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Abstract
Cross-domain offline reinforcement learning
leverages source domain data with diverse transi-
tion dynamics to alleviate the data requirement for
the target domain. However, simply merging the
data of two domains leads to performance degra-
dation due to the dynamics mismatch. Existing
methods address this problem by measuring the
dynamics gap via domain classifiers while rely-
ing on the assumptions of the transferability of
paired domains. In this paper, we propose a novel
representation-based approach to measure the do-
main gap, where the representation is learned
through a contrastive objective by sampling transi-
tions from different domains. We show that such
an objective recovers the mutual-information gap
of transition functions in two domains without suf-
fering from the unbounded issue of the dynamics
gap in handling significantly different domains.
Based on the representations, we introduce a data
filtering algorithm that selectively shares transi-
tions from the source domain according to the con-
trastive score functions. Empirical results on vari-
ous tasks demonstrate that our method achieves
superior performance, using only 10% of the tar-
get data to achieve 89.2% of the performance on
100% target dataset with state-of-the-art methods.

1. Introduction
Offline Reinforcement Learning (RL) (Lange et al., 2012;
Fujimoto et al., 2019; Levine et al., 2020; Bai et al., 2022;
Yang et al., 2022b; Bai et al., 2024) exhibits a distinctive
advantage over online RL, leveraging previously collected
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offline data without requiring any additional online inter-
actions. In real-world scenarios like robotic manipulation
(Feng et al., 2023; Shi et al., 2024), autonomous driving
(Zhang et al., 2023b), and healthcare (Fatemi et al., 2022),
gathering a substantial offline dataset with good coverage
of transitions for a specific environment is time-consuming
and expensive (Alberti et al., 2020; Kuo et al., 2021; Walke
et al., 2023). Nevertheless, the offline RL algorithms rely
heavily on the data coverage of the offline dataset (Zhan
et al., 2022; Deng et al., 2023), and the performance degen-
erates significantly if the amount of offline data decreases.
To tackle this challenge for a specific target domain with
scarce data, cross-domain offline RL leverages additional
source domain data with dynamics shift to compensate for
the (target) offline dataset (Liu et al., 2022; 2024). How-
ever, as we illustrated in Figure 1(a), simply combining the
dataset from source and target domains induces a significant
dynamics shift due to the dynamics mismatch, leading to
policy divergence and poor performance (Yu et al., 2021;
2022). Therefore, how to appropriately incorporate source
domain data to improve the data efficiency for learning in
the target domain remains a challenge.

There are two key problems for cross-domain offline RL:
how to measure the domain gap and how to utilize the cross-
domain data. For the first problem, prior methods directly
estimate the dynamics models with offline datasets or train-
ing domain discriminators to approximate the dynamics
gap. Nevertheless, the dynamics model suffers from large
extrapolation errors given limited target domain data, and
domain discriminators fail to provide smooth measurement
for the dynamics discrepancy. For example, the dynam-
ics gap (i.e., logPsource/Ptarget[s

′|s, a]) can be unbounded
when the two domains mismatch significantly (Xu et al.,
2023). For the second problem, previous approaches mod-
ify the rewards according to the estimation of dynamics
discrepancy (Liu et al., 2022) or employ pessimistic sup-
ported constraints for the source domain data (Liu et al.,
2024). Despite these progresses, these methods typically
experience rapid performance degradation when confronted
with a larger dynamics gap, as shown in Figure 1(b).

In this paper, we propose a novel perspective to measure the
domain gap via the mutual information (MI) of transitions.
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Figure 1. (a) Comparison of performance across five seeds in nine Mujoco tasks (ha: halfcheetah, ho: hopper, wa: walker2d, m: medium,
mr: medium-replay, me: medium-expert) with IQL (Kostrikov et al., 2022). We set standard D4RL (Fu et al., 2020) as the target domain
data. For the source domain, we modify environmental parameters, such as altering body mass or introducing joint noise, and then collect
offline datasets in the modified environments. (IQL-100%: use 100% target data, IQL-10%: use reduced 10% target data, IQL-Mix: use
10% target data and 100% source data.) (b) Comparison of performance between our algorithm and DARA (Liu et al., 2022) with 100%
source-domain dataset and 10% target-domain dataset in the Hopper-Medium-v2 when facing the increasing dynamics gap. Specifically,
we simulate a process of increasing dynamics gaps by continuously increasing the head size in the Hopper-v2 environment. The x-axis is
the head size of the Hopper-v2 (normal size is 0.05), and ”Org Score” is the original performance of IQL when using 100% target data.

Specifically, we adopt the MI between the joint distribution
of state-action pairs and the next states to capture the under-
lying dynamics of environmental transitions. Then, we use
the MI gap between the source and target domains as a ro-
bust characterization of domain discrepancy when the data
is shared from a significantly different source domain. In
practice, such an MI gap can be estimated via a contrastive
objective by using the positive samples from the target do-
main and the negative samples from the source domain.
We employ the learned contrastive representation that cap-
tures the domain-distinguishable information as a data filter,
which selectively shares the transitions from the source do-
main with small MI gaps to the target domain. Theoretical
analysis shows that reducing the MI gap via data filtering
reduces the performance bounds of two domains. Under
mild assumptions, the proposed MI gap also recovers the
expected dynamics gap without explicit dynamic estimators
or domain discriminators.

We name the proposed method the Info-Gap Data Filter-
ing (IGDF) algorithm. Empirically, we evaluate IGDF in
various D4RL environments (Fu et al., 2020) with kine-
matic and morphology shifts (Liu et al., 2022; Xu et al.,
2023), showcasing its superior performance compared to
previous state-of-the-art algorithms. As an example of
cross-domain offline RL in Figure 1(b), the MI gap used
in IGDF is more robust than the dynamics gap in DARA
(Liu et al., 2022), especially for shared domains with large
dynamics gaps. Our code is available in this repository
(https://github.com/BattleWen/IGDF).

2. Preliminaries
The RL problem is typically formulated as a Markov
Decision Process (MDP), defined by a tuple M =

(S,A, P, r, γ, ρ̂0), where S and A denote the state and ac-
tion spaces, P (s′|s, a) is the transition dynamics, r(s, a) is
the reward function, γ ∈ [0, 1) is the discount factor, and
ρ̂0 : S → [0, 1] is the initial state distribution.

In the offline RL setting, the agent does not interact
with the environment and learns a policy from an offline
dataset (Levine et al., 2020). Considering a target MDP
Mtar = (S,A, Ptar, r, γ, ρ̂0) has limited dataset Dtar. In
cross-domain offline RL, we assume to access another
offline dataset Dsrc collected on a source domain MDP
Msrc = (S,A, Psrc, r, γ, ρ̂0). We assume that all of these
MDPs share the same state space, action space, and reward
function and only differ in the transition probabilities, i.e.,
Psrc(s

′|s, a) and Ptar(s
′|s, a). The goal of cross-domain of-

fline RL is to leverage the additional source-domain dataset
Dsrc to relax the data requirements of the target domain.
The policy is learned to maximize the expected return over
the target environmentMtar using the static cross-domain
offline data Dmix := Dsrc ∪ Dtar.

In the offline setting, we further define the empirical MDP
that estimates the expectation of the transition function
P (s′|s, a) from the offline dataset. Formally, an empiri-
cal MDP estimated from D is M̂ := (S,A, P̂ , r, γ, ρ̂0),
where P̂ = maxP̂ Es,a,s′∼D

[
log P̂ (s′ | s, a)

]
is estimated

by the maximum log-likelihood, and P̂ (s′ | s, a) = 0 for
all (s, a, s′) not in dataset D. Then the empirical MDPs for
the source domain and target domain are defined as M̂src =

(S,A, P̂src, r, γ, ρ̂0) and M̂tar = (S,A, P̂tar, r, γ, ρ̂0), re-
spectively. We assume the two datasets follow the same
behavior policy πb(a|s) (refer to Appendix F for more de-
tails). In source MDP, ρ̂src(s) is the normalized proba-
bility that the policy πbsrc encounters state s, defined as
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ρ̂src(s) ≜ (1− γ)
∑∞
t=1 γ

tP̂src(st = s|πb), and ρ̂tar(s) for
the target domain follows a similar formulation.

3. Methodology
In this section, we first introduce the proposed MI gap,
which measures the domain gap in cross-domain offline RL.
Then we give a contrastive objective to estimate such a gap
with learned representations. Next, we give a data filtering
method to leverage the source domain data based on the
representations and score functions. Finally, we give the
theoretical analysis for the proposed algorithm.

3.1. The MI Gap for Cross-Domain RL

In the following, we denote the information measure I(·; ·)
as MI and H(·) as Shannon entropy. We use the uppercase
letter (e.g., X) for random variables and the lowercase let-
ter (e.g., x) for their realizations. We aim to adopt the MI
term to capture the dynamics-relevant information about
different domains. For a distribution over the transition tu-
ple (s, a, s′), we use S,A, S′ to stand for the corresponding
random variables. We also use p to denote the joint distribu-
tion of these variables as well as their associated marginals.
Then the MI between the state-action pair (S,A) and their
future state S′ is defined as

I([S,A];S′) = Es,a,s′∼D

[
log

p(s, a, s′)

p(s, a)p(s′)

]
, (1)

where p(s, a), p(s′) and p(s, a, s′) follow empirical distri-
butions according to the offline dataset D. For the source
domain and target domain with different datasets (i.e., Dsrc

and Dtar), we denote the MI objective estimated in two do-
mains as Isrc([S,A];S′) and Itar([S,A];S′), respectively.
Then the MI gap between the two domains is defined as

∆I = Itar([S,A];S
′)− Isrc([S,A];S′), (2)

where the two MI terms follow the different conditional and
marginal probabilities. Specifically, we have

Itar([S,A];S
′) = ED

[
log p(s, a, s′)

/
[p(s, a)p(s′)]

]
= ED

[
log P̂tar(s

′|s, a)
/
ρ̂tar(s

′)
]
,

(3)

where P̂tar(s
′|s, a) is the empirical transition function in the

target-domain dataset, and ρ̂tar(s′) denotes the normalized
state distribution. We utilize maximum likelihood estima-
tion in a given datasetD to fit P̂tar(s

′ | s, a). If we denote the
parameter of the empirical distribution P̂tar by θ, then the
empirical distribution can be obtained by P̂tar(s

′ | s, a) =
argmaxθ

∑
(si,ai,s′i)∼D log P̂tar(s

′
i|si, ai; θ). The expecta-

tion in Eq. (3) follows (s, a, s′) ∼ D, where D is the actual
dataset for sampling transitions. For example, D = Dtar

when the policy is trained with the target-domain dataset.

