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ABSTRACT

Human visual preferences are inherently multi-dimensional, encompassing as-
pects of aesthetics, detail fidelity, and semantic alignment. However, existing
open-source preference datasets provide only single, holistic annotations, result-
ing in severe label noise—images that excel in some dimensions (e.g., composi-
tional) but are deficient in others (e.g., details) are simply marked as “winner” or
“loser”. We theoretically demonstrate that this compression of multi-dimensional
preferences into binary labels generates conflicting gradient signals that misguide
the optimization process in Diffusion Direct Preference Optimization (DPO). To
address this label noise from conflicting multi-dimensional preferences, we pro-
pose Semi-DPO, a semi-supervised learning approach. We treat pairs with con-
sistent preferences across all dimensions as clean labeled data, while those with
conflicting signals are considered noisy unlabeled data. Our method first trains a
model on a clean, consensus-filtered data subset. This model then acts as its own
implicit classifier to generate pseudo-labels for the larger, noisy set, which are
used to iteratively refine the model’s alignment. This approach effectively miti-
gates label noise and enhances image generation quality, achieving better align-
ment with multi-dimensional human preferences. Experimental results demon-
strate that Semi-DPO significantly improves alignment with multi-dimensional
human preferences, achieving state-of-the-art performance without requiring ad-
ditional human annotation or the need to train a dedicated reward models.

1 INTRODUCTION

Diffusion models (Ho et al., 2020) have achieved remarkable success in text-to-image (T2I) gen-
eration (Ramesh et al., 2022; Pernias et al., 2024; Ramesh et al., 2021). However, aligning T2I
diffusion models with human preferences typically requires training with separate reward mod-
els, creating significant computational bottlenecks (Wang et al., 2024; Wu et al., 2023a; Xu et al.,
2023). To address this limitation, Diffusion-DPO (Wallace et al., 2024) adapts the direct preference
optimization (DPO) approach from large language models (LLMs) (Rafailov et al., 2023), elimi-
nating the need for explicit reward models by optimizing directly on preference pairs. However,
Diffusion-DPO overlooks a fundamental distinction: while human visual preferences are inherently
multi-dimensional (Zhang et al., 2024), annotated datasets collapse this into binary choices. This
destabilizes training by creating contradictory signals that penalize learning desirable attributes from
“loser” images while simultaneously rewarding undesirable ones in “winner” images.

As shown in Figure 7: for the prompt “A vast green grassland with blue sky and two white clouds,
a mother cow and her calf both eating grass, natural landscape, extremely detailed, 4k resolution,
perfect lighting, fine textures”, Image A may excel in semantic alignment and composition but appear
aesthetically flat, while Image B may excel in texture but lack semantic alignment. When a human
annotator is forced to choose, their judgment may hinge on a single dimension, yet the label is
recorded as an overall preference. This produces a noisy, contradictory signal, as the model is
implicitly taught to prefer all attributes of the winning image, including its flaws.

Collapsing multi-dimensional preferences into a single binary label introduces a critical challenge
for Diffusion-DPO training: dimensional conflicts across the dataset cause conflicting gradient sig-
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Figure 1: Resolving label noise from multi-dimensional preferences. Standard Diffusion-DPO learns from
a noisy, conflict signal created when a binary label (A ≻ B) collapses multi-dimensional preferences (e.g., A’s
composition vs. B’s texture). Our method, Semi-DPO, resolves this by decoupling the conflict into refined
timestep aware signals via self-training, leading to a more robust alignment.

nals leading to suboptimal convergence. We formalize this phenomenon in our theoretical analy-
sis 3.2. To address this challenge, we reformulate the problem through the lens of learning with
noisy labels (LNL) (Zhang et al., 2017; Song et al., 2022). A dominant paradigm for tackling LNL
is to reframe it as a semi-supervised learning (SSL) problem, where noisy samples are treated as
an unlabeled set that requires relabeling. Within this paradigm, iterative self-training stands out as a
powerful and widely adopted methodology. It involves training a classifier on a small clean set and
using it to generate pseudo-labels for the larger unlabeled set, progressively refining the model (Xie
et al., 2020; Li et al., 2020; Arazo et al., 2019). Inspired by this, we treat dimensionally conflicted
samples as our unlabeled set. The central question for this approach then becomes which model
should serve as the classifier for generating these pseudo-labels.

Our answer lies within the diffusion model itself. We leverage the fact that the DPO loss compels
the model to distinguish between preferred and dispreferred samples, effectively turning it into an
implicit preference classifier. This inherent capability allows the diffusion model to generate fine-
grained pseudo-labels for dimensionally conflicted data without requiring any architectural changes.
Furthermore, echoing research (Hertz et al., 2022) on the hierarchical nature of the diffusion process,
where early stages govern global composition and later stages refine local details. This hierarchy
allows us to reframe a single, conflicting preference label (e.g., A’s good composition vs. B’s good
texture) as a series of non-conflicting, timestep-conditional preferences. Therefore, we apply this
implicit classifier across the diffusion timeline. This transforms a single noisy preference signal into
fine-grained, timestep-conditioned pseudo-labels, effectively decoupling noisy conflicting signals.

To this end, we propose Semi-DPO, a two-stage framework. In the first stage, Multi-Reward Con-
sensus, we partition the dataset by using a consensus of diverse, pre-trained reward models to filter
the data. A preference pair is added to a clean labeled set only if all models unanimously agree
with the human label; otherwise, it is assigned to a noisy, unlabeled set requiring relabeling. This
process designates about 21% of the Pick-a-Pic V2 dataset as clean. In the second stage, Itera-
tive self-training, we initially train the model on the clean labeled dataset. The trained model then
generates timestep-conditional pseudo-labels for the noisy unlabeled dataset. To mitigate confirma-
tion bias and model drift (Zhang et al., 2021; Cascante-Bonilla et al., 2021; Xie et al., 2020), only
high-confidence pseudo-labels are selected for retraining with a composite objective anchored to
the clean set. This creates a virtuous cycle, synergistically improving the model’s alignment with
multi-dimensional human preferences.

