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ABSTRACT

Deep Reinforcement Learning (RL) has recently produced impressive results in a
series of settings such as games and robotics. However, a key challenge that limits
the utility of RL agents for real-world problems is the agent’s ability to generalize to
unseen variations (or levels). To train more robust agents, the field of Unsupervised
Environment Design (UED) seeks to produce a curriculum by updating both the
agent and the distribution over training environments. Recent advances in UED
have come from promoting levels with high regret, which provides theoretical guar-
antees in equilibrium and empirically has been shown to produce agents capable
of zero-shot transfer to unseen human-designed environments. However, current
methods require either learning an environment-generating adversary, which re-
mains a challenging optimization problem, or curating a curriculum from randomly
sampled levels, which is ineffective if the search space is too large. In this paper
we instead propose to evolve a curriculum, by making edits to previously selected
levels. Our approach, which we call Adversarially Compounding Complexity by
Editing Levels (ACCEL), produces levels at the frontier of an agent’s capabilities,
resulting in curricula that start simple but become increasingly complex. AC-
CEL maintains the theoretical benefits of prior works, while outperforming them
empirically when transferring to complex out-of-distribution environments.

1 INTRODUCTION

Reinforcement Learning (RL, Sutton & Barto (1998)) considers the problem of an agent learning
from experience in an environment to maximize total (discounted) of reward. The past decade has
seen a surge of interest in RL, with high profile successes in games (Vinyals et al., 2019; Berner et al.,
2019; Silver et al., 2016; Mnih et al., 2013; Hu & Foerster, 2020) and robotics (OpenAI et al., 2019;
Andrychowicz et al., 2020). As such, there is tremendous excitement that RL may be a path towards
generally capable agents (Silver et al., 2021). Despite these successes, deploying RL agents in the
real world remains a challenge (Dulac-Arnold et al., 2019). Notably, strong training performance in
simulation may not result in policies that are robust to the many sources of variation in the real world.

Addressing this challenge on the agent side has become an active area of research (Zhang et al.,
2021a; Agarwal et al., 2021a; Raileanu & Fergus, 2021), but in this paper we instead focus on the
impact of the training environment itself, which often has a significant impact on agent’s ability to
generalize (Co-Reyes et al., 2020). For example in locomotion tasks, Reda et al. (2020) found that
the initial state distribution, survival bonus, reward structure and control frequency had a significant
impact on the performance of an agent. Indeed, curricula over environments can also influence the
generalization performance of the agent (Jiang et al., 2021b). Throughout this paper we consider
distributions of environments, referring to each individual sample as a level. Given a parameterized
environment, the simplest approach one can consider is Domain Randomization (DR, Jakobi, 1997;
Tobin et al., 2017; Sadeghi & Levine, 2017; Risi & Togelius, 2020; Peng et al., 2017), whereby an
agent trains on individual levels uniformly sampled from an underlying environment distribution.
It has been shown that training an agent with a DR-type approach can produce agents capable of
complex real-world skills (OpenAI et al., 2019). However, the performance of DR is only as good
as the sampling distribution available—thus it can be ineffective when the probability of sampling
useful levels is too low.
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Figure 1: The evolution of a level: At first, the editor places blocks outside the trajectory of the optimal policy,
which acts as an augmentation as the agent has a fully observable view. Then, the editor moves the agent further
from the goal, before placing challenging obstacles in its path. Note that since the agent can move diagonally in
this environment, the final level is solvable. Each level is a high Positive Value Loss at the time it is included in
the level store, thus the level co-evolves with the agent over time.

Recently, Unsupervised Environment Design (UED, Dennis et al., 2020) has emerged as formalism
for methods to design effective curricula. Given a parameterized environment, UED methods frame
learning as a game between a teacher which generates a curriculum of levels, and a student seeking
to maximize some notion of return. UED is a generalization of several other approaches. Indeed,
DR can be considered as a UED algorithm whereby the teacher generates environments uniformly at
random from the environment distribution. Other approaches to UED consider learning a teacher
agent (or generator), with a variety of adversarial objectives proposed (Dennis et al., 2020; Gur
et al., 2021). However, training a teacher is a challenging optimization problem, suffering from
both nonstationarity and sparse reward, as the teacher’s feedback only comes after evaluation by
a changing student policy. Recent work showed it can be more effective to simply curate levels
produced by DR (Jiang et al., 2021b;a; Matiisen et al., 2020), producing a curriculum of increasingly
complex randomly generated levels. Despite their promise, these methods can only be as effective
as the best of the random levels they sample, which can be a limitation in high dimensional design
spaces. Finally, another series of promising works seek to evolve populations of environments (Wang
et al., 2019; 2020; Dharna et al., 2020), but these methods heavily rely on handcrafted heuristics and
also use up to 20x more compute since they also train a population of agents. In this paper, we seek a
general method which harnesses the benefits of all three of these approaches. We posit the following:
Rather than generate levels from scratch, it may be more effective to edit previously curated levels.

Our primary contribution is to propose a new method which we call Adversarially Compounding
Complexity by Editing Levels, or ACCEL. ACCEL is an evolutionary process, with levels constantly
changing to remain at the frontier of the student agent’s capabilities (see: Figure 2).

Update buffer
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Figure 2: An overview of ACCEL. Levels are (randomly)
sampled from a generator, and evaluated, with high regret
levels added to the level buffer. The curator selects levels
to replay, which are used to train the student agent. After
training, the levels are passed to the editor and the edited
levels are added to the level store if they are high regret.

As such, levels generated by ACCEL begin
simple but quickly become more complex.
This benefits both the beginning of train-
ing (Berthouze & Lungarella, 2004), as the
student begins learning much faster, while
it also facilitates the construction of com-
plex structures (see Figure 1). We believe
ACCEL provides the best of both worlds:
an evolutionary approach that can generate
increasingly complex environments, com-
bined with a regret-based curator which pro-
vides theoretical robustness guarantees in
equilibrium. We evaluate ACCEL on a se-
ries of challenging procedurally generated
grid world environments, where ACCEL
demonstrates the ability to rapidly increase
complexity while maintaining performance.
Finally, we show ACCEL makes it possible to train agents capable of transfer to mazes an order of
magnitude larger than training levels, achieving over double the success rate of the next best baseline.

2 BACKGROUND

2.1 FROM MDPS TO UNDERSPECIFIED POMDPS

A Markov Decision Process (MDP) is defined as a tuple 〈S,A, T ,R, γ〉 where S andA stand for the
sets of states and actions respectively and T : S ×A→∆(S) is a transition function representing
the probability that the system/agent transitions from a state st ∈ S to st+1 ∈ S given action at ∈ A.
Each transition also induces an associated reward rt generated by a reward functionR : S → R, and
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γ is a discount factor. When provided with an MDP, the goal of Reinforcement Learning (RL, Sutton
& Barto, 1998) is to learn a policy π that maximizes expected discounted reward, i.e. E[

∑T
i=0 rtγ

t].

