
Under review as a conference paper at ICLR 2023

LEARNING USEFUL REPRESENTATIONS FOR SHIFTING
TASKS AND DISTRIBUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Does the dominant approach to learn representations (as a side effect of optimizing
an expected cost for a single training distribution) remain a good approach when
we are dealing with multiple distributions. Our thesis is that such scenarios are
better served by representations that are “richer” than those obtained with a sin-
gle optimization episode. This is supported by a collection of empirical results
obtained with an apparently naïve ensembling technique: concatenating the rep-
resentations obtained with multiple training episodes using the same data, model,
algorithm, and hyper-parameters, but different random seeds. These independently
trained networks perform similarly. Yet, in a number of scenarios involving new
distributions, the concatenated representation performs substantially better than an
equivalently sized network trained from scratch. This proves that the representa-
tions constructed by multiple training episodes are in fact different. Although their
concatenation carries little additional information about the training task under
the training distribution, it becomes substantially more informative when tasks
or distributions change. Meanwhile, a single training episode is unlikely to yield
such a redundant representation because the optimization process has no reason to
accumulate features that do not incrementally improve the training performance.

1 INTRODUCTION

Although the importance of features in machine learning systems was already clear when the
Perceptron was invented (Rosenblatt, 1957), learning features from examples was often considered a
hopeless task (Minsky and Papert, 1969). Some researchers hoped that random features were good
enough, as illustrated by the Perceptron. Other researchers preferred to manually design features
using substantive knowledge of the problem (Simon, 1989). This changed when Rumelhart et al.
(1986) showed that the possibility of feature learning as a side effect of the risk optimization. Despite
reasonable concerns about the optimization of nonconvex cost functions, feature discovery through
optimization has driven the success of deep learning methods.

There are however many cues suggesting that learning features no longer can be solely understood
through the optimization of the expected error for a single data distribution. First, adversarial examples
(Szegedy et al., 2014) and shortcut learning (Geirhos et al., 2020) illustrate the need to make learning
systems that are robust to certain changes of the underlying data distribution and therefore involve
multiple expected errors. Second, the practice of transferring features across related tasks (Bottou,
2011; Collobert et al., 2011; Oquab et al., 2014) is now viewed as foundational (Bommasani et al.,
2021) and intrinsically involves multiple data distributions and cost functions. It is therefore timely
to question whether the optimization of a single cost function creates and accumulates features in
ways that make the most sense in this broader context.

This contribution reports on experiments showing how the out-of-distribution performance of a deep
learning model can benefit from internal representations that are richer and more diverse than those
computed through the usual optimization process. For instance, in a variety of changing distribution
scenarios, merely concatenating the penultimate layer representations obtained with several training
episodes can outperform networks of equivalent size trained from scratch.

Limitations This work only considers the representations extracted by the penultimate layer of
a deep network with a linear elementary classifier, or, in a single case, a distance-based classifier.
Our experimental results also focus image recognition problems. Whether the same findings hold for
inner representations or other applicative domains is left to future work. Despite this limited focus, it
is worth noticing that our experiments cover a variety of model sizes, ranging from a couple millions

1

Under review as a conference paper at ICLR 2023

to a couple billions of parameters. Finally, we only consider two very simple ways to create rich
representations, leaving considerable room for improved variants.

Organization of the manuscript Section 3 argues that a vast subspace of the penultimate layer
representation of a deep network can contain information that has no bearing on the optimization cost
and yet can have a substantial impact on the transfer learning performance of the network. Section 4
presents simple techniques that can be used to produce networks with slightly different representations
and to accumulate them in order to construct a richer and internally redundant representation vector.
Sections 5, 6, 7, and 8, present experimental results pertaining respectively to supervised transfer
learning, self-supervised transfer learning, meta-learning, and out-of-distribution learning.

2 RELATED WORK

Several authors (e.g. Huang et al., 2020; Teney et al., 2022) propose to work around the shortcut
learning problem (Geirhos et al., 2020) by shaping the last-layer classifier or introducing penalty
terms in the optimization process in a manner that favors richer representations. Zhang et al. (2022)
shows that many of these additions make the optimization challenging but more manageable if one
initializes the networks with rich features constructed by alternate methods. The methods discussed
in our work resemble the RFC algorithm of Zhang et al. (2022) because they also rely on multiple
training episodes. However, we find that merely training with different random seeds provides
sufficient diversity to achieve excellent performances for a variety of problems involving changes in
data distribution, revealing the limitations of representations constructed with a single training run.

Our experimental approach is related to deep ensembles (e.g. Lakshminarayanan et al., 2017) which
combine the predictions of separately trained networks in order to achieve superior in-distribution
performance. Ensembling techniques work best when one makes sure that the individual models
are diverse and have weakly correlated errors. Engineering diversity is often an expression of prior
knowledge about the problem at hand. In contrast, we purposely refrain from engineering diversity
(other than changing the seed) and we focus on the performance of our ensembles for new tasks and
data distributions.

The idea of rich representation is also related to recent work (Wang et al., 2022; Dvornik et al.,
2020; Bilen and Vedaldi, 2017; Gontijo-Lopes et al., 2021; Li et al., 2021; 2022) on “universal
representations” that combine the representations obtained with different tasks, datasets, network
architectures, hyper-parameters, etc. Because we purposely refrain from engineering such a diversity
and still observe a substantial effect, we cast a new light on both the desirable properties of a robust
representation and the limitations of the usual training process.

3 THE REPRESENTATION NULLSPACE

For the purposes of this work, we view a deep learning network as the composition of a feature
extractor Φ that maps a pattern x into a representation Φ(x) ∈ Rd and a linear layer that produces an
output of dimension k that we assume is substantially smaller than d (i.e. k < d). The network output
is then expressed as w ◦ Φ(x) where w is the k × d weight matrix of the linear output layer. Since
we assume that k < d, the matrix w has a substantial nullspace N of dimension greater or equal to
d− k. Therefore the function implemented by the network remains unchanged when one replaces the
feature extractor Φ by any Φ′ such that Φ(x)− Φ′(x) ∈ N with high probability. This implies that
there is a considerable choice of potential feature extractors that produce different representations
and yet have no impact on the network output.

Since such equivalent representations do not affect the empirical risk, they can only be differentiated
by regularization, either explicit or implicit. In order to improve the in-distribution generalization
performance of the network, common regularization techniques, such as the ubiquitous weight decay,
aim at zeroing the nullspace component of the representations Φ(x). For instance, Papyan et al.
(2020) show how the penultimate layer representation of various deep network collapses to a “simplex
equi-angular tight frame” of dimension k− 1 when trained for a very long time using a cross-entropy
loss and a slight weight decay. When this happens, the representation carries very little information
other than a noise-tolerant encoding of the network output.

Although this situation can be beneficial for in-distribution generalization, we argue that it is often
problematic when the task or the data distribution changes.

2

Under review as a conference paper at ICLR 2023

• In scenarios such as transfer learning and meta-learning, one is allowed to adapt the network
after the task or distribution change. Because the gradient back-propagated through the linear
layer is orthogonal to the nullspaceN , the only pressure to change the nullspace component
of the representation Φ(x) comes from fluctuations of the nullspace itself. Such fluctuations
occur when the linear layer weights w are adapted to exploit a temporary correlation between
the desired output and potentially interesting features presented in the nullspace. This is
easier when the initial training leaves more information in the nullspace.

• In other scenarios, one seeks to construct networks that are robust with respect to targeted
data distribution changes. This is usually achieved by special optimization objectives such
as distributional robust optimization (Sagawa et al., 2020) or such as invariant learning
(Arjovsky et al., 2020). In order to tame these more challenging optimization problems, it is
common to pretrain the networks with empirical risk minimization. However, Zhang et al.
(2022) show that constructing rich representations gives far better results than pretraining
with empirical risk minimization.

Table 1 reports on a simple experiment consisting of pre-training a RESNET18 on the CIFAR10
task and transferring its learned features to a CIFAR100 task by simply retraining the last linear
layer (see setups in Appendix A). Although the best in-distribution performance, 94.9%, is achieved
using a slight weight decay, the transfer learning performance of the features learned without weight
decay is far superior (49.6% versus 29.1%). The same observation holds when one reverses the
role of the CIFAR10 and CIFAR100 datasets. Because we are far from a full network collapse, this
effect disappears when one fine-tunes the transferred feature extractor, effectively recovering the
performance of a network directly trained on the target task. Sections 5 and 6 offer a more thorough
discussion of fine-tuning.

Table 1: Impact of L2 weight decay on supervised transfer learning between CIFAR10 and CIFAR100.