In summary, our main contributions are: (1) We provide a theoretical analysis proving that con-
flicting dimensional signals in holistic labels cause conflicting gradient signal during Diffusion-
DPO training, leading to suboptimal convergence. (2) We propose Semi-DPO, a novel self-training
framework that reframes the preference alignments as semi-supervised learning under label noise,
leveraging timestep-conditional pseudo-labeling to generate fine-grained signals that decouple con-
flicting preference dimensions. (3) We demonstrate through extensive experiments that Semi-DPO
achieves state-of-the-art performance, significantly improving the model’s ability to generate im-
ages that align with complex, multi-dimensional human preferences without extra annotation costs
or fine-tuning with an explicit reward model.
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2 RELATED WORKS

Diffusion Models and Diffusion Alignment. In recent years, diffusion models (Ho et al., 2020;
Song & Ermon, 2019; Song et al., 2021) have achieved remarkable success in text-to-image gen-
eration. These models are traditionally trained on large-scale text-image datasets scraped from the
web. However, they are not well-aligned with human preferences. To achieve better alignment,
T2I adapted Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) from
the LLM domain (Dai et al., 2023; Miao et al., 2024; Clark et al., 2024), which requires training
an explicit reward model on human preference data to guide diffusion model optimization. How-
ever, developing reliable reward models remains computationally expensive and requires large-scale
annotated datasets (Xu et al., 2023; Wu et al., 2023a; Wang et al., 2024), creating a significant bot-
tleneck. Inspired by Direct Preference Optimization (DPO) (Rafailov et al., 2023) in LLMs, recent
work has adapted this approach to T2I alignment, eliminating the need for an explicit reward model.
Methods like Diffusion-DPO (Wallace et al., 2024) directly optimize diffusion models on human-
annotated preference pairs by maximizing the relative probability of preferred images. Follow-up
work on Diffusion-DPO falls into two categories: offline (Li et al., 2024; Zhu et al., 2025; Lee et al.,
2025; Hong et al., 2024) and online methods (Liang et al., 2024; Black et al., 2023; Zhang et al.,
2025; Yang et al., 2024). We provide detailed comparisons between online and offline diffusion DPO
methods in Appendix 6.5 and discuss how Semi-DPO relates to existing work in Appendix 6.6.

Noise Data & Semi-Supervised Learning. The success of deep learning models largely depends
on large-scale, high-quality annotated datasets. However, common data collection methods—such
as web scraping and crowdsourcing (e.g., Amazon Mechanical Turk)—inevitably introduce label
errors (Song et al., 2022). Due to their high capacity, deep neural networks can memorize these
incorrect labels, which degrades generalization (Zhang et al., 2017; Song et al., 2022). To address
this challenge, a dominant paradigm reframes learning with noisy labels (LNL) as a semi-supervised
learning (SSL) problem (Arazo et al., 2019). This approach partitions training data into a clean
labeled dataset and a noisy unlabeled dataset (Li et al., 2020; Han et al., 2018; Yu et al., 2019;
Wei et al., 2020). This partitioning strategy has been applied in several influential frameworks. Co-
teaching (Han et al., 2018) trains two networks that select small-loss samples for each other. Noisy
Student Training (Xie et al., 2020) employs self-training where a teacher generates pseudo-labels
for a larger, noised student model, enabling it to learn more robust representations.

3 METHOD

3.1 PRELIMINARIES

Diffusion Models. Diffusion Models are latent variable models designed to learn the reverse of a
fixed, T -step Markovian noising process. The forward process, q, is defined as q(xt | xt−1) :=
N (xt;

√
1− βtxt−1, βtI), which admits a closed-form sampling distribution at any timestep t:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), where αt = 1− βt and ᾱt =

∏t
i=1 αi.

The model learns the reverse process, pθ(xt−1 | xt, c), by training a network ϵθ(xt, t, c) to predict
the noise component ϵ from a noised sample xt. This is achieved by optimizing a simplified objective
on the negative log-likelihood:

LDM = Et,x0,ϵ

[
w(t)

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t, c

)∥∥2
2

]
(1)

Generation is performed via ancestral sampling, starting from xT ∼ N (0, I) and iteratively applying
the learned reverse transition.

Reinforcement Learning from Human Feedback (RLHF). A prevalent approach for model align-
ment is Reinforcement Learning from Human Feedback (RLHF). For text-to-image (T2I) models,
human preference data is collected as paired comparisons (xw

0 ,x
l
0, c), where xw

0 and xl
0 represent

the preferred (“winning”) and dispreferred (“losing”) final images for a given text prompt c.

First, a reward function r(x0, c) is trained to model these preferences using the Bradley-Terry model,
where the likelihood of preferring xw

0 over xl
0 is given by:

pBT

(
xw
0 ≻ xl

0 | c
)
= σ

(
r(xw

0 , c)− r(xl
0, c)

)
(2)

where σ(·) is the sigmoid function. Subsequently, the diffusion model policy pθ is optimized to
maximize the expected reward, regularized by a KL-divergence term to prevent large deviations
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from a reference policy pref , with β > 0 controls the KL penalty strength:

LRLHF = Epθ(x0|c) [r (x0, c)]− β DKL [pθ (x0:T | c) ∥pref (x0:T | c)] (3)

Direct Preference Optimization for Diffusion Models. Direct Preference Optimization (DPO)
simplifies RLHF by re-parameterizing the reward function directly in terms of the policy and ref-
erence models, thus bypassing the need for an explicit reward model. When adapting this concept
to diffusion models by framing the denoising process as a Markov Decision Process, the implicit,
time-step-wise reward function can be expressed as:

r(xt−1, c) = β log
pθ(xt−1 | xt, c)

pref(xt−1 | xt, c)
(4)

Substituting this reward definition into the Bradley-Terry likelihood yields the conceptual Diffusion-
DPO loss, which is optimized directly with respect to the policy parameters θ:

LDPO-Diffusion = −E
[
log σ

(
β log

pθ(x
w
t−1 | xw

t , c)

pref(xw
t−1 | xw

t , c)
− β log

pθ(x
l
t−1 | xl

t, c)

pref(xl
t−1 | xl

t, c)

)]
(5)

The expectation is taken over the preference dataset D and timesteps t ∈ [1, T ], where the noisy
states xt are sampled from the forward noising process.

3.2 CONFLICTING GRADIENTS SIGNAL FROM MULTI-DIMENSIONAL PREFERENCES

Diffusion-DPO Gradient Formulation. To understand the training dynamics, we begin by decom-
posing the per-sample, per-timestep DPO gradient, ∇θL(t)

DPO.

∇θL(t)
DPO = − (1− σ(z

(t)
θ )) · β︸ ︷︷ ︸

f
(t)
θ

(
∇θ log pθ(x

w
t−1|xw

t , c)−∇θ log pθ(x
l
t−1|xl

t, c)
)︸ ︷︷ ︸

∆ϕ
(t)
θ

(6)

where z
(t)
θ := β

(
log

pθ(xw
t−1|x

w
t ,c)

pref(xw
t−1|xw

t ,c)
− log

pθ(xl
t−1|x

l
t,c)

pref(xl
t−1|xl

t,c)

)
. This decomposition shows that the

Diffusion-DPO update adjusts the model’s parameters along the direction of the feature difference,
∆ϕ

(t)
θ , aiming to increase the log-probability of the preferred sample relative to the dispreferred one.

While this update mechanism is effective for clean preference pairs, its behavior becomes problem-
atic in the presence of multi-dimensional conflicts. Detailed derivation is provided in Appendix 6.1.
We now analyze how these conflicts impact the Diffusion-DPO training process.

The Source of Conflicting Signals in Preference Optimization. In this section, we provide a theo-
retical analysis for the training instability outlined previously. We demonstrate how collapsing multi-
dimensional preferences into binary labels mathematically guarantees the presence of conflicting
gradient signals, leading to suboptimal convergence. Our analysis begins by partitioning the dataset
based on whether a sample’s preference along a specific dimension aligns with its holistic label. For
a given dimension k (e.g., composition), let the reward difference be ∆rk := rk(x

w
0 , c)− rk(x

l
0, c).