𝐻(𝑆, 𝐴)

𝐼!"#([𝑆, 𝐴]; 𝑆′)

For shared data {(𝑠, 𝑎, 𝑠’)} ∼ 𝒟!"#

𝐻(𝑆′)

__

𝐻(𝑆, 𝐴)
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𝐻(𝑆′)
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Figure 2. An illustration of the MI gap of data shared from Dsrc.

In contrast, if the shared data from the source domain is
used for training the target-domain policy, then we have
D = Dsrc. The MI term Isrc of the source domain follows
a similar form as Eq. (3), but with P̂src(s

′|s, a) and ρ̂src(s′)
that are estimated in the source-domain dataset.

When the two domains are significantly different, the pro-
posed MI gap ∆I is more robust than the dynamics ra-
tio (i.e., ∆P = EDsrc [log P̂tar/P̂src]) in cross-domain data
sharing. Specifically, when the samples {(s, a, s′)} from
Dsrc are shared to the target domain, the probability of
P̂tar(s

′|s, a)→ 0 since the two domains have very different
transition functions, which makes ∆P → −∞. In contrast,
the ∆I term is lower-bounded by the state entropy of behav-
ior policies, as ∆I ≥ −Isrc([S,A];S′) ≥ −H(ρ̂src(s

′)).
An illustration of the MI gap with significantly different
domains is shown in Figure 2.

3.2. Contrastive Representation for the MI Gap

To estimate the MI gap in high-dimensional state space, a
tractable variational estimator based on neural networks is
required (Poole et al., 2019; van den Oord et al., 2018; Yang
et al., 2023). We adopt contrastive learning to estimate the
MI objective. A naive approach requires two independent
estimators for Itar and Isrc separately. In contrast, we sim-
plify this process by adopting a single contrastive objective
to estimate ∆I directly. Specifically, we choose transitions
(s, a, s′B) ∼ Dtar from the target domain as positive sam-
ples. The negative samples are obtained by first sampling a
state-action pair (s, a) ∼ Dtar and then sampling a negative
state set S′− from the source domain Dsrc independently.
Then a negative sample is obtained by concatenating them
together to form a tuple (s, a, s′A), where s′A ∈ S′−. The
contrastive objective can be expressed as

LNCE = −Ep(s,a,s′B)ES′−[
log

h2(s, a, s
′
B)

h2(s, a, s′B) +
∑
s′A∈S′− h1(s, a, s′A)

]
,

(4)

where we use two score functions to measure the informa-
tion density ratio which preserves the MI between (s, a)
and s′ for the source and target domains, respectively. In-
tuitively, the score functions assign scores representing an
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exponential correlation between the state-action pair and
the next state in the corresponding domains. Formally, we
aim to approximate the information density of the target do-
main h2(s, a, s′B) ∝ P̂tar(s

′
B |s, a)

/
ρ̂tar(s

′
B) and source do-

main h1(s, a, s′A) ∝ P̂src(s
′
A|s, a)

/
ρ̂src(s

′
A), respectively

(van den Oord et al., 2018).

The following theorem shows that the proposed contrastive
objective serves as an approximate estimation for the MI
gap with sufficient negative samples.

Theorem 3.1 (InfoNCE extension). The MI gap ∆I =
Itar([S,A];S

′)− Isrc([S,A];S′) can be lower bounded by
the negative contrastive objective, as

∆I ≥ log(K − 1)− LNCE := INCE, (5)

where K − 1 is the number of negative samples from the
source domain.

The term INCE is an asymptotically tight lower bound for
the MI gap, i.e., lim

K→∞
IKNCE(X;Y ) → ∆I(X;Y ), which

becomes tighter as K becomes larger (Poole et al., 2019;
Guo et al., 2022). We refer to §A.1 for full derivations. We
illustrate the contrastive learning process in Figure 3.

For optimizing the contrastive objective in Eq. (4), we adopt
two score functions (i.e., h1 and h2) to estimate the infor-
mation density of source and target domains, respectively.
(i) h2(·) only takes samples {(s, a, s′B)} from the target do-
main as inputs and assigns high scores to h2(s, a, s′B), (ii)
h1(·) only assigns low scores to h1(s, a, s′A) for samples
{(s, a, s′A)}, where (s, a) ∈ Dtar and s′A ∈ Dsrc. Inter-
estingly, compared to training two independent contrastive
estimators for Isrc and Itar, our objective in Eq. (4) has
neither negative samples for score function h2, nor positive
samples for score function h1, which provide an opportunity
to further integrate the effects of h1 and h2 into a single
score function h. The new score function h uses {(s, a, s′B}
from the target domain as positive samples and constructed
transitions {(s, a, s′A)} from two domains as negative sam-
ples. Then we have a simplified objective as

L̂NCE = −Ep(s,a,s′B)ES′−

[
log

h(s, a, s′B)∑
s′A∈S′−∪s′B

h(s, a, s′A)

]
,

(6)
which serve as a simplified version of LNCE. The main
reason of using a single score function is that we only
share data from the source domain to the target domain
(i.e., Dsrc → Dtar) without a reverse data-sharing process.
Thus, we do not require an independent score function to dis-
tinguish whether a transition comes from the source domain,
but only required to distinguish whether a shared transition
is similar to the data distribution of the target domain.

For implementation, we use two neural networks ϕ(s, a)
and ψ(s′) to learn representations of state-action pairs and

Algorithm 1 IGDF: Info-Gap Data Filtering algorithm
Input: Source domain data Dsrc, target domain data Dtar

Initialize: Policy π, value function Q, encoders ϕ(s, a),
ψ(s′), data filter ratio ξ, importance ratio α, batch size B

1: // Contrastive Representation Learning
2: Optimizing the contrastive objective in Eq. (6) to train

the encoder networks ϕ(s, a) and ψ(s′)
3: // Data Filtering algorithm
4: for each gradient step do
5: Sample a batch bsrc := {(s, a, r, s′)}

B
2ξ from Dsrc

6: Sample a batch btar := {(s, a, r, s′)}
B
2 from Dtar

7: Sample the top-ξ samples from bsrc ranked by h(·)
8: Combine top-ξ samples in bsrc and all samples in btar
9: Optimize the value function Qθ via Eq. (8)

10: Learn the policy π(a|S) via offline RL algorithms
11: end for

states only. Then we adopt a linear parameterization as

h(s, a, s′) = exp(ϕ(s, a)⊤ψ(s′)), (7)

which resembles spectral decomposition and low-rank rep-
resentation of transition functions (Uehara et al., 2022; Ren
et al., 2023b;a), while we use h(s, a, s′) to approximate
the information density. The representations are normal-
ized to ∥ϕ(·)∥, ∥ψ(·)∥ = 1, which makes h(·) ∈ [1/e, e]. In
cross-domain data sharing, the score function h assigns high
scores for source domain data that follows a similar infor-
mation density (i.e., P̂tar(s

′
B |s, a)

/
ρ̂tar(s

′
B)) to the target

domain data and assigns low scores for transitions that have
significantly different distributions to the target domain.

3.3. Data Filtering via Contrastive Representation

Based on the representations and score function, we obtain
a practical data filtering algorithm, termed IGDF (Info-Gap
Data Filtering), that leverages additional data with dynamics
gap from the source domain to train a policy for the target
MDP. Specifically, after training the encoder networks ϕ(·)
and ψ(·) by optimizing L̂NCE, we sample a batch of data
{(sA, aA, s′A)} from Dsrc and rank the transitions accord-
ing to the value of ϕ(sA, aA)⊤ψ(s′A), then we extract the
top ξ-quantile of batch samples for data sharing. The shared
data is mixed with a batch of target domain data for offline
RL training. The algorithmic description of IGDF is pre-
sented in Algorithm 1. In practice, data sharing is more
convenient than modifying the reward function of shared
data for pessimism, as it eliminates the need for meticulous
adjustments to clip ranges and reward scaling ratios.

To further enhance the performance, we propose a variant
of our method by weighting the Temporal-Difference (TD)-
error of filtered data using the score function. Formally, we
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sample sample
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(a) Step1: Contrastive Representation Learning
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(b) Step 2: Data Filtering

Figure 3. Illustration of our method. (a) We train two encoder networks using contrastive learning, treating target transitions as positive
examples and constructed transitions as negative examples. (b) We tackle cross-domain offline RL by selectively sharing the source
domain data with the score functions. The target data and the share data are used for offline RL algorithms to learn the policy.

train the value function as

LQ(θ) =
1

2
E(s,a,s′)∼Dtar

[
(Qθ − T Qθ)2

]
+ (8)

1

2
α · h(s, a, s′)E(s,a,s′)∼Dsrc

[
ω(s, a, s′) (Qθ − T Qθ)2

]
,

where α is the importance coefficient for weighting the
TD-error with the score function, and ω(s, a, s′) :=
1
(
h(s, a, s′) > hξ%

)
perform data filtering to extract sam-

ples with top ξ-quantile scores in the mini-batch sampled
from the source domain. In Eq. (8), T Qθ is a general Bell-
man operator of the offline RL algorithms. It is also worth
noting that IGDF can serve as an add-on module algorithm
for arbitrary offline RL algorithms, and we select IQL as the
base algorithm in experiments. The detailed procedure of
IGDF+IQL is given in §B.

3.4. Theoretical Analysis

Connection to Dynamics Gap. The previous methods (Ey-
senbach et al., 2020; Liu et al., 2022) for cross-domain
adaptation often adopt the dynamic ratio to measure the dy-
namics gap. In the following, we give a connection between
the dynamics gap and the proposed MI gap with transitions
from different domains.

Theorem 3.2. For shared data from the source domain
M̂src, i.e., (s, a, s′) ∈ Dsrc, the relationship between the MI
gap and dynamics gap is

∆I=DKL[ρ̂src(s
′)∥ρ̂tar(s′)]−DKL[P̂src(s

′|s, a)∥P̂tar(s
′|s, a)].
(9)

In contrast, for data from the target domain M̂tar, the rela-
tionship between the MI gap and dynamics gap is

∆I=DKL[P̂tar(s
′|s, a)∥P̂src(s

′|s, a)]−DKL[ρ̂tar(s
′)∥ρ̂src(s′)].

