is determined by the sign of the previous model’s logit, $z_{\theta_{i-1}}^{(t)}$. A positive sign retains the original label, while a negative sign swaps the “winner” and “loser” images.

This pseudo-labeling mechanism is the core of our solution to the inflated gradient variance problem identified in Section 3.2. The variance originates from dimensional conflicts within $\mathcal{D}_{\text{unlabeled}}$ where a sample’s holistic label provides a supervisory signal that opposes the ideal gradient for a specific attribute. Our method resolves these conflicts at a granular, timestep-conditional level. By re-labeling pairs based on the model’s own learned preference—the sign of the logit $z_{\theta_{i-1}}^{(t)}$ —it actively corrects the noisy original annotations. This process effectively reduces the proportion of conflicting samples (the term $p_{c,k}$ in our analysis) that generate gradients with inconsistent directions. Consequently, this self-correction mitigates the source of gradient conflict, leading to a more consistent and effective training signal from the noisy dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets and Models. We select Stable Diffusion v1.5 (SD1.5) as our base model. We train Semi-DPO on the Pick-a-Pic V2 (Kirstain et al., 2023b) dataset. After excluding approximately 12% of ties pairs, there are 851,293 preference pairs across 58,960 unique prompts in the training dataset.

Figure 3: Sample images generated by different models for various prompts.

Baselines. Our baselines include diffusion models fine-tuned on the Pick-a-Pic V2 dataset using various alignment methods based on SD1.5: Diffusion-DPO (Wallace et al., 2024) and Diffusion-KTO (Li et al., 2024), using their officially released checkpoints.

Training Details. During the multi-reward consensus stage, we employ five proxy reward models to filter the dataset: PickScore (Kirstain et al., 2023b), HPS v2 (Wu et al., 2023a), CLIP Score (Radford et al., 2021), the LAION Aesthetics Classifier (Ilharco et al., 2021), and ImageReward (Xu et al., 2023). This filtering process, which is further detailed in Appendix 6.8 and Section 3.3, yields a clean, consensus-labeled dataset of 176,999 pairs, with the remainder classified as noisy. We then split this clean dataset into a training portion of 173,007 pairs and a test portion of 3,992 pairs, which is used to evaluate model accuracy after each training iteration (See Appendix 6.9). An ablation study investigating the impact of using different numbers of reward models is presented in Section 4.3. Additional training details can be found in Appendix 6.9.

Evaluation. Following the protocol from (Li et al., 2024), we evaluate our Semi-DPO method on the SD1.5 model. The model’s performance is assessed using a suite of established metrics: ImageReward, PickScore, HPS v2, the LAION Aesthetics Classifier, CLIP Score, and Gen-Eval (Ghosh et al., 2023). Furthermore, to demonstrate Semi-DPO’s ability to generate outputs that align with multi-dimensional human preferences, we employ the Multi-dimensional Preference Score (MPS) (Zhang et al., 2024).

4.2 ALIGNMENT RESULT

Qualitative Result. Figure 3 presents a qualitative comparison between Semi-DPO and baseline models using the same prompt, demonstrating our method’s significant improvements in text-alignment, detail fidelity, and aesthetics. For instance, given the prompt, “*a photo of Pikachu cooking at a restaurant, wearing a chef’s hat*,” Semi-DPO is the only method that successfully generates Pikachu with the specified chef’s hat, highlighting its superior text-alignment. We provide more visualization comparison results in Figure 5.

Quantitative Result. Table 1 and Table 2 report Semi-DPO outperforms other baselines across various dimensions on SD1.5 in both reward model scores and win-loss rates. For text alignment evaluation, Table 3 shows that Semi-DPO consistently outperforms baseline and other offline methods across text-image alignment metrics. In terms of win rate comparison, it achieved 70.2% win rate against Diffisision-KTO and 69.0% win rate against Diffusion-DPO on Pick-a-Pic V2 test dataset.

Table 1: Reward Score comparisons on Pick-a-Pic V2, HPS V2 and Parti-Prompt datasets for all baselines versus SD1.5, best results are in **boldface**. “Diff” represents “Diffusion”.

Dataset	Method	ImageReward	HPSv2.1	PickScore	Aesthetic	CLIP	MPS
HPS v2	SD1.5	0.139	0.246	20.862	5.578	0.293	12.211
	Diff-DPO	0.339 <i>(+0.200)</i>	0.259 <i>(+5.3%)</i>	21.308 <i>(+2.1%)</i>	5.714 <i>(+2.4%)</i>	0.297 <i>(+1.4%)</i>	12.739 <i>(+4.3%)</i>
	Diff-KTO	0.690 <i>(+0.551)</i>	0.284 <i>(+15.4%)</i>	21.454 <i>(+2.8%)</i>	5.803 <i>(+4.0%)</i>	0.298 <i>(+1.7%)</i>	13.016 <i>(+6.6%)</i>
	Semi-DPO	0.816 <i>(+0.677)</i>	0.287 <i>(+16.7%)</i>	21.945 <i>(+5.2%)</i>	5.899 <i>(+5.8%)</i>	0.299 <i>(+2.0%)</i>	13.514 <i>(+10.7%)</i>
Parti Prompt	SD1.5	0.194	0.254	21.284	5.358	0.270	9.754
	Diff-DPO	0.352 <i>(+0.158)</i>	0.262 <i>(+3.1%)</i>	21.520 <i>(+1.1%)</i>	5.443 <i>(+1.6%)</i>	0.272 <i>(+0.7%)</i>	10.135 <i>(+3.9%)</i>
	Diff-KTO	0.615 <i>(+0.421)</i>	0.279 <i>(+9.8%)</i>	21.594 <i>(+1.5%)</i>	5.552 <i>(+3.6%)</i>	0.277 <i>(+2.6%)</i>	10.202 <i>(+4.6%)</i>
	Semi-DPO	0.798 <i>(+0.604)</i>	0.284 <i>(+11.8%)</i>	21.964 <i>(+3.2%)</i>	5.706 <i>(+6.5%)</i>	0.276 <i>(+2.2%)</i>	10.771 <i>(+10.4%)</i>
Pick-a-Pic V2	SD1.5	0.085	0.250	20.566	5.421	0.273	9.635
	Diff-DPO	0.297 <i>(+0.212)</i>	0.261 <i>(+4.4%)</i>	20.948 <i>(+1.9%)</i>	5.549 <i>(+2.4%)</i>	0.279 <i>(+2.2%)</i>	10.144 <i>(+5.3%)</i>
	Diff-KTO	0.629 <i>(+0.544)</i>	0.281 <i>(+12.4%)</i>	21.064 <i>(+2.4%)</i>	5.659 <i>(+4.4%)</i>	0.281 <i>(+2.9%)</i>	10.226 <i>(+6.1%)</i>
	Semi-DPO	0.801 <i>(+0.716)</i>	0.288 <i>(+15.2%)</i>	21.524 <i>(+4.7%)</i>	5.801 <i>(+7.0%)</i>	0.281 <i>(+2.9%)</i>	11.030 <i>(+14.5%)</i>

378
 379 Table 2: (a) Win rate (%) comparisons on Pick-a-Pic V2, HPS V2 and Parti-Prompt datasets for all baselines
 380 versus SD1.5, best results are in **boldface**, “Diff” represents “Diffusion”. (b) Semi-DPO versus other baselines,
 381 win rates that surpass 50% are in **boldface**.