L2 weight decay CIFAR10 CIFAR10→CIFAR100 CIFAR100 CIFAR100→CIFAR10

0 91.41±0.81 49.68±0.72 70.37±1.49 78.87±0.98
5e-4 94.89±0.23 29.17±0.50 76.78±0.36 75.92±0.54

Things become of course more complicated when we abandon the assumptions that allowed us to
define the representation nullspace. For instance, the final layer might still be linear but with a
number of outputs or classes k that exceeds the dimension d of the penultimate layer. Alternatively
the final layer might not be linear at all, as, for instance, in the siamese networks Bromley et al.
(1993) increasingly used in self-supervised scenarios. Yet, the work of Papyan et al. (2020), the
information bottleneck approach of Shwartz-Ziv and Tishby (2017), and the gradient starvation
observations (Pezeshki et al., 2021) of, still suggest that in the long run, the regularized training
process produces upper layer representations that hardly contain any information other than what is
necessary for the task encoded by the optimization criterion. In fact, once the representation contains
enough information to fulfill the training task, the optimization process has no reason to create and
accumulate features that no longer help improve the training objective but might yet become useful
when the data distribution changes.

4 FEATURE ACCUMULATION

How then can we construct a deep learning procedure that accumulates as many potentially useful
features as possible into the internal representations of the network? The answer depends of course
on how we determine that a feature is potentially useful before knowing how the data distribution
might change.

The Rich Feature Construction (RFC) algorithm of Zhang et al. (2022, § 4.1) seeks features that are
useful for at least some subset of the training examples. The algorithm first performs multiple training
episodes using adversarially re-weighted training data in a manner that ensures that these training
episodes yield substantially different representations. Then a multiple head distillation process (see
Figure 1, Left) constructs a single feature extractor that combines all these distinct representations
into a single representation vector of equivalent size. This cumbersome process has been shown to
vastly improve the out-of-distribution performance of several invariant training algorithms.

3

Under review as a conference paper at ICLR 2023

!!

"!

!"

""

!#

"#
CAT3

!! !" !#

Figure 1: Left: (DISTILLn) A multiple head network (red) trained to predict the outputs of the
pre-trained networks Φ1,Φ2, · · · (blue) must develop a representation Φ that subsumes those of all
the blue networks. The same distillation process is used by the RFC algorithm (Zhang et al., 2022)
but after training the networks with adversarially re-weighted data. Right: (CATn) The feature
extractors of the pre-trained networks are concatenated, producing a larger network.

 1
st

run

 2
nd

 ru
n

 3
rd

run

 4
th

run

 5
th

run

Target Output vT
j j

Cat5

 Disti
ll5

5th
 ru

n

4th
 ru

n

3rd
 ru

n

2n
d r

un

1st
 ru

n

So
ur

ce
 R

ep
re

se
nt

at
io

n
i 0.000 0.000 0.000 0.000 0.000

0.020 0.017 0.018 0.019 0.018

0.045 0.042 0.043 0.043 0.000

0.046 0.045 0.044 0.000 0.045

0.044 0.041 0.000 0.043 0.044

0.042 0.000 0.039 0.041 0.040

0.000 0.044 0.044 0.045 0.047

Seperately Trained

0.00

0.01

0.02

0.03

0.04

1st
 sn

ap
s

2n
d s

na
ps

3rd
 sn

ap
s

4th
 sn

ap
s

5th
 sn

ap
s

Target Output vT
j j

Cat5

Disti
ll5

5th
 sn

ap
s

4th
 sn

ap
s

3rd
 sn

ap
s

2n
d s

na
ps

1st
 sn

ap
s

0.000 0.000 0.000 0.000 0.000

0.053 0.059 0.065 0.071 0.075

0.161 0.148 0.148 0.139 0.000

0.161 0.147 0.142 0.000 0.139

0.141 0.134 0.000 0.131 0.137

0.130 0.000 0.129 0.131 0.131

0.000 0.118 0.122 0.127 0.130

Sampled Snapshots

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Figure 2: How well can we predict the output of network i using the feature extractor Φj of network
j ̸= i, and using a feature extractor Φd of equal dimension obtained by distillation? Left: Five
networks trained from scratch with different seeds. Right: Five snapshots during a single training
episode with relatively high stepsize. The comparison is only applicable on each column because Eq
1 isn’t invariant to invertible linear transformation on v⊤j Φj(x).

The present contribution exploits a far simpler intuition. Although the optimization process has no
reason to accumulate features that no longer help the training objective, these same features might
have been found useful when the network representation was still wanting. Therefore we posit that
we can obtain substantially different representations by simply performing multiple training episodes
with different seeds, that is, different initial weights and different data orderings.

In order to validate this intuition, we train five RESNET18 networks on the Caltech-UCSD Birds (CUB)
dataset (Wah et al., 2011) using different seeds, yielding five feature extractors Φi and final linear
layers vi. We then compute the normalized least square errors (computed via QR decomposition)
obtained when predicting the output of network j using the features of each network i ̸= j,

min
v

E[∥v⊤Φi(x)− v⊤j Φj(x)∥2]
E[∥v⊤j Φj(x)∥2]

. (1)

Figure 2 (left) shows how these errors are substantially higher than those obtained when predicting
the network outputs using the combined feature extractor obtained by distillation (Figure 1, left). This
indicates that merely training with the same data but different seeds produces different representations
which can be combined into a richer representation that predicts the outputs of all the original
networks better than any individual network representation. Figure 2 (right) shows the same effect
using instead five regularly spaced snapshots taken during a single training episode with a high step
size. Although this is computationally more attractive, the experimental results reported in the rest of
this paper always use the more easily interpretable and independently reproducible multiple training
approach.

Although distillation provides the means to combine the representations of multiple networks into
a single feature extractor of equivalent dimension (Figure 1, left), the distillation process depends
on the training data distribution and therefore might still exclude features that could become useful
when the distribution changes. The simplest distribution-independent way to combine representations
consists of concatenating them into a vector whose dimension is the sum of the dimensions of the

4

Under review as a conference paper at ICLR 2023

Table 2: Supervised transfer learning from IMAGENET to INAT18, CIFAR100, and CIFAR10 using
linear probing. The ERM (empirical risk minimization) rows provide baseline results. The CATn
rows use the concatenated representations of n separately trained networks. The DISTILL5 row uses
the representations of five separately trained networks combined by distillation. Performances should
be compared between architectures with comparable numbers of parameters.

ID Linear Probing (OOD)
method architecture params IMAGENET INAT18 CIFAR100 CIFAR10

ERM RESNET50 23.5M 75.58 37.91 90.57 73.23
ERM RESNET50W2 93.9M 77.58 37.34 90.86 72.65
ERM RESNET50W4 375M 78.46 38.71 92.13 74.81

ERM 2×RESNET50 47M 75.03 39.34 90.94 74.36
ERM 4×RESNET50 94M 75.62 41.89 90.61 74.06

CAT2 2×RESNET50 47M 77.57 43.26 91.86 76.10
CAT4 4×RESNET50 94M 78.15 46.55 93.09 78.19
CAT5 5×RESNET50 118M 78.27 47.78 93.21 78.53
CAT10 10×RESNET50 235M 78.36 49.65 93.75 79.61

DISTILL5 RESNET50 23.5M 76.39 40.75 92.54 76.50

108

params

75.5

76.0

76.5

77.0

77.5

78.0

78.5

To
p1

 A
cc

ur
ac

y

rn50

rn50w2

rn50w4

cat2

cat4
cat5 cat10

distill5

Imagenet
 (1k target classes)

wide
cat
distill
ensemble

108

38
40
42
44
46
48
50

Lin
ea

r P
ro

bi
ng

Inaturalist18
 (8k target classes)

wide (lp)
cat (lp)
distill (lp)
ensemble

108

74

76

78

Cifar100
 (100 target classes)

108
90.5
91.0
91.5
92.0
92.5
93.0
93.5

Cifar10
 (10 target classes)

108

#params

64

65

66

67

68

Fin
e

Tu
ni

ng

wide (ft)
cat (2ft)
cat (ft)
distill (ft)

108

#params

86

87

88

108

#params

97.2

97.4

97.6

97.8

98.0

98.2

Figure 3: Supervised transfer learning from IMAGENET to INAT18, CIFAR100, and CIFAR10. The
top row shows the superior linear probing performance of the CATn networks (blue, “cat(lp)”). The
bottom row shows the performance of fine-tuned CATn, which is poor with normal fine-tuning
(brown, “cat(ft)”) and excellent for two-stage fine tuning (blue, “cat(2ft)”). Because all models are
trained using the same data and protocol, the training time grows proportionally with the number of
parameters, except for the largest wide models which suffer from model parallelization overhead.

source representations (Figure 1, right). However, we must then compare the out-of-distribution
performance of the concatenated representation with that of single networks of equivalent complexity.
The following sections show that substantial improvements can still be achieved under this condition.

5 SUPERVISED TRANSFER LEARNING EXPERIMENTS

This section focuses on supervised transfer learning scenarios in which the representations learned
using an auxiliary supervised task, such as the IMAGENET(1k) object recognition task (Deng et al.,
2009), are then used for the target tasks, such as, for our purposes, the CIFAR10, CIFAR100, and
INATURALIST18 (INAT18), object recognition tasks (Krizhevsky, 2009; Van Horn et al., 2018). We
distinguish the linear probing scenario where the penultimate layer features of the pre-trained network
are used as inputs for linear classifiers trained on the target tasks, and the fine tuning scenario which
uses back-propagation to further update the transferred features using the target task training data.