(10)
Then, the MI gap is bounded by

−H(ρ̂src(s
′)) ≤ ∆I ≤ H(ρ̂tar(s

′)). (11)

We give the detailed proof in §A.2. According to the The-
orem 3.2, the decomposition of the MI gap also contains a

KL-term to measure the dynamics gap. Nevertheless, the
MI gap has an additional divergence term for state visita-
tion distribution to regularize the dynamics gap. For ex-
ample, as in Eq. (9), when the shared data from M̂src is
significantly different from that of M̂tar, the dynamics gap
−DKL[P̂src(s

′|s, a)∥P̂tar(s
′|s, a)]→ −∞, while the state

density ratio DKL[ρ̂src(s
′)∥ρ̂tar(s′)]→∞ counteracts this

effect. Theoretically, we show the MI gap can be bounded
by the entropy of state distribution, as in Eq. (11). As a
result, the MI gap overcomes the drawback of the dynamics
gap with large domain gaps (Liu et al., 2022) and provides
a stable measurement for the domain gap.

Performance Guarantee. Built on the above analysis,
we provide a theoretical guarantee for sharing the source
domain data from M̂src to improve the performance of the
true MDP Mtar in the target domain under the dynamic
mismatch. Then we have the following performance bound
for any policy π in cross-domain offline data sharing:

Theorem 3.3. Under the setting of corss-domain offline RL,
the performance difference of any policy π evaluated by the
source domain M̂src and the true target MDP Mtar can be
bounded as below,

ηMtar
(π)−η

M̂src
(π)≥− γRmax

(1− γ)2
{
2Eρ̂tar

[
DTV

(
Ptar∥P̂tar

)]
+

√
2DKL (ρ̂src(s′)∥ρ̂tar(s′)) + 2|∆I|

}
.

(12)

We give the detailed proof in §A.3. The first term
DTV

[
Ptar∥P̂tar

]
of the divergence in Eq. (12) is caused

by limited coverage of offline dataset and can be reduced
by offline RL algorithms. The second divergence term in-
cludes the MI gap and the state distribution of the empirical
MDP of source and target domains, which can be reduced
by the proposed data filtering algorithms based on the MI
gap. And we also provide additional details about a tight
sub-optimality gap of IGDF in Appendix A.4.
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4. Related Work
Dynamic adaptation in RL The problem of dynamic
adaptation focuses on policy adaptation in domains with
varying transition dynamics. Prior methods have proposed
several design paradigms, including system identification
(Fernando et al., 2013; Chebotar et al., 2019; Werbos, 1989;
Wittenmark, 1995; Zhu et al., 2018) to capture the dynamics
and visual properties of the real world, domain randomiza-
tion methods (Peng et al., 2018; OpenAI et al., 2019; Tobin
et al., 2017; Sadeghi & Levine, 2017; James et al., 2017)
that introduce diversity by randomly altering simulation pa-
rameters, meta-RL (Finn et al., 2017; Clavera et al., 2019)
that performs fast policy fine-tuning, and imitation learning
(Chae et al., 2022; Kim et al., 2020) that learns expert policy.
However, these methods require additional online interac-
tions, offline historical transitions, or prior knowledge to
select the parameters and the range of randomization. More
recent works have explored the online dynamics adaptation
given limited offline experiences from the target domain
based on dynamics gap (Eysenbach et al., 2020) and value
function (Xu et al., 2023), or via imperfect simulations from
the source domain (Niu et al., 2022; 2023). In contrast, we
explore cross-domain adaptation in a purely offline setting
based on the MI of transitions.

Cross-domain offline RL Learning to act from a limited
dataset without any possibility of improving exploration is
a well-known challenge in offline RL (Wen et al., 2023;
Zhang et al., 2023a). Cross-domain offline RL aims to
leverage additional source domain data with dynamics shift
to contribute to offline RL data efficiency. There are two
preliminary problems: how to identify the dynamic dis-
crepancy between source and target domain, and how to
leverage source domain offline data. Prior works address
the first problem by training two discriminators to evaluate
a dynamics gap-related term (Eysenbach et al., 2020; Liu
et al., 2022), employing a GAN-style discriminator (Xue
et al., 2023), or directly estimating the dynamics models
(Liu et al., 2024). However, the learned dynamics models
suffer from large extrapolation errors given limited target do-
main data, and domain discriminators fail to provide reliable
estimation when dynamics shifts are significant (Xu et al.,
2023). To optimize the efficient reuse of source domain data,
previous methods have explored various strategies, such as
reward modification (Liu et al., 2022; Xue et al., 2023)
and pessimistic supported constraints (Liu et al., 2024), but
still encounter certain limitations. Their performance may
degrade when confronted with a larger dynamics gap. In
contrast, our method employs a representation-based ap-
proach to smoothly measure the dynamics gap, avoiding
explicit estimation of transition probabilities. Moreover,
we propose a score function-based data filtering method to
selectively share source domain data, achieving comparable
performance with fewer target domain data.

5. Experiments
In this section, we present empirical validations of our ap-
proach. We examine the effectiveness of our method in sce-
narios with various dynamics shifts. Furthermore, we pro-
vide ablation studies and qualitative analyses of our method.

5.1. Datasets and Baselines

To characterize the offline dynamics shift, we consider the
Halfcheetah, Hopper, and Walker2d from the Gym-MuJoCo
environment, using offline samples from D4RL as our target
offline dataset. For the source dataset, we change the envi-
ronment parameters by altering the XML file of the MuJoCo
simulator following (Liu et al., 2022; Xu et al., 2023) and
then collect the Medium, Medium-Replay, and Medium-
Expert offline datasets in the changed environments follow-
ing the same data collection procedure as in D4RL (refer to
Appendix C for the details).

We compare our algorithms with three state-of-the-art
baselines in the cross-domain offline RL setting: (i)
DARA (Liu et al., 2022) trains a pair of binary classifiers
p(target|s, a, s′) and p(target|s, a) to evaluate dynamics
gap-related transition probabilities. (ii) SRPO (Xue et al.,
2023) gives a constrained optimization formulation that re-
gards the state distribution as a regularizer. (iii) BOSA (Liu
et al., 2024) proposes supported policy and value optimiza-
tion, which explicitly regularizes the policy and value opti-
mization with in-support transitions. Notably, both DARA
and SRPO can be flexibly applied to a wide range of offline
RL algorithms, whereas BOSA stands out as a compre-
hensive algorithm built upon the SPOT (Wu et al., 2022)
implementation. More details are given in Appendix D.

5.2. Motivation Example

Question 1. Is simply merging cross-domain data effective
for cross-domain offline RL?

To assess the efficacy of simply merging cross-domain data,
we provide the results of different methods using single-
domain offline data or cross-domain data. As shown in
Table 1, we choose some typical model-based offline RL
and model-free offline RL algorithms as backbones, includ-
ing BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020),
MOPO (Yu et al., 2020), SPOT (Wu et al., 2022), and IQL
(Kostrikov et al., 2022). In the single-domain setting, the
numbers to the left of the arrow (→) represent the scores
trained on 100% D4RL data, and the numbers to the right of
that represent the scores trained on only 10% D4RL data. In
the left panel (single-domain setting), Average♠ represents
the average performance change when the offline data is
reduced (100%→ 10%). In the right panel (cross-domain
setting), Average♣ represents the average performance dif-
ference between the cross-domain results and the best results
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Table 1. Results on the single-domain RL(100% D4RL → 10% D4RL) and cross-domain offline RL. We average our results over 5 seeds
and for each seed, we compute the normalized average score using 10 episodes. And we take the results (single-domain setting with 100%
D4RL) from their original papers. (ha: halfcheetah, ho: hopper, wa: walker2d, m: medium, mr: medium-replay, me: medium-expert.)

single-domain setting (100% D4RL → 10% D4RL) cross-domain setting (10% D4RL + source data)

BCQ MOPO CQL SPOT IQL BCQ MOPO CQL SPOT IQL

body mass

ha-m 40.7→ 37.6 42.3→ 3.2 44.4→ 35.4 58.4→ 45.4 48.3→ 46.8 35.1 6.4 32.2 50.3 36.7
ha-mr 38.2→ 1.1 53.1→ −0.1 46.2→ 0.6 52.2→ 9.8 44.5→ 37.6 40.1 10.2 3.3 37.6 15.7
ha-me 64.7→ 37.3 63.5→ 4.2 62.4→ −3.3 86.9→ 46.2 94.7→ 86.2 26.4 8.9 12.9 33.8 36.8
ho-m 54.5→ 37.1 28→ 4.1 58→ 43 86→ 62.5 67.5→ 63.2 25.7 5 44.9 85.96 21.1
ho-mr 33.1→ 9.3 67.5→ 1 48.6→ 9.6 100.2→ 13.7 97.4→ 13.1 28.7 5.5 1.4 15.5 10.7
ho-me 110.9→ 58 23.7→ 1.6 98.7→ 59.7 99.3→ 69 107.4→ 81.1 75.4 4.8 53.6 75.5 46.9
wa-m 53.1→ 32.8 17.8→ 7 79.2→ 42.9 86.4→ 65.4 80.9→ 78.6 50.9 5.7 80 22.5 81
wa-mr 15→ 6.9 39→ 5.1 26.7→ 4.6 91.6→ 18.6 82.2→ 12.3 14.9 3.1 0.8 16 18
wa-me 57.5→ 32.5 44.6→ 5.3 111→ 49.5 112→ 84 111.2→ 111.7 55.2 5.5 63.5 14.3 84.3

joint noise

ha-m 40.7→ 37.6 42.3→ 3.2 44.4→ 35.4 58.4→ 45.4 48.3→ 46.8 40 3.5 40.7 50.1 48.1
ha-mr 38.2→ 1.1 53.1→ −0.1 46.2→ 0.6 52.2→ 9.8 44.5→ 37.6 39.4 2.6 2 41 25.6
ha-me 64.7→ 37.3 63.5→ 4.2 62.4→ −3.3 86.9→ 46.2 94.7→ 86.2 55.3 1.5 7.7 38.1 51.3
ho-m 54.5→ 37.1 28→ 4.1 58→ 43 86→ 62.5 67.5→ 63.2 49 9.2 58 41.5 49
ho-mr 33.1→ 9.3 67.5→ 1 48.6→ 9.6 100.2→ 13.7 97.4→ 13.1 23.8 2.3 2.6 23 12
ho-me 110.9→ 58 23.7→ 1.6 98.7→ 59.7 99.3→ 69 107.4→ 81.1 96 6.1 73.4 52 64.2
wa-m 53.1→ 32.8 17.8→ 7 79.2→ 42.9 86.4→ 65.4 80.9→ 78.6 44.9 7.8 73.2 38.8 62
wa-mr 15→ 6.9 39→ 5.1 26.7→ 4.6 91.6→ 18.6 82.2→ 12.3 9.8 9.3 1.4 10.7 2.1
wa-me 57.5→ 32.5 44.6→ 5.3 111→ 49.5 112→ 84 111.2→ 111.7 40.6 15.2 109.9 74.3 66.5

Average ♠ -48.3% -88.7% -61.5% -47.1% -25.84%
Average ♣ -50.1% -92.5% -59.4% -50.9% -48.4%

among baselines that are trained with 100% D4RL. In each
line, we bold the best score among baselines that are trained
with 10% D4RL data, i.e., including the single-domain 10%
D4RL setting and the cross-domain setting.