Dataset	Method1	Method2	ImageReward	HPS v2.1	PickScore	Aesthetic	CLIP	MPS
HPS v2	Diff-DPO	SD1.5	60.80%	70.10%	75.70%	68.10%	54.70%	67.20%
	Diff-KTO	SD1.5	77.80%	90.40%	74.10%	72.20%	55.30%	68.60%
	Semi-DPO	SD1.5	79.80%	88.10%	87.40%	78.80%	55.80%	73.70%
	Semi-DPO	Diff-DPO	74.60%	83.00%	77.40%	68.40%	52.20%	66.40%
	Semi-DPO	Diff-KTO	56.10%	52.80%	72.90%	60.60%	51.20%	61.70%
Parti Prompt	Diff-DPO	SD1.5	58.90%	64.90%	67.90%	63.20%	50.80%	62.80%
	Diff-KTO	SD1.5	69.80%	83.40%	65.20%	69.10%	57.30%	59.60%
	Semi-DPO	SD1.5	75.80%	83.40%	78.80%	80.00%	56.00%	71.70%
	Semi-DPO	Diff-DPO	71.90%	78.80%	70.80%	74.00%	55.00%	65.70%
	Semi-DPO	Diff-KTO	60.20%	54.80%	70.40%	65.70%	48.60%	66.20%
Pick-a-Pic V2	Diff-DPO	SD1.5	63.20%	69.90%	74.60%	66.00%	58.00%	66.00%
	Diff-KTO	SD1.5	75.50%	85.80%	73.40%	71.80%	60.90%	62.70%
	Semi-DPO	SD1.5	79.10%	87.30%	85.20%	80.70%	60.60%	77.00%
	Semi-DPO	Diff-DPO	72.90%	82.10%	76.30%	72.60%	53.50%	69.00%
	Semi-DPO	Diff-KTO	60.20%	59.50%	73.00%	64.50%	50.40%	70.20%

398
 399 Table 3: Complete results on GenEval (Ghosh et al., 2023) with 50 inference steps.

Model	Single	Two	Counting	Colors	Position	Color_attr	Overall
SD1.5	95.62	37.63	37.81	74.73	3.5	4.75	42.34
Diff-DPO	96.88	39.90	38.75	75.53	3.3	3.75	43.00
Diff-KTO	97.50	35.35	36.25	79.79	7.0	6.00	43.65
Semi-DPO	98.75	49.75	42.19	77.93	6.0	9.25	47.31

408
 409

4.3 ABLATION STUDY

410 **Iterations.** To validate the contribution of our iterative self-training process, we conducted an abla-
 411 tion study on the key stages of Semi-DPO, as shown in Table 4. Our hypothesis is that each iteration
 412 enables the model to generate better pseudo-labels, leading to further performance gains. We eval-
 413 uated the performance of different iterations: Iter0, the initial model trained only on the high-quality
 414 clean dataset; Iter1, the model after the first round of pseudo-labeling and retraining; and Iter2, the
 415 model after the second round of pseudo-labeling and retraining.

416 Our ablation study results substantiate our hypothesis. We find that each iteration yields a model
 417 capable of generating more reliable pseudo-labels, which in turn enhances the performance of the
 418 subsequent model. Specifically, we observe significant performance improvements from Iter0 to
 419 Iter1 and from Iter1 to Iter2. However, our results indicate these performance gains diminish and
 420 stabilize after the second iteration. We therefore conclude two rounds of self-training are sufficient
 421 for convergence, striking an effective balance between performance and computational efficiency.

422
 423 Table 4: Ablation study of the iterative self-training process on SD1.5.

Dataset	Method	ImageReward	HPS v2.1	PickScore	Aesthetic	CLIP	MPS
HPS v2	Semi-DPO (Iter0)	0.569	0.269	21.493	5.806	0.300	13.039
	Semi-DPO (Iter1)	0.798	0.284	21.892	5.902	0.300	13.495
	Semi-DPO (Iter2)	0.816	0.287	21.945	5.899	0.299	13.514
Parti Prompt	Semi-DPO (Iter0)	0.557	0.272	21.679	5.548	0.275	10.386
	Semi-DPO (Iter1)	0.779	0.283	21.929	5.691	0.277	10.743
	Semi-DPO (Iter2)	0.798	0.284	21.964	5.706	0.276	10.771
Pick-a-Pic V2	Semi-DPO (Iter0)	0.563	0.273	21.153	5.660	0.282	10.554
	Semi-DPO (Iter1)	0.789	0.287	21.490	5.794	0.282	11.018
	Semi-DPO (Iter2)	0.801	0.288	21.524	5.801	0.281	11.030

432 **Number of Reward Models for Consensus Filtering.** To determine the optimal configuration for
 433 multi-reward consensus, we conducted an ablation study on the number of proxy reward models
 434 used to filter the initial clean dataset. We evaluated SD1.5’s performance when trained on data fil-
 435 tered by a consensus of two, three, four, and five independent reward models. As shown in Table 5,
 436 performance consistently improved across all evaluation metrics and datasets as the number of mod-
 437 els in the consensus committee increased. Notably, incorporating a greater number of reward models
 438 in the consensus not only boosts performance on the metrics used for filtering but also enhances the
 439 model’s generalization ability to other preference evaluators not included in the consensus. For ex-
 440 ample, when the fourth model, ImageReward (IR), is added to the committee, performance on the
 441 still-unrelated PickScore and MPS metric improves across all three datasets. This confirms that a
 442 stricter and more diverse consensus yields a higher-quality initial training set that captures a more
 443 robust and generalizable understanding of human preference. We therefore adopt the five-model
 444 consensus to ensure our initial model is trained on the most reliable clean data.
 445

446 **Table 5: Ablation study on the number of reward models for consensus filtering.** This study evaluates
 447 the performance of a model trained on data filtered by a consensus of an increasing number of reward models
 448 (from two to five) to determine the optimal configuration. Metrics included in the consensus committee are
 449 marked in **green**, while metrics that are evaluated but not used for filtering are marked in **red**. The baseline
 450 SD1.5 and its results are marked in **gray**. Best results for each dataset are in **bold**. The results demonstrate that
 451 performance consistently improves across all metrics and datasets as the consensus committee grows. Notably,
 452 this improvement also generalizes to metrics not included in the consensus (e.g., adding ImageReward improves
 453 the unrelated PickScore), confirming that a stricter and more diverse consensus yields a higher-quality and more
 454 generalizable initial training set. Abbreviations: HPS is HPS v2, IR is Image Reward, Aes is Aesthetic Score,
 455 and CLIP is CLIP Score.

