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Figure 1: Layout-aware image generation result by InstanceAssemble. We show image generation
result under precise layout control, ranging from simple to intricate, sparse to dense layouts.

Abstract

Diffusion models have demonstrated remarkable capabilities in generating high-
quality images. Recent advancements in Layout-to-Image (L2I) generation have
leveraged positional conditions and textual descriptions to facilitate precise and
controllable image synthesis. Despite overall progress, current L2I methods still
exhibit suboptimal performance. Therefore, we propose InstanceAssemble, a novel
architecture that incorporates layout conditions via instance-assembling attention,
enabling position control with bounding boxes (bbox) and multimodal content
control including texts and additional visual content. Our method achieves flexible
adaption to existing DiT-based T2I models through light-weighted LoRA modules.
Additionally, we propose a Layout-to-Image benchmark, Denselayout, a compre-
hensive benchmark for layout-to-image generation, containing Sk images with 90k
instances in total. We further introduce Layout Grounding Score (LGS), an inter-
pretable evaluation metric to more precisely assess the accuracy of L2I generation.
Experiments demonstrate that our InstanceAssemble method achieves state-of-the-
art performance under complex layout conditions, while exhibiting strong compati-
bility with diverse style LoORA modules. The code and pretrained models are pub-
licly available at https://github.com/FireRedTeam/InstanceAssemblel
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1 Introduction

Diffusion models [22] have revolutionized image generation task, with architectures like Diffusion
Transformer (DiT) [40] offering superior quality over traditional UNet-based frameworks. Recent
implementations such as Stable Diffusion 3/3.5 [15}49] and Flux.1 [4] further enhance text-to-image
alignment, paving the way for advancements in layout-controlled generation. Layout-to-Image
(L2I) generation is a task that focuses on creating images under layout conditions, allowing users
to define spatial positions and semantic content of each instance explicitly. This task faces several
significant challenges: (i) ensuring precise layout alignment while maintaining high image quality, (i)
preserving object positions and semantic attributes accurately during the iterative denoising process
of diffusion models, and (iii) supporting various types of reference conditions, such as texts, images
and structure information. These challenges highlight the complexity of achieving robust and flexible
layout-controlled image generation.

Existing L2I methods can be broadly categorized into training-free and training-based approaches,
both possessing distinct advantages and limitations. Training-free methods [[550[7, (13,18, 15} [27] rely
on heuristic techniques without modifying the base model. However, these methods often exhibit
degraded performance in complex layouts, demonstrate high sensitivity to hyperparameter tuning,
and suffer from slow inference speed, which make them less practical for real-world applications.
In contrast, training-based methods [63} 53] 164, [29] 61]] involve training specific layout modules to
improve layout alignment, which introduces a significant amount of extra parameters and increases
training complexity and resource requirements. Additionally, existing L2I evaluation metrics ex-
hibit inaccuracies, such as false acceptance and localization errors. These identified shortcomings
necessitate algorithm innovation for effective and efficient layout-controlled image generation.

Therefore, we propose InstanceAssemble, a novel framework that systematically tackles these
issues through innovative design and efficient implementation. Our approach introduces a cascaded
InstanceAssemble structure, which employs a multimodal interaction paradigm to process global
prompts and instance-wise layout conditions sequentially. By leveraging the Assemble-MMDiT
architecture, we apply an independent attention mechanism to the semantic content of each instance,
thus enabling effective handling of dense and complex layouts. Furthermore, we adopt LoRA [23]]
for lightweight adaptation, adding only 71M parameters to SD3-Medium (2B) and 102M to Flux.1
(11.8B). Our method enables position control with bounding boxes and multimodal content control
including texts and additional visual content. This lightweight design preserves the capabilities of
the base model while enhancing flexibility and efficiency. We also introduce a novel metric called
Layout Grounding Score (LGS) to ensure accurate evaluation for L2I generation, alongside a test
dataset DenseLayout. This metric provides a consistent benchmark for assessing layout alignment.

Our method achieves state-of-the-art performance across benchmarks and demonstrates robust layout
alignment under a wide variety of scenarios, ranging from simple to intricate, sparse to dense layouts.
Notably, despite being trained on sparse layouts (< 10 instances), our approach maintains robust
generalization capability on dense layouts (> 10 instances), confirming the effectiveness of our
proposed InstanceAssemble. The main contributions are listed below.

1. We propose a cascaded InstanceAssemble structure that processes global text prompts and
layout conditions sequentially, enabling robust handling of complex layouts through an independent
attention mechanism.

2. By leveraging LoRA [23]], we achieve efficient adaptation with minimal extra parameters
(3.46% on SD3-Medium and 0.84% on Flux.1), supporting position control with multimodal content
control while preserving capabilities of base model.

3. We propose a new test dataset DenseLayout and a novel metric Layout Grounding Score
(LGS) for Layout-to-Image evaluation. Experimental results demonstrate that our approach achieves
state-of-the-art performance and robust capability under complex and dense layout conditions.

