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Abstract

Automated planning systems require formal constraint speci-
fications that create significant barriers for domain experts not
familiar with those formal specifications, thereby limiting the
practical adoption of powerful planning tools in collaborative
planning settings. To overcome this challenge, we propose
an LLM-based pipeline to translate human natural language
constraints into formal hard-trajectory constraints. The ini-
tial user input is first refined and decomposed into more ex-
plicit natural language constraints, both preparing constraints
for formal encoding and offering a chance for the human to
review and correct any misinterpretation. Then, the decom-
posed constraints are encoded into PDDL3. By integrating
this with an automated planner, a graphical interface, and
PDSim, we created a closed loop where the human gets plan
simulations as feedback to their natural language constraints.
This innovative collaborative planning framework enables
users to leverage their intuition and expertise to intuitively
guide automated planning without time-consuming program-
ming expert interventions. Through an ablation study, we
demonstrate how our approach significantly improves the
syntax and semantic accuracy of the translations compared to
direct LLM translations. Our results demonstrate the poten-
tial of collaborative planning without technical expert inter-
ventions for higher-quality automated solving. On the other
hand, our negative results seem to highlight the limitations of
using PDDL3 constraints to leverage human high-level guid-
ance as we expected, raising interesting reflections and po-
tential discussions.

1 Introduction

Collaborative planning has shown significant potential to
generate higher quality solutions and improve efficiency,
particularly when incorporating soft constraints and human
preferences (Wilkins and Robinson 1981; Kim, Banks, and
Shah 2017). However, the accessibility of formal planning
remains severely limited due to the requirement for pro-
gramming knowledge or technical expert interventions. This
creates a fundamental barrier that prevents domain experts,
who are unfamiliar with planning formalisms, from effec-
tively contributing their insights to the planning process.
This barrier is particularly problematic for complex real-life
time-constrained problem solving (e.g., disaster response
scenarios). In this context, an optimal solution to such com-
plex real-life problems (without any simplification) is usu-
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Figure 1: Overview of the collaborative planning framework
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ally extremely computationally challenging to obtain. In-
stead, the focus is put on finding the best valid solution pos-
sible, given a limited time budget.

While Large Language Models (LLMs) have shown
promising and continuously improving results in reasoning
tasks (e.g., GPT4 improvements over GPT3.5 in mathemat-
ics and coding questions (OpenAl 2023)), they still cannot
plan reliably on their own (Kambhampati et al. 2024). Nev-
ertheless, LLMs’ language processing capabilities present a
unique opportunity to serve as a bridge, potentially mak-
ing automated planning accessible and intuitive to anyone.
Through these improvements, we can better harness human
domain expertise and intuition to enhance problem-solving
capabilities across various planning scenarios.

To address these challenges, we propose an innova-
tive collaborative planning framework that includes a two-
stage LLM-based pipeline to translate natural language con-
straints into formal planning encoding, specifically Plan-
ning Domain Definition Language 3 (PDDL3) (Gerevini and
Long 2005) hard trajectory constraints. Our intuition is that
reducing the search space with hard constraints can indi-
rectly guide the search. Thus, relevant user input can act
as a negative heuristic (Kibler and Morris 1981), telling the
solver what not to do to avoid “intuitively bad solutions”.
For instance, considering a simple logistics domain, if there
is no goal specified regarding a package p, then any plan
moving p is intuitively inefficient. This approach also allows
users to explore specific alternatives in a “Let’s try this and
rollback” fashion. Our approach allows domain experts to



express their knowledge and preferences in natural language
without requiring deep technical expertise in formal plan-
ning languages. Then, these inputs are leveraged to lead to
more efficient and informed problem-solving.

Our framework integrates this translation pipeline with a
state-of-the-art automated planner, a user-friendly graphical
interface, and PDSim (De Pellegrin and Petrick 2024), an
existing visualization tool for simulating plan executions.
The overall architecture is depicted in Figure 1. The re-
sulting collaborative planning framework creates a seam-
less closed-loop system where users can intuitively guide
automated planning through natural language input while
receiving immediate visual feedback through plan simula-
tions. This enables users to dynamically refine solutions and
iterate toward more effective outcomes in an efficient man-
ner.

After discussing some related work in section 2, our con-
tribution and the overall collaborative planning framework
are described in sections 3 and 4. Then, section 5 reports re-
sults about the accuracy of the translating pipeline with an
ablation study, demonstrating the benefits of the different el-
ements of the pipeline. Section 6 reports mixed results about
the benefits of using our approach on the solution quality.
These results demonstrate the potential for significant im-
provements in solution quality with collaborative planning
without technical expert interventions. However, our results
also highlight some limitations of the current implementa-
tion with PDDL3 hard constraints. This raises interesting
discussions and suggests further exploration to achieve con-
sistent improvements, discussed in section 7.

2 Related Work
2.1 Planning with Constraints

Planning with constraints and preferences was the focus
of the 5th International Planning Competition (IPC-5).
PDDL3 (Gerevini and Long 2005), the language used in
this competition, introduced soft (preferences) and hard con-
straints for both goals and trajectories. It became a stan-
dard and popular planning formalism for expressing plan-
ning problems with trajectory constraints and temporal prop-
erties. Various approaches have been explored to solve
PDDL3 problems. Some solvers have been developed to na-
tively support PDDL3, such as SGPlan (Hsu et al. 2007)
or MIPS_XXL (Edelkamp, Jabbar, and Nazih 2006). Other
approaches consist of compiling the PDDL3 constraints
to leverage state-of-the-art planning systems and heuristics
(Wright, Mattmiiller, and Nebel 2018; Percassi and Gerevini
2019). Bonassi, Gerevini, and Scala (2024) propose an ap-
proach that compiles PDDL3 hard constraints to numeric
planning. Paired with the ENHSP (Scala et al. 2016) nu-
meric planner, their results seem to outperform significantly
other PDDL3 planners. For this reason, we decided to use
this planning approach.