Despite the generality of the MDP framework, it is often an unrealistic model for real world en-
vironments. First, it assumes full observability of the state, which is often impossible in practice.
This is addressed in partially observable MDPs, or POMDPs, which include an observation function
I : S → O which maps the true state (which is unknown to the agent) to a (potentially noisy) set of
observations O. Secondly, the traditional MDP framework assumes a single reward and transition
function, which are fixed throughout learning. Instead, in the real world, agents may experience
variations not seen during training, which makes it crucial that policies are capable of robust transfer.

To address both of these issues, we use the recently introduced Underspecified POMDP, or UPOMDP,
given byM = 〈A,O,Θ, SM, TM, IM,RM, γ〉. This definition is identical to a POMDP with
the addition of Θ to represent the free parameters of the environment, similar to the context in
a Contextual MDP (Modi et al., 2017). These parameters can be distinct at every time step and
incorporated into the transition function TM : S ×A×Θ→∆(S). Following Jiang et al. (2021a)
we define a levelMθ as an environment resulting from a fixed θ. We define the value of π inMθ to
be V θ(π) = E[

∑T
i=0 rtγ

t] where rt are the rewards achieved by π inMθ. UPOMDPs benefit from
their generality, since Θ can represent possible dynamics (for example in sim2real (Peng et al., 2017;
OpenAI et al., 2019; Andrychowicz et al., 2020)), changes in observations, different reward functions
or differing game maps in procedurally generated environments.

2.2 METHODS FOR UNSUPERVISED ENVIRONMENT DESIGN

The goal of Unsupervised Environment Design (UED, Dennis et al., 2020) is to generate a series of
levels that form a curriculum for a student agent, such that the student agent is capable of transfer, by
maximizing some utility function Ut(π, θ). In the case of DR, the utility function is simply:

UUt (π, θ) = C (1)
for any constant C. When learning a teacher, recent approaches proposed to use objectives seeking to
maximize regret, defined as the difference between the expected return of the current policy and the
optimal policy, ie:

URt (π, θ) = argmax
π∗∈Π

{REGRETθ(π, π∗)} = argmax
π∗∈Π

{V θ(π∗)− V θ(π)} (2)

Unlike other objectives, which may promote unsolvable environments, regret-based objectives have
been shown to promote the simplest possible environments that the agent cannot currently solve
(Dennis et al., 2020) in a range of settings. However, since we do not have access to π∗, a key
challenge in UED algorithms utilizing objectives inspired by Equation 2 is to approximate the regret.
Recently, the Prioritized Level Replay (PLR, Jiang et al., 2021b;a) algorithm introduced an additional
teacher agent in the form of a curator, forming a “dual curriculum game”. The curator maintains a
buffer of previously experienced levels and selects levels to be replayed by the student policy using
objectives approximating regret. One of the objectives used by PLR is Positive Value Loss, given by:

1

T

T∑
t=0

max

(
T∑
k=t

(γλ)k−tδk, 0

)
(3)

where λ and γ are the Generalized Advantage Estimation (GAE, Schulman et al. (2016)) and
MDP discount factors respectively, and δt, the TD-error at timestep t. Since Positive Value Loss
approximates regret, if the student trains solely on curated levels (i.e. does not take gradient steps on
levels from the generator), then PLR achieves robustness guarantees in equilibrium. More formally,
if St = Π is the strategy set of the student and St = Θ is the strategy set of the teacher (in this case
the curator), then (by Corollary 1 of Jiang et al. (2021a)), in equilibrium the resulting student policy
π converges to a minimax regret policy, ie:

π = argmin
πA∈Π

{ max
θ,πB∈Θ,Π

{REGRETθ(πA, πB)}} (4)

Empirically PLR has also been shown produce policies with strong generalization capabilities1, yet
it’s main weakness is that it still relies on randomly sampling useful levels. Next, we introduce our
new approach which seeks to leverage the curator to produce batches of high regret levels.

1To see the impact of PLR on a simple example, we include a visualization in Figure 19 in the Appendix.
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3 COMPOUNDING COMPLEXITY BY EDITING LEVELS

In this section we introduce our new method for UED, building on regret-based methods such as PLR.
As the dimensionality of the design space increases, it becomes increasingly challenging to randomly
sample effective levels for learning—a problem we call “the curse of dimensionality in UED”. Thus,
rather than solely rely on curating random levels, we instead look to evolution to produce new batches
of levels, by making edits to previously curated ones. This is a direct attempt to produce more levels
at the “frontier” of agent capabilities, which has been shown to be useful in a variety of recent works
(Wang et al., 2019; Jiang et al., 2021b; Zhang et al., 2020). Evolutionary methods are suitable for
this, yet often require heuristics to define a workable fitness function. For example, POET pre-filters
levels using handcrafted criteria to have a reward in the range [50, 300]. We propose a more general
approach using regret in the form of Positive Value Loss to assess learning potential. We call our
method Adversarially Compounding Complexity by Editing Levels, or ACCEL.

Algorithm 1 ACCEL (changes w.r.t Robust PLR)
Input: Buffer size K, initial fill ratio ρ, level generator.
Initialize: Initialize policy π(φ), level buffer Λ.
# Initial Data Collection
Sample K ∗ ρ initial levels.
# Main Training Loop
while not converged do

Sample replay decision d ∼ PD(d)
if d = 0 then

Sample level θ from level generator
Collect π’s trajectory τ on θ, with a stop-
gradient φ⊥
Compute PLR score, S = score(τ, π)
Add θ to Λ if score S meets threshold

else
Sample a replay level, θ ∼ Λ
Collect policy trajectory τ on θ
Update π with rewards R(τ)
Edit θ to produce θ′

Collect π’s trajectory τ on θ′, with a stop-
gradient φ⊥
Compute PLR score, S = score(τ, π)
Add θ′ to Λ if score S meets threshold
(Optionally) Update Editor using score S

end
end

The key idea of ACCEL is to introduce an ed-
itor, which produces new levels for the agent
by making edits to levels previously sampled
by the curator. Editing involves making a hand-
ful of changes (e.g. adding/removing tiles on
a maze), but could be extended to generative
models (e.g. perturbations in a latent space).
Equipped with the ability to edit levels, it is pos-
sible to produce an entire batch of useful levels
from a single example, while incrementally in-
creasing complexity. We consider both a learned
editor, optimizing for Positive Value Loss (Equa-
tion 3), and a random one. Following Robust
PLR (Jiang et al., 2021a) we do not initially
train on edited levels. Instead, we evaluate them
and only add them to the replay buffer if they
meet the threshold for the scoring function (high
regret). We consider two different criteria for se-
lecting which replay levels to edit: those which
the agent can now solve with low future learning
potential, approximated as return minus regret,
which we call “easy”, and “batch” where we use
the entire batch. The full procedure is shown in
Algorithm 1.

Figure 3: Levels generated by ACCEL. Though all
levels are evolved from the same DR level, they re-
quire different behaviors to solve. Left: the agent can
go up or left and reach the goal. Middle: the goal is
on the left, while on the right the left path is blocked.