Dataset	Method	CLIP	Aesthetic	HPSv2	ImageReward	PickScore	MPS
HPS v2	SD1.5	0.293	5.578	0.246	0.139	20.860	12.211
	CLIP+Aes	0.299	5.759	0.263	0.442	21.438	12.891
	CLIP+Aes+HPS	0.299	5.775	0.265	0.459	21.430	12.927
	CLIP+Aes+HPS+IR	0.299	5.789	0.268	0.524	21.464	13.018
	CLIP+Aes+HPS+IR+Pick	0.300	5.806	0.269	0.569	21.493	13.039
Parti Prompt	SD1.5	0.270	5.358	0.254	0.194	21.284	9.754
	CLIP+Aes	0.273	5.501	0.265	0.444	21.620	10.280
	CLIP+Aes+HPS	0.273	5.519	0.268	0.470	21.639	10.331
	CLIP+Aes+HPS+IR	0.274	5.530	0.269	0.513	21.651	10.363
	CLIP+Aes+HPS+IR+Pick	0.275	5.548	0.272	0.557	21.679	10.386
Pick-a-Pic V2	SD1.5	0.273	5.421	0.250	0.085	20.566	9.635
	CLIP+Aes	0.279	5.609	0.267	0.417	21.099	10.399
	CLIP+Aes+HPS	0.280	5.627	0.270	0.469	21.143	10.454
	CLIP+Aes+HPS+IR	0.281	5.632	0.271	0.499	21.127	10.477
	CLIP+Aes+HPS+IR+Pick	0.282	5.660	0.273	0.563	21.153	10.554

470 5 CONCLUSION

471 In this work, we address a critical source of training instability in Diffusion-DPO: the label noise
 472 generated from collapsing inherently multi-dimensional human preferences into single binary la-
 473 bels. This compression creates contradictory signals—for example, forcing a model to prefer a
 474 “winner” image’s superior composition while also learning its flawed textures. Our theoretical
 475 analysis proves this phenomenon generates conflicting gradients that hinder optimization and lead to
 476 suboptimal convergence. To resolve this, we introduce Semi-DPO, a novel framework that reframes
 477 preference alignment as a semi-supervised learning problem for handling noisy labels. Semi-DPO
 478 first employs a Multi-Reward Consensus stage to partition the dataset, identifying a small, clean
 479 subset of pairs with unambiguous agreement and isolating the larger, noisy set with dimensional
 480 conflicts. Subsequently, in the Iterative Self-Training stage, a model trained on the clean data acts as
 481 its own implicit classifier. By leveraging the diffusion model’s hierarchical nature, it generates fine-
 482 grained, timestep-conditional pseudo-labels that decompose a single noisy preference into a series
 483 of coherent signals, effectively decoupling the conflicting dimensions. Our experiments show that
 484 Semi-DPO achieves state-of-the-art performance, significantly improving alignment with complex
 485 human preferences without requiring extra annotation or training dedicated reward models.

486
487
ETHICS STATEMENT488
489
490
491
Our research enhances text-to-image model alignment while relying solely on publicly available
resources, specifically the Pick-a-Pic V2 dataset and Stable Diffusion 1.5. In line with responsible
research practices, we acknowledge the broader societal implications and potential for misuse
associated with generative technologies.492
493
REPRODUCIBILITY STATEMENT
494495
496
To ensure reproducibility, we will release our code. Our method is detailed in Section 3.2, and our
training hyperparameters are documented in Appendix 6.9 to allow for the replication of our results.
497498
499
REFERENCES500
501
Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Unsupervised
label noise modeling and loss correction. In *International Conference on Machine Learning*,
volume 97, pp. 312–321. PMLR, 2019.503
504
Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.
505506
507
Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente Ordonez. Curriculum labeling: Re-
visiting pseudo-labeling for semi-supervised learning. In *Proceedings of the AAAI conference on
artificial intelligence*, volume 35, pp. 6912–6920, 2021.509
510
Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
on differentiable rewards. In *The Twelfth ICLR*, 2024. URL [https://openreview.net/
forum?id=1vmSEVL19f](https://openreview.net/forum?id=1vmSEVL19f).512
513
Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon
Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic,
Dhruv Mahajan, Kunpeng Li, Yue Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran
Motwani, Yi Wen, Yiwen Song, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter
Vajda, and Devi Parikh. Emu: Enhancing image generation models using photogenic needles in a
haystack, 2023. URL <https://arxiv.org/abs/2309.15807>.518
519
Zihan Ding, Chi Jin, Difan Liu, Haitian Zheng, Krishna Kumar Singh, Qiang Zhang, Yan Kang,
Zhe Lin, and Yuchen Liu. Dollar: Few-step video generation via distillation and latent reward
optimization. *arXiv preprint arXiv:2412.15689*, 2024.522
523
Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. In *NeurIPS*, volume 36, pp. 52132–52152, 2023.524
525
Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
NeurIPS, pp. 8535–8545, 2018.
527528
529
Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*,
2022.531
532
Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. volume 33,
pp. 6840–6851, 2020.533
534
Jiwoo Hong, Sayak Paul, Noah Lee, Kashif Rasul, James Thorne, and Jongheon Jeong. Margin-
aware preference optimization for aligning diffusion models without reference. *arXiv preprint
arXiv:2406.06424*, 2024.537
538
Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL <https://doi.org/10.5281/zenodo.5143773>. If you use this software, please cite it as below.

540 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
 541 Pick-a-pic: An open dataset of user preferences for text-to-image generation. *arXiv preprint*
 542 *arXiv:2305.01569*, 2023a.