We observe that almost all offline RL methods experience
a significant performance drop when the training data size
is reduced from 100% D4RL to 10% D4RL. Additionally,
incorporating additional source-domain data (i.e., simply
merging cross-domain data) may lead to poor performance
compared to using only target-domain data (10% D4RL).
We argue that the primary reason is that the source offline
data cannot guarantee that the same transition (state-action-
next-state) can be achieved in the target environment.

5.3. Adaptation Performance in Cross-Domain RL

Question 2. Can IGDF improve offline data efficiency and
achieve better performance than prior methods?

As shown in Table 1, across all offline RL approaches, we
observe that IQL exhibits the least performance decline in
the single-domain setting, with an average decrease of only
25%, and it exhibits the highest data efficiency. For the
sake of fairness, we select IQL as the common backbone
for IGDF and other baselines.

To systematically investigate the adaptation performance of
IGDF, we design various dynamics shift scenarios, includ-
ing kinematic shifts and morphology shifts. In our main
experiment, we change the body mass of agents or introduce
joint noise to the motion as our source domain environment.
The empirical results are presented in Tables 2 and 4. We

observe that IGDF achieves the highest summation of scores
over 18 tasks compared to the baselines when utilizing 10%
D4RL data. When compared to the best performance of
the baselines with 100% D4RL data, IGDF exhibits the
smallest performance degradation (-11.89% and -10.81%)
among the baselines with 10% D4RL data. As shown in
Eq. (5), benefiting from a substantial number of negative
samples, IGDF can obtain a precise estimation of MI gap
and consequently make significant progress in discerning
whether the sampled source-domain data helps the training
over the target-domain data. However, other baseline ap-
proaches suffer from limited target data, which exacerbates
the under-fitting issue of domain discriminators. Therefore,
IGDF outperforms other baselines and obtains SOTA results
on 11 out of 18 tasks.

Question 3. Can IGDF sustain stable performance when
confronted with a larger dynamics gap?

To assess the performance of IGDF under substantial dynam-
ics shift, we conduct tests on broken thighs and morphology
tasks, following the settings outlined in Xu et al. (2023). As
shown in Table 3, DARA exhibits poor performance in this
scenario when confronted with a larger dynamics gap. We
attribute the failure of DARA to the potential unbounded
issue of its estimation towards the dynamics gap based on
likelihood probability. Similarly, SRPO can hardly show
remarkable improvement on both two tasks compared to the
results of training IQL with the mixed dataset. As the esti-
mated dynamics gap in our IGDF (i.e., MI gap) is bounded
by Eq.(11), it endows IGDF a consistently rational attitude
to judge and utilize the whole source-domain dataset when
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Table 2. Results on body mass shift and joint noise shift tasks across five seeds, where w/o Aug means training IQL with mixed datasets.
mass w/o Aug DARA SRPO Ours joint w/o Aug DARA SRPO Ours

ha-m 36.69 ± 0.24 39.37 ± 0.11 47.02 ± 0.09 47.21 ± 0.19 ha-m 48.06 ± 0.09 52.59 ± 1.48 51.98 ± 0.31 50.40 ± 0.36
ha-mr 15.68 ± 4.28 35.90 ± 0.90 36.95 ± 0.84 38.76 ± 0.88 ha-mr 25.62 ± 1.09 47.64 ± 0.44 38.48 ± 1.071 39.11 ± 0.55
ha-me 36.78 ± 0.38 51.85 ± 2.02 90.71 ± 1.05 89.53 ± 2.72 ha-me 51.26 ± 2.23 83.40 ± 0.56 82.96 ± 1.48 90.93 ± 3.21
ho-m 21.12 ± 10.55 55.92 ± 4.91 55.89 ± 5.85 63.78 ± 8.43 ho-m 49.03 ± 6.67 55.64 ± 3.71 53.50 ± 6.61 54.04 ± 7.89
ho-mr 10.69 ± 1.68 27.71 ± 4.62 17.92 ± 5.86 27.84 ± 9.36 ho-mr 12.01 ± 3.08 53.04 ± 16.10 37.68 ± 15.34 63.07 ± 27.96
ho-me 46.95 ± 6.27 71.43 ± 7.70 96.03 ± 11.89 96.88 ± 18.25 ho-me 64.19 ± 4.76 67.98 ± 31.39 72.59 ± 34.23 103.97 ± 7.68
wa-m 81.05 ± 0.70 86.77 ± 0.63 83.49 ± 1.13 83.76 ± 0.14 wa-m 62.03 ± 3.29 73.6 ± 6.41 77.32 ± 4.326 78.76 ± 2.74
wa-mr 17.99 ± 2.51 83.89 ± 0.61 77.10 ± 2.73 79.19 ± 1.31 wa-mr 2.10 ± 0.54 56.52 ± 6.64 45.19 ± 8.68 58.38 ± 10.55
wa-me 84.28 ± 2.77 93.74 ± 0.25 108.88 ± 5.83 112.10 ± 0.78 wa-me 66.46 ± 7.75 119.25 ± 1.13 120.33 ± 3.88 116.19±5.76

Sum 351.21 546.56 613.98 639.05 Sum 380.75 609.66 580.03 654.85
Average -51.79% -23.51% -15.37% -11.89% Average -45.01% -14.31% -19.33% -10.81%

Table 3. Results in broken thighs and morphology tasks across five seeds, where w/o Aug means training IQL with mixed datasets.
broken w/o Aug DARA SRPO Ours morph w/o Aug DARA SRPO Ours

ha-m 45.70 ± 0.10 43.77 ± 0.31 45.58 ± 0.59 46.48 ± 0.04 ha-m 44.38 ± 0.17 37.49 ± 1.22 43.06 ± 1.44 45.80 ± 0.43
ha-mr 36.08 ± 1.23 32.99 ± 3.93 37.48 ± 1.33 38.62 ± 0.68 ha-mr 31.96 ± 5.07 1.73 ± 1.43 21.05 ± 11.92 37.56 ± 1.60
ha-me 81.67 ± 6.71 68.79 ± 12.00 85.06 ± 5.23 89.76 ± 2.36 ha-me 60.24 ± 3.58 35.57 ± 2.54 53.73 ± 8.57 80.19 ± 8.23
ho-m 53.63 ± 7.96 55.28 ± 6.87 58.83 ± 8.07 63.15 ± 7.64 ho-m 55.26 ± 4.48 54.12 ± 6.73 51.31 ± 7.20 59.72 ± 3.64
ho-mr 12.62 ± 1.29 12.06 ± 0.77 12.02 ± 0.61 13.81 ± 2.30 ho-mr 16.83 ± 4.25 13.86 ± 3.07 14.46 ± 2.18 16.92 ± 0.62
ho-me 60.25 ± 37.75 56.44 ± 31.04 50.71 ± 28.51 95.95 ± 13.33 ho-me 92.13 ± 9.74 63.55 ± 42.19 102.97 ± 6.60 106.80 ± 5.00
wa-m 63.47 ± 23.82 22.71 ± 19.57 78.95 ± 3.10 79.19 ± 5.05 wa-m 34.29 ± 10.77 11.29 ± 10.09 40.64 ± 13.54 59.39 ± 24.87
wa-mr 9.03 ± 6.02 14.20 ± 3.90 16.27 ± 3.63 17.00 ± 3.52 wa-mr 8.96 ± 6.68 1.35 ± 3.37 8.15 ± 5.53 11.46 ± 4.58
wa-me 96.33 ± 9.77 28.90 ± 12.79 103.71 ± 5.20 94.35 ± 10.59 wa-me 87.60 ± 10.02 13.64 ± 11.13 95.46 ± 26.70 107.87 ± 3.60

Sum 458.78 335.14 488.61 538.31 Sum 431.65 232.6 430.83 525.71
Average -34.83% -49.38% -30.47% -24.63% Average -39.52% -66.62% -41.57% -27.38%

Table 4. Comparison on body mass shift and joint noise shift tasks,
where DARA* denotes the best score among the offline RL base-
lines (BCQ, CQL, IQL, and MOPO) when using dynamics-aware
reward modification (DARA).

mass DARA∗ BOSA Ours joint DARA∗ BOSA Ours

ha-m 39.4 58.3 ± 2.5 47.21 ha-m 52.6 56.2 ± 0.27 50.40
ha-mr 35.9 37.2 ± 0.7 38.76 ha-mr 47.6 51.3 ± 1.1 39.11
ha-me 56.1 51.6 ± 0.1 89.53 ha-me 83.4 52.8 ± 0.45 90.93
ho-m 59.3 82.4 ± 2.1 63.78 ho-m 58.0 78 ± 7.3 54.04
ho-mr 34.1 39.7 ± 0.1 27.84 ho-mr 53.0 32.7 ± 1.3 63.07
ho-me 99.7 104.2 ± 0.5 96.88 ho-me 109.0 96.4 ± 0.5 103.97
wa-m 86.8 83 ± 2.9 83.76 wa-m 81.2 86.5±5.6 78.76
wa-mr 83.9 21.4 ± 2 79.19 wa-mr 56.5 38.2 ± 4.7 58.38
wa-me 93.3 86.5 ± 0.6 112.10 wa-me 119.3 85.8 ± 0.3 116.19

Sum 588.5 564.3 639.05 Sum 660.6 577.9 654.85

encountered with a larger dynamics gap. As a result, IGDF
can deliver a more robust performance and even achieve the
SOTA results on 17 out of 18 tasks.

5.4. Ablation Studies

Data Ratio Γ. We employ various ratios of target do-
main data (Γ = 5%, 10%, 30%, 50%) to investigate the
algorithm’s sensitivity to the amount of target domain data.
The results shown in Figure 4 demonstrate that increasing
the amount of target data generally improves the perfor-
mance of both IQL and IGDF, which means the data amount
is a critical factor for offline performance. Consistently,
IGDF achieves better performance than IQL and SRPO

across a wide range of target data, showing that IGDF can
fully exploit the reusable source domain transitions to en-
hance the training efficiency concerning the target domain.
It is worth noting that with the increase in the amount of
target data, the previous source data selection ratio may not
be suitable for the current situation. So we can adjust the
proportion of the data selection ratio appropriately to avoid
significant sampling errors.
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Figure 4. Sensitivity on the amount of target-domain data.