The first three rows of Table 2, labeled ERM, provide baselines for the linear probing scenario,
using respectively a RESNET50 network (He et al., 2016a), as well as larger variants RESNET50Wn
with n times wider internal representations and roughly n2 times more parameters. The following

5

Under review as a conference paper at ICLR 2023

!"#

!!

"!

!"$

!"%
!"#

!!

"!

!"$

!"%

!"#$%"&'()#&*+)(#%

,(&-.'/'&"0)%&12

3'(#)%-(#)#&*+)(#%

,(%&"4#%)%&12

!" !# !$

"

5,(*&%#(&%#)6'(#$%-(#7)

"#8"#1#(%&%',(1)&(7)%"&'(

*/&11'6'#")!"

Figure 4: Two-stage fine-tuning consists of fine-tuning each network separately, then concatenating
their feature extractors, now frozen, and training a final classifier.

108 2 × 108 3 × 108 4 × 108

params

82.50

82.75

83.00

83.25

83.50

83.75

84.00

84.25

Vi
T

 L
in

ea
r

Pr
ob

in
g

 t
op

1-
ac

c

ViT-B/16

ViT-L/16

cat2
Imagenet(384px)

wide&deep (lp)
cat (lp)

108 2 × 108 3 × 1084 × 108 6 × 108

params

84.25

84.50

84.75

85.00

85.25

85.50

85.75

86.00

Vi
T

 F
in

e-
Tu

ni
ng

 t

op
1-

ac
c

ViT-H/14

Imagenet(384px)

wide&deep (ft)
cat (2ft)

108 2 × 108 3 × 108 4 × 108

params

80.5

81.0

81.5

82.0

82.5

83.0

83.5

Vi
T

(a
ug

re
g)

 L

in
ea

r
Pr

ob
in

g
 t

op
1-

ac
c

ViT-B/16

ViT-L/16

cat2
Imagenet(384px)

wide&deep (lp)
cat (lp)

108 2 × 108 3 × 108 4 × 108

params

85.4

85.6

85.8

86.0

86.2

86.4

86.6

Vi
T

(a
ug

re
g)

 F

in
e-

Tu
ni

ng

 t
op

1-
ac

c

Imagenet(384px)
wide&deep (ft)
cat (2ft)

Figure 5: Supervised transfer learning from IMAGENET21K to IMAGENET on vision transformers.

two rows of Table 2 provides additional baseline results using networks n×RESNET50 composed
of respectively n separate RESNET50 networks joined by concatenating their penultimate layers.
Although these networks perform relatively poorly on the pre-training task IMAGENET, their linear
probing performance is substantially better than that of the ordinary RESNETs.

The following four lines of Table 2, labeled CATn, are obtained by training n separate RESNET50
networks on IMAGENET using different random seeds and using their concatenated representations
as inputs for a linear classifier trained on the target tasks. This approach yields linear probing
performances that substantially exceed the performances of comparably sized baseline networks. It is
interesting to note how CATn, with separately trained components, outperforms the architecturally
similar n×RESNET50 trained as a single network. The final line of Table 2, labeled DISTILL5, is
obtained by combining the representation of five separately trained RESNET50 by distillation and
training a linear classifier on the target task. The DISTILL5 linear probing performance exceeds that
of the comparable RESNET50 network but does not match CATn.

These results are succinctly represented in the top row of Figure 3. For each target task INAT18,
CIFAR100, and CIFAR10, two curves respectively show the linear probing performance of the
baseline RESNET50Wn (red, labeled “wide(lp)”) and of the CATn networks (blue, “cat(lp)”) as a
function of the number of parameters of their inference architecture. An additional point (pink star,
“distill(lp)”) describes the performance of DISTILL5. The left plot (double height) of Figure 3 provides
the same information when the target task is the same as the pre-training task. In order to save space,
all further results in the main text of this contribution are presented with such plots, with result tables
provided in the appendix B and C.

The top row of Figure 3 also plots the performance of deep ensemble averaging (logits averaging,
green, labeled “ensemble”). Such ensembles rely on the same concatenated representation as the CATn
but differ because the final classifier is an average of n separately trained classifiers of dimension d
instead of a full linear classifier of dimension nd. We view this as a difference in training capacity
that explains why ensembles match the CATn performance on the CIFAR tasks but lag behind on the
more challenging INAT18 task.

The bottom row of Figure 3 presents results for the fine-tuning scenario. For each target task, the
red curve (labeled “wide(ft)”) plots the fine-tuning transfer learning performance of the baseline
RESNET50Wn networks. The brown curves (“cat(ft)”) represent the poor transfer performance
obtained by concatenating n separately trained RESNET50 feature extractors, adding a linear layer,
and fine-tuning everything by back-propagation on the target task. The poor performance of plain
fine-tuning has already been pointed out (Kumar et al., 2022; Kirichenko et al., 2022). In contrast, the
blue curves (“cat(2ft)”) represent the superior performance of two-stage fine tuning (Figure 4), which
consists of separately training n RESNET50 on IMAGENET, separately fine-tuning these RESNET50
on the target task, and finally training a linear classifier on top of the concatenation of the n separately
fine-tuned representations.

6

Under review as a conference paper at ICLR 2023

108 109

75

76

77

78

79

SW
AV

 L

in
ea

r
Pr

ob
in

g
 t

op
1-

ac
c

rn50

rn50w2 rn50w4

rn50w5

cat2

cat5

cat7
cat8

Imagenet

wide(lp)
cat(lp)
ensemble

108 109
42

44

46

48

50

Inaturalist18

108 109

77

78

79

80

81

82

83
Cifar100

108 109

92

93

94

95

Cifar10

109

#params

74

75

76

77

78

SE
ER

 L

in
ea

r
Pr

ob
in

g
 t

op
1-

ac
c

rg32gf

rg64gf

rg128gf

rg256gf

cat2

cat3

cat4
Imagenet

wide&deep(lp)
cat(lp)
ensemble

109

40

42

44

46

48

Inaturalist18

109

72

74

76

78

Cifar100

109

90

91

92

93

94
Cifar10

108 109

78.0

79.0

80.0

81.0

Fi
ne

-T
un

in
g

 t
op

1-
ac

c

Imagenet
wide (ft)
cat (2ft)
cat (ft)

109

#params

83.5

84.0

84.5

85.0

85.5

Fi
ne

-T
un

in
g

 t
op

1-
ac

c

Imagenet (384px)
wide&deep (ft)
cat (2ft)

Figure 6: Self-supervised transfer learning with SWAV on unlabeled IMAGENET (top row) and with
SEER in INSTAGRAM1B (bottom row). CATn yields the best linear probing performance (“cat(lp)”)
for supervised IMAGENET, INAT18, CIFAR100, and CIFAR10 target tasks. CATn with two-stage
fine tuning (“cat(2ft)”) matches equivalently sized baseline models, but with much easier training. Due
to the space limitation, we put other fine-tuning curves in appendix C.1.1.

Figure 5 shows that these observations also hold for large self-attention networks. We carried out
supervised transfer experiments using the original vision transformers (ViT) (Dosovitskiy et al., 2020)
and using a more advanced version (ViT(augreg)) with tuned data augmentations and regularization
(Steiner et al., 2021). We use two transformers of two different sizes, ViT-B/16 and ViT-L/16,
pretrained on IMAGENET21K.1 Supervised transfer baselines are obtained by linear-probing and by
fine-tuning on IMAGENET1K. These baselines are outperformed by respectively linear-probing and
two-stage fine tuning on top of the concatenation of their final representations (CAT2). Note that
an even larger transformer architecture, ViT-H/14, yields about the same IMAGENET1K fine-tuning
performance as ViT-L/16, despite having twice as many parameters Dosovitskiy et al. (2020).

6 SELF-SUPERVISED TRANSFER LEARNING EXPERIMENTS

In self-supervised transfer learning (SSL), transferable representations are no longer constructed
using a supervised auxiliary task, but using a training criterion that does not involve tedious manual
labeling. We focus on schemes that rely on the knowledge of a set of acceptable pattern transforma-
tions. The training architecture then resembles a siamese network whose branches process different
transformations of the same pattern. The SSL training objective must then balance two terms: on
the one hand, the representations computed by each branch must be close or, at least, related; on the
other hand, they should be prevented from collapsing partially (Jing et al., 2021) or catastrophically
(Chen and He, 2020). Although this second term tends to fill the representation with useful features,
what is necessary to balance the SSL training objective might still exclude potentially useful features
for the target tasks.

This section presents results obtained using SWAV pre-training using 1.2 million IMAGENET images
(Caron et al., 2020) and using SEER pre-training using 1 billion INSTAGRAM1B images (Goyal
et al., 2022). These experiments leverage the pre-trained models made available by the authors: four
RESNET50, one RESNET50W2, one RESNET50W4 and one RESNET50W5 for the SWAV experi-
ments;2 and one REGNET32GF, one REGNET64GF, one REGNET128GF, and one REGNET256GF
(1.3B parameters) for the SEER experiments.3.