543 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 544 a-pic: an open dataset of user preferences for text-to-image generation. In *Proceedings of the*
 545 *37th International Conference on Neural Information Processing Systems, NIPS '23*. Curran As-
 546 sociates Inc., 2023b.

547 Kyungmin Lee, Xiahong Li, Qifei Wang, Junfeng He, Junjie Ke, Ming-Hsuan Yang, Irfan Essa,
 548 Jinwoo Shin, Feng Yang, and Yinxiao Li. Calibrated multi-preference optimization for aligning
 549 diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 550 pp. 18465–18475, 2025.

552 Junnan Li, Richard Socher, and Steven C. H. Hoi. Dividemix: Learning with noisy labels as semi-
 553 supervised learning. In *ICLR*, 2020.

555 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Align-
 556 ing diffusion models by optimizing human utility, 2024. URL <https://arxiv.org/abs/2404.04465>.

558 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tianshui Hang, Mingxi Cheng, Ji Li, and
 559 Liang Zheng. Aesthetic post-training diffusion models from generic preferences with step-by-step
 560 preference optimization. *arXiv preprint arXiv:2406.04314*, 2024.

562 Zichen Miao, Jiang Wang, Ze Wang, Zhengyuan Yang, Lijuan Wang, Qiang Qiu, and Zicheng
 563 Liu. Training diffusion models towards diverse image generation with reinforcement learning.
 564 In *CVPR*, pp. 10844–10853, June 2024.

566 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 567 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 568 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 569 and Ryan Lowe. Training language models to follow instructions with human feedback. In *Pro-*
 570 *ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS*
 571 '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

572 Pablo Pernas, Dominic Rampas, Mats Leon Richter, Christopher Pal, and Marc Aubreville.
 573 Würstchen: An efficient architecture for large-scale text-to-image diffusion models. In *ICLR*,
 574 2024.

575 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 576 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 577 Sutskever. Learning transferable visual models from natural language supervision. In *Proceed-
 578 ings of the 38th International Conference on Machine Learning*, 2021.

579 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 580 Finn. Direct preference optimization: Your language model is secretly a reward model. *NeurIPS*,
 581 36:53728–53741, 2023.

583 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 584 and Ilya Sutskever. Zero-shot text-to-image generation, 2021. URL <https://arxiv.org/abs/2102.12092>.

586 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 587 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.

589 Christoph Schuhmann. Laion-aesthetics. <https://laion.ai/blog/laion-aesthetics/>, 2022. Accessed: 2023 - 11- 10.

592 Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
 593 labels with deep neural networks: A survey. *IEEE Transactions on Neural Networks and Learning
 Systems*, 34(11):8135–8153, 2022.

594 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 595 *NeurIPS*, 32, 2019.

596

597 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 598 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.
 599 URL <https://openreview.net/forum?id=PxTIG12RRHS>.

600 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 601 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 602 direct preference optimization. In *CVPR*, pp. 8228–8238, June 2024.

603

604 Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang,
 605 Makesh Narasimhan Sreedhar, and Oleksii Kuchai. Helpsteer 2: Open-source dataset for training
 606 top-performing reward models. In *The Thirty-eight Conference on Neural Information Processing
 607 Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=PvVKUFhaNy>.

608

609 Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A
 610 joint training method with co-regularization. In *Proceedings of the IEEE/CVF Conference on
 611 Computer Vision and Pattern Recognition*, pp. 13726–13735, 2020.

612 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 613 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 614 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023a.

615

616 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Better aligning text-to-image
 617 models with human preference. *arXiv preprint arXiv:2303.14420*, 2023b.

618 Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
 619 improves imagenet classification. In *Proceedings of the IEEE/CVF conference on computer vision
 620 and pattern recognition*, pp. 10687–10698, 2020.

621

622 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 623 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation.
 624 In *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 625 2023.

626 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu
 627 Li. Using human feedback to fine-tune diffusion models without any reward model. In *CVPR*,
 628 pp. 8941–8951, 2024.

629 Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does dis-
 630 agreement help generalization against label corruption? In *International Conference on Machine
 631 Learning*, pp. 7164–7173. PMLR, 2019.

632

633 Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
 634 Takahiro Shinohzaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
 635 beling. *NeurIPS*, 34:18408–18419, 2021.

636

637 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 638 deep learning requires rethinking generalization. In *ICLR*, 2017.

639

640 Sixian Zhang, Bohan Wang, Junqiang Wu, Yan Li, Tingting Gao, Di Zhang, and Zhongyuan Wang.
 641 Learning multi-dimensional human preference for text-to-image generation. In *CVPR*, pp. 8018–
 642 8027, 2024.

643 Tao Zhang, Cheng Da, Kun Ding, Huan Yang, Kun Jin, Yan Li, Tingting Gao, Di Zhang, Shiming
 644 Xiang, and Chunhong Pan. Diffusion model as a noise-aware latent reward model for step-level
 645 preference optimization. *arXiv preprint arXiv:2502.01051*, 2025.

646

647 Huaisheng Zhu, Teng Xiao, and Vasant G Honavar. DSPO: Direct score preference optimization
 648 for diffusion model alignment. In *The Thirteenth ICLR*, 2025. URL <https://openreview.net/forum?id=xyfb9HHvMe>.

648 6 APPENDIX

650 6.1 DERIVATION OF THE DIFFUSION-DPO GRADIENT

652 We derive the gradient of the per-timestep Diffusion-DPO loss, $\mathcal{L}_{\text{DPO}}^{(t)}(\theta)$, with respect to the model
653 parameters θ . The loss is defined as:

$$655 \mathcal{L}_{\text{DPO}}^{(t)}(\theta) := -\log \sigma \left(\beta \left[\log \frac{p_{\theta}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, c)}{p_{\text{ref}}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, c)} - \log \frac{p_{\theta}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, c)}{p_{\text{ref}}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, c)} \right] \right) \quad (11)$$