This partitions the dataset into an alignment set Ak (where the dimensional preference matches the
holistic label, ∆rk > 0) and a conflict set Ck (where the dimensional preference opposes the holistic
label, ∆rk < 0), occurring with probabilities pa,k and pc,k, respectively.

To analyze the training dynamics, we define the per-sample gradient g(t)θ := −f
(t)
θ · ∆ϕ

(t)
θ , and

the oracle direction, vk(θ, t) := sign(∆rk)∆ϕ
(t)
θ . The oracle direction represents the ideal update

direction for improving dimension k. For an aligned pair in Ak, vk is the standard Diffusion-
DPO update direction. However, for a conflicting pair in Ck, vk points in the opposite direction,
representing the corrective update that should have been applied for this specific dimension.

We then examine the inner product the inner product defined as
〈
−g

(t)
θ , vk(θ, t)

〉
. This quantity

measures how well the actual gradient update aligns with the ideal oracle direction. A positive value
indicates that the update is making progress on dimension k, while a negative value indicates the
update is actively degrading performance on that dimension. Therefore, the variance of this inner
product serves as a direct mathematical measure for the severity of conflicting signals that cause
training instability.
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Figure 2: Semi-DPO framework for resolving label noise. Stage 1 (Multi-Reward Consensus): A committee
of reward models partitions the original dataset into a small, clean labeled dataset (based on unanimous agree-
ment) and a large, noisy unlabeled dataset . Stage 2 (Iterative Self-Training): (1) An initial model is trained on
the clean labeled set. (2) This model then generates pseudo-labels for the noisy unlabeled set. A pseudo-label
is accepted if its confidence score (the logit magnitude

∣∣ztθ∣∣) exceeds a dynamic threshold τ
α(t)
i . The sign of

the logit, sign(ztθ), determines how the new label is applied: a positive sign keeps the original “winner” and
“loser” assignment for the image pair, while a negative sign swaps them. (3-4) The model is then retrained on
the high-confidence pseudo-labels and the original clean set, and this cycle is repeated until convergence.

As we prove in Appendix 6.2, this variance is bounded below by:

Var[⟨−g
(t)
θ , vk(θ, t)⟩] ≥ pa,kpc,k · (m(t)

a,k +m
(t)
c,k)

2 (7)

where m(t)
a,k and m

(t)
c,k are the expected magnitudes of the gradient updates conditioned on the align-

ment and conflict sets, respectively. This inequality reveals the mechanism behind the instability.
The product term pa,kpc,k is greater than zero if and only if a conflict set exists ( pc,k > 0 ), which
mathematically guarantees that the training signal must contain updates that are both aligned with
and opposed to the oracle direction. This co-existence gives rise to gradients with inconsistent di-
rections updates from Ck that directly oppose the ”oracle” updates desired for dimension k.

Conflicting gradient signals force the model’s parameters to oscillate, with the update direction fre-
quently reversing. This behavior introduces two critical issues: (1) it renders the learning process
highly inefficient, as progress from one step is largely negated by the next, impeding the minimiza-
tion of the loss function. (2) this constant directional conflict makes the training instability, and the
model struggles to find a consistent optimization path, leading to suboptimal convergence.

3.3 THE SEMI-DPO FRAMEWORK

Our theoretical analysis shows that collapsing multi-dimensional conflicts into single binary labels
generates conflicting gradient signals, causing suboptimal convergence. To address this, we reframe
the alignment task as a semi-supervised learning (SSL) problem designed to handle these noisy
labels. We detail our proposed framework in the following section.

Data Partitioning via Multi-Reward Consensus. To obtain a clean labeled set (Dlabeled) for stable
cold-start training, we filter the original dataset D using a multi-reward consensus approach. This
approach is motivated by existing work that reveals strong correlations between widely-used reward
models and different dimensions of human preference Zhang et al. (2024) (see Table 6 and Fig-
ure 4). For instance, CLIP Score (Radford et al., 2021) demonstrates a strong correlation with the
semantic alignment dimension, while Aesthetic Score (Schuhmann, 2022) is highly correlated with
the aesthetics dimension (detailed explanation provided in Appendix 6.8). We employ a set of K
pre-trained models {rk}Kk=1. A preference pair (c, xw

0 , x
l
0) is included in Dlabeled only if all reward

models unanimously agree with the holistic label, i.e., ∀k,∆rk = rk(x
w
0 , c) − rk(x

l
0, c) > 0. The

remaining data, which contains dimensional conflicts, forms the noisy unlabeled set Dunlabeled. This
filtering step yields a high-quality dataset that provides an unambiguous initial gradient direction.

Timestep-Conditional Pseudo-Labeling. Our pseudo-labeling strategy stems from a key insight:
the DPO loss function is equivalent to a binary cross-entropy loss. This means the training process
implicitly trains a binary classifier at each timestep to distinguish between the denoising predictions
associated with the preferred and dispreferred samples. Consequently, the per-timestep margin, z(t)θ ,
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functions as the logit for this implicit classifier. This provides a principled signal for self-training,
where the sign of the logit, sign(z(t)θ ), determines the predicted preference, and its magnitude, |z(t)θ |,
serves as the confidence score (see Figure 2, right).

Dynamic Timestep-Conditional Thresholding. Our experiments find that the model’s confidence
and prediction accuracy are not uniform over the diffusion timesteps (Table 7). Therefore, instead
of a single fixed threshold for pseudo-labeling, we employ a dynamic strategy. We partition the
timeline into N distinct intervals, {Ij}Nj=1, and assign a unique threshold to each. This dynamic

threshold, τα(t)i−1 , is updated at each training iteration and is specific to the interval α(t) containing

timestep t. Consequently, a pseudo-label is used for retraining only if its confidence score |z(t)θi−1
|

exceeds the corresponding threshold for its specific time interval, as shown in Figure 2 right.

Iterative Self-Training with a Composite Objective. The iterative self-training process begins
with a “cold-start” phase. We first train an initial model, p0θ, using only the clean labeled set Dlabeled.
This step is crucial as it provides a stable and reliable foundation for the self-training loop. The
training objective at this stage consists solely of the anchor loss (defined in Eq. 9). For each subse-
quent iteration i, we leverage the model from the previous step, pi−1

θ , to generate pseudo-labels for
the noisy unlabeled set Dunlabeled. The new model, piθ, is then trained using the composite objective
(defined in Eq. 8) that combines a stable, anchoring signal from the clean set with a learning sig-
nal from high-confidence pseudo-labels (see Figure 2, left). These principles are formalized in our
composite objective for the iterative refinement stage (i > 0):

L(i)
Semi-DPO(θ) = Llabeled(θ) + L(i)

unlabeled(θ) (8)

The two loss components are defined as:

Anchor Loss (Llabeled). The standard Diffusion-DPO loss on the clean labeled set, which acts as a
ground-truth regularizer to prevent model drift.