The first four columns of Figure 6 present linear probing results for four target object recognition
tasks: supervised IMAGENET, INATURALIST18, CIFAR100, and CIFAR10. The baseline curves
(red, labeled “wide(lp)” or “wide&deep(lp)”) plots the performance of linear classifiers trained on top
of the pre-trained SSL representations. The CATn curves (blue, labeled “cat(lp)”) were obtained by
training a linear classifier on top of the concatenated representations of the n smallest SSL pre-trained

1Checkpoints provided at https://github.com/google-research/vision_transformer.
2https://github.com/facebookresearch/swav
3https://github.com/facebookresearch/vissl/tree/main/projects/SEER

7

https://github.com/google-research/vision_transformer
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/vissl/tree/main/projects/SEER

Under review as a conference paper at ICLR 2023

M
AM

L
Re

la
tio

nN
et

M
at

ch
in

gN
et

Pr
ot

oN
et

Ba
se

lin
e

Ba
se

lin
e+

+
Co

nc
at

2
Co

nc
at

5
Di

st
ill2

Di
st

ill5
Di

st
ill5

-s

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0
CUB 5way-1shot

M
AM

L
Re

la
tio

nN
et

M
at

ch
in

gN
et

Pr
ot

oN
et

Ba
se

lin
e

Ba
se

lin
e+

+
Co

nc
at

2
Co

nc
at

5
Di

st
ill2

Di
st

ill5
Di

st
ill5

-s

82

84

86

88

90

CUB 5way-5shot

M
AM

L
Re

la
tio

nN
et

M
at

ch
in

gN
et

Pr
ot

oN
et

Ba
se

lin
e

Ba
se

lin
e+

+
Co

nc
at

2
Co

nc
at

5
Di

st
ill2

Di
st

ill5
Di

st
ill5

-s

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

To
p-

1
Ac

cu
ra

cy

miniImagenet 5way-1shot

M
AM

L
Re

la
tio

nN
et

M
at

ch
in

gN
et

Pr
ot

oN
et

Ba
se

lin
e

Ba
se

lin
e+

+
Co

nc
at

2
Co

nc
at

5
Di

st
ill2

Di
st

ill5
Di

st
ill5

-s

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0
miniImagenet 5way-5shot

Figure 7: Few-shot learning performance on MINIIMAGENET and CUB. Four common few-shot
learning algorithms are shown in red (results from Chen et al. (2019)). Two supervised transfer
methods, with either a linear classifier (BASELINE) or cosine-based classifier (BASELINE++) are
shown in blue. The DISTILL and CAT results, with a cosine-base classifier, are respectively shown in
orange and gray. The DISTILL5-S results were obtained using five snapshots taken during a single
training episode with a relatively high step size. The standard deviations over 5 runs are reported.

representations. The deep ensemble curve (green, labeled “ensemble”) was obtained by averaging the
outputs (before softmax) of linear classifiers separately trained on top of each of the n smallest SSL
pre-trained representations. The CATn approach offers the best overall performance.

The last column of Figure 6 presents results with fine-tuning for the supervised IMAGENET task.
The CATn approach with two-stage fine-tuning (Figure 4) matches the performance of equivalently
sized baseline networks. In particular, the largest CAT4 model, with 2.3B parameters, achieves 85.5%
correct classification rate, approaching the 85.8% rate of the largest network of Goyal et al. (2022),
REGNET10B with 10B parameters. Of course, separately training and fine-tuning the components of
the CAT4 network is far easier than training a single REGNET10B network.

Additional results using SIMSIAM (Chen et al., 2020) and with DISTILL are provided in appendix
C.3. Other experiment details are provided in appendix C.

7 META-LEARNING AND FEW-SHOTS LEARNING EXPERIMENTS

Each target task in the few-shots learning scenario comes with only a few training examples. One
must then consider a large collection of target tasks to obtain statistically meaningful results.

We follow the setup of Chen et al. (2019) in which the base task is an image classification task with a
substantial number of classes and examples per class, and the target tasks are five-way classification
problems involving novel classes that are distinct from the base classes and come with only a few
examples. Such a problem is often cast as a meta learning problem in which the base data is used to
learn how to solve a classification problem with only a few examples. Chen et al. (2019) find that
excellent performance can be achieved using simple baseline algorithms such as supervised transfer
learning with linear probing, (BASELINE, as in Section 5), or with a cosine-based final classifier
(BASELINE++). These baselines match and sometimes exceed the performance of common few shots
algorithm such as MAML (Finn et al., 2017), RELATIONNET (Sung et al., 2018), MATCHINGNET
(Vinyals et al., 2016), and PROTONET (Snell et al., 2017).

Figure 7 reports results obtained with a RESNET18 architecture on both the MINIIMAGENET and
CUB) five ways classification tasks with either one or five examples per class as set up by Chen et al.
(2019). The MAML, RELATIONNET, MATCHINGNET, and PROTONET results (red bars) are copied
verbatim from (Chen et al., 2019, table A5). The BASELINE and BASELINE++ results were further
improved by a systematic L2 weight decay search procedure (see appendix D.2). All these results
show substantial variations across runs, about 4% for CUB and 2% for MINIIMAGENET.

The DISTILLn and CATn results were then obtained by first training n RESNET18 on the base data
with different seeds, constructing a combined feature extractor by either distillation or concatenation,
then, for each task, training a cosine distance classifier using these features as inputs. Despite the high
replication variance of the competing results, both DISTILL and CAT show very strong performance.

The pink bar (DISTILL5-s) in Figure 7 shows that similar results can be obtained when one combines
the feature extractors of five snapshots taken at regular intervals during a single training episode with
a relatively high step size (0.8). More results and details are shown in appendix D.

8

Under review as a conference paper at ICLR 2023

Table 3: Test accuracy on the CAMELYON17 dataset with DENSENET121. We compare various
initialization (ERM, CATn, DISTILLn, and RFC) for two algorithms VREX and ERM using either
the IID or OOD hyperparameter tuning method. The standard deviations over 5 runs are reported.

representation IID Tune OOD Tune
construction method vREx ERM vREx ERM

ERM 69.6±10.5 66.6±9.8 70.6±10.0 70.2±8.7

CAT2 74.3±8.0 74.3±8.0 73.7±8.1 74.2±8.1
CAT5 75.2±2.9 75.0±2.7 74.9±3.3 75.1±2.8
CAT20 76.4±0.5 76.5±0.5 76.8±0.9 76.4±0.9

DISTILL2 67.1±4.7 66.9±4.8 67.4±4.3 66.7±4.2
DISTILL5 69.9±7.4 69.9±6.9 71.8±5.0 69.9±6.3

DISTILL20 73.3±2.5 73.2±2.3 74.8±3.2 73.1±2.7

RFC2 77.9±2.7 78.2±2.6 79.5±2.7 78.6±2.6

8 OUT-OF-DISTRIBUTION GENERALIZATION EXPERIMENTS

In the out-of-distribution generalization scenario, we seek a model that performs well on a family of
data distributions, also called environment, on the basis of a finite number of training sets distributed
according to some of these distributions. Arjovsky et al. (2020) propose an invariance principle to
solve such problems and propose the IRMV1 algorithm which searches a good predictor whose
final linear layer is simultaneously optimal for all training distributions. Since then, a number of
algorithms exploiting similar ideas have been proposed, such as VREX (Krueger et al., 2020), FISHR
(Rame et al., 2022), or CLOVE (Wald et al., 2021). Theoretical connections have been made with
multi-calibration (Hebert-Johnson et al., 2018; Wah et al., 2011). Alas the performance of these
algorithms remains wanting (Gulrajani and Lopez-Paz, 2021). Zhang et al. (2022) attribute this poor
performance to the numerical difficulty of optimizing the complicated objective associated with
these algorithms. They propose to work around these optimization problems by providing initial
weights that already extract a rich palette of potentially interesting features constructed using the
RFC algorithm.

Following Zhang et al. (2022), we use the CAMELYON17 tumor classification dataset (Bandi et al.,
2018) which contains medical images collected from five hospitals with potentially different devices
and procedures. As suggested in Koh et al. (2021), we use the first three hospitals as training
environments and the fifth hospital for testing. OOD-tuned results are obtained by using the fourth
hospital to tune the various hyper-parameters. IID-tuned results only use the training distributions
(see details in appendix E). The purpose of our experiments is to investigate whether initializing with
the DISTILL or CAT algorithm provides a computationally attractive alternative to RFC.

Table 3 compares the test performance achieved by two algorithms, VREX and ERM, after initializing
with ERM, CATn, DISTILLn, and RFC2, in both the IID-tune and OOD-tune scenarios. The CAT
and DISTILL initialization perform better than ERM but not as well as RFC. This result clearly shows
the need to research better ways to train networks in a manner that yields diverse representations.
Although this contribution shows that simply changing the seed (as in CAT and DISTILL) can achieve
good results, the experience of deep ensembles (Gontijo-Lopes et al., 2022) suggests that more refined
diversification methods might yield substantially better representations.