658 To simplify the notation, let $h_{\theta}^{(t)} = \beta \left[\log \frac{p_{\theta}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, c)}{p_{\text{ref}}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, c)} - \log \frac{p_{\theta}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, c)}{p_{\text{ref}}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, c)} \right]$. Applying the chain
659 rule and using the identity $\frac{d}{dx}(-\log \sigma(x)) = -(1 - \sigma(x))$, we have:

$$\begin{aligned} 662 \nabla_{\theta} \mathcal{L}_{\text{DPO}}^{(t)}(\theta) &= \nabla_{\theta} \left(-\log \sigma(h_{\theta}^{(t)}) \right) \\ 663 &= \frac{d}{dh_{\theta}^{(t)}} \left(-\log \sigma(h_{\theta}^{(t)}) \right) \nabla_{\theta} h_{\theta}^{(t)} \\ 664 &= -\left(1 - \sigma(h_{\theta}^{(t)}) \right) \nabla_{\theta} h_{\theta}^{(t)} \\ 665 &= -(1 - \sigma(h_{\theta}^{(t)})) \nabla_{\theta} \left[\beta \left(\log \frac{p_{\theta}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, c)}{p_{\text{ref}}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, c)} - \log \frac{p_{\theta}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, c)}{p_{\text{ref}}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, c)} \right) \right] \\ 666 &= -(1 - \sigma(h_{\theta}^{(t)})) \cdot \beta \left(\nabla_{\theta} \log p_{\theta}(\mathbf{x}_{t-1}^w | \mathbf{x}_t^w, c) - \nabla_{\theta} \log p_{\theta}(\mathbf{x}_{t-1}^l | \mathbf{x}_t^l, c) \right) \end{aligned} \quad (12)$$

672 6.2 PROOF OF VARIANCE INFLATION

674 For clarity, we first restate the relevant definitions from Section 3.2. Let \mathcal{D} be the dataset of preference
675 tuples $d = (c, x_0^w, x_0^l)$. For any sample $d \in \mathcal{D}$ and a given preference dimension k , we define
676 the reward difference as $\Delta r_k(d) := r_k(x_0^w, c) - r_k(x_0^l, c)$. This induces a partition of the dataset
677 into an alignment set $\mathcal{A}_k := \{d \in \mathcal{D} \mid \Delta r_k(d) > 0\}$ and a conflict set $\mathcal{C}_k := \{d \in \mathcal{D} \mid \Delta r_k(d) < 0\}$,
678 with respective probabilities $p_{a,k} := P(d \in \mathcal{A}_k)$ and $p_{c,k} := P(d \in \mathcal{C}_k)$. For a given sample
679 d and timestep t , we define the per-sample gradient $g_{\theta}^{(t)} := -f_{\theta}^{(t)} \cdot \Delta \phi_{\theta}^{(t)}$, the oracle direction
680 $v_k(\theta, t) := \text{sign}(\Delta r_k) \cdot \Delta \phi_{\theta}^{(t)}$, and the inner product $\xi_t := \langle -g_{\theta}^{(t)}, v_k(\theta, t) \rangle$. Finally, we define the
681 conditional expected magnitudes as
682

$$684 m_{a,k}^{(t)} := \mathbb{E} \left[f_{\theta}^{(t)} \cdot \left\| \Delta \phi_{\theta}^{(t)} \right\|_2^2 \mid \mathcal{A}_k \right] \text{ and } m_{c,k}^{(t)} := \mathbb{E} \left[f_{\theta}^{(t)} \cdot \left\| \Delta \phi_{\theta}^{(t)} \right\|_2^2 \mid \mathcal{C}_k \right]$$

686 By the law of total variance, we can decompose the variance of ξ_t based on whether a sample is in
687 the alignment set \mathcal{A}_k or the conflict set \mathcal{C}_k :

$$689 \text{Var}[\xi_t] = \underbrace{\mathbb{E}[\text{Var}[\xi_t \mid Z]]}_{\text{Intra-group variance}} + \underbrace{\text{Var}(\mathbb{E}[\xi_t \mid Z])}_{\text{Inter-group variance}} \quad (13)$$

692 where Z is a random variable indicating membership in $\{\mathcal{A}_k, \mathcal{C}_k\}$.

693 Since variance is non-negative, the total variance is bounded below by the inter-group variance term:

$$695 \text{Var}[\xi_t] \geq \text{Var}(\mathbb{E}[\xi_t \mid Z]) \quad (14)$$

697 We now compute the $\text{Var}(\mathbb{E}[\xi_t \mid Z])$. The conditional expectations of ξ_t are:

- 699 $\mathbb{E}[\xi_t \mid \mathcal{A}_k] = \mathbb{E}[f_{\theta}^{(t)} \cdot (+1) \cdot \left\| \Delta \phi_{\theta}^{(t)} \right\|_2^2 \mid \mathcal{A}_k] = m_{a,k}^{(t)}$
- 700 $\mathbb{E}[\xi_t \mid \mathcal{C}_k] = \mathbb{E}[f_{\theta}^{(t)} \cdot (-1) \cdot \left\| \Delta \phi_{\theta}^{(t)} \right\|_2^2 \mid \mathcal{C}_k] = -m_{c,k}^{(t)}$

The $\text{Var}(\mathbb{E}[\xi_t | Z])$ can now be calculated using its definition, $\text{Var}(Y) = \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2$. Let $Y = \mathbb{E}[\xi_t | Z]$. Then:

$$\begin{aligned}
\text{Var}(\mathbb{E}[\xi_t \mid Z]) &= p_{a,k}(m_{a,k}^{(t)})^2 + p_{c,k}(-m_{c,k}^{(t)})^2 - (p_{a,k}m_{a,k}^{(t)} - p_{c,k}m_{c,k}^{(t)})^2 \\
&= p_{a,k}(1 - p_{a,k})(m_{a,k}^{(t)})^2 + p_{c,k}(1 - p_{c,k})(m_{c,k}^{(t)})^2 + 2p_{a,k}p_{c,k}m_{a,k}^{(t)}m_{c,k}^{(t)} \\
&= p_{a,k}p_{c,k} \left((m_{a,k}^{(t)})^2 + (m_{c,k}^{(t)})^2 + 2m_{a,k}^{(t)}m_{c,k}^{(t)} \right) \\
&= p_{a,k}p_{c,k}(m_{a,k}^{(t)} + m_{c,k}^{(t)})^2
\end{aligned} \tag{15}$$

where we used the fact that $p_{a,k} + p_{c,k} = 1$.

Thus, the total variance has a lower bound determined by the conflict:

$$\text{Var}[\xi_t] \geq p_{a,k} \cdot p_{c,k} \cdot (m_{a,k}^{(t)} + m_{c,k}^{(t)})^2 \quad (16)$$

This proves that any non-zero conflict mass ($p_{c,k} > 0$) introduces a variance term that grows quadratically with the sum of the conflicting and aligned update magnitudes.

6.3 THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) such as GPT were used solely for language polishing and clarity improvements in the writing of this paper. All technical content, dataset design, experimental results, and analyses were created by the authors. The models were not used to generate ideas, data, or experimental outcomes.