Llabeled(θ) = E(c,xw
0 ,xl

0)∼Dlabeled

[
− log σ(z

(t)
θ )

]
(9)

Pseudo-Label Loss (L(i)
unlabeled). The DPO loss on a filtered subset of the noisy data, using pseudo-

labels generated by the model from the previous iteration (pi−1
θ ).

L(i)
unlabeled(θ) = E(c,xw

0 ,xl
0)∼Dunlabeled

[
I(|z(t)θi−1

| > τ
α(t)
i−1 ) ·

(
− log σ(ẑ

(t)
θ )

)]
(10)

In Eq. 10, the indicator function I(·) filters for high-confidence predictions using the dynamic thresh-
old τ

α(t)
i−1 . The new preference pair (xw

pseudo, x
l
pseudo) used to compute the loss term ẑ

(t)
θ is determined

by the sign of the previous model’s logit, z(t)θi−1
. A positive sign retains the original label, while a

negative sign swaps the “winner” and “loser” images.

This pseudo-labeling mechanism is the core of our solution to the inflated gradient variance prob-
lem identified in Section 3.2. The variance originates from dimensional conflicts within Dunlabeled
where a sample’s holistic label provides a supervisory signal that opposes the ideal gradient for a
specific attribute. Our method resolves these conflicts at a granular, timestep-conditional level. By
re-labeling pairs based on the model’s own learned preference-the sign of the logit z(t)θi−1

-it actively
corrects the noisy original annotations. This process effectively reduces the proportion of conflicting
samples (the term pc,k in our analysis) that generate gradients with inconsistent directions. Conse-
quently, this self-correction mitigates the source of gradient conflict, leading to a more consistent
and effective training signal from the noisy dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets and Models. We select Stable Diffusion v1.5 (SD1.5) as our base model. We train Semi-
DPO on the Pick-a-Pic V2 (Kirstain et al., 2023b) dataset. After excluding approximately 12% of
ties pairs, there are 851,293 preference pairs across 58,960 unique prompts in the training dataset.
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Figure 3: Sample images generated by different models for various prompts.

Baselines. Our baselines include diffusion models fine-tuned on the Pick-a-Pic V2 dataset using
various alignment methods based on SD1.5: Diffusion-DPO (Wallace et al., 2024) and Diffusion-
KTO (Li et al., 2024), using their officially released checkpoints.

Training Details. During the multi-reward consensus stage, we employ five proxy reward models to
filter the dataset: PickScore (Kirstain et al., 2023b), HPS v2 (Wu et al., 2023a), CLIP Score (Radford
et al., 2021), the LAION Aesthetics Classifier (Ilharco et al., 2021), and ImageReward (Xu et al.,
2023). This filtering process, which is further detailed in Appendix 6.8 and Section 3.3, yields a
clean, consensus-labeled dataset of 176,999 pairs, with the remainder classified as noisy. We then
split this clean dataset into a training portion of 173,007 pairs and a test portion of 3,992 pairs,
which is used to evaluate model accuracy after each training iteration (See Appendix 6.9). An
ablation study investigating the impact of using different numbers of reward models is presented in
Section 4.3. Additional training details can be found in Appendix 6.9.

Evaluation. Following the protocol from (Li et al., 2024), we evaluate our Semi-DPO method on the
SD1.5 model. The model’s performance is assessed using a suite of established metrics: ImageRe-
ward, PickScore, HPS v2, the LAION Aesthetics Classifier, CLIP Score, and Gen-Eval (Ghosh et al.,
2023). Furthermore, to demonstrate Semi-DPO’s ability to generate outputs that align with multi-
dimensional human preferences, we employ the Multi-dimensional Preference Score (MPS) (Zhang
et al., 2024).

4.2 ALIGNMENT RESULT

Qualitative Result. Figure 3 presents a qualitative comparison between Semi-DPO and base-
line models using the same prompt, demonstrating our method’s significant improvements in text-
alignment, detail fidelity, and aesthetics. For instance, given the prompt, “a photo of Pikachu cook-
ing at a restaurant, wearing a chef’s hat,” Semi-DPO is the only method that successfully generates
Pikachu with the specified chef’s hat, highlighting its superior text-alignment. We provide more
visualization comparison results in Figure 5.

Quantitative Result. Table 1 and Table 2 report Semi-DPO outperforms other baselines across var-
ious dimensions on SD1.5 in both reward model scores and win-loss rates. For text alignment eval-
uation, Table 3 shows that Semi-DPO consistently outperforms baseline and other offline methods
across text-image alignment metrics. In terms of win rate comparison, it achieved 70.2% win rate
against Diffisuion-KTO and 69.0% win rate against Diffusion-DPO on Pick-a-Pic V2 test dataset.

Table 1: Reward Score comparisons on Pick-a-Pic V2, HPS V2 and Parti-Prompt datasets for all baselines
versus SD1.5, best results are in boldface. “Diff” represents “Diffusion”.

Dataset Method ImageReward HPSv2.1 PickScore Aesthetic CLIP MPS

HPS v2

SD1.5 0.139 0.246 20.862 5.578 0.293 12.211
Diff-DPO 0.339 (+0.200) 0.259 (+5.3%) 21.308 (+2.1%) 5.714 (+2.4%) 0.297 (+1.4%) 12.739 (+4.3%)

Diff-KTO 0.690 (+0.551) 0.284 (+15.4%) 21.454 (+2.8%) 5.803 (+4.0%) 0.298 (+1.7%) 13.016 (+6.6%)

Semi-DPO 0.816 (+0.677) 0.287 (+16.7%) 21.945 (+5.2%) 5.899 (+5.8%) 0.299 (+2.0%) 13.514 (+10.7%)

Parti Prompt

SD1.5 0.194 0.254 21.284 5.358 0.270 9.754
Diff-DPO 0.352 (+0.158) 0.262 (+3.1%) 21.520 (+1.1%) 5.443 (+1.6%) 0.272 (+0.7%) 10.135 (+3.9%)

Diff-KTO 0.615 (+0.421) 0.279 (+9.8%) 21.594 (+1.5%) 5.552 (+3.6%) 0.277 (+2.6%) 10.202 (+4.6%)

Semi-DPO 0.798 (+0.604) 0.284 (+11.8%) 21.964 (+3.2%) 5.706 (+6.5%) 0.276 (+2.2%) 10.771 (+10.4%)

Pick-a-Pic V2

SD1.5 0.085 0.250 20.566 5.421 0.273 9.635
Diff-DPO 0.297 (+0.212) 0.261 (+4.4%) 20.948 (+1.9%) 5.549 (+2.4%) 0.279 (+2.2%) 10.144 (+5.3%)

Diff-KTO 0.629 (+0.544) 0.281 (+12.4%) 21.064 (+2.4%) 5.659 (+4.4%) 0.281 (+2.9%) 10.226 (+6.1%)

Semi-DPO 0.801 (+0.716) 0.288 (+15.2%) 21.524 (+4.7%) 5.801 (+7.0%) 0.281 (+2.9%) 11.030 (+14.5%)
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Table 2: (a) Win rate (%) comparisons on Pick-a-Pic V2, HPS V2 and Parti-Prompt datasets for all baselines
versus SD1.5, best results are in boldface, “Diff” represents “Diffusion”. (b) Semi-DPO versus other baselines,
win rates that surpass 50% are in boldface.