2 Related Work

Text-to-Image Generation Text-to-image synthesis [47} 145|142} 40| 30} 17} 6 1, 44} 3] has witnessed
rapid progress with the development of diffusion models. Initial works [44}3]/47,145]] utilize UNet [46]
as the denoising architecture, leveraging cross-attention mechanisms to inject text-conditioning
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Figure 2: The proposed InstanceAssemble pipeline. Various layout conditions are processed by the
Layout Encoder to obtain instance tokens, which guide the image generation via Assemble-MMDIiT.
In Assemble-MMDIT, the instance tokens interact with image tokens through the Assembling-Attn.

signals. Recently, researches [6} 15} 49, 4, 34] have used the Multimodal Diffusion Transformer
(MMDiT) architecture, marking a significant improvement.

Layout-to-Image Generation Layout-to-Image generation enables image generation under layout
conditions, which is defined as spatial positions with textual descriptions. Existing approaches can be
broadly categorized into training-free and training-based paradigms.

Training-free methods leverage pretrained text-to-image diffusion models without additional train-
ing. A common strategy involves gradient-based guidance during denoising to align with layout
conditions [55, 12,41} 13,18, 150]. Also, there are methods that directly manipulate latents through
well-defined replacing or merging operations [8, 48, 2] or enforce layout alignment via spatially
constrained attention masks [5}[20]]. GrounDiT [27] exploits semantic sharing in DiT: a cropped noisy
patch and the full image become semantic clones when denoised together, enabling layout-to-image
generation by jointly denoising instance regions with their corresponding image context. Other
approaches generate each instance separately and employ inpainting techniques to compose the final
image [37]. However, these methods demonstrate decent performance primarily on simple and sparse
layouts, while their accuracy decreases in more complex layouts. Some methods require hyperparam-
eter tuning specific to different layout conditions, reducing their adaptability. Furthermore, additional
gradient computations or latent manipulations result in slow inference speed, thus limiting their
applicability in real-world scenarios.

Training-based methods explicitly incorporate layout conditioning through architectural modifica-
tions. Most approaches inject spatial constraints via cross-attention [63} 157, 36, 25/ 59| (16} 154] or
self-attention [10, 53 128]]. Some works propose dedicated layout encoding modules [9, 164,165,158} 62]
or adopt a two-stage pipeline that generates images after predicting a depth map with layout condi-
tions [14}166]. Other works leverage autoregressive image generation models [[19]]. These methods
suffer high computational costs due to excessive parameters.

3 Method

Preliminaries Recent state-of-the-art text-to-image models such as SD3 [[15] and Flux [4] adopt the
Multimodal Diffusion Transformer (MMDIiT) as the backbone for generation. Unlike traditional
UNet-based cross-attention approaches, MMDITs treat image and text modalities in a symmetric
manner, which leads to stronger prompt alignment and controllability. These models are trained
under the flow matching framework [33]], which formulates generation as learning a continuous
velocity field that transports noise to data. Given a clean latent x and Gaussian noise € ~ A (0, I), an



interpolated latent is defined as
z: = (1—t)x+te, te€]0,1]. (H

The training objective minimizes the squared error between the predicted velocity and the target
velocity (e — x):

EFM = EeNN(O,I),x,t [||U9(Zt7 ta Y) - (6 - X)H;:| ) (2)
where vy is implemented with an MMDIT backbone.

Problem Definition Layout-to-Image generation aims to synthesize images with precise control
through a global prompt p and instance-wise layout conditions L. The layout conditions comprise [V
instances {li}f\;l, where each instance [; is defined by its spatial position b; and content c;:

Lz{lh...,lN}, where li = (C“bz) (3)

In our framework, spatial positions are represented as bounding boxes, while instance content can be
specified through multiple modalities: textual instance content and additional visual instance content,
including reference images, depth maps and edge maps.

We propose InstanceAssemble, a framework with a Layout Encoder to encode the layout conditions
and Assemble-MMDIT to effectively integrate the encoded layout conditions with image features.

3.1 Layout Encoder

We use a Layout Encoder (Fig. [2]left-bottom panel) to encode each instance [;, and the tokens are

denoted as h* = [%, ..., h!¥] which represents the layout information of each instance. Given the
spatial position of the instance (bounding box), we first enhance the spatial representation through
DenseSample. Given a bounding box b; = (1, y1,w, h) € [0, 1]* with top-left coordinates (1, y1)
and size (w, h), we generate K2 uniformly spaced points:

w h
P{(JrkKerkK)

Then, following GLIGEN]28]], we compute the textual instance tokens as:
hi = MLP ([7(c;), Fourier(P;)]), (5)

km,kye{o,...,Kl}} )

where T represents the text encoder, Fourier(-) denotes Fourier embedding [51]], [-, -] denotes
concatenation along the feature dimension, and MLP is a multi-layer perception.

Additionally, we can use additional visual instance content to better improve performance. Given
the visual instance content, we first extract features using the VAE encoder of the base model, then
project them to the unified instance token space through a MLP:

hi = MLP (VAE(c;)) . (6)

3.2 Assemble-MMDiT

We observe that applying attention between all image tokens and instance tokens results in suboptimal
performance under complex layout conditions (e.g., overlapping, tiny objects). To address this, we
introduce Assemble-MMDIT (Fig. [2] right-bottom panel), which enhances the location of each
instance while maintaining compositional coherence with other instances. Our method processes
each instance independently through attention modules with its associated image tokens, followed by
weighted feature assembling.