We use PDDL3 to leverage the existing benchmark prob-
lems from the International Planning Competition (IPC) '.
However, we are aware of the existence of other representa-

"https://www.icaps-conference.org/competitions

tions to model trajectory constraints involving mixed propo-
sitional and numeric conditions, such as Mixed Integer Lin-
ear Programming, or Signal Temporal Logic (Maler and
Nickovic 2004). These methods of encoding the constraints
are explored in our other ongoing projects.

2.2 Collaborative Planning

In this work, we use collaborative planning to refer to the
process of collaboratively elaborating a solution to a plan-
ning problem. This is not to be confused with planning to
solve a collaborative multi-agent task. Our focus is on lever-
aging the specific strengths of humans, LLMs, and auto-
mated planning systems to collaboratively solve planning
problems, including collaborative tasks.

Kim, Banks, and Shah (2017) generate visualizations
from original PDDL problems and show them to human
users. The users then propose high-level strategies to solve
the problem. These strategies are encoded as preferences
(PDDL3 soft constraints) by technical experts. They demon-
strate that using the user’s high-level strategies leads to
higher-quality solutions. However, this collaborative plan-
ning setup relies on manual expert translation of the natu-
ral language user input into PDDL3 soft constraints. In this
work, we aim to achieve similar results while leveraging
LLMs to perform these translations and bridge human users
with automated planning formalism, without technical ex-
pert interventions.

2.3 Translating NL to Structured Language

Natural Language Processing (NLP), and more precisely,
translating natural language to structured language such as
formal queries, programming language, temporal logic, or
PDDL, has been a topic of interest for decades now (Kate,
Wong, and Mooney 2005; Kaufmann, Bernstein, and Fis-
cher 2007). Transformers and Large Language Models pro-
vide impressive language processing capabilities, leading
to further interest in translating natural language (NL) into
structured language: programming language (Github Copi-
lot? 2021; Cursor® 2023; Liang et al. 2023; Djuhera et al.
2025), temporal logic (Chen et al. 2023; Liu et al. 2023;
Cosler et al. 2023), or PDDL (Guan et al. 2023; Gestrin,
Kuhlmann, and Seipp 2024; Mahdavi et al. 2024). In sev-
eral works, the translation process relies on human reviews
and interventions, often requiring them to be familiar with
the corresponding structured language (Cosler et al. 2023;
Guan et al. 2023). In Mahdavi et al. (2024), the human re-
views are ‘replaced’ by the assumption of having access to
two functions to observe the executability and verifiability
of actions, then they rely on these environment interactions
to refine the generated output. Other works without external
feedback (e.g. Liang et al. 2023 or Liu et al. 2023) achieve
satisfactory accuracy, which convinced us to use LLMs for
our translation process.

Zhttps://github.com/features/copilot
*https://cursor.com/



3 LLM-based Translation Pipeline

The core innovation of our framework lies in a two-stage
LLM-based pipeline that transforms high-level natural lan-
guage constraints into precise formal planning representa-
tions. This translation process addresses the fundamental
challenge of bridging the semantic gap between intuitive hu-
man expression and the rigorous requirements of automated
planning systems. A key design principle of our pipeline
is that users never directly interact with PDDL representa-
tions, maintaining the accessibility that motivated our ap-
proach. The model we are using for the two translation
stages is Claude Sonnet 4 from Anthropic*. We empirically
preferred the outputs of Claude over GPT to manipulate
PDDL3. However, this model is interchangeable with any
other LLMs. We are using zero-shot prompting, only provid-
ing the full PDDL domain and problem, some instructions,
and user input.

3.1 Constraint Decomposition

The first stage of our pipeline focuses on constraint decom-
position. It transforms the high-level, potentially ambiguous,
natural language user input into a list of more explicit, low-
level constraints. This decomposition process serves multi-
ple critical functions in ensuring accurate translation. The
system systematically rephrases user input into clearer tem-
poral logical constraint expressions, breaks down complex
constraints into manageable components, and actively re-
solves ambiguities that could lead to misinterpretation dur-
ing the encoding phase.

The LLM is prompted with the PDDL domain and prob-
lem, an information paragraph describing that we are trying
to solve the given PDDL problem and that the user will pro-
vide an NL constraint to help solve the problem, and a list of
instructions indicating our desire to refine and decompose
the user input constraint to match the PDDL3 formalism
without explicitly using any PDDL words yet. Eventually,
the user input constraint is also added to the prompt.

Through this decomposition process, constraints are re-
fined to align more closely with Linear Temporal Logic
(LTL) representations and the specific fluent structure of
the planning problem domain. This refinement is essential
for maintaining semantic fidelity while preparing constraints
for formal encoding. A brief explanation of the decomposi-
tion choices is also generated for the user. This explanation
helps understand some rephrasing that may be surprising.
For instance, “Only planel should move” cannot directly be
translated into PDDL3 due to the limited available fluents.
But, once rephrased as “Any plane other than planel should
never move”, the translation is straightforward. Importantly,
by sharing the natural language decomposition and explana-
tion, this stage provides an opportunity to detect potential
misinterpretations early in the process. This allows the user
to provide natural language feedback to the system for clar-
ification and correction before proceeding to formal encod-
ing. Leveraging human interactions, this constraint decom-
position stage helps to improve the semantic accuracy of our
translation.