6.4 LIMITATIONS

Like many classical SSL methods (Xie et al., 2020; Zhang et al., 2021; Cascante-Bonilla et al., 2021), our approach requires multiple cycles of pseudo-labeling and model retraining to achieve optimal performance on noisy datasets. While effective, it increases the overall training time and computational resources required compared to single-stage alignment methods. Future research could explore more efficient, single-pass or few-pass variations of this framework to mitigate this inefficiency.

6.5 COMPARISON OF ONLINE AND OFFLINE DPO PARADIGMS IN IMAGE GENERATION

The methodologies for Direct Preference Optimization (DPO) in diffusion models can be broadly categorized into offline and online approaches. Offline sampling-based DPO in T2I, the paradigm under which Semi-DPO operates, **utilizes a static, pre-collected dataset** of human preferences for the entirety of the training process. This approach is computationally efficient and offers greater stability and reproducibility, as it fine-tunes the model in a single stage on a fixed dataset. However, its primary limitation is that the model’s ultimate performance is fundamentally constrained by the diversity and quality of the initial preference data; it cannot learn beyond the scope of the examples it is given (Wallace et al., 2024; Zhu et al., 2025; Lee et al., 2025; Hong et al., 2024).

In contrast, online sampling-based DPO in T2I involves dynamically generating new preference data during the training loop. In this setup, the diffusion model iteratively produces new images that are then evaluated, typically by an auxiliary reward model, to **create new preference pairs for continued training**. While this allows the model to learn continuously and potentially surpass the quality of the initial dataset, it introduces significant computational overhead and complexity. Furthermore, online methods risk overfitting to the biases of the reward model and depend on having a reliable reward signal available throughout the resource-intensive training process (Liang et al., 2024; Black et al., 2023; Zhang et al., 2025; Yang et al., 2024).

6.6 COMPARISON WITH EXISTING METHODS

Offline DPO. Unlike existing offline approaches that focus on modifying algorithms (Zhu et al., 2025; Li et al., 2024; Hong et al., 2024) or generating new datasets through multiple reward models for re-annotation and training (Lee et al., 2025), Semi-DPO addresses the noise label problem caused

756 by multi-dimensional preference conflicts in DPO datasets. We reclassify the dataset into clean
 757 labeled data and noisy unlabeled data. Following the principle of semi-supervised learning, Semi-
 758 DPO leverages both labeled and unlabeled data to achieve superior performance compared to using
 759 labeled data alone. This approach maximizes the utilization of existing datasets.

760 Our theoretical analysis and empirical results serve a dual purpose: validating our central claim
 761 that collapsing multi-dimensional preferences into single binary labels introduces a significant noisy
 762 label problem, and demonstrating that a diffusion model trained with the DPO loss can correct these
 763 noisy labels by acting as its own implicit classifier.

764 **Latent Reward Model.** Semi-DPO leverages a key property of the Diffusion-DPO framework: its
 765 loss function transforms the diffusion model into an implicit latent reward model. The principle is
 766 straightforward: the DPO objective compels the model to increase the relative probability of pre-
 767 ferred samples over dispreferred ones. To achieve this, the model must learn to distinguish between
 768 “better” and “worse” latent representations at every timestep, a capability that serves as an inherent
 769 reward signal.

770 This approach contrasts with existing latent reward model methods (Zhang et al., 2025; Ding et al.,
 771 2024). Those methods typically require architectural modifications to construct an explicit reward
 772 model that is then trained separately. In contrast, the latent reward model in Semi-DPO is the original
 773 diffusion model itself. This implicit method is more efficient and requires no architectural changes.

775 6.7 FUTURE WORK: AN ONLINE EXTENSION OF THE SEMI-DPO PARADIGM

776 Pixel-space reward models (e.g., ImageReward) are constrained by gradient propagation issues,
 777 which restrict their effective training signal to only the final stages of the diffusion process. La-
 778 tent reward models overcome this limitation by providing a deep training signal across all timesteps
 779 (from $t = 999$ down to $t = 1$), allowing them to guide the entire generation process.

780 However, existing latent reward models (Zhang et al., 2025; Ding et al., 2024) have a significant
 781 limitation: they are architecturally specific. They must share a latent space with the diffusion model
 782 they are training, which requires a shared VAE encoder. As different generative models (e.g., SD1.5
 783 and SDXL) use different VAEs, a latent reward model trained for one is incompatible with another.
 784 This gives them great power but prevents the plug-and-play versatility of pixel-space models.

785 Our work offers a path to resolve this trade-off. At its core, a diffusion model trained with the
 786 DPO loss functions as an implicit latent reward model, learning to assign preference labels at each
 787 timestep. This insight allows for a powerful online extension of the Semi-DPO paradigm:

- 788 • **Cold-Start:** An initial model is trained on a small, multi-dimensionally consistent dataset
 789 to learn the basics of human preference.
- 790 • **Online Training:** During online training, the model inherits our iterative self-training phi-
 791 losophy. To begin the $(i + 1)$ -th iteration, new data is generated by the model from iteration
 792 i and then labeled by an ensemble of implicit reward models composed of the models from
 793 iterations i and $i - 1$.

794 By developing this iterative, self-training online method, we would no longer need to train a new,
 795 bespoke latent reward model for each T2I architecture. Instead, the model would correct itself
 796 through an internal process. This presents a path toward a universal, model-agnostic alignment
 797 strategy that captures the deep-signal benefits of latent-space rewards without being constrained by
 798 their architectural limitations.

802 6.8 MOTIVATION BY MULTI-REWARD SELECTION

803 In our methods (see Section 3.3), we employ a committee of five proxy reward models
 804 PickScore (Kirstain et al., 2023b), HPS V2 (Wu et al., 2023a), CLIP (Radford et al., 2021), LAION
 805 Aesthetics Classifier (Ilharco et al., 2021), and ImageReward (Xu et al., 2023) for data filtering.
 806 This approach is motivated by the study that introduced the Multi-dimensional Preference Score
 807 (MPS) (Zhang et al., 2024), which constructed a dataset reflecting real human preferences by en-
 808 suring image source diversity and having human annotators perform pairwise comparison scoring
 809 across four dimensions: aesthetics, detail quality, semantic alignment, and overall assessment.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 6: The evaluation of MPS and scoring functions for the prediction of multi-dimensional human preferences(%). **Copied from MPS (Zhang et al., 2024).**