9 CONCLUSION

We have presented an ensemble of experimental results for scenarios involving changing task and
distributions such as transfer learning, few shots learning, and cross-domain robust learning. These
results are quite good in their own right. But more importantly, they show that such scenarios are
better served by representations that are richer than those obtained with a single optimization episode.
This observation provides a lot of room for new representation learning algorithms that move away
from the currently dominant scheme, that is, relying solely on a single optimization episode.

9

Under review as a conference paper at ICLR 2023

ACKNOWLEGMENTS

Anonymized.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv, 2020.

Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke
Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, et al.
From detection of individual metastases to classification of lymph node status at the patient level:
the camelyon17 challenge. IEEE Transactions on Medical Imaging, 2018.

Hakan Bilen and Andrea Vedaldi. Universal representations: The missing link between faces, text,
planktons, and cat breeds. arXiv preprint arXiv:1701.07275, 2017.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale,
Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. On the opportunities and risks of foundation models. CoRR, abs/2108.07258, 2021.
URL https://arxiv.org/abs/2108.07258.

Léon Bottou. From machine learning to machine reasoning. Technical report, arXiv:1102.1808,
February 2011.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Jame Bromley, Jim W. Bentz, Léon Bottou, Isabelle Guyon, Yann Le Cun, C. Moore, Eduard
Säckinger, and Roopak Shah. Signature verification using a siamese time delay neural network.
International Journal of Pattern Recognition and Artificial Intelligence, 7(4), 1993. URL http:
//leon.bottou.org/papers/bromley-bentz-93.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint
arXiv:2011.10566, 2020.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12:
2493–2537, Aug 2011.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://arxiv.org/abs/2108.07258
http://leon.bottou.org/papers/bromley-bentz-93
http://leon.bottou.org/papers/bromley-bentz-93

Under review as a conference paper at ICLR 2023

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Selecting relevant features from a multi-domain
representation for few-shot classification. In European Conference on Computer Vision, pages
769–786. Springer, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673, 2020.

Raphael Gontijo-Lopes, Yann Dauphin, and Ekin D Cubuk. No one representation to rule them all:
Overlapping features of training methods. arXiv preprint arXiv:2110.12899, 2021.

Raphael Gontijo-Lopes, Yann Dauphin, and Ekin Dogus Cubuk. No one representation to rule
them all: Overlapping features of training methods. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=BK-4qbGgIE3.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Priya Goyal, Quentin Duval, Isaac Seessel, Mathilde Caron, Mannat Singh, Ishan Misra, Levent
Sagun, Armand Joulin, and Piotr Bojanowski. Vision models are more robust and fair when
pretrained on uncurated images without supervision. arXiv preprint arXiv:2202.08360, 2022.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=lQdXeXDoWtI.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016b.

Ursula Hebert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Cal-
ibration for the (Computationally-identifiable) masses. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1939–1948. PMLR, 10–15 Jul 2018.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging improves cross-domain
generalization. In European Conference on Computer Vision, pages 124–140. Springer, 2020.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is
sufficient for robustness to spurious correlations. In ICML 2022: Workshop on Spurious
Correlations, Invariance and Stability, 2022. URL https://openreview.net/forum?
id=THOOBy1uWVH.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pages 5637–5664. PMLR, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical re-
port, University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

11

https://openreview.net/forum?id=BK-4qbGgIE3
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=THOOBy1uWVH
https://openreview.net/forum?id=THOOBy1uWVH
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Under review as a conference paper at ICLR 2023

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Remi Le Priol,
and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). arXiv, 2020.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=UYneFzXSJWh.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representation learning from multiple do-
mains for few-shot classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9526–9535, 2021.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representations: A unified look at multiple task
and domain learning. arXiv preprint arXiv:2204.02744, 2022.

M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proceedings of Computer Vision
and Pattern Recognition (CVPR). IEEE, 2014.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020. doi: 10.1073/pnas.2015509117. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2015509117.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in Neural
Information Processing Systems, 34:1256–1272, 2021.

Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for
out-of-distribution generalization. In International Conference on Machine Learning, pages 18347–
18377. PMLR, 2022.

F. Rosenblatt. The perceptron: A perceiving and recognizing automaton. Technical Report 85-460-1,
Project PARA, Cornell Aeronautical Lab, 1957.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In Parallel distributed processing: Explorations in the microstructure of cognition,
volume I, pages 318–362. Bradford Books, Cambridge, MA, 1986.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
In International Conference on Learning Representations (ICLR), 2020.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

J.C. Simon. From Pixels to Features. North Holland, August 1989.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
cb8da6767461f2812ae4290eac7cbc42-Paper.pdf.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

12

https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://www.pnas.org/doi/abs/10.1073/pnas.2015509117
https://www.pnas.org/doi/abs/10.1073/pnas.2015509117
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf

Under review as a conference paper at ICLR 2023

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1199–1208, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014. URL http://arxiv.org/abs/1312.6199.

Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton van den Hengel. Evading the simplicity
bias: Training a diverse set of models discovers solutions with superior ood generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16761–16772, 2022.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8769–
8778, 2018.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray Kavukcuoglu, and Daan Wierstra. Match-
ing Networks for One Shot Learning. In D Lee, M Sugiyama, U Luxburg, I Guyon, and R Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
90e1357833654983612fb05e3ec9148c-Paper.pdf.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The Caltech-
UCSD Birds-200-2011 dataset. Technical report, California Institute of Technology, 2011.

Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain
generalization. arXiv preprint arXiv:2102.10395, 2021.

Hongyu Wang, Eibe Frank, Bernhard Pfahringer, Michael Mayo, and Geoffrey Holmes. Cross-domain
few-shot meta-learning using stacking. arXiv preprint arXiv:2205.05831, 2022.

Jianyu Zhang, David Lopez-Paz, and Leon Bottou. Rich feature construction for the optimization-
generalization dilemma. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 26397–26411. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/zhang22u.html.

13

http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.mlr.press/v162/zhang22u.html

Under review as a conference paper at ICLR 2023

LEARNING USEFUL REPRESENTATIONS FOR SHIFTING
TASKS AND DISTRIBUTIONS

Supplementary Material

A CIFAR SUPERVISED TRANSFER LEARNING

CIFAR10 supervised transfer learning experiments train a RESNET18 network on the CIFAR10 dataset
with/without L2 weight decay (4e-5) for 200 epochs. During training, we use a SGD optimizer
(Bottou et al., 2018) with momentum=0.9, initial learning rate=0.1, cosine learning rate decay, and
batch size=128. As to data augmentation, we use RANDOMRESIZEDCROP (crop scale in [0.8, 1.0]),
aspect ratio in [3/4, 4/3]) and RANDOMHORIZONTALFLIP. During testing, the input images are
resized to 36× 36 by bicubic interpolation and CENTERCROPED to 32× 32. All input images are
normalized by mean = (0.4914, 0.4822, 0.4465), std = (0.2023, 0.1994, 0.2010) at the end.

Then transfer the learned representation to CIFAR100 dataset by training a last-layer linear classifier
(linear probing). The linear layer weights are initialized by Gaussian distribution N (0, 0.01). The
linear probing process shares the same training hyper-parameters as the supervised training part
except for a zero L2 weight decay in all cases.

The CIFAR100 supervised transfer learning experiments swap the order of CIFAR100 and CIFAR10.

B IMAGENET SUPERVISED TRANSFER LEARNING

B.1 EXPERIMENT SETTINGS

Image Preprocessing: Following He et al. (2016b), we use RANDOMHORIZONTALFLIP and
RANDOMRESIZEDCROP augmentations for all training tasks. For IMAGENET and INAT18, the input
images are normalized by mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225). For CIFAR,
we use the same setting as Appendix A.

IMAGENET Pretraining: The RESNETs are pre-trained on IMAGENET with the popular protocol of
Goyal et al. (2017): a SGD optimizer with momentum=0.9, initial learning rate=0.1, batch size=256,
L2 weight decay=1e-4, and 90 training epochs. The learning rate is multiplied by 0.1 every 30 epochs.
By default, the optimizer in all experiments is SGD with momentum=0.9.

DISTILL : To distill the CATn representations [ϕ1, . . . ϕn] (n×RESNET50) into a smaller repre-
sentation Φ (RESNET50), we use the multi-head architecture as Figure 2. Inspired by Hinton et al.
(2015), we use the Kullback–Leibler divergence loss to learn Φ as:

min
Φ,w0,...,wn

n∑
i=0

∑
x

[
τ2Lkl

(
sτ
(
vi ◦ ϕi(x)

)
|| wi ◦ Φ(x)

)]
, (2)

where sτ (v)i = evi/τ∑
k evk/τ is a softmax function with temperature τ , vi is the learned last-layer

classifier of ith sub-network of CATn.

In the DISTILL experiments, we distill five separately trained RESNET50 into one RESNET50
according to Eq 2 with τ = 10. We use a SGD optimizer with momentum=0.9, batch size=2048, and
weight decay=0. The initial learning rate is 0.1 and warms up to 0.8 within the first 5 epochs. Then
learning rate decays to 0.16 and 0.032 at 210th and 240th epochs, respectively. The total training
epochs is 270.