*https://www.anthropic.com/claude/sonnet

3.2 Formal Encoding and Verification

The second stage translates each decomposed low-level con-
straint into PDDL3. This encoding process leverages the
clearer and more explicit constraints produced by the de-
composition stage to generate syntactically correct and se-
mantically accurate formal representations. To ensure the re-
liability of this translation, our pipeline incorporates an au-
tomated verifier that checks the syntax of all generated en-
codings. When an error is detected, an automated informed
feedback is sent to the LLM for reencoding. The verifier cur-
rently performs three checks. First, it parses the generated
encodings and verifies that every generated term is either a
standard PDDL keyword or a fluent/object from the PDDL
problem. If it’s not the case, an error message reports which
term was detected as incorrect. Then, the verifier checks if
a temporal logic keyword is used. If not, a specific message
reports this error. Eventually, a regular parsing test is per-
formed using the unified-planning library>. This generates a
generic error message indicating a syntax error.

The prompt follows a similar structure to the previous
phase. The LLM is prompted with the PDDL domain and
problem, a similar informative paragraph, and a list of in-
structions asking to translate the given NL constraint into
PDDL3, and one of the decomposed constraints.

Additionally, our system employs an encoding-to-natural-
language (E2NL) back-translation mechanism to allow users
to evaluate whether the generated encodings accurately re-
flect each of the decomposed constraints, without requiring
them to understand PDDL directly. As this back-translation
process can also be erroneous, we decided to use a differ-
ent language model (OpenAl 04-mini®) to minimize poten-
tial biases in interpreting the encodings’ meaning. Indeed,
a rare case we encountered, Claude Sonnet 4 generated an
erroneous PDDL from an NL constraint due to a misinter-
pretation. When later asked to translate the PDDL back into
NL under a new context, the model made the same misin-
terpretation and generated a sentence closely resembling the
original NL constraint. Even if rare, such behavior leads to
false positive encoding reviews. It seems to be mitigated by
using another model for the back-translation.

4 Collaborative Planning Framework

Our framework integrates the natural language translation
pipeline with automated planning and visualization com-
ponents to create a seamless collaborative experience. The
main interface and workflow are shown in Figure 2. Below,
we provide a detailed description of the workflow of our
collaborative planning framework while describing its vari-
ous integrated components, incorporating the LLM-powered
translation pipeline presented in the previous section.

The user mostly interacts with the main interface window
shown on the left side of Figure 2. It was implemented using
the CustomTkinter’ library. The workflow starts by adding
the first constraint (Add button). The user provides a natu-
ral language constraint to translate using the interface (O on

Shttps://unified-planning.readthedocs.io/
Shttps://platform.openai.com/docs/models/o4-mini
"https://customtkinter.tomschimansky.com/
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Figure 2). The interactive LLM-powered translation pipeline
starts as described in the previous section (Decomposition
@ and Encoding ®). For legibility purposes, those steps are
shown on the top left corner of Figure 2. However, only the
final decomposition is shown on the top left, and the interac-
tive translation happens in the bottom part. Once validated,
the constraint appears in the top left corner and can be ma-
nipulated through the interface: delete or (de-)activate de-
composed sub-constraints.

After setting the desired planning setting, the user can
start the planning process (Plan button @). The currently
activated constraints are retrieved and their PDDL3 encod-
ings are added to the original problemina : constraints
block. After, we employ NTCORE™T (Bonassi, Gerevini, and
Scala 2024) on the updated problem and original domain
to compile away the PDDL3 constraints. We obtain a com-
piled numeric domain and problem with conditional effects.
Finally, we use the ENHSP (Scala et al. 2016) solver on the
compiled files to generate a plan. Our default setting is the
anytime planning mode with a fixed time budget. But the
user can adjust the time budget and change to a satisficing
or optimal planning mode through the interface. The plan-
ning results appear on the right side, including the generated
plan, the planning time, and the plan metric/cost. If existing,
these details regarding the previous plan generated are also
displayed for comparison purposes.

Eventually, we use PDSim (De Pellegrin and Petrick
2024) to provide dynamic, visual simulations of plan exe-
cution (PDSim window ®). By default, the PDDL domain
and problem must be given to the system and solved inter-
nally to visualize plan execution. Instead, we initialize the
simulation with the original problem files and then automat-
ically edit at runtime the simulation files, inserting the plan

generated by our approach. This instantly updates the simu-
lation and allows us to use the NTCORE"+ ENHSP planning
scheme. This visual feedback allows users to assess whether
generated plans align with their intentions, identify poten-
tial issues, and iteratively refine their natural language con-
straints based on observed plan behaviors.

5 Translation Accuracy Results
5.1 Experiment

To measure the accuracy of our translation, we conducted an
ablation study involving four progressive settings:

* ENCODING: corresponds to directly giving the human
input to the encoding phase and analyzing the output. It
is similar to using the LLM straightforwardly.

* VERIFIER: adds the verifier loops providing automated
feedback, including parsing tests.

* DECOMP: adds the decomposition step before encoding
the natural language constraints.

* HUMAN: ask the human for decomposition review and
consider their feedback to re-decompose if necessary.