Dataset Method1 Method2 ImageReward HPS v2.1 PickScore Aesthetic CLIP MPS
Diff-DPO SD1.5 60.80% 70.10% 75.70% 68.10% 54.70% 67.20%
Diff-KTO SD1.5 77.80% 90.40% 74.10% 72.20% 55.30% 68.60%
Semi-DPO SD1.5 79.80% 88.10% 87.40% 78.80% 55.80% 73.70%

Semi-DPO Diff-DPO 74.60% 83.00% 77.40% 68.40% 52.20% 66.40%
HPS v2

Semi-DPO Diff-KTO 56.10% 52.80% 72.90% 60.60% 51.20% 61.70%

Diff-DPO SD1.5 58.90% 64.90% 67.90% 63.20% 50.80% 62.80%
Diff-KTO SD1.5 69.80% 83.40% 65.20% 69.10% 57.30% 59.60%
Semi-DPO SD1.5 75.80% 83.40% 78.80% 80.00% 56.00% 71.70%

Semi-DPO Diff-DPO 71.90% 78.80% 70.80% 74.00% 55.00% 65.70%
Parti Prompt

Semi-DPO Diff-KTO 60.20% 54.80% 70.40% 65.70% 48.60% 66.20%

Diff-DPO SD1.5 63.20% 69.90% 74.60% 66.00% 58.00% 66.00%
Diff-KTO SD1.5 75.50% 85.80% 73.40% 71.80% 60.90% 62.70%
Semi-DPO SD1.5 79.10% 87.30% 85.20% 80.70% 60.60% 77.00%

Semi-DPO Diff-DPO 72.90% 82.10% 76.30% 72.60% 53.50% 69.00%
Pick-a-Pic V2

Semi-DPO Diff-KTO 60.20% 59.50% 73.00% 64.50% 50.40% 70.20%

Table 3: Complete results on GenEval (Ghosh et al., 2023) with 50 inference steps.

Model Single Two Counting Colors Position Color attr Overall

SD1.5 95.62 37.63 37.81 74.73 3.5 4.75 42.34
Diff-DPO 96.88 39.90 38.75 75.53 3.3 3.75 43.00
Diff-KTO 97.50 35.35 36.25 79.79 7.0 6.00 43.65
Semi-DPO 98.75 49.75 42.19 77.93 6.0 9.25 47.31

4.3 ABLATION STUDY

Iterations. To validate the contribution of our iterative self-training process, we conducted an abla-
tion study on the key stages of Semi-DPO, as shown in Table 4. Our hypothesis is that each iteration
enables the model to generate better pseudo-labels, leading to further performance gains. We evalu-
ated the performance of different iterations: Iter0, the initial model trained only on the high-quality
clean dataset; Iter1, the model after the first round of pseudo-labeling and retraining; and Iter2, the
model after the second round of pseudo-labeling and retraining.

Our ablation study results substantiate our hypothesis. We find that each iteration yields a model
capable of generating more reliable pseudo-labels, which in turn enhances the performance of the
subsequent model. Specifically, we observe significant performance improvements from Iter0 to
Iter1 and from Iter1 to Iter2. However, our results indicate these performance gains diminish and
stabilize after the second iteration. We therefore conclude two rounds of self-training are sufficient
for convergence, striking an effective balance between performance and computational efficiency.

Table 4: Ablation study of the iterative self-training process on SD1.5.

Dataset Method ImageReward HPS v2.1 PickScore Aesthetic CLIP MPS

Semi-DPO (Iter0) 0.569 0.269 21.493 5.806 0.300 13.039
Semi-DPO (Iter1) 0.798 0.284 21.892 5.902 0.300 13.495HPS v2
Semi-DPO (Iter2) 0.816 0.287 21.945 5.899 0.299 13.514

Semi-DPO (Iter0) 0.557 0.272 21.679 5.548 0.275 10.386
Semi-DPO (Iter1) 0.779 0.283 21.929 5.691 0.277 10.743Parti Prompt
Semi-DPO (Iter2) 0.798 0.284 21.964 5.706 0.276 10.771

Semi-DPO (Iter0) 0.563 0.273 21.153 5.660 0.282 10.554
Semi-DPO (Iter1) 0.789 0.287 21.490 5.794 0.282 11.018Pick-a-Pic V2
Semi-DPO (Iter2) 0.801 0.288 21.524 5.801 0.281 11.030
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Number of Reward Models for Consensus Filtering. To determine the optimal configuration for
multi-reward consensus, we conducted an ablation study on the number of proxy reward models
used to filter the initial clean dataset. We evaluated SD1.5’s performance when trained on data fil-
tered by a consensus of two, three, four, and five independent reward models. As shown in Table 5,
performance consistently improved across all evaluation metrics and datasets as the number of mod-
els in the consensus committee increased. Notably, incorporating a greater number of reward models
in the consensus not only boosts performance on the metrics used for filtering but also enhances the
model’s generalization ability to other preference evaluators not included in the consensus. For ex-
ample, when the fourth model, ImageReward (IR), is added to the committee, performance on the
still-unrelated PickScore and MPS metric improves across all three datasets. This confirms that a
stricter and more diverse consensus yields a higher-quality initial training set that captures a more
robust and generalizable understanding of human preference. We therefore adopt the five-model
consensus to ensure our initial model is trained on the most reliable clean data.

Table 5: Ablation study on the number of reward models for consensus filtering. This study evaluates
the performance of a model trained on data filtered by a consensus of an increasing number of reward models
(from two to five) to determine the optimal configuration. Metrics included in the consensus committee are
marked in green, while metrics that are evaluated but not used for filtering are marked in red. The baseline
SD1.5 and its results are marked in gray. Best results for each dataset are in bold.The results demonstrate that
performance consistently improves across all metrics and datasets as the consensus committee grows. Notably,
this improvement also generalizes to metrics not included in the consensus (e.g., adding ImageReward improves
the unrelated PickScore), confirming that a stricter and more diverse consensus yields a higher-quality and more
generalizable initial training set. Abbreviations: HPS is HPS v2, IR is Image Reward, Aes is Aesthetic Score,
and CLIP is CLIP Score.