Linear probing:

• IMAGENET: The IMAGENET linear probing experiments train a linear classifier with the
same hyper-parameters as IMAGENET pretraining. By default, the last linear classifier in all
linear probing experiments is initialized by N (0, 0.01).

14

Under review as a conference paper at ICLR 2023

• INAT18, CIFAR100, CIFAR10: Following the settings of Goyal et al. (2022), the linear
probing experiments (on INAT18, CIFAR100, CIFAR10) adds a BATCHNORM layer before
the linear classifier to reduce the hyper-parameter tuning difficulty. The learning rate is
initialized to 0.01 and multiplied by 0.1 every 8 epochs. Then train these linear probing
tasks for 28 epochs by SGD Nesterov optimizer with momentum=0.9, batch size 256. Note
that BATCHNORM + a linear classifier is still a linear classifier during inference. We tune
L2 weight decay from {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2} for CIFAR100 and CIFAR10,
{1e-6, 1e-5, 1e-4} for INAT18.

Fine-tuning: As to the fine-tuning experiments (on CIFAR100, CIFAR10, and INAT18), we tune
the initial learning rate from {0.005, 0.01, 0.05}, training epochs from {50, 100}. We further tune
L2 weight decay from {0, 1e-5, 1e-4, 5e-4} for CIFAR100 and CIFAR10, {1e-6, 1e-5, 1e-4} for
INAT18. A cosine learning rate scheduler is used in fine-tuning experiments. A 0.01 learning rate
and 100 training epochs usually provide the best performance for these three datasets. So we fix
these two hyperparameters in the following supervised learning two-stage fine-tuning experiments
and self-supervised learning experiments.

Two-stage fine-tuning: For the two-stage fine-tuning experiments, we separately fine-tune each
sub-network (i.e. RESNET50) of the CATn architecture by the same protocol as the normal fine-tuning
above. Then train a last-layer linear classifier on top of the concatenated fine-tuned representation.
The last-layer linear classifier training can be very efficient with a proper weights initialization strategy.
In this work, we initialize the last-layer classifier w (including the bias term) by concatenating the
last-layer classifier of each fine-tuned sub-network wi, w ← [w⊤

0 , . . . , w
⊤
n]

⊤/n, Then we only need
to train the last-layer classifier w for 1 epoch with a learning rate = 0.001.

B.2 EXPERIMENTS ON A DEEPER ARCHITECTURE: RESNET152

Similar to table 2 in section 5, table 4 provides similar experiments on a deeper architecture
RESNET152. CATn exceeds ERM on IMAGENET, CIFAR10, CIFAR100 , and INAT18 linear
probing tasks.

Table 4: Imagenet supervised transfer learning performance on a deep architecture RESNET152.

ID Linear Probing (OOD)
method architecture IMAGENET CIFAR10 CIFAR100 INAT18

ERM RESNET152 77.89 92.50 76.23 39.70

CAT2 2×RESNET152 79.34 94.26 79.15 45.42
CAT5 5×RESNET152 80.14 94.91 81.35 50.32

CAT10 10×RESNET152 80.18 95.38 82.39 52.73

B.3 FINE TUNING EXPERIMENTS

For reference, table 5 provides numerical results for the fine-tuning experiments of Figure 3.

B.4 VISION TRANSFORMER EXPERIMENT SETTINGS

For all vision transformer experiments, we keep the input image resolution at 384 × 384. For
linear-probing and (2-stage) fine-tuning, we follows a similar protocol as the one in {CIFAR10,
CIFAR100, INAT18}. Specifically, we use a weight decay=5e-4 and a batch size=256 for linear
probing, a weight decay=0 and a batch size=512 (following the same settings as Dosovitskiy et al.
(2020)) for (2-stage) fine-tuning. Following Dosovitskiy et al. (2020), all input images are normalized
by mean = (0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5).

15

Under review as a conference paper at ICLR 2023

Table 5: Supervised transfer learning by either normal fine-tuning or proposed two-stage fine-tuning.
Various representations are pre-trained on IMAGENET and then fine-tuned or two-stage fine-tuned on
CIFAR10, CIFAR100, INAT18 tasks.

fine-tuning two-stage fine-tuning
method architecture params CIFAR10 CIFAR100 INAT18 CIFAR10 CIFAR100 INAT18

ERM RESNET50 23.5M 97.54 85.58 64.19 - - -

ERM RESNET50W2 93.9M 97.76 87.13 66.72 - - -
ERM RESNET50W4 375M 97.88 87.95 66.99 - - -
ERM 2RESNET50 47M 97.39 85.77 62.57 - - -
ERM 4RESNET50 94M 97.38 85.56 61.58 - - -

CAT2 RESNET50 47M 97.56 86.04 64.49 97.87 87.07 67.11
CAT4 RESNET50 94M 97.53 86.54 64.54 98.14 88.00 68.16
CAT5 RESNET50 118M 97.57 86.46 64.86 98.19 88.11 68.27
CAT10 RESNET50 235M 97.19 86.65 64.39 98.17 88.50 68.32

DISTILL5 RESNET50 23.5M 97.07 85.31 64.17 - - -

C SELF-SUPERVISED TRANSFER LEARNING

C.1 SWAV ON IMAGENET

SWAV is a contrastive self-supervised learning algorithm proposed by Caron et al. (2020). We
train RESNET50 on IMAGENET4 by the SWAV algorithm four times, which gives us four pretrained
RESNET50 models. As to the rest four SWAV pre-trained models in this work, we use the public
available RESNET505, RESNET50W26, RESNET50W47, and RESNET50W58 checkpoints.

Linear probing: Following the settings in Goyal et al. (2022), the linear probing experiments
(on IMAGENET, INAT18, CIFAR100, CIFAR10) adds a BATCHNORM layer before the last-layer
linear classifier to reduce the hyper-parameter tuning difficulty. The learning rate is initialized to
0.01 and multiplied by 0.1 every 8 epochs. Then train these linear probing tasks for 28 epochs
by SGD Nesterov optimizer with momentum=0.9. We search L2 weight decay from {5e − 4},
{5e− 4, 1e− 3, 5e− 3, 1e− 2}, and {1e− 6, 1e− 5, 1e− 4} for IMAGENET, CIFAR, and INAT18
tasks, respectively.

Fine-tuning:

• IMAGENET: Inspired by the semi-supervised IMAGENET fine-tuning settings in Caron
et al. (2020), we attach a randomly initialized last-layer classifier on top of the SSL learned
representation. Then fine-tune all parameters, using a SGD optimizer with momentum=0.9
and L2 weight decay=0. Low-layers representation and last-layer classifier use different
initial learning rates of 0.01 and 0.2, respectively. The learning rate is multiplied by 0.2
at 12th and 16th epochs. We train 20 epochs for networks: RESNET50, RESNET50W2,
RESNET50W4. We further search training epochs from {10, 20} for the wide network (due
to overfitting), RESNET50W5 and then select the best one with 10 training epochs.

• CIFAR10, CIFAR100, INAT18: Same as the fine-tuning settings in supervised transfer
learning in Appendix B.1.

Two-stage fine-tuning:

4https://github.com/facebookresearch/swav/blob/main/scripts/swav_400ep_
pretrain.sh

5https://dl.fbaipublicfiles.com/deepcluster/swav_400ep_pretrain.pth.tar
6https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w2_400ep_pretrain.

pth.tar
7https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w4_400ep_pretrain.

pth.tar
8https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w5_400ep_pretrain.

pth.tar

16

https://github.com/facebookresearch/swav/blob/main/scripts/swav_400ep_pretrain.sh
https://github.com/facebookresearch/swav/blob/main/scripts/swav_400ep_pretrain.sh
https://dl.fbaipublicfiles.com/deepcluster/swav_400ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w2_400ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w2_400ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w4_400ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w4_400ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w5_400ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w5_400ep_pretrain.pth.tar

Under review as a conference paper at ICLR 2023

• IMAGENET: Similar to the two-stage fine-tuning settings in supervised transfer learning,
we initialize the last-layer classifier w by concatenation and then train 1 epoch with learning
rate=0.001, L2 weight decay=0.

• CIFAR10, CIFAR100, INAT18: For CIFAR10, CIFAR100, we use same two-stage fine-
tuning settings as in supervised transfer learning in Appendix B.1. For INAT18, we attach a
BATCHNORM layer before the last-layer linear classifier to reduce the training difficulty.
Note that BATCHNORM + a linear classifier is still a linear classifier during inference.
Following the linear probing protocol, we train the BATCHNORM and linear layers by a
SGD optimizer with momentum=0.9, initial learning rate=0.01, and a 0.2 learning rate decay
at 12th and 16th epochs. As to L2 weight decay, we use the same searching space as in the
fine-tuning.