We considered a set of 15 predefined constraints for the
IPC numeric problems ZenoTravell3 (8 constraints) and
Rover10 (7 constraints). The constraints are arbitrarily more
or less ambiguous. For each constraint, especially the am-
biguous ones, a detailed description of the intent behind the
constraint was defined. For instance, “Only use planel” is
ambiguous about what “using a plane” means. The associ-
ated intent consists of restricting all other planes from per-
forming any action. For each setting, we run our framework
to translate each constraint twice. For each PDDL3 output



Setting Translation Human
Parsable Correct Time (s) (SD) interventions
ENCODING 26 19 29.3 (12.3) 0
+ VERIFIER 30 20 35.8 (13.5) 0
+ DECOMP 30 20 55.0 (26.2) 0
+ HUMAN 30 27 81.9 (53.7) 12

Table 1: Ablation study reporting syntax and semantic accu-
racy (N = 30)

translation, we record its parsability, correctness, total trans-
lation time, and the number of human interventions during
the translation process. Parsability was measured by updat-
ing the original PDDL problem with the encoded constraint
and attempting to parse the new problem using the unified-
planning library. Since there exist several valid translations
for each NL constraint, the correctness was evaluated manu-
ally in a binary way, as either properly matching the associ-
ated human intent or not. The translation time starts from the
human typing the input to the final PDDL3 constraint. The
number of human interventions corresponds to the number
of times the human had to provide feedback on the decom-
position to correct a misinterpretation or an incomplete de-
composition.

The human interventions with the HUMAN setting were
as simple as possible. They either clarify a clear misinter-
pretation or point out an incomplete decomposition. For in-
stance, the constraint “Rock analysis from waypoint1 should
be performed first” was misinterpreted as “The first rock
analysis performed should be from waypointl”, while the
human intent is, in fact, “Among all subgoals, obtaining rock
analysis from waypointl should be done first”. The human
intervention here was: “I am referring to the whole goal,
rock analysis from waypoint1 should be the first goal accom-
plished”. As another example, the decomposition of the con-
straint “Only use planel” mentions preventing other planes
from flying and boarding/debarking persons, but not pre-
venting them from being refueled. The human intervention
was: “Also prevent the other planes from being refueled”.

This experiment has been conducted by the same person,
part of the authors. Moving forward, we plan to conduct
a user study, which will strengthen our results. In the user
study, users’ typing speed is a variable to consider with our
framework. However, in this paper, its effects haven’t been
studied as the experimenter’s typing speed was more or less
constant.

We empirically identified that several intuitive constraints
rely on tracking action occurrences. Thus, the two domains
were augmented with additional fluents counting action oc-
currences.

The major LLM model used is Anthropic Claude Sonnet 4
20250514 with thinking enabled. We also use GPT 04-mini
for the E2NL back-translation process, described in Sec. 3.

5.2 Results

Results are reported in Table 1. The row of ENCODING
setting shows that straightforwardly using the LLM some-

times fails to produce parsable PDDL (only 26 out of 30 are
parsable), which makes the output unusable. We also obtain
only 19 correct outputs out of the 30 tests. A non-parsable
output is considered incorrect. But the poor correctness is
mostly due to some missing aspects of the human intent or
misinterpretations of the natural language constraints.

In VERIFIER setting, the LLM leverages the automated
verifier to always produce parsable PDDL outputs. Over the
30 runs, 9 automated feedback were generated affecting 5
different constraints. Fixing the syntax of the outputs led to
additional correct encodings, which only increased the num-
ber of correct outputs by 1.

Results in DECOMP setting indicate that integrating the
decomposition step slows the translation and doesn’t di-
rectly improve the correctness. This step can be seen as a sort
of chain of thought, which can be beneficial for small mod-
els. Although here we are using a self-reflection-enabled
model, which is already conducting a similar internal chain
of thoughts. We believe this is why no improvement is ob-
served in our case. Nevertheless, the natural language de-
composition can be leveraged through human user review
and feedback.

In HUMAN setting, the human reviews and feedback per-
mitted by the decomposition step take additional time, but
increase the number of correct outputs to 27. The 12 hu-
man interventions over the 30 runs permitted to have decom-
positions matching the human intent for every constraint.
The 3 failures are due to small mistakes in the generated
PDDL (encoding phase), leading to parsable but incorrect
encodings. Particularly, the LLM usually inverts the two ar-
guments of the sometime-before <after_predicate>
<before_predicate> constraint, leading to an erroneous
encoding. Conducting a Fisher’s exact test between DE-
COMP and HUMAN on correctness, we obtain a one-tailed
p-value = 0.029 < 0.05. This indicates that there is a sig-
nificant improvement in correctness when leveraging human
feedback.

The final average translation time of approximately 82s
(SD=54) is lower than the average technical expert transla-
tion time of 180s (S D=T78) given in Kim, Banks, and Shah
2017. The comparison isn’t fair because we are translating
similar but different constraints. Still, this suggests that our
framework seems to translate NL inputs into PDDL3 faster
than technical experts.

E2NL: We only provide preliminary results for the use
of the back-translation (E2NL). When used on the encoded
decomposed constraint, it sometimes permits the detection
of erroneous encoding, especially after several loops with
the verifier. If used without the decomposition, thus on the
whole encoding only using the verifier, the back-translation
can be too summarized and not properly reflect the generated
PDDL. Also, human feedback loops on the whole encoding
can lead to omitted parts, due to the LLM being focused on
the specific part mentioned in human feedback. Using the
decomposition helps to avoid such omission and provides
more robustness.



6 Solution Quality Results

In this section, we examine the impact of our approach on
the quality of the plan produced within a limited time bud-
get. More precisely, we analyse how our approach induces
translation and compilation delays but can lead to more ef-
ficient solving and better solutions. We provide some de-
tails on the experiment before presenting and discussing our
mixed results.