We posit that editing is effective for two reasons.
First, small incremental changes to a level can lead
to a diverse batch of new ones (Sturtevant et al.,
2020), which may move those that are currently
too hard or too easy towards the frontier of the
agent’s capabilities. This may also prevent overfit-
ting, for example, in Figure 3 we see three levels
generated by ACCEL in a grid world environment
(Chevalier-Boisvert et al., 2018). Each is an edit
of the same level, and has a similar initial obser-
vation, yet requires the agent to explore in a different fashion to reach the goal. Training on these
environments simultaneously will teach the agent to actively explore the environment. Second,
making edits outside of the direct trajectory of the agent can be seen as a form of data augmentation,
which has been shown to improve sample efficiency in RL (Laskin et al., 2020; Kostrikov et al., 2021;
Raileanu et al., 2020), since it changes the observation but not the optimal policy.

ACCEL is an Evolutionary algorithm, whereby the “fitness” is (approximate) regret, since levels only
stay in the “population” (or level replay buffer) if they meet the criteria for curation. Evolution has
led to many successes in other domains (Stanley et al., 2019; Pugh et al., 2016), and even proven
useful for UED with the POET algorithm. Compared to POET we have two key differences: first, we
have a population of levels but not a population of agents, thus we have a single, generally capable
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agent. This likely leads to a lower computational cost. In addition, ACCEL uses a minimax regret
(rather than minimax) objective, which means we do not need handcrafted rules to select levels, since
optimizing for regret naturally promotes levels at the frontier of agent’s capability. Indeed, training
on high regret levels also means that ACCEL inherits the robustness guarantees in equilbrium from
Robust PLR (Corrollary 1 in Jiang et al. (2021a)):
Remark 1. If the procedure described in Algorithm 1 finds a Nash equilibrium, then the student
policy is following a minimax regret strategy.

This is in stark contrast with other evolutionary approaches, which rely solely on empirical results.

4 EXPERIMENTS

In our experiments we seek to answer the following two questions: 1) Can ACCEL lead to sample
efficient learning in complex design spaces? 2) Can ACCEL compound complexity to asymptotically
produce agents capable of zero-shot transfer to challenging out-of-distribution environments? We
conduct a series of experiments in grid world environments, as have been used in previous UED
works (Dennis et al., 2020; Jiang et al., 2021a). These environments are made challenging by
high dimensional observations and sparse rewards, thus they are often used to test state-of-the-art
exploration methods (Raileanu & Rocktäschel, 2020; Zhang et al., 2021b; Flet-Berliac et al., 2021).

In all cases, we seek to train a student agent via Proximal Policy Optimization (PPO, Schulman
et al., 2016-2018), with a ResNet policy (He et al., 2016) as originally proposed in Espeholt et al.
(2018). To evaluate the quality of the curricula, we show all performance with respect to the number
of student gradient updates as opposed to total environment interactions, which is often comparable
for PLR and ACCEL. For a full list of hyperparameters for each experiment please see Table 6 in
Section B.3. As baselines we consider the following:

• Domain Randomization (DR): Randomly sampling from a parameterized distribution.
• Prioritized Level Replay (PLR): We use Robust PLR from Jiang et al. (2021a).
• PAIRED: Placing a fixed number of blocks, using the algorithm described in Dennis et al. (2020).
• Minimax Adversarial: Placing blocks using an adversarial objective seeking to minimize return.

As in Dennis et al. (2020), we use a single minimax represent the POET objective when it is
not combined with hand-coded constraints on the levels generated. We leave the comparison to
population-based methods to future work due to the computational expense.

4.1 LEARNING WITH LAVA
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(b) Edit Efficacy
Figure 4: Lava grid training data. a) Left to right: mean agent return on training levels, the shortest path length
and the number of lava tiles, plots show mean and sem. b) Positive Value Loss by number of edits for ACCEL.

We begin with a simple grid environment, whereby the agent must navigate to a goal in the presence
of lava blocks. The grid is small, only 7x7, however, it is challenging for RL agents since exploring
with random actions often leads to instant death, which makes it unlikely to receive a signal from
the sparse reward. Indeed, this makes the choice of DR parameterization crucial, since sampling too
many blocks early on will be prohibitive for learning. We compare two different parameterizations:
“Binomial” where the agent samples from {lava, none} for 20 steps, and “Uniform” where the agent
samples the number of tiles to place from the range [0,20]. For ACCEL, we use a generator that
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produces empty rooms and then proceed to edit the levels to add (or remove) lava blocks. The
environment is built with MiniHack, thus the agent has a global observation (details in the Appendix,
Section: B.1). We ran each method for five seeds, showing the results in Fig 4.

As we see, ACCEL quickly produces levels with more lava than the other methods, while also getting
near-perfect return on its training distribution. Interestingly, with the Uniform parameterization, we
see that PLR is able to produce a similar training profile to ACCEL, but achieves a lower value in
every individual metric. The methods with learned generators (PAIRED and minimax) fail to learn
anything, thus are unable to form a curriculum (Figure 4). Finally on the right we took a snapshot of
the level replay buffer for ACCEL, where we clearly see that the levels which have been edited more
have higher approximate regret. After one thousand PPO updates (around 20M timesteps) we tested
each agent on a series of test tasks, which we show in the Appendix (see Section A.3). We thus have
answered our first question: in a design space with a high proportion of challenging levels, ACCEL is
able to build an effective curriculum which quickly facilitates learning on the full distribution.

4.2 PARTIALLY OBSERVABLE NAVIGATION

To answer the second question, we now scale to the MiniGrid (Chevalier-Boisvert et al., 2018) setting
originally introduced in Dennis et al. (2020). Despite being a conceptually simple environment, this
is a large experiment: our agents train for 20k updates (around 350M steps, see Table 5), learning
an LSTM-based policy with a 147 dimension partially observable observation. We use the Uniform
parameterization for DR which first samples the number of blocks to place, ranging from zero (an
empty room) to sixty, since previous works showed that DR is sensitive to the number of blocks
placed (Jiang et al., 2021a). For ACCEL we begin with empty rooms and randomly edit the block
locations (adding or removing them) as well of the goal location. After replay, we edit the “easy”
levels, essentially moving levels back to the frontier once their learning potential has been reduced.
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Figure 5: MiniGrid training data. a): the performance of all agents on the the shortest path length and number
of blocks on training levels, where ACCEL quickly develops highly challenging levels. Plots show the mean
and standard error across five runs. b) Example levels generated by DR, PLR and ACCEL.

In Figure 5.a) we show the training performance, where ACCEL does exactly as intended—it
compounds initial complexity to ultimately train on levels with high block count and long paths to the
goal. This can be seen in 5.b), where ACCEL produces more structured mazes than the baselines. We
evaluate all five methods zero-shot on a series of held-out environments as used in prior works (see
Figure 16), with the mean and sem per environment shown in Figure 6. For DR, PLR and ACCEL the
evaluation is after 20k student updates, thus it solely compares the quality of the curriculum, while
we use the Minimax and PAIRED results from Jiang et al. (2021a) at 250M training steps (>30k
updates). As we see, ACCEL performs as least as well as the next best method in almost all settings,
with particular strength in the more complex Labyrinth and Maze environments.
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Figure 6: Zero-shot transfer results. Agents are evaluated for 100 episodes on a series of human designed
mazes, plots show mean and standard error for each environment, across five runs.
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Figure 7: a) Zero-shot performance on a large procedurally-generated maze environment. Agents are evaluated
for 100 episodes, bars show mean and standard error. ACCEL achieves over double the success rate of the next
best method, despite beginning with empty rooms. b) Example levels produced by each UED algorithm.