Dataset Method CLIP Aesthetic HPSv2 ImageReward PickScore MPS

HPS v2

SD1.5 0.293 5.578 0.246 0.139 20.860 12.211
CLIP+Aes 0.299 5.759 0.263 0.442 21.438 12.891
CLIP+Aes+HPS 0.299 5.775 0.265 0.459 21.430 12.927
CLIP+Aes+HPS+IR 0.299 5.789 0.268 0.524 21.464 13.018
CLIP+Aes+HPS+IR+Pick 0.300 5.806 0.269 0.569 21.493 13.039

Parti Prompt

SD1.5 0.270 5.358 0.254 0.194 21.284 9.754
CLIP+Aes 0.273 5.501 0.265 0.444 21.620 10.280
CLIP+Aes+HPS 0.273 5.519 0.268 0.470 21.639 10.331
CLIP+Aes+HPS+IR 0.274 5.530 0.269 0.513 21.651 10.363
CLIP+Aes+HPS+IR+Pick 0.275 5.548 0.272 0.557 21.679 10.386

Pick-a-Pic V2

SD1.5 0.273 5.421 0.250 0.085 20.566 9.635
CLIP+Aes 0.279 5.609 0.267 0.417 21.099 10.399
CLIP+Aes+HPS 0.280 5.627 0.270 0.469 21.143 10.454
CLIP+Aes+HPS+IR 0.281 5.632 0.271 0.499 21.127 10.477
CLIP+Aes+HPS+IR+Pick 0.282 5.660 0.273 0.563 21.153 10.554

5 CONCLUSION

In this work, we address a critical source of training instability in Diffusion-DPO: the label noise
generated from collapsing inherently multi-dimensional human preferences into single binary la-
bels. This compression creates contradictory signals—for example, forcing a model to prefer a
“winner” image’s superior composition while also learning its flawed textures. Our theoretical anal-
ysis proves this phenomenon generates conflicting gradients that hinder optimization and lead to
suboptimal convergence. To resolve this, we introduce Semi-DPO, a novel framework that reframes
preference alignment as a semi-supervised learning problem for handling noisy labels. Semi-DPO
first employs a Multi-Reward Consensus stage to partition the dataset, identifying a small, clean
subset of pairs with unambiguous agreement and isolating the larger, noisy set with dimensional
conflicts. Subsequently, in the Iterative Self-Training stage, a model trained on the clean data acts as
its own implicit classifier. By leveraging the diffusion model’s hierarchical nature, it generates fine-
grained, timestep-conditional pseudo-labels that decompose a single noisy preference into a series
of coherent signals, effectively decoupling the conflicting dimensions. Our experiments show that
Semi-DPO achieves state-of-the-art performance, significantly improving alignment with complex
human preferences without requiring extra annotation or training dedicated reward models.
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ETHICS STATEMENT

Our research enhances text-to-image model alignment while relying solely on publicly available
resources, specifically the Pick-a-Pic V2 dataset and Stable Diffusion 1.5. In line with responsi-
ble research practices, we acknowledge the broader societal implications and potential for misuse
associated with generative technologies.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release our code. Our method is detailed in Section 3.2, and our
training hyperparameters are documented in Appendix 6.9 to allow for the replication of our results.
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6 APPENDIX

6.1 DERIVATION OF THE DIFFUSION-DPO GRADIENT

We derive the gradient of the per-timestep Diffusion-DPO loss, L(t)
DPO(θ), with respect to the model

parameters θ. The loss is defined as:

L(t)
DPO(θ) := − log σ

(
β

[
log

pθ(x
w
t−1|xw

t , c)

pref(xw
t−1|xw

t , c)
− log

pθ(x
l
t−1|xl

t, c)

pref(xl
t−1|xl

t, c)

])
(11)

To simplify the notation, let h(t)
θ = β

[
log

pθ(x
w
t−1|x

w
t ,c)

pref (xw
t−1|xw

t ,c) − log
pθ(x

l
t−1|x

l
t,c)

pref (xl
t−1|xl

t,c)

]
. Applying the chain

rule and using the identity d
dx (− log σ(x)) = −(1− σ(x)), we have:

∇θL(t)
DPO(θ) = ∇θ

(
− log σ(h

(t)
θ )

)
=

d

dh
(t)
θ

(
− log σ(h

(t)
θ )

)
∇θh

(t)
θ

= −
(
1− σ(h

(t)
θ )

)
∇θh

(t)
θ

= −(1− σ(h
(t)
θ ))∇θ

[
β

(
log

pθ(x
w
t−1|xw

t , c)

pref(xw
t−1|xw

t , c)
− log

pθ(x
l
t−1|xl

t, c)

pref(xl
t−1|xl

t, c)

)]
= −(1− σ(h

(t)
θ )) · β

(
∇θ log pθ(x

w
t−1|xw

t , c)−∇θ log pθ(x
l
t−1|xl

t, c)
)

(12)

6.2 PROOF OF VARIANCE INFLATION

For clarity, we first restate the relevant definitions from Section 3.2. Let D be the dataset of prefer-
ence tuples d =

(
c, xw

0 , x
l
0

)
. For any sample d ∈ D and a given preference dimension k, we define

the reward difference as ∆rk(d) := rk (x
w
0 , c) − rk

(
xl
0, c

)
. This induces a partition of the dataset

into an alignment set Ak := {d ∈ D | ∆rk(d) > 0} and a conflict set Ck := {d ∈ D | ∆rk(d) < 0},
with respective probabilities pa,k := P (d ∈ Ak) and pc,k := P (d ∈ Ck). For a given sample
d and timestep t, we define the per-sample gradient g(t)θ := −f

(t)
θ · ∆ϕ

(t)
θ , the oracle direction

vk(θ, t) := sign (∆rk) ·∆ϕ
(t)
θ , and the inner product ξt :=

〈
−g

(t)
θ , vk(θ, t)

〉
. Finally, we define the

conditional expected magnitudes as

m
(t)
a,k := E

[
f
(t)
θ ·

∥∥∥∆ϕ
(t)
θ

∥∥∥2
2
| Ak

]
and m

(t)
c,k := E

[
f
(t)
θ ·

∥∥∥∆ϕ
(t)
θ

∥∥∥2
2
| Ck

]
By the law of total variance, we can decompose the variance of ξt based on whether a sample is in
the alignment set Ak or the conflict set Ck:

Var[ξt] = E[Var[ξt | Z]]︸ ︷︷ ︸
Intra-group variance

+Var(E[ξt | Z])︸ ︷︷ ︸
Inter-group variance

(13)

where Z is a random variable indicating membership in {Ak, Ck}.

Since variance is non-negative, the total variance is bounded below by the inter-group variance term:

Var[ξt] ≥ Var(E[ξt | Z]) (14)

We now compute the Var (E [ξt | Z]). The conditional expectations of ξt are:

• E[ξt | Ak] = E[f (t)
θ · (+1) · ∥∆ϕ

(t)
θ ∥22 | Ak] = m

(t)
a,k

• E[ξt | Ck] = E[f (t)
θ · (−1) · ∥∆ϕ

(t)
θ ∥22 | Ck] = −m

(t)
c,k
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The Var (E [ξt | Z]) can now be calculated using its definition, Var(Y ) = E[Y 2] − (E[Y ])2. Let
Y = E[ξt | Z]. Then:

Var(E[ξt | Z]) = pa,k(m
(t)
a,k)

2 + pc,k(−m
(t)
c,k)

2 − (pa,km
(t)
a,k − pc,km

(t)
c,k)

2

= pa,k(1− pa,k)(m
(t)
a,k)

2 + pc,k(1− pc,k)(m
(t)
c,k)

2 + 2pa,kpc,km
(t)
a,km

(t)
c,k

= pa,kpc,k

(
(m

(t)
a,k)

2 + (m
(t)
c,k)

2 + 2m
(t)
a,km

(t)
c,k

)
= pa,kpc,k(m

(t)
a,k +m

(t)
c,k)

2

(15)

where we used the fact that pa,k + pc,k = 1.