Importance Coefficient α We employ various impor-
tance coefficients (α = 0, 0.5, 1, 2) to control the content of
the importance weighting. Specifically, when alpha is equal
to 0, we assign all filtered out source-domain data with the
equal importance. The results shown in Figure 5 demon-
strate that incorporating importance weighting at a measured
level can enhance the performance and smoothness of the
algorithm. Nevertheless, striking a suitable balance presents
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Figure 5. Sensitivity on the importance coefficient.

a challenge. A too-small importance coefficient may lead to
performance degradation, while an excessively large coeffi-
cient may result in unstable training.

6. Conclusion
In this paper, we focus on the problem of leveraging source
domain data with dynamics shifts for efficient RL training.
Traditional methods often face performance degradation due
to dynamics mismatch when merging cross-domain data.
To address this issue, we propose a novel representation-
based approach that measures the domain gap through a
contrastive objective. The contrastive objective effectively
captures the mutual-information gap of transition functions,
providing a robust characterization of domain discrepancy
without succumbing to unbounded issues. Practically, we
present IGDF and the variant, serving as an add-on mod-
ule for arbitrary offline RL algorithms. Empirical studies
showcase the efficacy of our method outperforming previous
methods, particularly in scenarios with significant dynam-
ics gaps. One limitation of our approach is its exclusive
emphasis on trajectories with similar transition probabili-
ties while ignoring the quality of trajectories. Incorporating
trajectory quality would add an interesting dimension for
future exploration.
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A. Theoretical Proof
A.1. Proof of Theorem 3.1

Theorem A.1. The MI gap ∆I = Itar([S,A];S
′) − Isrc([S,A];S′) can be lower bounded by the negative contrastive

objective, as
∆I ≥ log(K − 1)− LNCE := INCE, (13)

where K − 1 is the number of negative samples from the source domain.

Proof. For the standard Info-NCE (van den Oord et al., 2018), we adopt the score function h = exp(ϕ(s, a)⊤ψ(s′)) to
approximate the information density ratio of p(s′|s, a) and p(s′), which preserves the MI between (s, a) and s′. In Eq. (4),
we use h1 and h2 to represent the information density ratio in source and target domains, respectively. Then the contrastive
objective becomes

LNCE = −Ep(s,a,s′B)ES′− log

 P̂tar(s
′
B |s,a)

ρ̂tar(s′B)

P̂tar(s′B |s,a)
ρ̂tar(s′B) +

∑
s′A∈S′−

P̂src(s′A|s,a)
ρ̂src(s′A)

 (14)

= Ep(s,a,s′B)ES′− log

1 + ρ̂tar(s
′
B)

P̂tar(s′B |s, a)

∑
s′A∈S′−

P̂src(s
′
A|s, a)

ρ̂src(s′A)

 (15)

= Ep(s,a,s′B)ES′− log

1 + (K − 1)
ρ̂tar(s

′
B)

P̂tar(s′B |s, a)
1

K − 1

∑
s′A∈S′−

P̂src(s
′
A|s, a)

ρ̂src(s′A)

 (16)

≥ Ep(s,a,s′B) log

(K − 1)
ρ̂tar(s

′
B)

P̂tar(s′B |s, a)
1

K − 1

∑
s′A∈S′−

P̂src(s
′
A|s, a)

ρ̂src(s′A)

 (17)

= Ep(s,a,s′B) log

 1

K − 1

∑
s′A∈S′−

(K − 1)
ρ̂tar(s

′
B)

P̂tar(s′B |s, a)
P̂src(s

′
A|s, a)

ρ̂src(s′A)

 . (18)

Considering log is a convex function, we can derive the following from Eq. (18) according to Jensen’s inequality, as

LNCE ≥ Ep(s,a,s′B)

 1

K − 1

∑
s′A∈S′−

log

[
(K − 1)

ρ̂tar(s
′
B)

P̂tar(s′B |s, a)
P̂src(s

′
A|s, a)

ρ̂src(s′A)

]
= Ep(s,a,s′B)

 1

K − 1

∑
s′A∈S′−

[
log(K − 1) + log

ρ̂tar(s
′
B)

p(s′B |s, a)
+ log

P̂src(s
′
A|s, a)

ρ̂src(s′A)

] (19)

≈ Ep(s,a,s′B)

[
log(K − 1) + log

ρ̂tar(s
′
B)

P̂tar(s′B |s, a)
+ Es′A∈S′− log

P̂src(s
′
A|s, a)

ρ̂src(s′A)

]
(20)

= −Itar + Isrc + log(K − 1) (21)
= −∆I + log(K − 1). (22)

Then we have

∆I ≥ log(K − 1)− LNCE. (23)

A.2. Proof of Theorem 3.2

Theorem A.2. For shared data from the source domain M̂src, i.e., (s, a, s′) ∈ Dsrc, the relationship between the MI gap
and dynamics gap is

∆I = DKL[ρ̂src(s
′)∥ρ̂tar(s′)]−DKL[P̂src(s

′|s, a)∥P̂tar(s
′|s, a)]. (24)
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In contrast, for data from the target domain M̂tar, the relationship between the MI gap and dynamics gap is

∆I = DKL[P̂tar(s
′|s, a)∥P̂src(s

′|s, a)]−DKL[ρ̂tar(s
′)∥ρ̂src(s′)]. (25)

Then, the MI gap is bounded by
−H(ρ̂src(s

′)) ≤ ∆I ≤ H(ρ̂tar(s
′)). (26)

Proof. For data shared from the source domain, we derive the MI gap as

∆I = Es,a,s′∼Dsrc

[
log

P̂tar(s
′|s, a)

ρ̂tar(s′)

]
− Es,a,s′∼Dsrc

[
log

P̂src(s
′|s, a)

ρ̂src(s′)

]

= Es,a,s′∼Dsrc

[
− log

P̂src(s
′|s, a)

P̂tar(s′|s, a)
+ log

ρ̂src(s
′)

ρ̂tar(s′)

]
= −DKL

[
P̂src(s

′|s, a)
∥∥P̂tar(s

′|s, a)
]
+DKL

[
ρ̂src(s

′)
∥∥ρ̂tar(s′)] .

(27)

Meanwhile, since data comes from the source domain, we have ∆I = Itar − Isrc ≤ 0 since the information density of the
source domain i(s, a, s′) = P̂src(s

′|s, a)/ρ̂src is larger than that of the target domain, as we illustrated in Figure 2. Then we
have

∆I ≥ −Isrc = −H(S′) +H(S′|S,A) ≥ −H(ρ̂src(s
′)). (28)

For the data comes from the target domain, we derive the MI gap as

∆I = Es,a,s′∼Dtar

[
log

P̂tar(s
′|s, a)

ρ̂tar(s′)

]
− Es,a,s′∼Dtar

[
log

P̂src(s
′|s, a)

ρ̂src(s′)

]

= Es,a,s′∼Dtar

[
log

P̂tar(s
′|s, a)

P̂src(s′|s, a)
− log

ρ̂tar(s
′)

ρ̂src(s′)

]
= DKL

[
P̂tar(s

′|s, a)
∥∥P̂src(s

′|s, a)
]
+DKL

[
ρ̂tar(s

′)
∥∥ρ̂src(s′)] .

(29)

Similarly, since data comes from the target domain, we have ∆I = Itar − Isrc ≥ 0 since the information density of the
target domain i(s, a, s′) = P̂tar(s

′|s, a)/ρ̂tar is larger than that of the source domain. Then we have

∆I ≤ Itar = H(S′)−H(S′|S,A) ≤ H(ρ̂src(s
′)). (30)

Combing the bounds in the source domain and target domain, we have

−H(ρ̂src(s
′)) ≤ ∆I ≤ H(ρ̂tar(s

′)). (31)

As a result, the proposed MI gap is bounded by the entropy of state distribution. The MI gap overcomes the drawback of the
dynamics gap since the dynamics gap can be unbounded with a large domain gap.

A.3. Proof of Theorem 3.3

Theorem A.3. Under the setting of cross-domain offline RL, the performance difference of any policy π evaluated by the
source domain M̂src and the true target MDP Mtar can be bounded as below,

ηMtar(π)− ηM̂src
(π) ≥ − γRmax

(1− γ)2
{
2Eρ̂tar

[
DTV

(
Ptar∥P̂tar

)]
+
√

2DKL (ρ̂src(s′)∥ρ̂tar(s′)) + 2|∆I|
}

(32)
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Proof. For the performance bound ηMtar
(π)− η

M̂src
(π) for any policy π, we can firstly convert the bound to the following

form:
ηMtar(π)− ηM̂src

(π) = ηMtar(π)− ηM̂tar
(π)︸ ︷︷ ︸

(a)

+ η
M̂tar

(π)− η
M̂src

(π)︸ ︷︷ ︸
(b)

. (33)

For term (a) in the RHS, we can obtain the performance bound based on the telescoping lemma (Luo et al., 2018):

ηMtar(π)− ηM̂tar
(π) =

γ

1− γ
Eρ̂tar

[
EPMtar

[
V πMtar

(s′)
]
− EP

M̂tar

[
V πMtar

(s′)
]]

=
γ

1− γ
Eρ̂tar

[∑
s′

(Ptar(s
′|s, a)− P̂tar(s

′|s, a))V πMtar
(s′)

]
(34)

≥ − γ

1− γ
Eρ̂tar

[∑
s′

∣∣∣Ptar(s
′|s, a)− P̂tar(s

′|s, a)
∣∣∣ Rmax

1− γ

]

= − 2γRmax

(1− γ)2
Eρ̂tar

[
DTV

(
Ptar(s

′|s, a)∥P̂tar(s
′|s, a)

)]
(35)

Following a similar procedure, we can obtain the performance bound of term (b) in RHS of Eq. 33:

η
M̂tar

(π)− η
M̂src

(π) ≥ − 2γRmax

(1− γ)2
Eρ̂src

[
DTV

(
P̂tar(s

′|s, a)∥P̂src(s
′|s, a)

)]
≥ − 2γRmax

(1− γ)2
Eρ̂src

[√
1

2
DKL

(
P̂src(s′|s, a)∥P̂tar(s′|s, a)

)]
, (36)

where the second inequality derives from Pinsker’s inequality. Recalling the MI gap ∆I that we aim to bound for the source
domain offline dataset Dsrc, we can build the connection between the MI gap and dynamics gap as follows:

∆I = Itar [[S,A];S
′]− Isrc [[S,A];S′]

= EDsrc

[
log P̂tar(s

′|s, a)− log ρ̂tar(s
′)
]
− EDsrc

[
log P̂src(s

′|s, a)− log ρ̂src(s
′)
]

= E(s,a)∼Dsrc

[
Es′∼P̂src(s′|s,a)

[
log

P̂tar(s
′|s, a)

P̂src(s′|s, a)

]]
+ Es′∼Dsrc

[
log

ρ̂src(s
′)

ρ̂tar(s′)

]
= −E(s,a)∼Dsrc

[
DKL

(
P̂src(s

′|s, a)∥P̂tar(s
′|s, a)

)]
+DKL (ρ̂src∥ρ̂tar) .