Formally, given image tokens b € RE*W>H (where C denotes the latent channel size and [W, H]

the latent size) and instance tokens h' € ROV we apply AdalLayerNorm [56], followed by our
proposed Assembling-Attn, as shown in Fig.[2|(right-bottom panel). We crop the image tokens h* by
the bbox b; of each instance and get h; = h*[b;] € RY*“*" Then, we project the cropped image

tokens hj, and their corresponding instance tokens /; into queries (Q*, Q"), keys (K*:, K'), and
values (Vi Vi), and then apply attention:

¢ hY = Auention ([Q*, Q¥], [K™1, K], [V, V]) . )



where [-, -] denotes concatenation along the token dimension. The updated tokens are assembled
across instances. Let M € NYW*H represent the instance density map, calculating the counts of

instances. The assembled image tokens h* and instance tokens h! are computed as:

N

1 /
— hi [:,i,7], wherei € [0,W —1],5 € [0,H — 1
g b oW e -1

n' B[ k) =Rl

As illustrated in Fig. 3] the top row demonstrates that
our assembling mechanism ensures instance tokens attend
only to relevant image regions, where unrelated regions are
left in black. The middle row reveals that the mechanism
effectively guides global prompt tokens to focus on their
correct spatial positions. In contrast, generation without
explicit layout control (bottom row) results in localization
errors ("British Shorthair" in wrong location) or semantic
inconsistencies ("dog" missing).

h hz/[:,i,j] =

Furthermore, to preserve the generation capability of the  Fjgure 3: (Top) instance-image attention
original model and mitigate conditional conflicts between map w/ layout. (Middle) global prompt-

global prompt and layout conditions, we employ a cas- jmage attention map w/ layout. (Bottom)

caded mechanism as shown in Fig. 2] (right-above panel). global prompt-image attention map w/o
In our design, the global text prompt and image latents layout.

are passed through original MMDIT first, then the image

tokens along with instance tokens are processed by our

Assemble-MMDIiT module. The first step captures global context and ensures generation quality,
while the second step ensures instance layout alignment. Besides, we train Assemble-MMDIiT with
LoRA, significantly reducing both the training cost and inference costs.

b b .
(a) Rally car? (b) Black shoulder bag? (c) Window? (d) Tower?
CropVQA: Yes -> 1 CropVQA: No -> @ SAMIoU: 0.77 BinaryIoU: 1
DetectIoU: ©.60 DetectIoU: 0.54 DetectIoU: ©.00 DetectIoU: ©.81

Figure 4: Failure cases of other metrics. (a) false acceptance in CropVQA,(b) false rejection in
CropVQA, (c¢) localization error in SAMIoU, and (d) discontinuous in BinaryloU.

3.3 Benchmark: DenseLayout and Layout Grounding Score

The Layout-to-Image task aims to generate images that align precisely with provided layouts, eval-
uating both spatial accuracy and semantic consistency (e.g., color, texture, and shape, if provided).
The existing metrics (AP/AR) for object detection [[10, 128 |55] 53] are suboptimal. They assume a
fixed category set and rely on inappropriate precision/recall for binary layout outcomes. VLM-based
cropped VQA methods [61]] suffer false acceptance (Fig. ] (a)) and false rejection (Fig. ] (b)). While
spatial-only metrics like SAMIoU [11]] ignore appearance consistency(Fig. [ (c)), GroundingDINO-
based [35] binary IoU thresholds [64} [54] fail to capture continuous layout precision(Fig. E] (d)). Thus,
we propose Layout Grounding Score (LGS), which integrates both spatial accuracy and semantic
accuracy:

1. Spatial Accuracy (DetectloU): we detect all instances via an off-the-shelf detector [35],
compute the IoU against condition bbox, and report the global mean IoU across all instances for
equal weighting.

2. Semantic Accuracy: for instances with IoU>0.5, we crop the predicted region and assess the
semantic accuracy by its attribute consistency (color, texture, shape) via VLM-based VQA [60].

LGS supports open-set evaluation, uses DetectloU to evaluate spatial accuracy and decouples the
spatial and semantic check to avoid CropVQA [61] failures (shown in Fig. E]) Furthermore, we



Table 1: Quantitative comparison between our SD3-based InstanceAssemble and other L2I
methods on LayoutSAM-Eval. * The CropVQA score is proposed in Creatilayout [61] and the
score of InstanceDiff, MIGC and CreatiLayout is borrowed from CreatiLayout [61]].

CropVQA* Layout Grounding Score Global Quality
spatialf colort texturef shapeT mloU7 color? texture?shapet VQAT Pick? CLIPT

LayoutSAM-Eval

Real Images(Upper Bound) 98.95 9845 9890 98.80 88.85 88.07 88.71 88.62

InstanceDiff (SD1.5) 87.99 69.16 7278 71.08 78.16 63.14 66.82 65.86 8642 21.16 11.73
MIGC (SD1.4) 85.66 6697 71.24 69.06 6287 50.70 5299 51.77 8897 20.69 12.56
HICO (realisticVisionV51) 9092 69.82 7325 71.69 70.68 53.16 5571 54.61 86.53 21.77 947
CreatiLayout (SD3-M) 92.67 7445 7721 7593 4582 3844 39.68 3924 9274 21.71 13.82

InstanceAssemble(ours) (SD3-M)  94.97 77.53 80.72 80.11 7888 63.89 066.27 65.86 93.12 2179 12.76

Table 2: Quantitative comparison between our InstanceAssemble and other L2I methods on
DenseLayout.