6.1 Experiment

We considered numeric problems from the IPC. Particu-
larly, the ZenoTravel and Rover domains. We focused our re-
sults on numeric ZenoTravell3 and Rover10, which are hard
enough problems to require a long time (more than 30min)
to be solved optimally on our setup using the ENHSP solver.
All results were computed on a laptop equipped with an Intel
Core 19-10885H 2.40-5.30GHz and 64GB RAM.

Given a limited time budget from 50s to 600s, we com-
pared our approach with two baselines. The first one is to
solve the original problem directly using the ENHSP solver
(labeled original). We solve the original problem 10
times for each time budget. Comparing our approach with
this baseline could demonstrate whether it is worth spend-
ing time involving the human in the loop to plan more effi-
ciently.

The second baseline consists of solving the problem with
random constraints (labeled random). Comparing with this
baseline will indicate if our positive results are simply due to
planning with arbitrary constraints (reducing the problem’s
complexity even if possibly degrading the best reachable so-
lution) or if it is by leveraging the human in the loop. The
random constraints were generated by selecting random ex-
pressions from the initial state and enforcing these expres-
sions to remain true. We obtain “simple” hard trajectory con-
straints. In the same manner, we also generate constraints
with two or three random expressions combined with ‘and’
or ‘or’ logic. We obtain 5 sets of constraints, respectively:
simple, and2, and3, or2, or3, each containing 6 constraints
for a total of 30 random constraints. The problem is solved
once with each constraint. The sets of constraints were gen-
erated once for each problem and are the same for every time
budget. Note that in our planning scheme, using constraints
implies first compiling the PDDL3 numeric problem into a
PDDL2.1 problem using NTCORE™. This step is included
in the provided time budget and thus reduces the effective
planning time.

For our approach (labeled human), a human provided 5
constraints for each problem, and each constraint has been
translated using our pipeline. These human constraints are
intuitive, complementary, and their purpose is to avoid ex-
ploring “bad” solutions. Considering every possible combi-
nation of these initial 5 constraints (using ‘and’ logic), we
generate a set of 31 human constraints for each problem.
We then solved the problem once using each constraint. For
ZenoTravel13, we used the following human constraints:

* “Only use planel”

* “Person7 should never move”

* “Planes should only fly slowly”

» “Planel should never fly to the same city more than 3 times”
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Figure 3: Solution quality results for ZenoTravell3. Shows
the plan metric value (lower the better) and coverage for
several time budgets and for our approach (human) and
two baselines (original and random). The black crosses
show the metric obtained when using all human constraints
at once (All HC). Note that the x-axis is not linear.

* “Personl and person3 should travel together”.
For Rover10, we used:
* “Rover2 should never be used”
* “Rover0 should handle soil and rock data from waypoint4”
* “No rover should ever be in waypoint2 or waypoint5”
* “Roverl should take all images”
* “Waypoint6 should always have the same rock sample”

Similarly to random, our approach induces some delay
by compiling the constraints. Moreover, additional signifi-
cant delays are induced due to the translation step. All these
delays are included in the time budget, again reducing the
effective planning time but allowing a fair comparison with
original.

For each time budget and system, we report the metric
value of the plan obtained (lower values are better) and the
coverage. For ZenoTravel, the metric corresponds to the to-
tal fuel consumed, and for Rover corresponds to the total en-
ergy used. Similar to the previous section, we augmented the
domains with additional fluents to track action occurrences.

6.2 Positive Results

Our results for ZenoTravel13 are reported in Figure 3. We
first discuss positive results from this experiment, demon-
strating the potential of our approach to leverage human in
the loop for improved problem solving, with a limited bud-
get.

Solving directly the original problem (original) gives
very consistent results with a coverage of 100%. Regard-
ing solution quality, the fuel consumed slowly improves with
longer time budgets, going from 45, 537 for 50s to 40, 769
for 600s. Note that original can consistently find the
same initial solution with a time budget of only 10s.

For the random baseline, the average compilation time
of a constraint is 3.14s (S D=0.50), which is negligible for
the time budgets considered here. As expected, random



generates a wide diversity of results. The points higher
than original demonstrate that the random constraints
can complexify the problem, leading to worse solutions for
the same time budget. Additionally, the lower and constant
random coverage of 90% is due to 3 random constraints
making the problem unsolvable. However, the metrics lower
than original demonstrate that using constraints can lead
to better solutions for the same time budget. For instance,
with a time budget of 50s, the best metric obtained with ran-
dom constraints is 25, 381, which is almost half of the met-
ric obtained with original. This supports our approach
of using “relevant” constraints to facilitate the search and
find better solutions. Mann-Whitney U tests indicate that the
metrics obtained with random are not significantly better
than original, except for a time budget of 50s. We ob-
tain the following respective one-tailed p-values for every
time budget: 0.013,0.27,0.31,0.20,0.22,0.31.

The compilation time for human is in 7.83s (SD=2.87).
This is slightly longer than for the random constraints and is
expected due to the more complex nature of the human con-
straints. But this is still negligible for the time budgets con-
sidered. Howeyver, the translation time is 167.1s (S D=69.6),
ranging from 42.2s for the “easiest” constraint to 323.8s for
all constraints at once. This significant translation time af-
fects the coverage. Any time budget lower than 330s can’t
lead to a 100% coverage. Also, note that the metrics shown
only reflect the corresponding coverage, e.g., human at 50s
only has one data point. When considering time budgets suf-
ficient for full coverage (>= 400s), we can observe that
using our approach can lead to better plans. The best met-
ric is now 10, 356. This indicates that the additional delay
induced by the human in the loop and constraint compila-
tion can be worthwhile and can improve the problem-solving
process. Mann-Whitney U tests indicate that the metrics
obtained with human are always significantly better than
original, except for the time budget 100s. The respec-
tive one-tailed p-values obtained for every time budget are:
0.002,0.059, < 0.001, < 0.001, < 0.001, < 0.001.