Thus, we can formulate the dynamics gap considering the empirical MDPs as:

E(s,a)∼Dsrc

[
DKL

(
P̂src(s

′|s, a)∥P̂tar(s
′|s, a)

)]
= DKL (ρ̂src∥ρ̂tar)−∆I

Since the empirical MDP characterizes the distribution of the offline dataset (i.e., P̂ (s′|s, a) = 0,∀ (s, a, s′) /∈ D), the
state-action distribution conditioned on any policy π equals to that conditioned on the behavior policy πb (i.e., ρ̂π(s, a) =
ρ̂π

b

(s, a),∀s, a). Thus, we can further derive Eq. (36) to:

η
M̂tar

(π)− η
M̂src

(π) ≥ − 2γRmax

(1− γ)2
E(s,a)∼Dsrc

[√
1

2
DKL

(
P̂src(s′|s, a)∥P̂tar(s′|s, a)

)]

≥ − 2γRmax

(1− γ)2

√
1

2
E(s,a)∼Dsrc

[
DKL

(
P̂src(s′|s, a)∥P̂tar(s′|s, a)

)]
(Jensen’s inequality)

= −
√
2γRmax

(1− γ)2
√
DKL (ρ̂src∥ρ̂tar)−∆I (37)

Integrating Eq. (35) and Eq. (37), we can obtain the final performance bound:

ηMtar
(π)− η

M̂src
(π) ≥ − 2γRmax

(1− γ)2
Eρ̂tar

[
DTV

(
Ptar(s

′|s, a)∥P̂tar(s
′|s, a)

)]
−
√
2γRmax

(1− γ)2
√
DKL (ρ̂src∥ρ̂tar)−∆I

= − γRmax

(1− γ)2
{
2Eρ̂tar

[
DTV

(
Ptar∥P̂tar

)]
+

√
2DKL (ρ̂src(s′)∥ρ̂tar(s′))− 2∆I

}
(38)
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Meanwhile, according to Eq. (27), since ∆I ≤ 0 when we share the data from the source domain to the target domain, we
can rewrite the performance bound as

ηMtar
(π)− η

M̂src
(π) ≥ − γRmax

(1− γ)2
{
2Eρ̂tar

[
DTV

(
Ptar∥P̂tar

)]
+
√

2DKL (ρ̂src(s′)∥ρ̂tar(s′)) + 2|∆I|
}

(39)

A.4. Sub-optimality gap of IGDF

According to Theorem 3.3, we have:

ηMtar(π)− ηM̂src
(π) ≥ − γRmax

(1− γ)2
2Eρ̂tar

[
DTV

(
Ptar||P̂tar

)]
+
√
2DKL (ρ̂src(s′)||ρ̂tar(s′)) + 2|∆I|, (40)

where 2DTV

(
Ptar||P̂tar

)
=

∑
s′ |P̂tar(s

′|s, a)− Ptar(s
′|s, a)| = ||P̂tar(s, a)− Ptar(s, a)||1.

by Hoeffding’s inequality and union bound, the following inequalities hold with probability at least 1− δ:

max
s,a
||P̂tar(s, a)− Ptar(s, a)||1 ≤ max

s,a
|S| · ||P̂tar(s, a)− Ptar(s, a)||∞ ≤ |S|

√
1

2n
ln

4|S × A × S|
δ

, (41)

where n is number of samples for each state action pair, P̂tar as a matrix of size |S||A| × |S|.

Moreover, we can obtain a tighter analysis by proving an l1 concentration bound for multinomial distribution directly:

maxs,a ||P̂tar(s, a)− Ptar(s, a)||1 ≤
√

1
2n ln 2|S×A|·2|S|

δ (Refer to (Agarwal et al., 2019) for more details).

So we obtain the following conclusion:

ηMtar(π)− ηM̂src
(π) ≥ − γRmax

(1− γ)2
Eρ̂tar

[√
1

2n
ln

2|S × A| · 2|S|

δ

]
︸ ︷︷ ︸

(a)

+
√

2DKL (ρ̂src(s
′)||ρ̂tar(s′))︸ ︷︷ ︸

(b)

+2|∆I|︸ ︷︷ ︸
(c)

. (42)

For term (a), sampling more target-domain data allows us to obtain a more accurate estimate of P̂tar, thereby reducing the
discrepancy between the true Ptar and the estimated P̂tar. For term (b), it is determined by the properties of the source and
target domain datasets and cannot be optimized. Our focus lies on term (c), where by effectively selecting samples with
smaller dynamics gaps, we can minimize ∆I and tighten the performance bound.

B. Algorithm Description
The pseudocode of IGDF+IQL is presented in Algorithm 2. We utilize IQL (Kostrikov et al., 2022) as our backbone.

C. Detailed Experiment Setting
C.1. Datasets

To generate environments with different transition functions, we design varying dynamics shift tasks based on three Mujoco
benchmarks from Gym (HalfCheetah-v2, Hopper-v2, Walker2D-v2). These tasks encompass a range of modifications, such
as adjusting the body mass (body mass shift), adding noises to joint (joint noise shift) of the agents, training with broken
thighs and integrating morphological differences (refer to Table 6 and Figure 6 for the details). For each benchmark, we
categorize these tasks into two variants: kinematic shift tasks and morphology shift tasks.

As shown in Table 5, in the HalfCheetah, Hopper, and Walker2d dynamics adaptation setting, we set D4RL datasets as our
target domain. For the source domain, we change the environment parameters and then collect the source offline datasets
in the changed environments. For body mass shift and joint noise shift, we follow the same setting of DARA, wherein 1)
”Medium” offline data, generated by a trained policy with the “medium” level of performance in the source environment,

16



Contrastive Representation for Data Filtering

Algorithm 2 Info-Gap Data Filtering algorithm based on IQL
Input: Source domain offline dataset Dsrc, target domain offline dataset Dtar, mixed offline dataset Dmix
Initialization: Policy network πη, value network Vβ , Qθ, target Q network Qθ̂, encoder networks ϕ(s, a), ψ(s′), data
selection ratio ξ, batch size B, importance coefficient α

1: // Contrastive Representation Learning
2: Maximize the mutual information by training encoder networks ϕ(s, a), ψ(s′) via Eq. (6)
3: // TD Learning
4: for each gradient step do
5: Sample bsrc := {(s, a, r, s′)}

B
2ξ
src from Dsrc

6: Sample btar := {(s, a, r, s′)}
B
2

tar from Dtar
7: Sample the top-ξ samples from bsrc ranked by h(ssrc, asrc, s

′
src) := exp(ϕ(ssrc, asrc)

Tψ(s′src)) following:

ω(s, a, s′) := 1
(
h(s, a, s′) > hξ%

)
8: Optimize the Vβ function following loss:

LV (β) = E(s,a)∼Dmix

[
Lτ2(Qθ̂(s, a)− Vβ(s))

]
9: Optimize the Qθ function following loss:

LQ(θ) =
1

2
E(s,a,s′)∼Dtar [(r(s, a) + γVβ(s

′))−Qθ(s, a)]
2

+
1

2
α · h(s, a, s′)E(s,a,s′)∼Dsrc

[
ω(s, a, s′) ((r(s, a) + γVβ(s

′))−Qθ(s, a))
2
]

10: Update the target Q function:

θ̂ ← (1− µ)θ̂ + µθ

11: end for
12: // Policy Extractions (AWR)
13: for each gradient step do
14: Optimize the policy network πη following loss:

Lπ(η) = E(s,a)∼Dmix

[
expλ(Qθ̂ − Vβ(s)) log πη(a|s)

]
15: end for

2) ”Medium-Replay” offline data, consisting of recording all samples in the replay buffer observed during training until
the policy reaches the “medium” level of performance, 3) ”Medium-Expert” offline data, mixing equal amounts of expert
demonstrations and ”medium” data in the source environment. For broken thighs and morphology shift, we alter the XML
file of the Mujoco simulator following VGDF (Xu et al., 2023), and then collect 1M replay transitions with SAC (Haarnoja
et al., 2018) in every benchmark.

C.2. Kinematic Shift Tasks

Detailed modifications of the environments with kinematic shifts are shown below (for changing body mass and adding joint
noise, see Table 6 for the details):

HalfCheetah - broken back thigh: We modify the rotation range of the joint on the thigh of the back leg from [−0.52, 1.05]
to [−0.0052, 0.0105].

1 <joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.0052 .0105" stiffness="
240" type="hinge"/>

Hopper - broken joint: We modify the rotation range of the joint on the head from [−150, 0] to [−0.15, 0] and the joint on
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Source Domains with 
Kinematic shifts

Mass

Noise

Source Domains with
Morphology shifts

Broken Broken Broken

No thighs No right thighs Big head

Cheetah as an example

Figure 6. Illustration of all dynamics shift tasks, including kinematic shifts tasks (Top) and morphology shifts tasks (Bottom). For body
mass shift and joint noise shift, we take halfcheetah as an example.

Table 5. Statistics for each task in our cross-domain offline setting.

Environment Dynamics Shift Task Name Target Dataset Source Dataset

HalfCheetah

Body Mass / Joint Noise
Medium 105 (D4RL) 106

Medium-Replay 10100 (D4RL) 106

Medium-Expert 2× 105 (D4RL) 2× 106

Broken / Morphology
Medium 105 (D4RL) 106 (Replay)

Medium-Replay 10100 (D4RL) 106 (Replay)
Medium-Expert 2× 105 (D4RL) 106 (Replay)

Hopper

Body Mass / Joint Noise
Medium 105 (D4RL) 106

Medium-Replay 20092 (D4RL) 106

Medium-Expert 2× 105 (D4RL) 2× 106

Broken / Morphology
Medium 105 (D4RL) 106 (Replay)

Medium-Replay 20092 (D4RL) 106 (Replay)
Medium-Expert 2× 105 (D4RL) 106 (Replay)

Walker2d

Body Mass / Joint Noise
Medium 105 (D4RL) 106

Medium-Replay 10093 (D4RL) 106

Medium-Expert 2× 105 (D4RL) 2× 106

Broken / Morphology
Medium 105 (D4RL) 106 (Replay)

Medium-Replay 10093 (D4RL) 106 (Replay)
Medium-Expert 2× 105 (D4RL) 106 (Replay)

Table 6. Dynamics shift for Halfcheetah, Hopper, Walker2d tasks. For the body mass shift, we change the mass of the body in the source
MDP Msrc. For the joint noise shift, we add a noise (randomly sampling in [-0.05, +0.05]) to the actions when we collect the source
offline data.