DenseLayout Layout Grounding Score Global Quality
selay mloU?T colorf texture?shape? VQAT Pick? CLIPT
Real Images(Upper Bound) 9235 7652 80.78 79.78
InstanceDiff (SD1.5) 4731 2948 3336 3243 8379 20.87 11.73
MIGC (SD1.4) 3439 2210 2399 2345 91.18 20.74 12.81
HICO (realisticVisionV51) 2242 1052 11.69 1146 7442 20.51 8.16
CreatiLayout (SD3-Medium) 1554 11.69 1234 12.17 9342 21.88 12.89
InstanceAssemble(ours) (SD3-Medium) 52.07 33.77 36.21 35.81 93.54 21.68 12.58
Regional-Flux (Flux.1-Dev) 1406 1134 1191 11.84 9294 22.67 10.66
RAG (Flux.1-Dev) 17.23 1422 1462 1455 92.16 2228 11.01
InstanceAssemble(ours) (Flux.1-Dev) 4342 27.60 29.50 29.14 9336 2198 11.38

InstanceAssemble(ours) (Flux.1-Schnell) 4533 27.73 30.06 29.62 93.52 21.72 10.78

introduce DenseLayout, a dense evaluation dataset for L2I, which consists of 5k images with 90k
instances (18.1 per image). The images in DenseLayout are generated by Flux.1-Deyv, tagged by
RAM-++ [24], detected by GroundingDINO [35]], recaptioned by Qwen2.5-VL [43], and filtered to
retain those with >15 instances, thus providing dense layout conditions.

3.4 Training and Inference

During training, we freeze the parameters of the base model and only update the proposed Layout
Encoder and Assemble-MMDIT module. We denote the adding parameters by €’. The training
objective is given by

L=Ecn01),x t,p,L [HU{&O’}(ZM t,p, L) — (e — X)Hﬂ , )

where z; = (1 — t)x + te. During inference, layout-conditioned denoising is applied during the first
30% of diffusion steps, as the layout primarily forms in early stages [28) 64].

4 Experiments

4.1 Experimental Setup

Implementation Details The textual-only InstanceAssemble is trained on SD3-Medium [[15] and
Flux.1-Dev [4] and the version with additional visual instance content is only trained on SD3-Medium.
We freeze the pretrained MMDIiT backbone and only adapt the Layout Encoder and LoRA modules
of Assemble-MMDIT. Assemble-MMDIT is initialized from pretrained weights, and LoRA with
rank=4 is applied. In the SD3-based model all Assemble-MMDiT blocks are adapted, while in the
Flux-based model we adapt eight blocks (seven double-blocks and one single block) due to resource
constraints. During inference, the LoRA-based Assemble-MMDiT is activated for the first 30% of
denoising steps, while the global prompt—image phase uses the frozen backbone. This design yields
71M (SD3-M) and 102M (Flux.1-Dev) additional parameters for the textual-only setting; the variant
with additional visual instance content (SD3-M) introduces 85M parameters. All models are trained
on LayoutSAM [61]] at 1024 x 1024 with Prodigy, for 380K iterations (batch size 2) on SD3-M and



Table 4: Parameter addition and time efficiency under sparse and dense layout conditions. We
evaluated on 10% of the LayoutSAM-Eval and DenseLayout datasets at 1024x1024 resolution. * are
optimized for 512x512 resolution, so their results are reported at this scale.

Parameter Addition
(relative parameter addition(%))

Time Efficiency(s) (relative runtime increase(%))
Sparse Layout Dense Layout

InstanceDiff* (SD1.5)
MIGC(SD1.4)

HICO* (realisticVisionV51)
CreatiLayout(SD3-M)
Regional-Flux(Flux.1-Dev)
RAG(Flux.1-Dev)

369M (43%)
57M (6.64%)

1437 (+771%)
14.41 (+25.4%)
361M(33.9%) 4.1 (+92.9%)
1.2B (64.0%)  4.37 (+14.4%)
- 1529 (+113%)
- 15.69 (+119%)

44.81 (+2754%)
21.58 (+87.5%)
9.93 (+320%)
4.42 (+14.8%)
3747 (+418%)
21.14 (+192%)

Instance Assemble(ours)(SD3-M)
Instance Assemble(ours)(Flux.1-Dev)
InstanceAssemble(ours)(Flux.1-Schnell)

71M (3.46%)
102M (0.84%)
102M (0.84%)

7.19 (+88.2%)
8.21 (+14.3%)
1.41 (+8.46%)

13.38 (+248%)
10.28 (+41.9%)
1.70 (+28.8%)

300K iterations (batch size 1) on Flux.1-Dev, using 8 xH800 GPUs (7 days for SD3-M; 5 days for
Flux.1-Dev).

Evaluation Dataset We use LayoutSAM-Eval [61] to evaluate performance on fine-grained open-set
sparse L2I dataset, containing Sk images and 19k instances in total (3.8 instances per image). To
assess performance on fine-grained open-set dense L2I evaluation dataset, we use the proposed
DenseLayout, which consists of 5k images and 90k instances in total (18.1 instances per image).
Following conventional practice, we also evaluate on coarse-grained close-set L2I evaluation dataset
COCO [31]]. We combine COCO-Stuff and COCO-Instance annotations to create our COCO-Layout
evaluation dataset, containing 5k images and 57k instances in total (11.5 instances per image).