To evaluate the performance at the aggregate level, we make use of the recently introduced rliable
library (Agarwal et al., 2021b) in Figure 7.b). At the aggregate level the strength of ACCEL is
clear, with an IQM2 near 100% solved rate compared to below 80% for PLR, with a probability of
improvement of 80.2%. It is clear that ACCEL is significantly stronger in these test environments.

Next we consider an even more challenging setting—we use a larger version of the “PerfectMaze”, a
procedurally-generated maze environment, shown in Figure 7.a). The maze has 51x51 tiles, an order
of magnitude larger than the training environment, and has a maximum episode length of over 5k
steps. This is a daunting navigation challenge, requiring extensive use of memory so as not to get
lost in a loop of repeatedly exploring the same paths. We evaluate the agents at the checkpoint from
Figure 6, testing each seed for 100 episodes, showing the mean and standard error in Figure 7.a).
Both versions of ACCEL significantly outperform all baselines, achieving success rates of 53% and
52% compared to the next best 25% for PLR, while all other methods fail. Notably, ACCEL appears
to approximately follow the “left-hand” rule for solving mazes.3
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Figure 8: Performance of ACCEL when
using the Uniform DR generator, com-
pared to DR and PLR. We test all agents
during training on the same DR distribu-
tion. Curves show mean with sem shaded.

What if we edit DR levels? We also consider an ablation of
ACCEL where instead of beginning with empty rooms, we
instead begin with levels sampled from the DR distribution. In
Figure 8 we show the performance of ACCEL, DR and PLR
on the same generator distribution during training, where we
see that ACCEL outperforms both. We also tested this version
of ACCEL on the same held out tasks, where it achieved a
mean performance comparable to the version presented in
Figure 6, while it also achieved 52% success on the large
perfect maze. We conducted other ablations such as using
a learned editor, or editing the full batch, with only small
changes in performance (see Section A.4). We believe this
shows the strength of ACCEL, that it is robust to a multitude
of factors, even the generator distribution.

4.3 DISCUSSION AND LIMITATIONS

In our experiments we have demonstrated that ACCEL is capable of forming highly effective curricula
in two challenging navigation environments. In the first, we showed ACCEL can facilitate learning
in a design space with a high proportion of hard levels, which could have an impact in improving
exploration in safety-critical settings. In the second, we showed it is possible to produce complex
mazes which facilitate zero-shot transfer to human-designed ones, scaling to environments an order
of magnitude larger than the training environment. This is made possible since ACCEL produces
a high frequency of solvable mazes with a high block count, regardless of the DR generator used.
Note that PLR is capable of sampling 60 block levels, but it will infrequently sample those that also
contain a useful (solvable) path to the goal. We thus believe we have shown evidence that ACCEL
would be an effective method for training agents in more open-ended UED design spaces.

2Interquartile Mean (IQM) is the recommended robust statistic in Agarwal et al. (2021b).
3For more details see https://sites.google.com/view/compoundingcomplexity
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However, as with any method, ACCEL comes with limitations. Our approach includes an inductive
bias with the ability to begin with a simple base case (an empty room). This may not always be
possible in practice, while in some settings the simplest example (in terms of entities placed in the
environment) may actually be a more difficult environment to solve (for example in a Hide and Seek
game). In addition, our experiments thus far only consider navigation tasks, and while the MiniGrid
experiments are one of the largest settings used in UED, for the field more broadly to become useful
for real-world problems it will be necessary to test new environments. On the algorithmic side, a
potential limitation of ACCEL is there may be a lack of diversity in the level replay buffer. In this
work we do not explicitly optimize for diversity, but instead, seek to reduce the impact through level
replay hyperparameters (see the Appendix, Figure 21). However, scaling ACCEL further may require
a mechanism to directly encourage diversity.

5 RELATED WORK

Our work straddles a variety of interrelated fields, which we discuss in this section. For a summary of
the most closely related methods see Table 1. Our paper focuses on testing agents on distributions of
environments, which has long been known to be crucial to evaluate the generalization capability of RL
agents (Whiteson et al., 2009). The failure of agents in this setting has recently drawn considerable
attention (Packer et al., 2019; Igl et al., 2019; Cobbe et al., 2020; Agarwal et al., 2021a; Zhang et al.,
2018b; Ghosh et al., 2021), with policies often failing to adapt to changes in the observation (Song
et al., 2020), dynamics (Ball et al., 2021) or reward (Zhang et al., 2018a). In this work, we seek to
provide agents with a set of training levels to produce a policy that is robust to these variations.

In particular, we focus on the Unsupervised Environment Design (UED, Dennis et al., 2020) paradigm,
which shifts from designing agents that can generalize from a fixed distribution of environments
towards designing the environments themselves. The most popular method for UED is Domain
randomization (DR, Jakobi, 1997; Sadeghi & Levine, 2017) which has been particularly successful in
areas such as robotics (Tobin et al., 2017; James et al., 2017; Andrychowicz et al., 2020; OpenAI et al.,
2019), with extensions proposing to actively update the DR distribution Mehta et al. (2020); Raparthy
et al. (2020). This paper directly extends Prioritized Level Replay (PLR, Jiang et al., 2021b;a), a
method for curating DR levels such that those with high learning potential can be replayed a student
agent. PLR is related to TSCL (Matiisen et al., 2020), self-paced learning (Klink et al., 2019; Eimer
et al., 2021) and ALP-GMM Portelas et al. (2019), which seek to maintain and update distributions
over environment parameterizations. Very recently it was shown that with a smooth task space, a
method similar to PLR is capable of producing generally capable agents in a simulated game world
(Team et al., 2021), using large scale compute and Population Based Training (Jaderberg et al., 2017).
However, this work relied on a highly optimized task design space, which is rarely present in practice.

Dennis et al. (2020) introduced the PAIRED algorithm, an elegant approach for UED, whereby an
environment adversary optimizes for minimax regret (Savage, 1951), defined as the difference in
performance between an antagonist agent (colluding with the adversary) and the protagonist. This
guarantees the adversary produces solvable mazes, which allows the protagonist to transfer to unseen
environments and even learn to navigate the web (Gur et al., 2021). Adversarial objectives have
also been considered in robotics (Pinto et al., 2017). POET (Wang et al., 2019; 2020) considers
evolving a population of environments, each paired with an agent, using an objective similar to
minimax adversarial, which needs to be combined with domain-specific rules to prevent unsolvable
environments from being proposed. We take inspiration from the evolutionary nature of POET
but train a single agent, which is beneficial as it takes significantly fewer resources, while also
removing the agent selection problem. UED is inherently related to the field of Automatic Curriculum
Learning (ACL, Portelas et al., 2020; Florensa et al., 2017; Baranes & Oudeyer, 2009), which
seeks to provide a curriculum of increasingly challenging tasks or goals given a (typically) fixed
environment. A canonical approach is Hindsight Experience Replay (Andrychowicz et al., 2017)
which was shown to be effective for sparse reward tasks. Asymmetric Self Play (Sukhbaatar et al.,
2018) takes the form of one agent proposing goals for another, which was shown to be effective for
challenging robotic manipulation tasks (OpenAI et al., 2021). AMIGo (Campero et al., 2021) and
APT-Gen (Fang et al., 2021) provide solutions to problems where the target task is known, providing
a curriculum of increasing difficulty. Indeed, many ACL methods emphasize learning to reach goals
or states with high uncertainty (Racaniere et al., 2020; Pong et al., 2020; Zhang et al., 2020), either
using generative (Florensa et al., 2018) or world models (Mendonca et al., 2021). Unlike these
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Table 1: The components of related approaches. Like POET, we evolve levels, but use a single agent rather
than a population, while also using a minimax regret objective, which ensures the environments generated are
solvable. PAIRED uses minimax regret for the generator, which is often challenging to optimize, while it does
not replay levels so may suffer from cycling. Finally, PLR curates levels using minimax regret, but relies solely
on domain randomization for generation.