6.3 Negative Results

Despite showing the potential of our collaborative planning
scheme, our experiments also gave some negative results.
Before going further, we remind that the human constraints
considered here are well thought out and supposed to help
the search by adding hard trajectory constraints to avoid
“bad” solutions. Hence, intuitively, the more constraints
are used, the more limited and easier the search becomes.
However, our observations demonstrate that the human con-
straints are not as beneficial as expected.

First, we can see on Figure 3 that some combinations of
human constraints lead to worse solutions than original
(time budgets >= 200s). One could think this is because
each constraint has a different effective planning time due to
the different translation and compilation delays. However, in
practice, one of the human constraints with an effective plan-
ning time of 68.9s produced a plan with a metric of 49, 822,
while another constraint with a shorter effective planning
time of 49.7s produced led to a better metric of 26, 149. This
indicates that human constraints don’t have the systematic
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Figure 4: Solution quality results for Rover10. Shows the
plan metric value (lower the better) and coverage for several
time budgets and for our approach (human) and two base-
lines (original and random). The black crosses show
the metric obtained when using all human constraints at once
(All HC). Note that the x-axis is not linear.

beneficial effect that we expected.

Our results using the numeric Roverl0 problem are re-
ported in Figure 4. They also show that using specific con-
straints can lead to better solutions. However, they also pro-
vide more negative results as random never does better
than original, and human doesn’t lead to much better
solutions than original. Additionally, human constraint
now can lead to even worse solutions than random. Mann-
Whitney U tests confirm that for every time budget, human
doesn’t lead to significantly better metrics, in contrast to
ZenoTravell3. Moreover, we marked with black crosses the
metric obtained when using all human constraints at once.
We observe that even with big time budgets, some con-
straints lead to better solutions than when using all con-
straints at once. This means that there is an optimal subset
of constraints to use to get the best solution, and just using
as many constraints as possible doesn’t necessarily improve
problem-solving.

Unexpected results about the coverage are worth men-
tioning. For both problems, random sometimes makes the
problem unsolvable, leading to the coverage upper bound
observable on Figures 3 and 4. However, we can observe a
similar upper bound for human in Figure 4 for 400s and
600s. The human constraints can’t lead to an unsolvable
problem. Instead, here the solver ‘timeouts’ and no solution
is found within the given time budget. We were not able to
identify a pattern explaining why some constraint combina-
tions lead to no solution.

For reference, we manually generated a plan for Rover10
satisfying all human constraints used and reaching a metric
of 139. This is better than any obtained results and shows
that the constraints used can lead to significantly better so-
lutions. We also used the ZenoTravel7 problem with human
constraints very close to the ones used for ZenoTravell3. We
were able to confirm that the constraints are all satisfied by
the optimal solution and thus shouldn’t obstruct the search.



Nevertheless, we observe the same kind of mixed results.

Another interesting result is regarding the use of the
PDDL3 compilation planning scheme. For Rover, the aver-
age compilation time for random and human was 34.3s
(SD=3.3) and 31.6s (SD=2.5) respectively. This is ten
times longer than random for ZenoTravell3. This shows
that the compilation time isn’t always negligible in this
planning approach. Moreover, we also considered using the
Woodworking and Parking domains, but the compilation
step, even for simple problems and constraints, was taking
more than an hour and had to be stopped. The reason behind
this long duration is yet to be determined.

7 Discussion and Conclusion

Our experiments show that despite intuitive and legitimate
human inputs, the effects on problem solving are not always
positive and can even be negative. Our main intuition re-
garding this matter is that our choice of compiled PDDL3
planning approach doesn’t suit our goals. Despite techni-
cally reducing the search space and satisfying the given con-
straints, we believe the constraints might be conflicting with
the planner’s heuristic and thus misguiding the search. As a
result, even hard trajectory constraints avoiding “bad” solu-
tions don’t necessarily improve performance. These findings
indicate we can’t leverage human input as we expected using
this PDDL3 constraint planning scheme.

Nonetheless, our results demonstrate that our framework
can effectively incorporate human natural inputs as planning
constraints with satisfactory accuracy without technical ex-
pert interventions. Our results also suggest that our frame-
work is faster at translating than technical experts. In that
sense, by conducting additional experiments, we should be
able to demonstrate significant time gains of our integrated
solution over a setup where users have to manually interact
with LLM Chatbots and update problem files.

Using PDDL3 constraints means that human inputs must
be translatable to an LTL-like (linear temporal logic) rep-
resentation. This state-based representation can be limited,
especially when the problem description lacks sufficient flu-
ents to encode the constraint or when human constraints are
directly related to actions and not states. We proposed to
augment the problem with additional fluents to keep track
of action execution, but this is still limited.

Common misconceptions have been identified when using
LTL (Greenman et al. 2022). Such misconceptions probably
also apply to PDDL3. This implies that even technical expert
translations can be erroneous. Also, explicitly accounting for
the identified common misconceptions could improve the
translation accuracy.

Nevertheless, our results using our collaborative planning
framework still demonstrate the potential to bridge human
intuition and formal automated planning through accessible
interfaces. Compared to solving directly the original prob-
lem, we were able to achieve significant improvements in so-
lution quality within the same time budget. We also demon-
strated how our pipeline leads to significantly better trans-
lations, both syntactically and semantically, compared to di-
rect LLM translations.