C.1.1 ADDITIONAL RESULTS

Beside the SWAV IMAGENET fine-tuning experiments of figure 6, Figure 8 provides further fine-
tune / two-stage fine-tune various SWAV pretrained RESNETs on NATURALIST18, CIFAR100, and
CIFAR10 tasks. We give the “cat(ft)” curve on the IMAGENET task, but omit the curves on other tasks
(NATURALIST18, CIFAR100, and CIFAR10) because they are computational costly.

108 109

#params

77.5

78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

SW
AV

 F

in
e-

Tu
ni

ng

 t
op

1-
ac

c

Imagenet
wide (ft)
cat (2ft)
cat (ft)

108 109

#params

96.25

96.50

96.75

97.00

97.25

97.50

97.75

98.00
Cifar10

108 109

#params

82

83

84

85

86

87

Cifar100

108 109

#params

64

66

68

70

72

Inaturalist18

Figure 8: Fine-tuning performance of SWAV on IMAGENET, NATURALIST18, CIFAR100, and
CIFAR10 tasks. SWAV is trained on unlabeled IMAGENET. “cat(2ft)” and “cat(ft)” indicate our
two-stage fine-tuning strategy and the normal fine-tuning strategy on n concatenated networks.
“wide(ft))” refers to the normal fine-tuning strategy on wide networks, i.e. RESNET50, RESNET50W2,
RESNET50W4, and RESNET50W5.

C.2 SEER ON INSTAGRAM1B

SEER (Goyal et al., 2022) trains large REGNET{32GF, 64GF, 128GF, 256GF, 10B} architectures
on the INSTAGRAM1B dataset with 1 billion Instagram images, using the SWAV contrastive self-
supervised learning algorithm.

Linear Probing: Same as the linear probing settings in SWAV.

Fine-tuning: We use SEER checkpoints 9 fine-tuned on IMAGENET with 384× 384 resolutions. It
is fine-tuned on IMAGENET for 15 epochs using SGD momentum 0.9, weight decay 1e-4, learning
rate 0.04 and batch size 256. The learning rate is multiplied by 0.1 at 8th and 12th epochs.

Two-stage Fine-tuning: We keep L2 weight decay 1e-4 the same as fine-tuning. Then follow the
other settings as in SWAV.

C.3 ADDITIONAL EXPERIMENT: SIMSIAM ON CIFAR

SIMSIAM Chen and He (2020) is a non-contrastive self-supervised learning algorithm. In this section,
we pre-train the networks using SIMSIAM on CIFAR10, when transfer the learned representation by
linear probing to CIFAR10, CIFAR100, CIFAR10 with 1% training examples, and CIFAR100 with
10% training examples.

9https://github.com/facebookresearch/vissl/tree/main/projects/SEER

17

https://github.com/facebookresearch/vissl/tree/main/projects/SEER

Under review as a conference paper at ICLR 2023

SimSiam Pretraining Following Chen and He (2020) we pretrain RESNET18, RESNET18W2,
RESNET18W4, 2RESNET18, and 4RESNET18 on CIFAR10 (32× 32 resolution) by Simsiam for 800
epochs, using a SGD optimizer with momentum = 0.9, initial learning rate = 0.06, batch size = 512,
L2 weight decay = 5e− 4, and cosine learning rate scheduler. The data augmentations include RAN-
DOMRESIZEDCROP (crop scale in [0.2, 1]), RANDOMHORIZONTALFLIP, RANDOMGRAYSCALE
(p = 0.2), and a random applied COLORJITTER (0.4, 0.4, 0.4, 0.1) with probability 0.8. All im-
ages are normalized by mean = (0.4914, 0.4822, 0.4465), std = (0.2023, 0.1994, 0.2010) before
training.

DISTILL Since self-supervised learning tasks don’t contain target labels as supervised learning,
we apply knowledge distillation on representation directly. Specifically, we set v1, . . . vn in Figure 2
(left) as Identity matrices. Then we distill [ϕ1, . . . , ϕn] into Φ by use a cosine loss:

min
Φ,w0,...,wn

n∑
i=0

∑
x

[
1− cos

(
ϕi(x) , wi ◦ Φ(x)

)]
(3)

Linear Probing: Following again the settings of Goyal et al. (2022), the linear probing experiments
(on CIFAR100, CIFAR10, CIFAR100(1%) with 10% training data, and CIFAR10(1%) with 1%
training data) adds a BATCHNORM layer before the last-layer linear classifier to reduce the hyper-
parameter tuning difficulty. We use batch size = 256 for CIFAR100 and CIFAR10, use batch size = 32
for corresponding sampled (10%/1%)version. Then we search initial learning rate from {0.1, 0.01},
L2 weight decay from {1e-4, 5e-4, 1e-3, 5e-3}. The learning rate is multiplied by 0.1 every 8 epochs
during the total 28 training epochs. As to the optimizer, all experiments use a SGD Nesterov optimizer
with momentum=0.9.

Results Table 6 shows the linear probing accuracy of Simsiam learned representation on various
datasets and architectures. When linear probing on the same CIFAR10 dataset as training, the CATn
method performs slightly better than width architectures (e.g. RESNET18W2 and RESNET18W4).
When comparing them on the CIFAR100 dataset (OOD), however, CATn exceeds width architectures.

Table 6: Linear probing accuracy of SIMSIAM (Chen and He, 2020) CIFAR10 learned representation
on CIFAR100, CIFAR10, CIFAR100(1%), and CIFAR10(10%) tasks. CATn concatenates n learned
representation before linear probing. DISTILLn distills n learned representation into RESNET18
before linear probing. RESNET18Wn contains around n2 parameters as RESNET18.

Linear Probing (ID) Linear Probing (OOD)
method architecture CIFAR10 CIFAR10(1%) CIFAR100 CIFAR100(10%)

Simsiam RESNET18 91.88 87.60 55.29 42.93

Simsiam RESNET18W2 92.88 88.95 59.41 45.39
Simsiam RESNET18W4 93.50 90.45 59.28 44.98
Simsiam 2RESNET18 91.62 87.14 55.67 43.07
Simsiam 4RESNET18 92.54 85.65 64.42 49.65

CAT2 2×RESNET18 92.94 88.32 59.40 46.06
CAT4 4×RESNET18 93.42 88.81 63.06 47.48
CAT5 5×RESNET18 93.67 88.78 63.71 48.31

CAT10 10×RESNET18 93.75 88.65 66.19 49.90

DISTILL2 2×RESNET18 93.04 88.59 59.65 45.10
DISTILL5 5×RESNET18 93.02 88.56 60.79 46.41

DISTILL10 10×RESNET18 93.11 88.72 61.35 46.75

C.4 NUMERICAL RESULTS

For reference, Tables 7 and 8 provide the numerical results for the linear probing, fine-tuning, and
two-stage fine-tuning plots of Figure 6.

18

Under review as a conference paper at ICLR 2023

Table 7: Linear probing, fine-tuning, and two-stage fine-tuning performance of SWAV pre-trained
representation and corresponding CATn representations.

Linear Probing finetune two-stage ft
method architecture params IMAGENET CIFAR10 CIFAR100 INAT18 IMAGENET IMAGENET

SWAV RESNET50 23.5M 74.30 91.83 76.85 42.35 77.62 -
SWAV RESNET50W2 93.9M 77.31 93.97 79.49 47.55 80.12 -
SWAV RESNET50W4 375M 77.48 94.29 80.51 44.13 80.98 -
SWAV RESNET50W5 586M 78.23 94.84 81.54 48.11 80.40 -

CAT2 - 47M 76.01 93.48 78.91 45.57 78.14 80.40
CAT5 - 118M 77.43 94.62 81.11 49.12 77.69 80.04
CAT7 - 587M 78.72 95.59 82.71 49.68 80.05 81.25
CAT9 - 1170M 78.89 95.76 83.16 50.61 80.46 81.55

Table 8: Linear probing, fine-tuning, and two-stage fine-tuning performance of SEER pre-trained
representation and corresponding CATn representations.

Linear Probing finetune two-stage ft

method architecture params IMAGENET CIFAR10 CIFAR100 INAT18 IMAGENET
(384px)

IMAGENET
(384px)

SEER REGNET32GF 141M 73.4 89.94 71.53 39.10 83.4 -
SEER REGNET64GF 276M 74.9 90.90 73.78 42.69 84.0 -
SEER REGNET128GF 637M 75.9 91.37 74.75 43.51 84.5 -
SEER REGNET256GF 1270M 77.5 92.16 74.93 46.91 85.2 -

CAT2 - 418M 76.0 92.16 75.65 45.36 - 84.5
CAT3 - 1060M 77.3 93.15 77.26 47.18 - 85.1
CAT4 - 2330M 78.3 93.59 78.80 48.68 - 85.5

D META-LEARNING / FEW-SHOTS LEARNING

D.1 DATASETS

CUB (Wah et al., 2011) dataset contains 11, 788 images of 200 birds classes, 100 classes (5, 994
images) for training and 100 classes (5, 794 images) for testing.

MINIIMAGENET (Vinyals et al., 2016) dataset contains 60, 000 images of 100 classes with 600
images per class, 64 classes for training, 36 classes for testing.