Evaluation Metric We evaluate the accuracy of L2I generation using our proposed LGS metric along
with CropVQA proposed by CreatiLayout [61]], measuring spatial and semantic accuracy. We also
employ multiple established metrics to measure overall image quality and global prompt alignment,
including VQA Score [32]], PickScore [26] and CLIPScore [21].

4.2 Evaluation on L2I with Textual-Only Content

Fine-Grained Open-Set Sparse L2I Generation Tab. [T| presents the quantitative results of Instance-
Assemble on LayoutSAM-Eval [61], reporting results using our proposed LGS, CropVQA [61]
and global quality metrics. Our proposed Instance Assemble not only achieves SOTA in spatial and
semantic accuracy of each instance, but also demonstrates superior global quality.

Fine-Grained Open-Set Dense L2I Gener-
ation Tab. 2 presents results on DenseLay-
out. With the same SD3-Medium backbone,
InstanceAssemble significantly outperforms
CreatiLayout (mloU: 52.07 vs. 15.54) while
maintaining comparable global quality. On
Flux.1, it also yields large gains over Regional-
Flux and RAG (e.g., mloU: 43.42 vs. 17.23 for

Table 3: Comparison between our SD3-based
InstanceAssemble and other L2I methods on
COCO-Layout. Since COCO don"t have detailed
description for each instance, we cannot evaluate the
attribute accuracy and only report the spatial accu-
racy - mloU.

RAG), showing that our cascaded Assemble- COCO-Layout LGS Global Quality
Attn design generalizes well across backbones. mloUT VQA? Pick? CLIPT
Compared to earlier UNet-based approaches Real Images(Upper Bound) 49.14
such as InstanceDiff and MIGC, our method  1stanceDifi (SD1.5) 3039 7577 2075 2441
achieves higher spatial and semantic accuracy =~ MIGC (SD1.4) 2736 7032 2020 23.58
. : P _ HICO (realisticVisionV51) 1888 50.61 20.38 20.72
(mlol: 52.07 vs. 47.31) without sacrificing re- ¢y o (sp3-m) 712 8779 2122 2559
alism. Overall, InstanceAssemble establishes  InstanceAssemble(ours) (SD3-M) ~ 27.85 89.06 21.58 25.68

consistent improvements in layout alignment
while ensuring high image quality under chal-
lenging dense layouts.

Coarse-Grained Closed-Set L2I Generation Tab. [3| presents the quantitative result of Instance-
Assemble on COCO-Layout. Our proposed InstanceAssemble surpasses previous methods in overall
image quality but lags slightly behind InstanceDiff [53] in layout precision. We attribute this gap to:



Creatilayout

Regional-Flux

Figure 5: Qualitative comparison of InstanceAssemble with other methods.

(i) InstanceDiff’s fine-grained COCO training data with per-entity attribute annotations, and (ii) its
entity-wise generation strategy, which improves precision at significant computational cost (Tab. ).

Qualitative Comparison The comparative results in Fig. 3]
demonstrate that our proposed Instance Assemble method
achieves superior spatial precision and instance-caption
alignment compared to baseline methods. For example,
in the third row, both InstanceDiff [53]] and MIGC [64] gen-
erate more than one shoes; HICO [9] fails to generate the
specified NewBalance shoe; Regional-Flux [5]] does not ad-
here to the layout conditions; and the shoe generated by
RAG [8] is not properly fused with the background. In con-
trast, our method generates the correct instance, accurately
placed and seamlessly integrated with the scene.

Time Efficiency and Parameter Addition We compare
time efficiency and parameter addition with other L2I meth-
ods, as shown in Tab. @ Our method achieves SOTA perfor-
mance on layout alignment with acceptable time efficiency
and minimal parameter addition.

4.3 Evaluation on L2I with Additional Visual Content

We evaluate three additional visual instance content: image,
depth, and edge (see Fig.[6). Unsurprisingly, using image

— text
thure ~—— text+image

— —— text+depth
437color — text+edge

Figure 6: Quantitative results of In-
stanceAssemble with additional vi-
sual instance content.

as additional instance content yields the best performance, as it provides rich visual information.
Although depth and edge capture texture and shape features, their performance remains inferior
compared to image instance content. Nevertheless, visual modalities outperform textual-only instance



Table 5: Ablation study on our proposed components on DenseLayout. "Assemble" refers to the
presence of the Assemble-Attn module (architectural design). "Cascaded" indicates the interaction
order: (¢/) means global prompt—image interaction followed by instance—image interaction (cascaded
structure), while (X) means both are applied in parallel. "LoRA" specifies the training strategy for the
Assemble-MMDIT module: (¢) indicates training with LoRA, while (X) indicates full fine-tuning.
"DenseSample" denotes whether the DenseSample spatial encoding is used.