Halfcheetah Hopper Walker

Body Mass shift Joint noise shift Body Mass shift Joint noise shift Body Mass shift Joint noise shift
Source mass[4]=0.5 action[-1]+noise mass[-1]=2.5 action[-1]+noise mass[-1]=1.47 action[-1]+noise
Target mass[4]=1.0 action[-1]+0 mass[-1]=5.0 action[-1]+0 mass[-1]=2.94 action[-1]+0

foot from [−45, 45] to [−18, 18].
1 <joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-0.15 0" type="hinge"/>

1 <joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-18 18" type="hinge"/>

Walker2d - broken right foot: We modify the rotation range of the joint on the foot of the right leg from [−45, 45] to
[−0.45, 0.45].

1 <joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-0.45 0.45" type="hinge"/>

C.3. Morphology Shift Tasks

Detailed modifications of the environments with morphology shifts are shown below:

HalfCheetah - no thighs: We modify the size of both thighs. Detailed modifications of the xml file are:
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1 <geom fromto="0 0 0 -0.0001 0 -0.0001" name="bthigh" size="0.046" type="capsule"/>
2 <body name =" bshin" pos=" -0.0001 0 -0.0001 ">

1 <geom fromto="0 0 0 0.0001 0 0.0001" name="fthigh" size="0.046" type="capsule"/>
2 <body name="fshin" pos="0.0001 0 0.0001">

Hopper - big head: We modify the size of the head. Detailed modifications of the xml file are:

1 <geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="torso_geom" size="0.125" type="
capsule"/>

Walker - no right thigh: We modify the size of thigh on the right leg. Detailed modifications of the xml file are:

1 <body name="thigh" pos="0 0 1.05">
2 <joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-150 0" type="hinge"/>
3 <geom friction="0.9" fromto="0 0 1.05 0 0 1.045" name ="thigh_geom" size ="0.05" type="

capsule"/>
4 <body name="leg" pos="0 0 0.35">
5 <joint axis="0 -1 0" name="leg_joint" pos="0 0 1.045" range="-150 0" type="hinge"/>
6 <geom friction="0.9" fromto="0 0 1.045 0 0 0.3" name="leg_geom" size="0.04" type="

capsule"/>
7 <body name="foot" pos="0.2 0 0">
8 <joint axis="0 -1 0" name="foot_joint" pos="0 0 0.3" range="-45 45" type="hinge"/>
9 <geom friction="0.9 " fromto="-0.0 0 0.3 0.2 0 0.3" name="foot_geom" size="0.06"

type="capsule"/>
10 </body>
11 </body>
12 </body>

D. Implementation Details
D.1. Baselines

We select DARA, SRPO, BOSA as our baselines in cross-domain offline RL tasks and choose some typical offline RL
including BCQ, CQL, MOPO, IQL, SPOT as our backbones. We adopt these offline RL of open source code implemented
by CORL (github). We run all algorithms with the same five random seeds.

DARA. We follow the default configurations of the public implementation (openreview). A pair of binary classifiers
p(tar | s, a, s′) and p(tar | s, a) are learned to infer whether transitions come from the source or target domain. And the
domain classifiers are trained by maximizing the cross-entropy losses:

J (ψSAS) := E(s,a,s′)∼Dtar
[log qψSAS

(tar | s, a, s′)] + E(s,a,s′)∼Dsrc
[log (1− qψSAS

(tar | s, a, s′))]
J (ψSA) := E(s,a)∼Dtar [log qψSA

(tar | s, a)] + E(s,a)∼Dsrc
[log (1− qψSA

(tar | s, a))]

Applying Bayes’ rule, a reward correction ∆r (s, a) is augmented to the original reward r (s, a) of each source domain
transition during training, i.e. r̃ (s, a) := r (s, a) + ∆r (s, a). The reward correction is calculated by:

∆r (s, a) := log
P̂tar(s

′ | s, a)
P̂src(s′ | s, a)

= log
qψSAS

(tar | s, a, s′)
qψSAS

(src | s, a, s′)
qψSA

(src | s, a)
qψSA

(tar | s, a)

In practical implementation, they also clip the above reward modification between -10 and 10.

SRPO. We implement it based on the pseudocode and default parameters provided in the paper (origin paper). SRPO
samples a batch Dbatch from Doff and Drollout and rank them by state-values. Next, SRPO trains a GAN-style discriminator
to selectively choose high state-value transitions as real data and low state-value transitions as fake data. For a one-step
transition (st+1, rt, st, at) in Dbatch, update rt with rt + λ Dδ(st)

1−Dδ(st)
.

BOSA. BOSA employs two support-constrained objectives to address the out-of-distribution issues which can greatly
improve offline data efficiency in cross-domain offline RL setting. Although the code is not open-source, BOSA utilizes a
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portion of the dataset that aligns with ours. Therefore, we directly compare our results with the scores reported in their
paper(origin paper). The support optimization objectives are implemented by:

max
πθ

JDmix (πθ) := Es∼Dmix ,a∼πθ(a|s) [Qϕ(s,a)] , s.t. Es∼Dmix [log π̂βmix (πθ(s) | s)] > ϵth

min
Qϕ

Lmix (Qϕ) := E(s,a,r,s′)∼Dmix

a′∼πθ(a′|s′)

[
δ (Qϕ) · 1

(
T̂target (s

′ | s,a) > ϵ′th

)]
+ E(s,a)∼Dsource [Qϕ(s,a)]

D.2. Hyperparameters

The hyperparameters of our backbone offline RL remain unchanged and are fixed in all tasks following the original paper.
We list the basic hyperparameters of our algorithm and baselines in Table 7.

Table 7. Hyper-parameters used for IQL, IGDF, DARA, and SRPO.
IQL hyper-parameter Value

Hidden layers (Value and Policy) 2(ReLU)
Hidden units 256(MLP)
Optimizer Adam
Batch size 256
Replay buffer capacity 2e6
Discount factor γ 0.99
Target network update rate 0.005
Inverse temperature β 3.0
Coefficient for asymmetric loss τ 0.7
V function learning rate 3e-4
Critic learning rate 3e-4
Actor learning rate 3e-4

IGDF hyper-parameter Value

Representation dimension d 16 or 64
Contrastive encoder arch. ϕ(s, a) dim(S) + dim(A)→ 256→ 256→ d(MLP)
Contrastive encoder arch. ψ(s) dim(S)→ 256→ 256→ d(MLP)
Optimizer Adam
Info learning rate 3e-4
Info batch size 128
Update number 7000
importance coefficient α 1.0
data selection ratio ξ 0.25 or 0.75
DARA hyper-parameter Value

Classifier(s,a) arch. f(s, a) 2dim(S) + dim(A)→ 256→ 256→ 256→ 2(MLP with tanh)
Classifier(s,a,s’) arch. f(s, a, s′) dim(S) + dim(A)→ 256→ 256→ 256→ 2(MLP with tanh)
Optimizer RMSprop
Learning rate 3e-4
batch size 256
Update number 5000
Delta coefficient 0.1

SRPO hyper-parameter Value

Hidden layers 2(ReLU)
Hidden units 256(MLP)
Optimizer Adam
Learning rate 3e-4
Data selection ratio 0.5 or 0.2
Delta coefficient λ 0.1 or 0.3
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E. Supplementary Experiments
E.1. Ablation Study

Data Selection Ratio ξ. As the dynamics gap between source and target domains vary in different task environments, the
data selection ratio becomes particularly important. We employ different data selection ratio (25%, 50%, 75%, 100%) for
our algorithms. Specifically, a ratio of 100% means that we directly learn from the mixed dataset with all source domain
samples (w/o Aug). The results shown in Figure 7 demonstrate that different tasks have varying degrees of sensitivity to
dynamics gap. As expected, when we set the data selection ratio to 100%, the performance of IGDF degrades dramatically.
We observe that the Halfcheetah and Hopper environments are more suitable for smaller sampling ratios (ξ = 25%), while
the Walker2d environment is more suitable for a relatively large sampling ratio (ξ = 75%). This underscores the importance
of configuring the data selection ratio to achieve more robust performance when facing different dynamics gaps.
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Figure 7. Sensitivity on data selection ratio.

Representation Dimension d Equipping RL algorithms with additional representation learning components has proven
effective for task solving. We employ various representation dimensions (d = 16, 32, 64) for encoder networks. As
illustrated in Figure 8, we observe that the representation dimension does not have a monotonic impact on algorithm
performance (a larger representation dimension does not necessarily correlate with better performance in most experiments).
Moreover, larger representation dimensions even may lead to information redundancy.
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Figure 8. Sensitivity on the representation dimension.

Weight of TD loss h The weight of TD loss h(s, a, s′) serves as the measurement of the information density ratio, which
has played an important role in further improving policy performance and training stability. It can distinguish the differences
between the filtered data in a fine-grained manner by increasing the weight coefficients of samples with a smaller MI-Gap,
thereby further improving learning efficiency. To assess the efficacy of using the weight h(s, a, s′), we perform an ablation
analysis as shown in Table 8 to evaluate the performance of IGDF without this weight.
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Table 8. Comparative performance of using weight h and without using it on body mass shift and joint noise shift tasks.
mass w/o weight h IGDF joint w/o weight h IGDF

ha-m 47.01±0.38 47.10±0.38 ha-m 46.07±2.72 47.84±0.76
ha-mr 38.34±0.92 38.76±0.88 ha-mr 38.06±1.70 39.11±0.55
ha-me 88.34±5.34 89.53±2.72 ha-me 81.97±7.10 90.93±3.21
ho-m 56.90±5.72 63.78±8.43 ho-m 52.17±5.08 54.04±7.89
ho-mr 22.74±5.32 27.84±9.36 ho-mr 47.07±22.75 63.07±27.96
ho-me 96.88±18.25 93.82±7.63 ho-me 103.97±7.68 95.69±13.7
wa-m 83.76±0.14 82.60±1.02 wa-m 76.70±5.77 78.76±2.74
wa-mr 77.15±2.09 79.19±1.31 wa-mr 50.82±5.39 58.38±10.55
wa-me 110.17±3.18 112.10±0.78 wa-me 116.19±5.76 116.13±5.86

Sum 621.29 634.72 Sum 613.02 643.95
Average -14.32% -12.35% Average -16.55% -12.26%

E.2. Additional Experiment Results

Reward modification variant To evaluate the efficacy of the reward modification variant in our algorithm, we compare
the performance of IGDF with the reward modification variant. In the reward modification approach, a reward correction
term ∆r (st, at) is added to the original reward r (st, at) for each source domain transition. This results in the modified
reward r̃ (st, at) := r (st, at) + σ∆r (st, at), where the reward correction is computed as ϕ(ssrc, asrc)

Tψ(s′src). As depicted
in Table 9, our observations indicate that the data filtering method exhibits significant advantages.