D.2 BASELINE AND BASELINE++ EXPERIMENT SETTINGS

For BASELINE and BASELINE++ experiments, following Chen et al. (2019), we use RANDOM-
SIZEDCROP, IMAGEJITTER(0.4, 0.4, 0.4), and HORIZONTALFLIP augmentations, as well as a image
normalization mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225). Then use an ADAM
optimizer with learning rate = 0.001, batch size = 16, input image size = 224× 224. Finally, train
RESNET18 on CUB and MINIIMAGENET datasets for 200 and 400 epochs, respectively. We further
tune L2 weight decay from {0, 1e-5, 1e-4, 1e-3, 1e-2} and choose 1e-4 for CUB, 1e-5 for MINI-
IMAGENET experiments. Compared with the BASELINE and BASELINE++ performance reported
by Chen et al. (2019) (table A5), this L2 weight decay tuning process provides ∼ 5% and ∼ 1%
improvement on MINIIMAGENET 5way-1shot and 5way-5shot, respectively. In this work, we use this
stronger setting in baseline methods.

As to the few-shots learning evaluation, following Chen et al. (2019), we scale images by a factor of
1.15, CENTERCROP, and normalization. Then randomly sample 1 or 5 images from 5 random classes
from the test set (5way-1shot and 5way-5shot). Finally, train a linear classifier on top of the learned
representation with a SGD optimizer, momentum = 0.9, dampening = 0.9, learning rate = 0.1, L2
weight decay = 1e-3, batch size = 4, and epochs = 100. We take the average of 600 such evaluation
processes as the test score.

19

Under review as a conference paper at ICLR 2023

The BASELINE and BASELINE++ results in Figure 7 report the mean of five runs with different
training and evaluating seeds.

Implementation details of the cosine classifier Here we summarize the technical details of the
cosine classifier implementation used in this work which follows Chen et al. (2019)10.

Denote the representation vector as z. The cosine classifier calculates the ith element of logits by:

hi = gi
⟨ui, z⟩
||ui||||z||

(4)

where ui is a vector with the same dimension of z, gi is a scalar, hi is ith element of logits h.

Then minimize the cross entropy loss between the target label y and softmax output s(h) by updating
w and g: minw,g Lce(y, s(h)).

D.3 CAT AND DISTILL EXPERIMENT SETTINGS

For CAT, we concatenate n representation separately trained by either BASELINE or BASELINE++ as
the settings above. For DISTILL, we use the same multi-head architecture as figure 2 together with a
cross-entropy loss function:

min
Φ,w0,...,wn

n∑
i=0

∑
x

[
(1− α)Lce

(
s
(
wi ◦ Φ(x)

)
, y
)
+ ατ2Lkl

(
sτ
(
vi ◦ ϕi(x)

)
|| wi ◦ Φ(x)

)]
(5)

, where Lce indicates a cross-entropy loss, α is a trade-off parameter between cross-entropy loss and
kl-divergence loss. We set L2 weight decay = 0, τ = 10, search α ∈ {0.8, 0.9, 1}, and keep the other
hyper-parameters as Appendix D.2. We find the impact of α is limited in both CUB (≤ 1%) and
MINIIMAGENET (≤ 0.5%) tasks.

D.4 SNAPSHOTS EXPERIMENT SETTINGS

The previous section shows the CATn and DISTILLn methods applied on n separately trained
RESNET18 representations. In this section, we apply DISTILLn on n snapshots sampled from one
training episode.

We train CUB and MINIIMAGENET respectively for 1000 and 1200 epochs by naive
SGD optimizer with a relevant large learning rate 0.8. Then we sample 5 snapshots,
{200th, 400th, 600th, 800th, 1000th} and {400th, 600th, 800th, 1000th, 1200th}, for CUB and
MINIIMAGENET, respectively. The other hyper-parameters are the same as Appendix D.2.

D.5 MORE EXPERIMENTAL RESULTS

Table 10 provides the exact number in Figure 7, as well as additional CATn and DISTILLn few-shots
learning results with a linear classifier (The orange and gray bars in figure 7 report the few-shots
learning performance with a cosine classifier).

Table 9 provides more DISTILL5-s results with either a linear classifier or a cosine-based classifier.

E OUT-OF-DISTRIBUTION LEARNING

Following Zhang et al. (2022), we use the CAMELYON17 (Koh et al., 2021) task to showcase the
CAT and DISTILL constricted representation in out-of-distribution learning scenario. The first row of
table 3 is copied from Zhang et al. (2022). The rest results use a frozen pre-trained representation,
either by concatenating n ERM pre-trained representations (CATn), distilling of n ERM pre-trained
representations (DISTILLn), or RFC constructed representations (RFC2). Then train a linear classifier
on top of the representation by vREx or ERM algorithms.

For the vREx algorithm, we search the penalty weights from {0.5, 1, 5, 10, 50, 100}. For DISTILLn
representations in the CAMELYON17 task, we follow the Algorithm 2 in Zhang et al. (2022), but

10https://github.com/wyharveychen/CloserLookFewShot/blob/master/backbone.
py#L22

20

https://github.com/wyharveychen/CloserLookFewShot/blob/master/backbone.py##L22
https://github.com/wyharveychen/CloserLookFewShot/blob/master/backbone.py##L22

Under review as a conference paper at ICLR 2023

Table 9: Few-shot learning performance of the distillation method on CUB and MINIIMAGENET for
both the linear and cosine-based linear classifier. The DISTILL5 results were obtained using five
RESNET18 trained from scratch with different seeds. The DISTILL5-S results were obtained using
five snapshots taken during a single training episode with a relatively high step size.

MINIIMAGENET CUB
classifier 5way 1shot 5way 5shot 5way 1shot 5way 5shot

DISTILL5 linear 59.7 ± 0.6 80.5 ± 0.3 71.0 ± 0.3 88.5 ± 0.1
DISTILL5 cosine 62.9 ± 0.4 81.5 ± 0.3 75.7 ± 0.7 89.2 ± 0.2

DISTILL5-S linear 59.9± 0.5 80.8± 0.4 68.4± 0.5 87.2± 0.4
DISTILL5-S cosine 62.0± 0.5 81.0± 0.3 75.2± 0.8 88.6± 0.4

Table 10: Few-shot learning performance on CUB and MINIIMAGENET dataset with either a linear
classifier or cosine-distance based classifier. Standard deviations over five repeats are reported.

CUB MINIIMAGENET
architecture classifier 5way 5shot 5way 1shot 5way 5shot 5way 1shot

supervised RESNET18 linear 63.37±1.66 83.47±1.23 55.20±0.68 76.52±0.42
CAT2 2×RESNET18 linear 66.25±0.85 85.50±0.34 57.30±0.31 78.42±0.17
CAT5 5×RESNET18 linear 67.00±0.18 86.80±0.10 58.40±0.25 79.59±0.17

DISTILL2 RESNET18 linear 69.93±0.74 87.72±0.31 58.99±0.32 79.73±0.21
DISTILL5 RESNET18 linear 70.99±0.31 88.52±0.14 59.66±0.59 80.53±0.27

supervised RESNET18 cosine 69.19±0.88 84.41±0.49 57.47±0.45 76.47±0.27
CAT2 2×RESNET18 cosine 72.87±0.43 86.82±0.17 60.69±0.24 79.29±0.23
CAT5 5×RESNET18 cosine 76.23±0.55 88.87±0.40 63.63±0.23 81.22±0.17

DISTILL2 RESNET18 cosine 74.81±0.45 88.14±0.40 61.95±0.11 80.79±0.26
DISTILL5 RESNET18 cosine 76.20±0.39 89.18±0.24 62.89±0.38 81.49±0.26

use a slightly different dataset balance trick in the loss function (Zhang et al. (2022) Algorithm 2
line 13-14). We instead balance two kinds of examples: one share the same predictions on all ERM
pre-trained models, one doesn’t. We keep other settings to be the same as Zhang et al. (2022)11.

F REPLICABILITY

Code will of course be provided on github to replicate these experiments.

As explained in the paper, many of our experiments are based the setups defined by other authors
and rely on the code and the data files they provide. We are therefore very conscious of the value of
making well organized replication resources available to the community.

11https://github.com/TjuJianyu/RFC

21

https://github.com/TjuJianyu/RFC

	Introduction
	Related work
	The representation nullspace
	Feature accumulation
	Supervised transfer learning experiments
	Self-supervised transfer learning experiments
	Meta-learning and few-shots learning experiments
	Out-of-distribution generalization experiments
	Conclusion
	Cifar supervised transfer learning
	ImageNet supervised transfer learning
	Experiment settings
	Experiments on a deeper architecture: resnet152
	Fine tuning experiments
	Vision transformer Experiment settings

	Self-supervised transfer learning
	SWAV on ImageNet
	Additional results

	SEER on Instagram1B
	Additional experiment: SimSiam on Cifar
	Numerical results

	meta-learning / few-shots learning
	Datasets
	Baseline and Baseline++ experiment Settings
	Cat and Distill experiment settings
	Snapshots experiment settings
	More experimental results

	Out-of-distribution learning
	Replicability