Algorithm Generation Strategy Generator Obj Curation Obj Setting
POET (Wang et al., 2019) Evolution Minimax MCC Population-Based

PAIRED (Dennis et al., 2020) Reinforcement Learning Minimax Regret None Single Agent
PLR (Jiang et al., 2021b;a) Random None Minimax Regret Single Agent

ACCEL Random + Evolution Minimax Regret Minimax Regret Single Agent

methods, UED approaches seek to fully specify environments, rather than just goals within a fixed
environment.

In the symbolic AI community, environment design has been considered as a means to alter an
environment to influence an agent’s decisions (Zhang & Parkes, 2008; Zhang et al., 2009). This was
extended with automated design (Keren et al., 2017; 2019), which seeks to redesign environments
given the limitations of agents, to improve their performance. Unlike these works, ACCEL seeks to
automatically design environments in order to produce a curriculum for a learned agent.

Our work also closely relates to the field of Procedural Content Generation (PCG, Risi & Togelius,
2020; Justesen et al., 2018), where levels are sampled from a distribution. Popular PCG settings
include the Procgen Benchmark (Cobbe et al., 2020), MiniGrid (Chevalier-Boisvert et al., 2018),
Obstacle Tower (Juliani et al., 2019), GVGAI (Perez-Liebana et al., 2019) and the NetHack Learning
Environment (Küttler et al., 2020). This work uses the recently proposed MiniHack environment
(Samvelyan et al., 2021), which provides a flexible framework for creating diverse environments.
Within the PCG community, automatically generating game levels has been of interest for more
than a decade (Togelius & Schmidhuber, 2008). More recently, machine learning has proven to be
effective (Summerville et al., 2018; Bhaumik et al., 2020; Liu et al., 2021). Related to our work,
PCGRL (Khalifa et al., 2020; Earle et al., 2021a) framed level design as an RL problem, designing
environments by making incremental changes. However, it makes use of hand-designed dense
rewards, and focuses on the design of levels for human players. By contrast, ACCEL seeks to train a
student agent and does not require domain-specific feedback.

6 CONCLUSION AND FUTURE WORK

In this paper we proposed a new method for Unsupervised Environment Design (UED), ACCEL,
which evolves a curriculum by editing previously curated levels. This makes it possible to constantly
generate a wide variety of environments at the frontier of the agent’s capabilities, producing curricula
that start simple and quickly compound. We believe ACCEL offers the best of both worlds: a
principled regret-based curriculum that does not require domain-specific heuristics, alongside an
evolutionary process that produces a broad spectrum of complexity catering to the agent’s current
capabilities. In our experiments we showed that ACCEL is capable of efficiently training agents that
can transfer to a series of human-designed environments, outperforming competitive baselines.

For future work, it may be possible to use ideas from Neural Cellular Automata to enhance the editing
process (Earle et al., 2021b), possibly making use of controllable editors that can boost specific
properties of levels (Earle et al., 2021a). We could also consider generative modelling approaches
to level editing, training on PLR levels to produce new frontier levels. We did not explore methods
to encourage levels to be diverse, but this would likely be important for larger-scale experiments.
Another possibility is to actively seek levels which have high “Evolvability” (Gajewski et al., 2019).
This could be increased by introducing so-called “extinction events” (Raup, 1986), which have been
shown to increase Evolvability (Lehman & Miikkulainen, 2015) and are believed to play a crucial role
in natural evolution. Equipped with some of these ideas, we could go significantly further towards
open-endedness (Earle et al., 2021c). We believe it may be possible to increase the search space such
that MiniHack can make broader use of the richness of the NetHack world, possibly aiding us in
making progress in the full game of Nethack—a grand challenge in reinforcement learning.
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STATEMENT

We do not perceive any potential ethical issues to arise from this work, beyond those typically
associated with reinforcement learning. However, a key issue in RL is reproducibility, and as such we
will be open sourcing our code alongside the camera ready version of our paper. Both environments
we used are open sourced (MiniGrid and MiniHack) and we based our code on an open source repo.
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Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2020.

12

https://openreview.net/forum?id=B1xm3RVtwB
https://openreview.net/forum?id=B1xm3RVtwB


Under review as a conference paper at ICLR 2022

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learming with augmented data. In Advances in Neural Information Processing
Systems 33. 2020.

Joel Lehman and Risto Miikkulainen. Extinction events can accelerate evolution. PloS one, 10(8):
e0132886, 2015.

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N. Yannakakis, and Julian
Togelius. Deep learning for procedural content generation. Neural Comput. Appl., 33(1):19–37,
2021. doi: 10.1007/s00521-020-05383-8.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum
learning. IEEE Trans. Neural Networks Learn. Syst., 31(9):3732–3740, 2020.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal, and Liam Paull. Active domain
randomization. In Proceedings of the Conference on Robot Learning, 2020.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv,
abs/1312.5602, 2013.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with
continuous side information. In Algorithmic Learning Theory. 2017.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019.

OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter
Welinder, Ruben D’Sa, Arthur Petron, Henrique Ponde de Oliveira Pinto, Alex Paino, Hyeonwoo
Noh, Lilian Weng, Qiming Yuan, Casey Chu, and Wojciech Zaremba. Asymmetric self-play for
automatic goal discovery in robotic manipulation, 2021.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krahenbuhl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning, 2019.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. CoRR, abs/1710.06537, 2017.

Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D Gaina, Julian Togelius, and Simon M
Lucas. General video game ai: A multitrack framework for evaluating agents, games, and content
generation algorithms. IEEE Transactions on Games, 11(3):195–214, 2019.

Lerrel Pinto, James Davidson, and Abhinav Gupta. Supervision via competition: Robot adversaries
for learning tasks. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 1601–1608, 2017. doi: 10.1109/ICRA.2017.7989190.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning, pp. 7783–7792, 2020.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 LEVEL EVOLUTION

In Fig 9 and 10 and we show additional levels produced by ACCEL for the MiniHack lava environment
and MiniGrid mazes respectively. Note that in all cases, each incremental step along the evolutionary
process produces a level that has high learning potential at that point in time.