ID	Preference Model	Overall	Aesthetics	Alignment	Detail
1	CLIP score Radford et al. (2021)	63.67	68.14	82.69	61.71
2	Aesthetic Score Schuhmann (2022)	62.85	82.85	69.36	60.34
3	ImageReward Xu et al. (2023)	67.45	74.79	75.27	58.31
4	HPS Wu et al. (2023b)	65.51	73.86	73.86	62.05
5	PickScore Kirstain et al. (2023a)	69.52	70.95	70.92	56.74
6	HPS v2 Wu et al. (2023a)	65.51	73.86	73.87	62.06
7	MPS (Zhang et al., 2024)	74.24	83.86	83.87	85.18

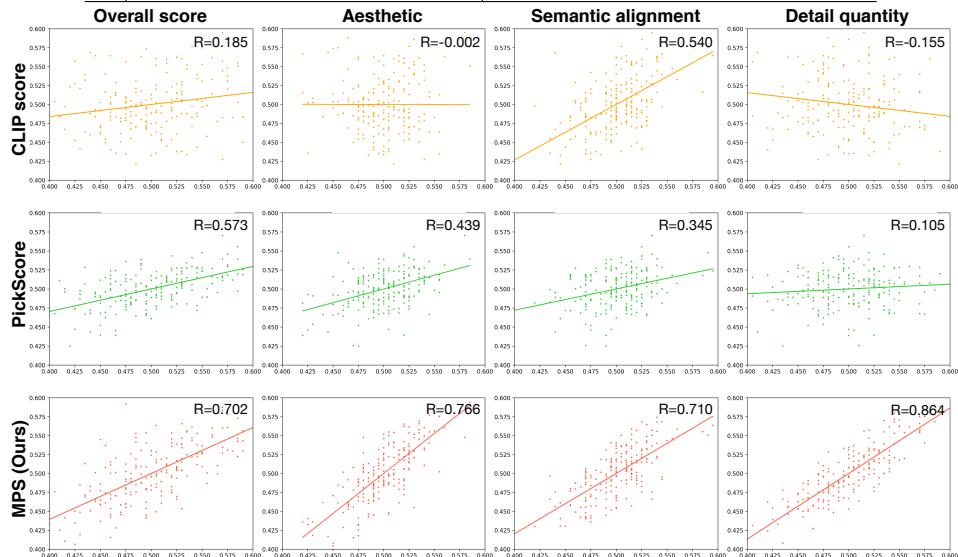


Figure 4: **Correlation between real user preferences and model predictions.** The x-axis of each subplot represents the annotated real human preferences, and the y-axis denotes the model’s predictions. We examine three models: CLIP score, PickScore, and MPS. Each subplot is annotated with the calculated correlation coefficient R-value, where a higher R-value indicates a closer alignment of the model’s predictions with actual human preferences. **Figure reproduced from (Zhang et al., 2024).**

They compared the performance of multiple existing reward models against their proposed MPS on a multi-dimensional preference dataset, revealing a core phenomenon: existing reward models exhibit significant specialization when predicting human preferences (see Table 6 and Figure 4. For instance, CLIP Score (Radford et al., 2021) shows a strong correlation with the semantic alignment dimension, while Aesthetic Score (Schuhmann, 2022) is highly correlated with the aesthetics dimension. Meanwhile, models such as HPSv2 (Wu et al., 2023a), ImageReward (Xu et al., 2023), and PickScore (Kirstain et al., 2023b) show higher consistency with the overall score. This finding indicates that no single model can comprehensively evaluate image quality.

As shown in Table 6 and Figure 4 (**Both Table 6 and Figure 4 are reproduced from MPS paper. They are Tab. 4 and Fig. 5 in their original paper.**), the MPS model shows the strongest correlation with multi-dimensional human preferences. However, a publicly available version capable of providing scores for individual dimensions was unavailable at the time of our work. Therefore, to ensure our initial training data was reliable and free from label noise caused by dimensional conflicts, we used five distinct preference models in concert, selecting only the data points that all models agreed upon to form a high-quality, dimensionally consistent subset. To validate the effectiveness of this five-model filtering strategy, we also conducted an ablation study to investigate the impact of using different numbers of reward models 4.3.

6.9 TRAINING DETAILS

For SD1.5, the training was utilizing a total of 32 NVIDIA A100 40GB GPUs for distributed training. We configured a local batch size of 4 for each GPU and performed gradient accumu-

864 lation over 4 steps, which resulted in a global batch size of 512. Iteration 0 uses a learning
 865 rate of 4×10^{-9} and is trained for 1,600 steps, while iterations 1 and 2 use a learning rate of
 866 4×10^{-10} and are trained for 4,000 steps each. The DPO parameter was set to $\beta = 2500$ for
 867 all iterations, in line with the hyperparameters specified in the official Diffusion-DPO (Wallace
 868 et al., 2024) code repository. All iterations incorporate a linear warmup over the first 400 steps.
 869

870 To implement our dynamic thresholds for pseudo-labeling (as mentioned in Section 3.3, we first partition
 871 the diffusion timeline ($t \in [0, 999]$) into ten discrete intervals (e.g., 0-100, 100-200). We initially set the threshold for each interval at the 80th percentile of
 872 its confidence scores to ensure a consistent number of samples are initially selected. However, when
 873 we evaluated this strategy on our accuracy test portion (3,992 pairs), we found that the model’s pre-
 874 diction accuracy was not uniform across different timestep intervals (see Table 7 ; specifically, for
 875 timesteps greater than 650, its accuracy dropped below 70%. To mitigate confirmation bias from
 876 these less reliable labels, for any interval failing to meet the 70% accuracy level, we raised its con-
 877 fidence threshold. Although this adjustment reduces the number of pseudo-labeled samples from
 878 later stages of the diffusion process, it ensures the model is primarily trained on labels that are both
 879 high-confidence and high-accuracy. For more training details, please see Appendix 6.9
 880

Table 7: The model’s prediction accuracy, evaluated on a clean test set, varies across the diffusion timeline.