Thus, the total variance has a lower bound determined by the conflict:

Var[ξt] ≥ pa,k · pc,k · (m(t)
a,k +m

(t)
c,k)

2 (16)

This proves that any non-zero conflict mass (pc,k > 0) introduces a variance term that grows quadrat-
ically with the sum of the conflicting and aligned update magnitudes.

6.3 THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) such as GPT were used solely for language polishing and clarity
improvements in the writing of this paper. All technical content, dataset design, experimental results,
and analyses were created by the authors. The models were not used to generate ideas, data, or
experimental outcomes.

6.4 LIMITATIONS

Like many classical SSL methods (Xie et al., 2020; Zhang et al., 2021; Cascante-Bonilla et al.,
2021), our approach requires multiple cycles of pseudo-labeling and model retraining to achieve
optimal performance on noisy datasets. While effective, it increases the overall training time and
computational resources required compared to single-stage alignment methods. Future research
could explore more efficient, single-pass or few-pass variations of this framework to mitigate this
inefficiency.

6.5 COMPARISON OF ONLINE AND OFFLINE DPO PARADIGMS IN IMAGE GENERATION

The methodologies for Direct Preference Optimization (DPO) in diffusion models can be broadly
categorized into offline and online approaches. Offline sampling-based DPO in T2I, the paradigm
under which Semi-DPO operates, utilizes a static, pre-collected dataset of human preferences for
the entirety of the training process. This approach is computationally efficient and offers greater
stability and reproducibility, as it fine-tunes the model in a single stage on a fixed dataset. However,
its primary limitation is that the model’s ultimate performance is fundamentally constrained by the
diversity and quality of the initial preference data; it cannot learn beyond the scope of the examples
it is given (Wallace et al., 2024; Zhu et al., 2025; Lee et al., 2025; Hong et al., 2024).

In contrast, online sampling-based DPO in T2I involves dynamically generating new preference
data during the training loop. In this setup, the diffusion model iteratively produces new images
that are then evaluated, typically by an auxiliary reward model, to create new preference pairs
for continued training. While this allows the model to learn continuously and potentially surpass
the quality of the initial dataset, it introduces significant computational overhead and complexity.
Furthermore, online methods risk overfitting to the biases of the reward model and depend on having
a reliable reward signal available throughout the resource-intensive training process (Liang et al.,
2024; Black et al., 2023; Zhang et al., 2025; Yang et al., 2024).

6.6 COMPARISON WITH EXISTING METHODS

Offline DPO. Unlike existing offline approaches that focus on modifying algorithms (Zhu et al.,
2025; Li et al., 2024; Hong et al., 2024) or generating new datasets through multiple reward models
for re-annotation and training (Lee et al., 2025), Semi-DPO addresses the noise label problem caused
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by multi-dimensional preference conflicts in DPO datasets. We reclassify the dataset into clean
labeled data and noisy unlabeled data. Following the principle of semi-supervised learning, Semi-
DPO leverages both labeled and unlabeled data to achieve superior performance compared to using
labeled data alone. This approach maximizes the utilization of existing datasets.

Our theoretical analysis and empirical results serve a dual purpose: validating our central claim
that collapsing multi-dimensional preferences into single binary labels introduces a significant noisy
label problem, and demonstrating that a diffusion model trained with the DPO loss can correct these
noisy labels by acting as its own implicit classifier.

Latent Reward Model. Semi-DPO leverages a key property of the Diffusion-DPO framework: its
loss function transforms the diffusion model into an implicit latent reward model. The principle is
straightforward: the DPO objective compels the model to increase the relative probability of pre-
ferred samples over dispreferred ones. To achieve this, the model must learn to distinguish between
“better” and “worse” latent representations at every timestep, a capability that serves as an inherent
reward signal.

This approach contrasts with existing latent reward model methods (Zhang et al., 2025; Ding et al.,
2024). Those methods typically require architectural modifications to construct an explicit reward
model that is then trained separately. In contrast, the latent reward model in Semi-DPO is the original
diffusion model itself. This implicit method is more efficient and requires no architectural changes.

6.7 FUTURE WORK: AN ONLINE EXTENSION OF THE SEMI-DPO PARADIGM

Pixel-space reward models (e.g., ImageReward) are constrained by gradient propagation issues,
which restrict their effective training signal to only the final stages of the diffusion process. La-
tent reward models overcome this limitation by providing a deep training signal across all timesteps
(from t = 999 down to t = 1 ), allowing them to guide the entire generation process.

However, existing latent reward models (Zhang et al., 2025; Ding et al., 2024) have a significant
limitation: they are architecturally specific. They must share a latent space with the diffusion model
they are training, which requires a shared VAE encoder. As different generative models (e.g., SD1.5
and SDXL) use different VAEs, a latent reward model trained for one is incompatible with another.
This gives them great power but prevents the plug-and-play versatility of pixel-space models.

Our work offers a path to resolve this trade-off. At its core, a diffusion model trained with the
DPO loss functions as an implicit latent reward model, learning to assign preference labels at each
timestep. This insight allows for a powerful online extension of the Semi-DPO paradigm:

• Cold-Start: An initial model is trained on a small, multi-dimensionally consistent dataset
to learn the basics of human preference.

• Online Training: During online training, the model inherits our iterative self-training phi-
losophy. To begin the (i+1)-th iteration, new data is generated by the model from iteration
i and then labeled by an ensemble of implicit reward models composed of the models from
iterations i and i− 1.

By developing this iterative, self-training online method, we would no longer need to train a new,
bespoke latent reward model for each T2I architecture. Instead, the model would correct itself
through an internal process. This presents a path toward a universal, model-agnostic alignment
strategy that captures the deep-signal benefits of latent-space rewards without being constrained by
their architectural limitations.

6.8 MOTIVATION BY MULTI-REWARD SELECTION

In our methods (see Section 3.3), we employ a committee of five proxy reward models
PickScore (Kirstain et al., 2023b), HPS V2 (Wu et al., 2023a), CLIP (Radford et al., 2021), LAION
Aesthetics Classifier (Ilharco et al., 2021), and ImageReward (Xu et al., 2023) for data filtering.
This approach is motivated by the study that introduced the Multi-dimensional Preference Score
(MPS) (Zhang et al., 2024), which constructed a dataset reflecting real human preferences by en-
suring image source diversity and having human annotators perform pairwise comparison scoring
across four dimensions: aesthetics, detail quality, semantic alignment, and overall assessment.
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Table 6: The evaluation of MPS and scoring functions for the prediction of multi-
dimensional human preferences(%). Copied from MPS (Zhang et al., 2024).