Table 9. Comparative performance of IGDF and the reward modification variant on body mass shift and joint noise shift tasks.
mass IGDF σ = 0.5 σ = 1.0 σ = 2.0 joint IGDF σ = 0.5 σ = 1.0 σ = 2.0

ha-m 47.10 ± 0.38 46.09 ± 1.84 45.95 ± 1.77 46.07 ± 0.67 ha-m 50.40 ± 0.36 49.53 ± 1.24 46.83 ± 0.62 46.68 ± 0.18
ha-mr 38.76 ± 0.88 37.99 ± 0.68 37.25 ± 1.24 36.44 ± 0.89 ha-mr 39.11 ± 0.55 39.36 ± 0.34 38.61 ± 2.00 37.64 ± 1.30
ha-me 89.53 ± 2.72 88.83 ± 3.24 86.37 ± 1.84 85.46 ± 6.25 ha-me 90.93 ± 3.21 83.86 ± 1.29 84.70 ± 1.201 82.06 ± 5.60
ho-m 63.78 ± 8.43 62.02 ± 6.56 59.48 ± 7.92 53.16 ± 4.92 ho-m 54.04 ± 7.89 50.63 ± 3.66 51.28 ± 2.41 48.07 ± 4.40
ho-mr 27.84 ± 9.36 24.25 ± 2.88 23.60 ± 6.13 20.58 ± 3.22 ho-mr 63.07 ± 27.96 44.78 ± 14.78 41.74 ± 12.10 26.61 ± 5.99
ho-me 96.88 ± 18.25 53.30 ± 45.00 78.65 ± 30.59 93.31 ± 18.71 ho-me 103.97 ± 7.68 89.95 ± 23.13 101.64 ± 10.12 96.00 ± 15.55
wa-m 83.76 ± 0.14 84.75 ± 0.28 66.78 ± 8.90 78.33 ± 1.60 wa-m 78.76 ± 2.74 78.58 ± 5.13 74.99 ± 13.73 80.79 ± 3.31
wa-mr 79.19 ± 1.31 78.20 ± 1.47 78.81 ± 2.58 78.79 ± 1.50 wa-mr 58.38 ± 10.55 42.36 ± 9.15 47.80 ± 8.88 51.87 ± 10.01
wa-me 112.10 ± 0.78 110.55 ± 2.01 111.93 ± 0.66 111.81 ± 0.74 wa-me 116.19 ± 5.76 121.53 ± 0.02 119.34 ± 2.88 114.37 ± 2.56

Sum 638.85 585.98 588.82 603.95 Sum 654.84 600.58 606.912 584.09

Online learning with limited target-domain data In order to highlight the broader applicability of our work to another
related line of research, we conducted additional experiments in offline-to-online settings compared with H2O (Niu et al.,
2022). To assess the performance of H2O and IQL in online learning with limited offline data, we perform the online
interactions with the source domain for 106 steps and use 105 target-domain transitions. For the sake of fairness, we select
IQL as the backbone for IGDF and H2O. The comparison results are shown in Table 10.

Table 10. Comparative performance of IGDF and H2O on body mass shift and morphology shift tasks.
broken H2O IGDF morph H2O IGDF

ha-m 5261 ± 76 5395 ± 32 ha-m 5246 ± 207 5351 ± 169
ha-mr 4505 ± 150 4469 ± 141 ha-mr 4631 ± 53 4512 ± 147
ha-me 8671 ± 840 9359 ± 553 ha-me 8807 ± 1442 9890 ± 874
ho-m 1643 ± 260 1771 ± 339 ho-m 1642 ± 107 1686 ± 240
ho-m 463 ± 56 616 ± 257 ho-mr 417 ± 39 431 ± 34
ho-me 1920 ± 1057 2676 ± 365 ho-m 1456 ± 572 1773 ± 1083
wa-m 3449 ± 237 3330 ± 528 wa-m 3254 ± 309 3226 ± 538
wa-mr 404 ± 219 493 ± 86 wa-mr 722 ± 182 630 ± 146
wa-me 4809 ± 130 4957 ± 99 wa-me 4247 ± 425 4919 ± 147

Sum 31125 33066 Sum 30422 32418
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F. More discussions
Question 1: The inherent assumption of the behavior policy limits the applicability of the IGDF algorithm.

We recall the relationship between the MI gap and the dynamics gap in Equation (9):

∆I = DKL[ρ̂src(s
′)||ρ̂tar(s

′)]︸ ︷︷ ︸
(a)

−DKL[P̂src(s
′|s, a)||P̂tar(s

′|s, a)]︸ ︷︷ ︸
(b)

,

when we use data shared from the source domain (i.e., Dsrc) to estimate the MI gap. If the behavior policies of the
two datasets are very different, the estimation of ρ̂tar for s′ ∼ Dsrc can be difficult since the target-domain policy may
never encounter similar states when interacting with the target domain, which makes DKL(ρtar(s

′)||ρ̂tar(s
′)) large, and the

estimation of term (a) has a large bias. Similary, the estimation of P̂tar(s
′|s, a) for shared data (s, a, s′) ∼ Dsrc also contains

large biases, which further increases the bias in estimating ∆I in data sharing.

Nevertheless, in our experiments, we find our method still achieves good results as long as there isn’t a significant difference
between the two behavior policies. Actually, even in data sharing between the same types of datasets (e.g., medium→
medium), the behavior policies are not entirely the same since the (medium) policies are trained in environments with
dynamics gap. A more apparent evidence is shown in Table 3. In the broken and morphology tasks, we use 105 D4RL
transitions (medium, medium-replay, medium-expert) as our target-domain data and use 106 replay transitions with SAC in
every benchmark. IGDF can deliver a more robust performance and even achieve the SOTA results on 17 out of 18 tasks.
We believe this assumption holds validity: if the discrepancy between the behavior policies of the two datasets is too large,
the source-domain data will become useless in data sharing for the target domain.

Question 2: Why use linear parametrization instead of directly learning h(s, a, s′) in an end-to-end manner?

We choose to use linear parameterization instead of directly learning the function h(s, a, s′) in an end-to-end manner for
several reasons: 1) Intuitively, the score function ϕ(s, a)⊤ψ(s′) measures whether the representation of state-action pair
ϕ(s, a) aligns with the next state ψ(s′). It is easier to solve a task with linear parameterization given a good representation.
In our work, the representation can be separately learned via contrastive learning, which achieves better quantification. 2) As
illustrated in Figure 11 of the related research (Eysenbach et al., 2020), solely employing the (s, a, s′) classifier to measure
domain gaps significantly performs worse than simultaneously utilizing (s, a, s′) and (s, a) classifiers. End-to-end learning
shares a similar mechanism with solely learning the (s, a, s′) classifier. 3) Given what prior work has shown about RL in
the presence of function approximation and state aliasing (Achiam et al., 2019; Yang et al., 2022a), it is not surprising that
end-to-end learning of representations is fragile (Laskin et al., 2020). RL algorithms require good representations to learn
the value function and policy (Eysenbach et al., 2022). 4) A recent work (Eysenbach et al., 2024) also highlighted that
representations learned via InfoNCE can effectively capture conditional probabilities between random variables x and y
(akin to the conditional probability between (s, a) and s′ in our context).

Question 3: The comparison with low-rank MDPs.

Although the low-rank MDP is a theoretical-grounded assumption (i.e., P (s′|s, a) =< ϕ(s, a), ψ(s′) >) that improves
the sample complexity (Uehara et al., 2021), it can be hard to extend it to the cross-domain problem. As discussed
in recent papers (Ren et al., 2022b;a) that adopt low-rank assumption to learn representations with neural networks in
high-dimensional space, the representation is learned by maximizing the likelihood as argmaxϕ,ψ

∑
log ϕ(si, ai)

⊤ψ(s′).
Then the representation ϕ(s, a) and ψ(s′) will learn to regress the transition probability in this domain. In cross-domain
adaptation, if ϕ(s, a) and ψ(s′) are learned specially adapted to function Psrc(s

′|s, a) of the source domain, it can be hard to
transfer ϕ(s, a) and ψ(s′) to the target domain since the transition probabilities of two domains are different. In contrast, the
contrastive objective in our method is learned by both sampling positive sample and negative samples from both domains,
which makes h(s, a, s′) = exp(ϕ(s, a)⊤ψ(s′)) a score function to captures the domain-distinguishable information as a
data filter. In our method, the learned representations ϕ(s, a) and ψ(s′) are not used for value/policy learning but only for
data filtering.

Question 4: The comparison with offline multi-tasks transfer RL.

For the offline multi-task transfer problem studied in (Bose et al., 2024), the source and target tasks are assumed to have
similar transition functions to make a core assumption (i.e., Assumption 1) that all tasks share a common representation
ϕ⋆h(s, a) holds. However, in offline cross-domain RL considered in our paper, the representations (i.e., ϕ⋆src and ϕ⋆tar) can be
very different since the transition functions are very different in cross-domain settings with large domain gaps, which makes
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the error bound in representation transfer does not hold. Meanwhile, a pointwise linear span assumption (i.e., Assumption 2)
is required in (Bose et al., 2024) to make the target transitions a linear combination of the source task dynamics. Similarly,
(Ishfaq et al., 2024) also has assumptions about the shared representation ϕ⋆, and the target task is assumed to be an
ξ-approximated linear combination of T source tasks. Nevertheless, such an assumption may not hold when facing a large
dynamics gap, as we studied in our paper. Empirically, our method is robust to domain gaps and significantly outperforms
other methods on 17 out of 18 tasks with large dynamics gaps (see Table 3). Another difference between our setting and
(Bose et al., 2024; Ishfaq et al., 2024) is that we do not adopt shared representation ϕ(s, a) for the shared domains, and the
representation is only learned to capture the domain-distinguishable information as a data filter. As a result, we believe
extending the theoretical results of (Bose et al., 2024; Ishfaq et al., 2024) to cross-domain offline RL requires additional
efforts to relax the assumptions to allow source and target domains to have different optimal representations.
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