Figure 9: Levels generated by ACCEL. Note that in all cases, each individual level along the evolutionary path
is at the frontier for the student agent at that stage of training. As we can see, the edits compound to produce a
series of challenges: in the first level the lava gradually surrounds the agent, such that they can initially explore
in multiple directions but at the end the task can only be solved by going down and to the right. In the middle
row we see a level where the agent always has a direct run at the goal, but a corridor is evolved over time to
become increasingly narrow, before being filled in so the agent has to go around. Finally in the bottom row the
level begins with simple augmentations before moving the agent behind a barrier, which results in a challenging
task where the agent has to move in a diagonal direction to escape the lava.

Figure 10: A single level evolved in the MiniGrid environment, starting from top left, ending bottom right.
Throughout the process the agent experiences a diverse set of challenges.
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Figure 11: Maze evolution with the DR generator. Top row shows starting DR levels, originally included in
the replay buffer due to having high positive value loss. After many edits (up to 40), they produce the bottom
row, which were all chosen to be in the highest 50 replay scores after 10k gradient steps. As we see, the same
DR level can produce distinct future levels, in some cases multiple high regret levels.

A.2 THE EXPANDING FRONTIER

Here we analyze the performance of agents on levels produced by ACCEL. We have four agent
checkpoints, from 5k, 10k, 15k and 20k student gradient updates. In Figure 12 we show four
generations of a level, where we see that the later generations become harder for the 5k checkpoint,
while the 20k checkpoint gets the highest learning signal (Positive Value Loss) from Generation 63.

  Generation 27  Generation 45                           Generation 53                          Generation 63

Student Agent Checkpoint:

Figure 12: The Evolving Frontier. The top row shows four levels from the same lineage, at generations 27, 45,
53 and 63. Underneath each is a bar plot showing the Return and Positive Value Loss (PVL) for four different
ACCEL policies, saved after 5k, 10k, 15k and 20k updates. At generation 27, all four checkpoints can solve the
level, but the 5k checkpoint has the highest learning potential (PVL). On the right we see that by generation 63,
only the 15k and 20k checkpoints are able to achieve a high return on the level.
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Figure 13: Aggregate metrics for each band of generations. For example, “30-45” refers to all the levels
between generation 30-45. The later generation levels are harder for the early agents to solve, while the early
agents have higher return and PVL for the earlier levels.
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In Figure 13 we show all generations for the level included in Figure 12, grouped by generation. We
then show the mean Return and Positive Value loss (PVL) for all four agent checkpoints. It is clear
to see that the later generations have the highest learning potential for the 20k checkpoint, with the
lowest return for the 5k checkpoint.

Next in Figure 14 we show data for all generations of 20 levels, chosen as those which were present
in the 20k checkpoint replay buffer but also had ancestors in the 5k checkpoint buffer. For each
checkpoint we plot all levels along the dimensions of Number of Blocks and Shortest Path, with the
color corresponding to the solved rate. On the left, the 5k checkpoint agent can only repeatedly solve
the shorter path levels with low block count. Later on, the 20k checkpoint agent performs well across
the entire space.
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Figure 14: How do complexity metrics relate to difficulty? The plot shows the block count and shortest path
length. From left to right we evaluate the agents at four checkpoints: 5k, 10k, 15k, 20k PPO updates. The color
represents the solved rate. As we see, the 5k agent is unable to solve the levels with higher block count and
longer paths to the goal, while the 20k agent is able to solve almost all levels.

A.3 FULL EXPERIMENTAL RESULTS

Lava Grid Extended Results In Table 2 and Figure 15 we include the full results for the MiniHack
lava experiments. The first three (Empty, 10 Tiles and 20 Tiles) evaluate the performance of the
agent within its training distribution, while we also include a held-out human designed environment,
LavaCrossing S9N1, ported from MiniGrid Chevalier-Boisvert et al. (2018). As we see, ACCEL
performs best on all of the in sample environments, while also being only one of two approaches to
get meaningfully above zero in the human designed task.
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Figure 15: Test performance, both in distribution (Empty, 10 and 20 Tiles) and out of distribution (Crossing
S9N1). Each evaluation is conducted for 100 trials. Plots show the mean and standard error across five runs.

Table 2: Test performance in four environments. Each data point corresponds to the mean (and standard error)
of five independent runs, where each run is evaluated for 100 trials on each environment. † indicates the generator
distribution is a Binomial, whereby the generator can place 20 blocks, each is either a lava tile or empty. ‡
indicates the generator first samples the number of lava tiles to place, between zero and 20, then places that
many. Bold indicates being within one standard error of the best mean.

Test Environment PAIRED Minimax DR† PLR† DR‡ PLR‡ ACCEL

Empty 0.77± 0.03 0.76± 0.02 0.81± 0.03 0.97± 0.03 0.89± 0.05 0.96± 0.04 1.0± 0.0
10 Tiles 0.12± 0.03 0.05± 0.01 0.12± 0.02 0.35± 0.18 0.33± 0.15 0.3± 0.05 0.49± 0.07
20 Tiles 0.06± 0.01 0.11± 0.04 0.06± 0.01 0.15± 0.09 0.23± 0.12 0.25± 0.06 0.35± 0.08
LavaCrossing S9N1 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.01± 0.01 0.05± 0.05 0.01± 0.0 0.05± 0.04
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Partially-Observable Navigation Next we show the extended results for the MiniGrid experiments.
We use a series of challenging zero-shot environments (see Figure 16), introduced in the UED
literature (Dennis et al., 2020; Jiang et al., 2021a). We include the full results in Table 3.

   Labyrinth               Labyrinth2                  Maze                      Maze2                   Maze3             PerfectMaze*

SixteenRooms      SixteenRooms2      SmallCorridor*        LargeCorridor*     SimpleCrossing*    FourRooms*

Figure 16: MiniGrid Zero-Shot Environments. Those with an asterisk are procedurally generated: For Small
and Large Corridor, the position of the goal can be in any of the corridors, for SimpleCrossing and Four Rooms
see Chevalier-Boisvert et al. (2018) and for PerfectMaze see Jiang et al. (2021a).

Table 3: Zero-Shot transfer to human-designed environments. Each data point corresponds to the mean (and
standard error) of five independent runs, where each run is evaluated for 100 trials on each environment. †
indicates the generator first samples the number of blocks to place, between zero and sixty, then places that
many. ‡ indicates the generator produces empty rooms. Bold indicates being within one standard error of the
best mean. ? indicates p < 0.05 in Welch’s t-test against PLR. Note that all methods are evaluated after 20k
student updates, aside from PAIRED and Minimax which have 30k updates.