Our overall approach relies on human input, which creates
a trade-off: updated problems can become harder to solve or
even unsolvable, but this allows humans to gain insights on
specific suboptimal alternatives while avoiding “common-
sense” inefficient solutions.

Our findings suggest that the PDDL3 constraint planning
seems to be limited for our goals, but we are actively work-
ing on exploring other ways to leverage high-level human
inputs for collaborative planning.

Additionally, in this work, we consider only the time to
translate and use constraints, but not how to come up with
the constraints. In this regard, it would be interesting to study
how “good” humans are at providing helpful input to the
framework and what feedback the system might offer to as-
sist them.
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A Appendix: Prompts

This appendix provides the prompts used for the various LLM queries made by our framework.

A.1 Decomposition

The decomposition phase uses the following prompt to start the decomposition. The PDDL domain and problem are inserted in
{domain} and {problem}. The user constraint input is inserted in {constraint}.

Decomposition Prompt

<documents>
<pddl_domain>
{domain}
</pddl_domain>

<pddl_problem>

{problem}

</pddl_problem>
</documents>

<information>

The user will give as input a constraint in natural language. This constraint must be
used as a trajectory hard constraint for the solution plan of the given PDDL
problem.

</information>

<instructions>

— Refine the user constraint to make it applicable to the given PDDL problem.

- You can rephrase and decompose the initial constraint into several other constraints.

— These constraints should be complementary, and they will be later combined with AND
operators.

— Constraints must be state-based and follow a Linear Temporal Logic. So constraints
can’t directly refer to actions.

— Avoid explicit PDDL language in your answer, the user can’t understand PDDL.

— The set of all refined constraints must capture the meaning of the initial user
constraint.

- Format your answer as a clear and concise numbered list between the tags
<constraints> and </constraints>. There should be no subitems, only the list of
refined constraints.

- After, add 1 or 2 sentences to explain your choice of decomposition between the tags
<explanation> and </explanation>.

— Here is an example of how to format your answer:
<constraints>

1. [natural_language_constraint_1]
2. [natural_language_constraint_2]

</constraints>
<explanation>
[concise_explanation]
</explanation>
</instructions>

<user_input>
{constraint}
</user_input>

If not satisfied with the generated decomposition, the LLM is prompted as follows to re-decompose the constraint, considering
the user feedback { feedback}. This shares the same context window as the initial decomposition.



Re-decompose Prompt

[previous context]

Decompose again the constraint while considering the following: {feedback}

A.2 Encoding

The encoding phase uses the following prompt to encode a given constraint into PDDL3.0. The PDDL domain and problem are
inserted in {domain} and {problem}. The constraint to encode is inserted in {const raint}. It corresponds to each of the
sub-constraints generated by the decomposition phase.

Encoding Prompt

<documents>
<pddl_domain>
{domain}
</pddl_domain>

<pddl_problem>

{problem}

</pddl_problem>
</documents>

<information>

The user will give as input a natural language constraint that must be translated into
PDDL3.0. The translation will be used by a PDDL planner.

</information>

<instructions>

- Translate the input constraint into correct PDDL3.0.

— The resulting PDDL3.0 constraint must capture the same meaning as the initial input
constraint.

- Remember that PDDL3.0 constraints are state-based. They can only refer to existing
predicates and fluents, thus, not to actions.

- Be sure to include temporal logic like operators in your translation.

- Format your answer such that there is no preamble and such that the PDDL translation
is between the tags <pddl> and </pddl>.

</instructions>

<user_input>
{constraint}
</user_input>

If the automated verifier detects an error in the generated PDDL, one of the three following prompts is used with the same
context window. After “manually” parsing the generated PDDL, if a word is neither a standard PDDL keyword nor the name of
an object or fluent from the problem, then the first prompt is used, replacing {x } with the detected word. If no PDDL3 temporal
logic keyword (e.g., always, sometime) is detected, then the second prompt is used. Eventually, if the final parsing test using
the unified-planning library fails, the third prompt is used. The error messages from that parsing process are rarely informative.
Therefore, we use a fixed prompt.

Re-Encoding based on Verifier automated feedback Prompt

[previous context]

{x} is not a supported PDDL keyword or part of the problem description. Try again to
translate correctly.

There is no temporal logic keyword. This is mandatory for a correct PDDL3.0
constraint. Try again.




There is a syntax error. Try again carefully to translate correctly.

A.3 Back-Translation (E2NL)
The back-translation (E2NL) uses the following prompt:

Back-translation (E2NL) Prompt

<documents>
<pddl_domain>
{domain}
</pddl_domain>

<pddl_problem>

{problem}

</pddl_problem>
</documents>

<information>

The user will give as input PDDL3.0 constraints that must be translated in natural
language.

</information>

<instructions>

- Translate the user input into natural language.

- Your translation should closely match the PDDL3.0 input, without additional
deductions or reasoning.

- Your answer should be concise and not exceed 3 sentences.

- Your translation should not contain any explicit PDDL element, the user can’t
understand PDDL.

- Format your answer such that your translation is between the tags <E2NL> and </E2NL>.

</instructions>

<user_input>
{constraint}
</user_input>

The re-encoding based on human feedback after E2NL is done with a prompt only including the user input, and using the
same context window.



B Appendix: Statistical Tests

This appendix provides details about the statistical tests computed in our results.

B.1 Translation Accuracy Results (Section: 5.2)

This section provides details about the statistical tests made when analyzing the correctness of translations during the ablation
study presented in section 5.2.