Layout Grounding Score
mloU? colorf texturef shape? VQA?T

11.69 9.16 9.68 956 9375
4398 2419 2695 26.75 84.57
. 29.61 31.50 31.09 9271
5128 32.68 3494 3458 9333
52.07 3377 36.21 3581 93.54

Assemble  Cascaded LoRA  DenseSample

SRS x
A &
RUX X X
X X XX

&

N

[=)}

content. Qualitative comparisons (Fig. [7) further demonstrate that visual instance content leads to
superior texture and shape alignment compared to text.

Layout

Text+Depth Text+Edge

Figure 7: Qualitative results of InstanceAssemble with additional visual instance content.

4.4 Ablation Study

We evaluated the contribution of each proposed component on SD3-M based InstanceAssemble
in Tab.[5} The base model (SD3-Medium without additional modules) yields a very low Layout
Grounding Score, indicating poor layout and content control when instance information is not
explicitly modeled. The introduction of Assemble-Attn module elevates spatial accuracy (mloU to
43.98) and boosts semantic metrics (color/texture/shape to 24.19/26.95/26.75). The cascaded design
(v: prompt—image followed by instance—image; X: parallel) resolves global quality degradation while
maintaining layout alignment. Using LoRA to train Assemble-MMDIiT improves performance for two
reasons: (1) it retains the base model’s capabilities compared to the fully fine-tuned version, and (2)
it enables effective layout control with far fewer trainable parameters by introducing only lightweight
low-rank matrices on attention projections. Finally, DenseSample further enhances spatial accuracy,
instance semantic accuracy and image quality. Together, these refinements progressively collectively
optimize layout to image modeling without compromising generation ability.

4.5 Applications

We demonstrate that InstanceAssemble is versatile and applicable to various tasks. It seamlessly
integrates with domain-specific LORA modules for multi-domain style transfer while maintaining
layout consistency, as shown in Fig.[8] Our proposed InstanceAssemble can cooperate with distilled
models such as Flux.1-Schnell [4], as illustrated in Tab. 2] achieving geometric layout control and
detailed synthesis. Our approach demonstrates both style adaptability and computational efficiency,
making it well-suited for controllable generative design applications.



0il painting Cute3D

Ghibli

Figure 8: The adaption of Cute3D [52]/ Oil Painting [39]/ Ghibli [38] LoRA with our methods.
The proposed InstanceAssemble successfully adapts diverse style lora and maintaining superior
layout alignment.

5 Conclusion

We present InstanceAssemble, a novel approach for Layout-to-Image generation. Our method
achieves state-of-the-art layout alignment while maintaining high-quality generation capabilities of
DiT-based architectures. We validate InstanceAssemble across textual instance content and additional
visual instance content, demonstrating its versatility and robustness. Our layout control scheme also
successfully adapts diverse style LoRAs while maintaining superior layout alignment, demonstrating
cross-domain generalization capability. Futhermore, we introduce Layout Grounding Score metric
and a DenseLayout evaluation dataset to validate performance under complex layout conditions.

Limitations and Future Work While our work advances controllable generation by unifying precise
layout control with the expressive power of diffusion models, several limitations remain. First, our
design currently requires sequential Assemble-MMDIT calls, which may incur inefficiency; exploring
parallelization strategies is an important direction. Second, although our approach is effective under a
wide range of layouts, image fidelity can degrade in extremely dense or highly complex cases.

Broader Impacts InstanceAssemble expands the frontier of structured visual synthesis by providing
fine-grained layout control and high-quality multimodal generation. However, its powerful generative
capabilities may also introduce risks. In particular, malicious use could enable the creation of
misleading or deceptive layouts, exacerbating the spread of disinformation. The model may also
raise privacy concerns if applied to sensitive data, and like many generative systems, it inherits and
may amplify societal biases present in training corpora. We encourage responsible deployment and
continued investigation into safeguards that mitigate these risks while enabling beneficial applications
in design, education, and accessibility.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce our InstanceAssemble method in the abstract and introduction,
provide a detailed description in Section 3] and present experimental results in Section [4]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Section[3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The architecture of our module is introduced in Section[3] and the implementa-
tion details are presented at the beginning of Section 4]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release our code upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The implementation details are presented at the beginning of Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although we report multiple evaluation metrics (e.g., mloU, VQA, CLIP)
showing significant improvements over baselines, we did not include error bars, standard
deviations, confidence intervals, or statistical significance tests across multiple runs because
it would be too computationally expensive. As such, our results do not fully meet the criteria
outlined in this question for statistical rigor and uncertainty quantification.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the computer resources needed for the experiments at the begining
of Section ]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We conducted the research in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the broader impacts in the last part of the article.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We use the existing excellent SD3, Flux.1 and their safeguards. Our model
will not bring more risk than SD3 or Flux.1.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We work with open-source models that are publicly available, and we cited
them properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The dataset defined for our benchmark will be made publicly available, in case
of acceptance, together with the documentation required for reproducing the experiments.
Moreover, in case of acceptance, we will also release the source code of our model.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

21


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

A Early-Stage Layout Control in Assemble-MMDiT

We apply the Assemble-MMDIT layout control module exclusively during the initial 30% of the
denoising trajectory and deactivate it for the remaining 70%. This two-stage strategy provides robust
low-frequency structural guidance in the early stages to facilitate layout alignment, while allowing
subsequent unconstrained refinement of high-frequency details during later denoising phases.