Environment PAIRED Minimax DR† PLR† ACCEL† ACCEL‡
16Rooms 0.63± 0.14 0.01± 0.01 0.87± 0.06 0.95± 0.03 1.0± 0.0 1.0± 0.0
16Rooms2 0.53± 0.15 0.0± 0.0 0.53± 0.18 0.49± 0.17 0.62± 0.22 0.92± 0.06
SimpleCrossing 0.55± 0.11 0.11± 0.04 0.57± 0.15 0.87± 0.05 0.92± 0.08 0.84± 0.16
FourRooms 0.46± 0.06 0.14± 0.03 0.77± 0.1 0.64± 0.04 0.9± 0.08 0.72± 0.07
SmallCorridor 0.37± 0.09 0.14± 0.09 1.0± 0.0 0.89± 0.05 0.88± 0.11 1.0± 0.0
LargeCorridor 0.27± 0.08 0.14± 0.09 0.64± 0.05 0.79± 0.13 0.94± 0.05 1.0± 0.0
Labyrinth 0.45± 0.14 0.0± 0.0 0.45± 0.23 0.55± 0.23 0.97± 0.03 0.86± 0.14
Labyrinth2 0.38± 0.12 0.0± 0.0 0.54± 0.18 0.66± 0.18 1.0± 0.01 1.0± 0.0
Maze 0.02± 0.01 0.0± 0.0 0.43± 0.23 0.54± 0.19 0.52± 0.26 0.72± 0.24
Maze2 0.37± 0.13 0.0± 0.0 0.49± 0.16 0.74± 0.13 0.93± 0.04 1.0± 0.0
Maze3 0.3± 0.12 0.0± 0.0 0.69± 0.19 0.75± 0.12 0.94± 0.06 0.8± 0.1
PerfectMaze (M) 0.32± 0.06 0.01± 0.0 0.45± 0.1 0.62± 0.09 0.88± 0.12 0.93± 0.07

Mean 0.39± 0.03 0.05± 0.01 0.62± 0.05 0.71± 0.04 0.88± 0.04? 0.9± 0.03?

0.4 0.5 0.6 0.7 0.8 0.9 1.0
P(X > Y)
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ACCEL (Empty)
Algorithm X

PLR

PLR
Algorithm Y

Figure 17: Probability of improvement of ACCEL vs. PLR across all the benchmark environments in Figure 16,
using the open source notebook fromm Agarwal et al. (2021b). The probability of improvement represents the
probability that Algorithm X outperforms Algorithm Y on a new task from the same distribution.

As we see, both versions of ACCEL significantly outperform the baselines. Particularly in the more
complex environments like Labyrinth we see large gains vs. the baselines. Also note that PLR
outperforms all other baselines, and ACCEL outperforms PLR. We show this in the Table with a
statistically significant point estimate, but also using the more robust metrics in rliable Agarwal
et al. (2021b), for example the “probability of improvement” shown in Figure 17.
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Testing the Limits of Current Approaches In the experimental section we showed the results for
a large procedurally generated maze, of size 51x51. ACCEL averaged a 53% and 52% success
rate when using the empty or DR generator respectively, vs. a next best PLR with 25%. Now we
consider going even further. We tested both versions of ACCEL, as well as DR and PLR, on an even
larger maze, this time 101x101, shown in Figure 18. Note that this would be challenging even for
human players, since the agent has a partially observable view. The performance of all methods is
significantly weaker, with DR and PLR achieving a mean of 4% success rate. However, ACCEL still
outperforms, achieving 7% and 8% success rate with the DR and empty generators respectively. We
believe at this point the bottleneck for further improvement may not be the curriculum, but instead
the LSTM-based policy which has to remember all previous paths, to solve the maze in the allotted
20,402 steps.

Figure 18: PerfectMazesXL. A 101x101 procedurally-generated MiniGrid environment. The agents have to
transfer zero-shot from training in a 15x15 grid. This environment is challenging even for humans, since the
agent only has a partially observable view, it requires memorizing the current location at all times to ensure
exploring all corners of the grid.

A.4 ADDITIONAL EXPERIMENTS

In this section we show a series of additional experiments to understand the performance of ACCEL.

The Sensitivity of Domain Randomization Consider a simple parameterized grid world environ-
ment where an agent has to navigate towards a goal. Each level varies in terms of the location of the
agent, goal and placement of obstacles. When these obstacles are walls the agent is able to learn
quickly, achieving high performance on the training distribution. However, when these obstacles are
lava, which causes instant death on collision, the agent is unable to learn (Figure 19.a), left). If we
change the DR parameterization to not only sample the locations of the lava tiles, but the number of
tiles to place, then the agent does indeed learn (Figure 19.a), right). This subtle change illustrates
the sensitivity of DR to the environment parameterization. We refer to this problem as “curse of
dimensionality for UED”, whereby increasing the design space leads to a crowding out of levels that
are effective for learning.

In Figure 19.b) we show the test performance for the three DR agents at the same checkpoint (1000
updates), as well as a PLR agent using the Binomial DR levels. Despite the poor performance for the
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Figure 19: Small grid results: a) On the left, we compare training with DR, randomizing obstacles that can
be walls or lava, on the right we see that when the obstacles are lava the choice of DR parameterization has a
significant impact on performance. In b) we see the test performance of these agents after 1k updates, PLR
applied to the Binomial (Bin) levels is able to produce a strong agent, why? In c) we see a density plot of DR
and PLR levels, showing frequency by Return and Positive Value Loss, which shows PLR curates solvable
levels where the agent receives a learning signal.

DR agent, PLR is able to achieve strong performance, outperforming even the Uniform DR agent. To
see how this is possible, in Figure 19.c) we compare the density of levels sampled by DR vs. those in
the PLR buffer, sorted by Return and Positive Value Loss. Notably, the levels chosen by PLR are
inherently higher return levels, thus, we see that PLR is able to find the frontier without handcrafted
heuristics. This example illustrates the importance of having a sufficient quantity of frontier levels.
Indeed, the success of PLR hinges on the ability to reliably sample new levels at the ever-changing
frontier of the agent’s capabilities. This is the key motivation for ACCEL.

Next, in Figure 20 we show the performance of the three DR agents when tested on each other’s
training distributions after one thousand training steps. All agents perform worst on the Fixed levels,
slightly better on the Binomial ones, with the best performance on Uniform. Notably, even the
Fixed agent, the weakest of the three, is able to see almost double the performance on the Uniform
levels. This indicates that a key ingredient to learning potential is having a sufficient number of easier
levels to generate learning signal. Indeed, this was noted in Jiang et al. (2021b) in their MiniGrid
experiments.

Re
tu

rn

Fixed Agent Binomial Agent Uniform Agent

Fixed Levels Binomial Levels Uniform Levels

Figure 20: Performance of agents trained on different level distributions when tested on each of the distributions.
It is clear to see the Uniform distribution contains more solvable levels—all three agents perform better on it.

Ablation Studies To investigate the design choices that led to the success of ACCEL, we consider a
variety of ablations:

• ACCEL Using the DR generator.
• Edit Batch The same ACCEL algorithm but editing the entire replay batch rather than the “easy”

levels from the batch.
• Learned Editor The same algorithm changing only the editor, which is optimized for positive

value loss.
• No Editor This is an ablation on the algorithm structure, we use Algorithm 1 but sample more

DR levels instead of editing.

Each of these uses the same exact structure, sampling levels from the DR distribution 10% of the
time, and editing levels after replaying from the curator. For the first, we edit the entire replay batch,
rather than just the top four easiest (high return minus positive value loss) that we use in the main
experiments. The results after 10k updates are shown in Table4. As we see, Editing the batch levels
performs slightly worse than easy, while there is also a decrease in performance for the learned editor.
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Table 4: Zero-Shot transfer to human-designed environments. Each data point corresponds to the mean (and
standard error) of five independent runs, where each run is evaluated for 100 trials on each environment. All
methods use a DR generator which places between zero and sixty blocks.