NORMALITY TESTS: To test the normality of our data for the translation correctness analysis, we used the D’ Agostino
and Pearson’s test. The results for each setting of the ablation study are reported below in Table 2:

Setting p-value

Encoding  8.84e-05
+ Verifier  6.84e-05
+ Decomp  6.84e-05
+ Human  5.18e-08

Table 2: Correctness analysis: Normality tests. (Bold values indicate normality rejection)
The null hypothesis of normal distribution has been rejected for each setting. This indicates with high confidence that our
data doesn’t follow a normal distribution.

HOMOGENEITY TESTS: We also check the homogeneity of our data. Considering its non-normality, we use Levene tests
for each pair of settings. The results are reported below in Table 3:

Pair of settings p-value

Verifier-Encoding  0.791
Decomp-Encoding  0.791
Decomp-Verifier 1.000
Human-Encoding  0.014
Human- Verifier 0.028
Human-Decomp 0.028

Table 3: Correctness analysis: Homogeneity tests. (Bold values indicate homogeneity rejection)

The results indicate that the three pairs of data group including the Human setting have rejected the null hypothesis of similar
variance. This indicates with high confidence that Human has a significantly different variance than the others.

COMPARISON TESTS: Considering the non-normality and inconsistent homogeneity of our data, we use a nonparametric
statistical test. We decided to use Fisher’s Exact Test because it does not make any assumptions about the underlying distribution
of the data. We computed for each pair of settings the two-sided and both one-tailed (less and greater) p-values. When lower
than 0.05, these p-values indicate respectively if the two settings have significantly different values, and if the left setting of the
pair has significantly lower (or greater) values than the right setting of the pair. The results for each pair of settings are reported
below in Table 4

Pair of settings p-value

two-sided  less  greater

Verifier-Encoding ~ 1.000 0.706  0.500
Decomp-Encoding  1.000 0.706  0.500
Decomp-Verifier 1.000 0.608 0.608
Human-Encoding  0.030 0.997 0.015
Human- Verifier 0.057 0.995 0.029
Human-Decomp 0.057 0.995 0.029

Table 4: Correctness analysis: Comparison tests. (Bold values indicate statistical significance)

The results indicate that the Human setting has significantly higher translation correctness than all other settings.



B.2 Solution Quality - Positive Results (sec: 6.2)

This section provides details about the statistical tests made when analyzing the quality of obtained solutions when the experi-
ment presented in section 6.2 with the ZenoTravel13 problem.

NORMALITY TESTS: To test the normality of our data for the translation correctness analysis, we used the D’ Agostino
and Pearson’s test. The results for each group (original, random, human) and each time budget are reported below in
Table 5:

time budget (s)
50 100 200 300 400 600

original nan 6.3e-7 nan nan 0.049 nan
random 0.308 0.307 0.288 0.197 0.133 0.111
human  nan nan 0.741 0.298 0.273 0.133

setting

Table 5: Solution quality analysis (ZenoTravell3): Normality tests. (Bold values indicate normality rejection or uncertainty)

The normality test results are inconsistent. The non-normality of data is ensured for original with a time budget of 100s
or 400s. The "nan’ values indicate that the test couldn’t be properly conducted.

COMPARISON TESTS: Based on the inconsistent normality of our data, we decided to use the nonparametric Mann-
Whitney U rank test. The results for each group and each time budget are reported below in Table 6

time budget (s)
50 100 200 300 400 600

random < original 0.013  0.273 0.308 0.199 0.308 0.308
human < original ~ 2.2e-3 0.059 3.2e-4 2.7e-5 7.8e-5 1.9e-5
human < random  0.069 0.092 1.4e-4 3.1e-7 6.2¢e-7 3.2e-7

setting

Table 6: Solution quality analysis (ZenoTravell3): One-tailed less p-values with Mann-Whitney U rank tests. Bold values
indicate that for the corresponding time budget, the left setting generated significantly better plans than the right setting.

The results indicates that with enough time budget (> 200s) human generates significantly better solutions than other
settings.



B.3 Solution Quality - Negative Results (sec: 6.3)

This section provides details about the statistical tests made when analyzing the quality of obtained solutions when the experi-
ment presented in section 6.3 with the Rover10 problem.

NORMALITY TESTS: To test the normality of our data for the translation correctness analysis, we used the D’ Agostino
and Pearson’s test. The results for each group (original, random, human) and each time budget are reported below in
Table 7:

. time budget (s)
setting
50 100 200 300 400 600
original nan nan nan nan nan nan

random 1.6e-15 1.6e-15 1.6e-15 1.6e-15 1.6e-15 1.6e-15
human nan 1.6e-4 1.6e-4 1.6e-4 1.6e-4 1.6e-4

Table 7: Solution quality analysis (Rover10): Normality tests. (Bold values indicate normality rejection or uncertainty)

The normality test results indicate that our data is mostly not following a normal distribution. The ’nan’ values indicate that
the test couldn’t be properly conducted.

COMPARISON TESTS: Based on the non-normality of our data, we decided to use the nonparametric Mann-Whitney U
rank test. The results for each group and each time budget are reported below in Table 8

time budget (s)
50 100 200 300 400 600

random < original  0.999  0.999 0999 0999 0.999 0.999
human < original 1.0 0215 0915 0.862 0941 0.941
human < random  1.2e-4 1.1e-7 1.9e-6 3.5e-7 8.4e-7 8.4e-7

setting

Table 8: Solution quality analysis (Rover10): One-tailed less p-values with Mann-Whitney U rank tests. Bold values indicate
that for the corresponding time budget, the left setting generated significantly better plans than the right setting.

The results indicate that human only generated significantly better plans than random. But the former didn’t perform better
than original. Indeed, random performed significantly worse than original in this setup.