Ablation on Control Ratio
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Figure 9: Impact of the proportion of diffusion steps incorporating layout conditioning on generation
quality.

As illustrated in Figure 9] restricting layout control to less than 30% of the diffusion process results
in insufficient layout alignment with the target bounding boxes. In contrast, extending control beyond
this optimal threshold leads to a decline in output quality. Furthermore, increasing the proportion of
layout-guided steps results in significant additional computational cost.

B Additional Ablation Studies

B.1 Effect of Bbox Encoding and DenseSample

To clarify the role of bounding box encoding and DenseSample, we further ablated the SD3-M
based InstanceAssemble model on DenseLayout. Bounding box embeddings guide correct object
placement, while DenseSample provides additional improvements in spatial accuracy and instance-
level semantics. The results in Table[6|demonstrate that both components contribute to the overall
performance.

Table 6: Ablation on bounding box encoding and DenseSample.
Setting mloU?T colort texture shapet VQAT

w/o bbox encoding, w/o DenseSample 51.22 32.15 34.04 33.53 93.30
w/ bbox encoding, w/o DenseSample 51.28 32.68 34.94 34.58 93.33
w/ bbox encoding, w/ DenseSample 52.07 33.77 36.21 35.81 93.54

B.2 Comparison with Attention Mask-based Region Injection

We also compare our Assemble-Attn design with attention mask-based region injection. While both
can be viewed as region-wise attention mechanisms, attention masks operate globally and may cause
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semantic leakage in overlapping regions. Our method instead applies instance-wise self-attention
on cropped latent regions and then fuses the updated features via the Assemble step, which is more
effective in dense layouts. As shown in Table [/, our design achieves superior instance attribute
consistency and a higher VQA score compared to the attention mask baseline.

Table 7: Comparison between attention mask-based injection and our Assemble-Attn.

Method spatialt  colort  textureT  shapet  VQA?T
SD3-Medium (base model) 77.49 60.28 62.55 60.38 93.30
Attention mask (SD3-M) 94.11 74.28 77.58 76.54 91.53

InstanceAssemble (ours, SD3-M) 94.97 77.53 80.72 80.11 93.12

C Underlying data for radar-chart visualizations

In Sections[4.3] we utilized a radar chart to depict each quantitative variable along equi-angular axes,
providing an intuitive comparison. This visualization highlights the multifaceted superiority of our
method. Here, we present the corresponding raw evaluation results in tabular form. Specifically,
Tab. [§] corresponds to Fig.[6] thus ensuring a clear mapping between each radar-chart subfigure and
its underlying data.

Table 8: Quantitative results of additional visual content on DenseLayout.

DenseLayout Layout Grounding Score Global Quality

4 mloU?T colorf texturefshapeT VQA?T Pickt CLIPT
Real Images(Upper Bound) 9235 76.52 80.78 79.78
text 4372 2657 2856 2839 9337 21.63 1245
text+image 5529 4215 4450 4424 91.66 22.05 1295
text+depth 49.64 2825 3182 31.62 92.83 2128 1325
text+edge 50.73 2945 3392 3384 90.13 2126 13.55

D More Details on DenseLayout Evaluation Dataset

D.1 Construction Pipeline of DenseLayout Dataset

The DenseLayout dataset is constructed through a multi-stage pipeline designed to extract high-
density and semantically-rich layout information from synthetic images. The pipeline includes
following steps:

1. Image Generation using Flux.1-Dev [4]
A diverse set of synthetic images is generated using Flux.1-Dev, a text-to-image model.
The input prompts are generic textual descriptions, sampled from the LayoutSAM dataset,
which is based on SA-1B. The images are resized to maintain the same aspect ratio as the
original SA-1B images, with the longer edge set to 1024 pixels. This step provides a visually
complex base for extracting layout structures.

2. Multi-label Tagging using RAM++ [24]
The generated images are tagged using RAM++, the next-generation model of RAM, which
supports open-set recognition. These tags offer high-level semantic guidance for subsequent
grounding.

3. Object Detection via GroundingDINO [35]
Using the image and its predicted tags as input, GroundingDINO performs open-set object
detection. It outputs bounding boxes and class labels for all detected entities. The detection is
configured with a box_threshold of 0.35 and a text_threshold of 0.25. Each detected
bounding box is treated as an instance bounding box, and the corresponding predicted
label is recorded as the instance description.

4. Detailed Captioning with Qwen2.5-VL [43]
Each bounding box region is cropped from the original image and fed into Qwen2.5-VL
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to generate a fine-grained caption. These region-level captions are stored as the detailed
description for each instance, enriching the semantic information beyond category labels.

5. Density Filtering

To ensure high layout complexity, only images with 15 or more detected instances (as output
by GroundingDINO) are retained. This results in a dense layout distribution suitable for
layout-conditioned generation tasks. The distribution of instance count is shown in Fig.

Finally, the DenseLayout dataset contains 5,000 images and 90,339 instances, with an average of

18.1 instances per image.

Denselayout: Instance Count Distribution
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Figure 10: Instance count distribution per image in DenseLayout.

Annotation Format. The annotation for each image consists of:

* global_caption: the original prompt used for image generation.