Timesteps	50	150	250	350	450	550	650	750	850	950
Accuracy (%)	72	73	73	72	72	71	69	67	65	59

6.10 QUALITATIVE RESULT

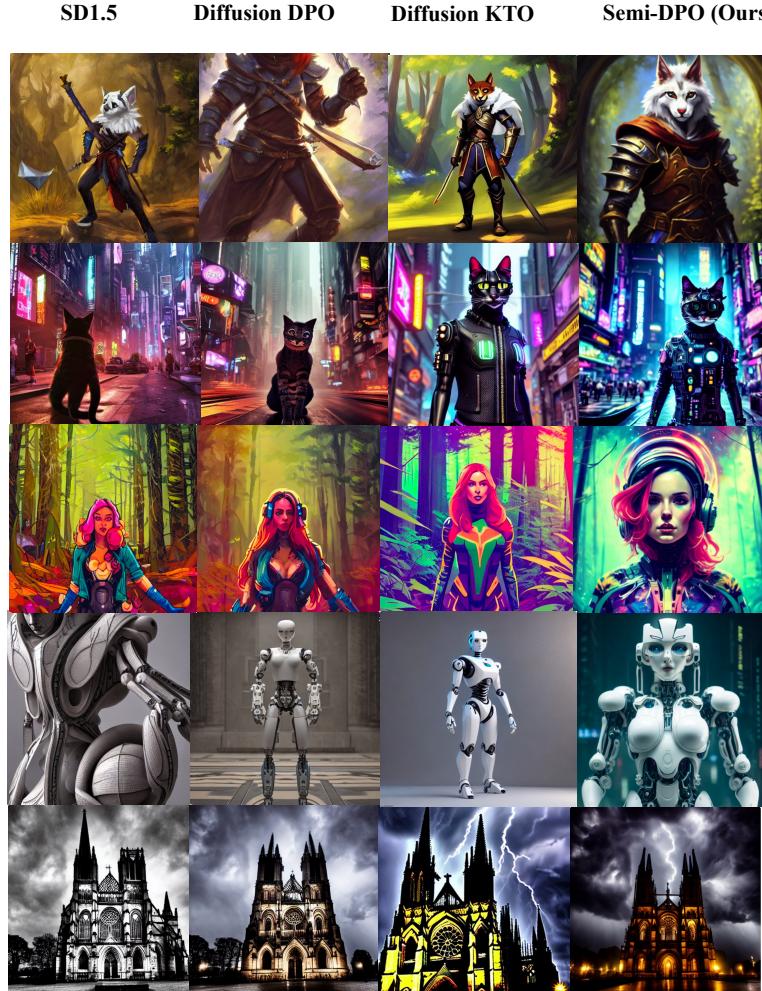


Figure 5: Qualitative comparison of Semi-DPO against baseline models

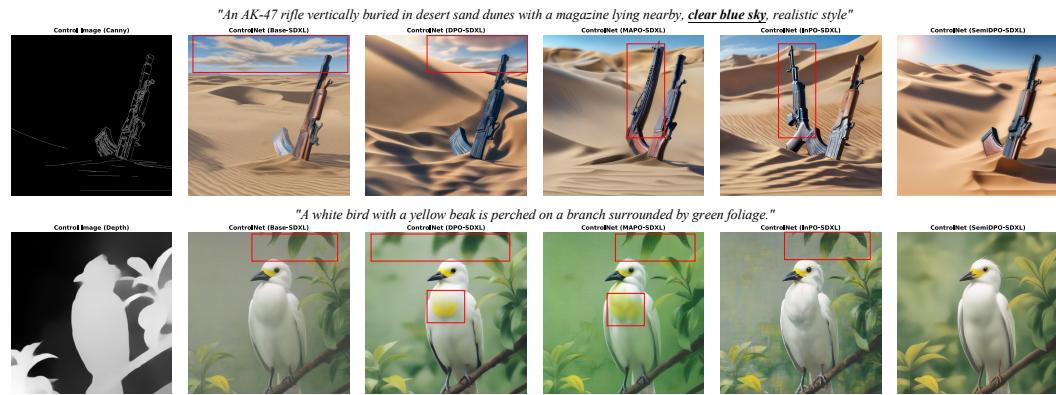


Figure 6: **Qualitative evaluation of Semi-DPO-SDXL(right) in comparison with Base-SDXL, DPO-SDXL, MaPO-SDXL and InPO-SDXL on conditional generation tasks.** From top to bottom: canny edge, and inpainting).

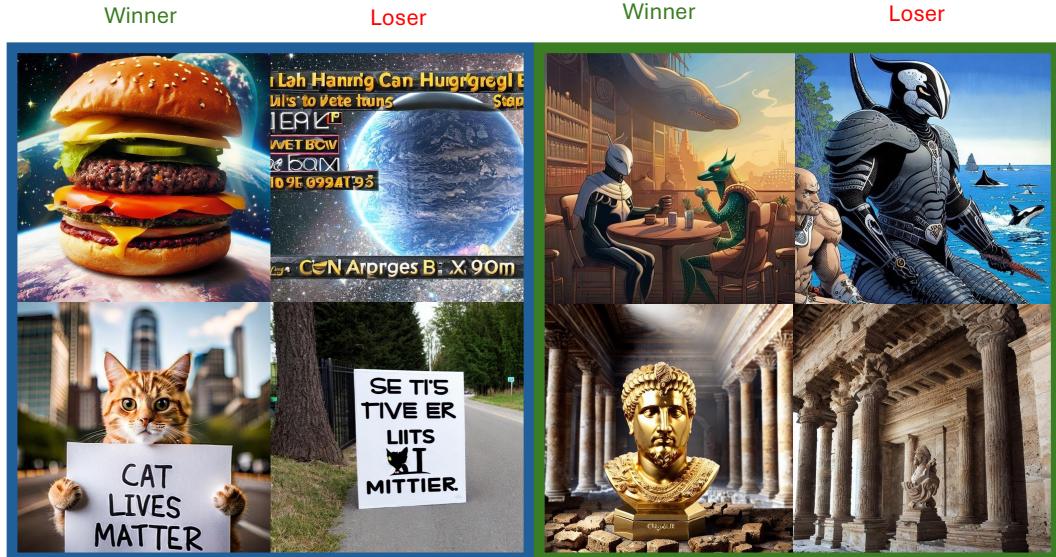


Figure 7: **Qualitative comparison of samples from the labeled dataset (Left, Blue) and the unlabeled dataset (Right, Green).** The annotations **Winner** (green) and **Loser** (red) indicate the human preference labels. The corresponding full prompts are: **Top-Left:** “Cosmic hamburger in space”; **Bottom-Left:** “Cat with a sign that says ‘Cat lives matter’”; **Top-Right:** “An empowering view of a orca warrior wearing royal robe, sitting in a cafe drinking coffee next to a kangaroo warrior with an eye scar, menacing, by artist Philippe Druillet and Tsutomu Nihei, volumetric lighting, detailed shadows, extremely detailed”; **Bottom-Right:** “A wide angle photo of large gold head Caesar on display in a smokey roman villa burning, 18mm smoke filled room debris, gladiator, floor mosaics fire smoke, a photo, roman, a digital rendering, inside the roman colosseum, brick, indoor, plants overgrown outstanding detail, room flooded with water, in front of a building, by claude-joseph vernet, luxury hotel”.