Test Environment ACCEL Edit Batch Learned Editor No Editor

16Rooms 1.0± 0.0 0.76± 0.19 0.9± 0.07 0.84± 0.06
16Rooms2 0.51± 0.28 0.23± 0.16 0.41± 0.19 0.68± 0.18
SimpleCrossing 0.8± 0.05 1.0± 0.0 0.9± 0.1 0.75± 0.05
FourRooms 0.85± 0.05 0.85± 0.06 0.88± 0.04 0.88± 0.05
SmallCorridor 0.72± 0.1 0.74± 0.1 0.6± 0.17 0.7± 0.18
LargeCorridor 0.91± 0.05 0.75± 0.08 0.56± 0.18 0.63± 0.18
Labyrinth 0.98± 0.02 0.85± 0.11 0.99± 0.01 0.67± 0.19
Labyrinth2 0.97± 0.03 0.83± 0.11 0.7± 0.15 0.48± 0.2
Maze 0.78± 0.21 0.87± 0.05 0.57± 0.18 0.15± 0.08
Maze2 0.5± 0.24 0.67± 0.18 0.65± 0.15 0.23± 0.15
Maze3 0.79± 0.14 0.9± 0.08 0.95± 0.05 0.56± 0.17

Mean 0.79± 0.04 0.76± 0.04 0.74± 0.04 0.58± 0.05

Note however that all of these ablations still outperform the next best baseline (PLR, mean = 0.69).
Finally, the ablation using additional DR levels instead of edited ones performs poorly, showing the
strong performance for ACCEL comes from editing rather than the structure of the algorithm.
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Figure 21: Replay buffer diversity vs. return in the lava environment. On the left we show the concentration
of the replay buffer, measured as the percentage of the top 100 high-regret levels that can be produced by just
ten parents. On the right we compare the average return on ten-tile test environments. “Small” corresponds to a
buffer of size 4k, with no generator, while “Large” indicates a buffer of size 10k, using a generator 10% of the
time.

Diversity of the Level Buffer we compare a buffer of size 4k with no DR sampling against our
method with a buffer size of 10k and 10% sampling. The plots show the proportion of the top
200 levels produced by just ten initial generator levels, with a significant increase for the smaller
buffer. We also compare the performance of the two agents on test levels with ten tiles, showing clear
outperformance for the lower concentration agent. It is likely that hyperparameters alone will not be
sufficient if we want to scale ACCEL to more open-ended problems, which we leave to future work.

B IMPLEMENTATION DETAILS

In this section we detail the training procedure for all our experiments. Training for all methods is
conducted on a single V100 GPU, using ten CPUs. The codebase is built on top of open source repos.
For PAIRED and Minimax we use results from the authors of Jiang et al. (2021a).

B.1 ENVIRONMENT DETAILS

Learning with Lava The MiniHack environment is an open-source Gym (Brockman et al., 2016)
environment which provides a wrapper around the full game of NetHack via the NetHack Learning
Environment Küttler et al. (2020). MiniHack allows users (or agents) the ability the fully specify
environments leveraging the full game engine from NetHack. For our experiments we use a simple
7x7 grid, and allow the agent to place lava tiles in any location of their choice. We considered three
different DR parameterizations in Figure 19. These are: “Fixed” which always places ten lava blocks,
“Binomial” which places twenty blocks, with a 50-50 chance of the block being lava or nothing, and
“Uniform” which selects the number of lava blocks to place from the range [0, 20]. The reward is
sparse, with the agent receiving +1 for reaching the goal, with a per timestep penalty of 0.01.
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Partially-Observable Navigation Each maze consists of a 15× 15 grid, where each cell can contain
a wall, the goal, the agent, or navigable space. The student agent receives a reward of 1− T/Tmax
upon reaching the goal, where T is the episode length and Tmax is the maximum episode length (set
to 250). Otherwise, the agent receives a reward of 0 if it fails to reach the goal.

Table 5: Total number of environment interactions for 20k PPO updates.
PPO Updates PLR ACCEL (DR) ACCEL (Empty)

20k 327M 347M 369M

B.2 ENVIRONMENT DESIGN PROCEDURE

The environment design procedure works as follows: at each timestep the adversary agent receives an
observation consisting of a map of the entire level and then takes a two dimensional action, consisting
of an object and a location, which can be anywhere in the grid. This is similar to several recent works
Dennis et al. (2020); Jiang et al. (2021b;a); Khalifa et al. (2020). For MiniGrid the object is always a
wall. For both methods, the goal and agent location are placed in the final two steps.

When editing, the editor has five steps to alter the environment. For the lava environment we only edit
to add or remove lava tiles, while for MiniGrid we allow the editor to also change the goal location.
If lava or walls (or lava) are placed in the current location of the goal or agent, then these replace the
goal or agent, which must then be relocated in the final two steps of the editing episode. If the editor
attempts to remove the goal or agent location in the final two steps then the action is void.

B.3 HYPERPARAMETERS

The majority of our hyperparameters are inherited from previous works such as Dennis et al. (2020);
Jiang et al. (2021b;a), with a few small changes. The first, for MiniHack we use the agent model from
the NetHack paper (Küttler et al., 2020), using the glyphs and blstats as observations. The
agent has both a global and a locally cropped view (produced using the coordinates in the blstats).

For MiniHack we conduct a grid search across the level replay buffer size {4000, 10000} for both
PLR and ACCEL, and for ACCEL we sweep across the edit method from {random, positive value
loss} where positive value loss equates to a learned editor. For MiniGrid we maintain the replay
buffer size from Jiang et al. (2021a) and only conduct the ACCEL grid search over the edit objective,
again running both {random, positive value loss}, as well as the levels to edit from {easy, batch}
and replay rate from {0.8, 0.9}. For MiniGrid, we follow the protocol from Jiang et al. (2021a) and
select the best hyperparameters using the validation levels {16Rooms, Labyrinth, Maze}. The final
hyperparameters chosen are shown in Table 6.
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Table 6: Hyperparameters used for training each method in the maze and car racing environments.

Parameter MiniHack (Lava) MiniGrid

PPO
γ 0.995 0.995
λGAE 0.95 0.95
PPO rollout length 256 256
PPO epochs 5 5
PPO minibatches per epoch 1 1
PPO clip range 0.2 0.2
PPO number of workers 32 32
Adam learning rate 1e-4 1e-4
Adam ε 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping yes yes
return normalization no no
value loss coefficient 0.5 0.5
student entropy coefficient 0.0 0.0
generator entropy coefficient 0.0 0.0

ACCEL
Edit rate, q 1.0 1.0
Replay rate, p 0.9 DR: 0.9, Empty: 0.8
Buffer size, K 10000 4000
Scoring function positive value loss positive value loss
Edit method positive value loss random
Levels edited batch easy
Prioritization rank rank
Temperature, β 0.3 0.3
Staleness coefficient, ρ 0.5 0.5

PLR
Scoring function positive value loss positive value loss
Replay rate, p 0.5 0.5
Buffer size, K 10000 4000
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