* image_info: metadata of the image, including height and width.

e instance_info: alist of instances, each with:

— bbox: the bounding box of the instance, formatting as [z1,y1, T2, ya)-
— description: the category label predicted by GroundingDINO.
— detail_description: a fine-grained caption generated by Qwen2.5-VL for the

cropped region.

D.2 Samples of DenseLayout Dataset

"instance_info": [

"bbox": [129,489,283,642],

"description": "nightstand",

"detail_description": "The nightstand is dark brown,
compact, with a drawer."

"bbox": [306,170,430,339],

"description": "picture frame",

"detail_description": "Brown wooden frame containing a
watercolor painting of green leaves on a white
background."

"bbox": [603,170,727,340],

"description": "picture frame",

"detail_description": "A simple brown wooden frame holds
a botanical print with detailed leaves and stems."

Figure 11: A sample of DenseLayout and its annotation.
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This is a photo showcasing a traditional Chinese-style pavilion and
boats on the river. The pavilion is located on the right side of the
picture, with a beautifully decorated roof and a golden plaque hanging
the pavilion is a row of wooden boats, each
it, and people are gathered on the boat dock.
The river is calm, and the sky is clear, with a few clouds leisurely
drifting by.

chandeliers and a large window, through which you can see the green
plants outside. The floor is covered with a red carpet, and there are
several decorations on the floor, including a red vase and a decorative
sculpture. The entire scene is illuminated by natural light, creating a
warm and confortable atmosphere.

This is a photo showcasing a rural landscape, with a grassland in the

foreground, its surface presenting a vivid green and yellow color. On
the graslond, there are several wooden buildings, ncluding & 1arger
barn and a smaller house, both with traditional wooden structures and
roofs. In front of the buildings, there is a row of wooden fences, with
a few cars parked in front of the fence. In the background, the hills
are covered with dense trees, and the sky is filled with white clouds,
presenting a tranquil and peaceful rural atmosphere.

f

This is a photo depicting a traditional Asian floating market scene. In
the picture, two women are sitting in their respective boats, each
wearing a traditional conical hat, and dressed in brightly colored
traditional clothing. The woman on the left is wearing a blue top and a
dark skirt, while the wonan on the right is wearing a yellow top and a
light-colored skirt. Their boats are filled with a variety of goods,
including fresh flowers, fruits, and other food itens. The boats are
adorned with bright colored cloths, adding a festive atmosphere to the
scene. The entire scene is captured under natural light, presenting a
tranquil and vibrant market atmosphere.

This is a realistic-style photograph depicting a city street scene after
a flood. In the photo, vehicles and pedestrians are struggling to
navigate through the flooded streets. A yellow tricycle is parked in the
middle of the street, surrounded by vehicles covered with blue
waterproof cloth. Pedestrians are using umbrellas to shield themselves
from the rain, some are pushing bicycles, while others are walking. The
buildings on both sides of the street are submerged in water, and the
wires and poles above the street are also submerged, adding to the
severity of the flooding. The entire scene is shrouded in a gloomy
atmosphere, with no sunlight piercing through the clouds.

This is a photo showcasing the interior of a church, with the focus on a
magnificent sculpture located in the center of the altar. The sculpture
depicts a figure in a long robe, holding a cross, with a solemn
expreseion. The sculpture is surranded by exquisite statoes and
decorative elements, including a statue of a figure holding a cross and
a figure in a helmet. The altar is decorated with complex geometric
patterns and floral designs, and the walls are adorned with colorful
stained glass windows, through which the light from outside shines in,
adding a warm and sacred atmosphere to the interior.

This is a photo showcasing a Chinese-style building and a statue. The
building is brightly colored, with a red roof and a yellow door, and the
statue is located in front of the building, standing on a pedestal. The
surrounding environment is a spacious square, with several pedestrians
walking around the building. The background is a clear blue sky and lush
trees.

This is a photograph showcasing a famous archway in a city. The archway
is a reddish-broun structure, adorned with golden decorations and

buildings in the background have a Mediterranean style, with the domes
of some buildings visible in the distance.

This is a photo showcasing a modern urban square. The square is spacious,
with a modern-style building in the center, its exterior compose

glass and metal structures. The square is paved with grey slabs, with
several sets of stairs and benches for people to rest. The square is
surrounded by several buildings of different architectural styles
including red brick buildings and modern glass curtain walls. There are
a few pedestrians on the square, some are walking, some are sitting on
benches, enjoying the sunshine. The sky is clear, with a few white
clouds scattered in the blue sky.

Figure 12: Representative samples from DenseLayout dataset demonstrating: (a) High-density scene
with > 15 instances, (b) Complex instance relationships with precise attribute specifications.
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E More results with textual-only content

E.1 InstanceAssemble based on SD3-Medium

Figure 13: More results of InstanceAssemble based on SD3-Medium with textual-only content.

E.2 InstanceAssemble based on Flux.1-Dev

Figure 14: More results of InstanceAssemble based on Flux.1-Dev with textual-only content.

E.3 InstanceAssemble based on Flux.1-Schnell

Figure 15: More results of InstanceAssemble based on Flux.1-Schnell with textual-only content.
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F More results with additional visual content

F.1 Additional Image

Figure 16: More results with additional image.

F.2 Additional Depth

Figure 17: More results with additional depth.

F.3 Additional Edge

Figure 18: More results with additional edge.
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