ID Preference Model Overall Aesthetics Alignment Detail

1 CLIP score Radford et al. (2021) 63.67 68.14 82.69 61.71
2 Aesthetic Score Schuhmann (2022) 62.85 82.85 69.36 60.34
3 ImageReward Xu et al. (2023) 67.45 74.79 75.27 58.31
4 HPS Wu et al. (2023b) 65.51 73.86 73.86 62.05
5 PickScore Kirstain et al. (2023a) 69.52 70.95 70.92 56.74
6 HPS v2 Wu et al. (2023a) 65.51 73.86 73.87 62.06

7 MPS (Zhang et al., 2024) 74.24 83.86 83.87 85.18

R=-0.002 R=0.540 R=-0.155

R=0.573 R=0.439 R=0.345 R=0.105

R=0.702 R=0.766 R=0.710 R=0.864

R=0.185

Pi
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C
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Overall score Aesthetic Semantic alignment Detail quantity

Figure 4: Correlation between real user preferences and model predictions. The x-axis of each subplot
represents the annotated real human preferences, and the y-axis denotes the model’s predictions. We examine
three models: CLIP score, PickScore, and MPS. Each subplot is annotated with the calculated correlation
coefficient R-value, where a higher R-value indicates a closer alignment of the model’s predictions with actual
human preferences. Figure reproduced from (Zhang et al., 2024)..

They compared the performance of multiple existing reward models against their proposed MPS
on a multi-dimensional preference dataset, revealing a core phenomenon: existing reward models
exhibit significant specialization when predicting human preferences (see Table 6 and Figure 4. For
instance, CLIP Score (Radford et al., 2021) shows a strong correlation with the semantic alignment
dimension, while Aesthetic Score (Schuhmann, 2022) is highly correlated with the aesthetics di-
mension. Meanwhile, models such as HPSv2 (Wu et al., 2023a), ImageReward (Xu et al., 2023),
and PickScore (Kirstain et al., 2023b) show higher consistency with the overall score. This finding
indicates that no single model can comprehensively evaluate image quality.

As shown in Table 6 and Figure 4 (Both Table 6 and Figure 4 are reproduced from MPS paper.
They are Tab. 4 and Fig. 5 in their original paper.), the MPS model shows the strongest corre-
lation with multi-dimensional human preferences. However, a publicly available version capable of
providing scores for individual dimensions was unavailable at the time of our work. Therefore, to en-
sure our initial training data was reliable and free from label noise caused by dimensional conflicts,
we used five distinct preference models in concert, selecting only the data points that all models
agreed upon to form a high-quality, dimensionally consistent subset. To validate the effectiveness
of this five-model filtering strategy, we also conducted an ablation study to investigate the impact of
using different numbers of reward models 4.3.

6.9 TRAINING DETAILS

For SD1.5, the training was utilizing a total of 32 NVIDIA A100 40GB GPUs for distributed
training. We configured a local batch size of 4 for each GPU and performed gradient accumu-
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lation over 4 steps, which resulted in a global batch size of 512. Iteration 0 uses a learning
rate of 4 × 10−9 and is trained for 1,600 steps, while iterations 1 and 2 use a learning rate of
4 × 10−10 and are trained for 4,000 steps each. The DPO parameter was set to β = 2500 for
all iterations, in line with the hyperparameters specified in the official Diffusion-DPO (Wallace
et al., 2024) code repository. All iterations incorporate a linear warmup over the first 400 steps.

Table 7: The model’s prediction accuracy, evaluated on a clean test
set, varies across the diffusion timeline.

Timesteps 50 150 250 350 450 550 650 750 850 950

Accuracy (%) 72 73 73 72 72 71 69 67 65 59

To implement our dynamic thresh-
olds for pseudo-labeling (as men-
tioned in Section 3.3, we first par-
tition the diffusion timeline (t ∈
[0, 999]) into ten discrete intervals
(e.g., 0-100, 100-200). We initially set the threshold for each interval at the 80th percentile of
its confidence scores to ensure a consistent number of samples are initially selected. However, when
we evaluated this strategy on our accuracy test portion (3,992 pairs), we found that the model’s pre-
diction accuracy was not uniform across different timestep intervals (see Table 7 ; specifically, for
timesteps greater than 650, its accuracy dropped below 70%. To mitigate confirmation bias from
these less reliable labels, for any interval failing to meet the 70% accuracy level, we raised its con-
fidence threshold. Although this adjustment reduces the number of pseudo-labeled samples from
later stages of the diffusion process, it ensures the model is primarily trained on labels that are both
high-confidence and high-accuracy. For more training details, please see Appendix 6.9

6.10 QUALITATIVE RESULT

Magic the gathering, anthro
furry knight adventurer, 
showcase promo full art. 
Painted impressionist style

Anthropomorphic cat 
wearing cyberpunk suit, 
in a cyberpunk futuristic 
city. hyper realistic, 
dramatic lighting, 
crowded street, busy 
street, cluttered, classic, 
hyper detailed, intricate, 
4k, unreal engine, maya 
render

Portrait of a beautiful 
female space warrior in a 
dense forest, by fiona
staples, bold colors, 
dynamic composition, 
bright saturated hues, 
strong constrasts, vibrant, 
energetic, elaborate, hyper 
detailed, visually stunning 
and captivating art style

3d octane render, ultra 
photorealistic, 8 k hyper 
detailed image unreal 
engine, a beautiful of a 
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contemporary art by 
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SD1.5 Diffusion DPO Diffusion KTO Semi-DPO (Ours)

Figure 5: Qualitative comparison of Semi-DPO against baseline models
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"A white bird with a yellow beak is perched on a branch surrounded by green foliage."

"An AK-47 rifle vertically buried in desert sand dunes with a magazine lying nearby, clear blue sky, realistic style"

Figure 6: Qualitative evaluation of Semi-DPO-SDXL(right) in comparison with Base-SDXL, DPO-SDXL,
MaPO-SDXL and InPO-SDXL on conditional generation tasks.From top to bottom: canny edge, and in-
painting).

Winner Loser Winner Loser

Figure 7: Qualitative comparison of samples from the labeled dataset (Left, Blue) and the unlabeled
dataset (Right, Green). The annotations Winner (green) and Loser (red) indicate the human preference
labels. The corresponding full prompts are: Top-Left: “Cosmic hamburger in space”; Bottom-Left: “Cat with
a sign that says ‘Cat lives matter’ ”; Top-Right: “An empowering view of a orca warrior wearing royal robe,
sitting in a cafe drinking coffee next to a kangaroo warrior with an eye scar, menacing, by artist Philippe Druillet
and Tsutomu Nihei, volumetric lighting, detailed shadows, extremely detailed”; Bottom-Right: “A wide angle
photo of large gold head Caesar on display in a smokey roman villa burning, 18mm smoke filled room debris,
gladiator, floor mosaics fire smoke, a photo, roman, a digital rendering, inside the roman colosseum, brick,
indoor, plants overgrown outstanding detail, room flooded with water, in front of a building, by claude-joseph
vernet, luxury hotel”.
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