
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BAYESIAN SYMBOLIC REGRESSION
WITH ENTROPIC REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic regression is the problem of finding an algebraic expression describing
a stochastic dependence of a target variable on a set of inputs. Unlike forms of re-
gression that fit parameters assuming a fixed model structure, symbolic regression
is a search problem over the space of expressions, represented, for example, as
abstract syntax trees using a library of operators. Symbolic regression is typically
used in settings with limited, noisy data in the natural sciences. However, search-
ing for a single best-fitting expression fails to capture the epistemic uncertainty
about the expression, which motivates a Bayesian perspective that enables un-
certainty quantification and specification of natural priors to constrain the search
space. In this work, we propose ERRLESS (Entropy-Regularised Reinforcement
Learning for Expression Structure Sampling), a scalable approach for sampling
the posterior distribution over expressions given data using maximum-entropy re-
inforcement learning. ERRLESS learns a neural policy that constructs expres-
sions sequentially by building up their abstract syntax trees. At convergence, the
policy samples expressions from the posterior. At test time, expressions can be
sampled by rollouts of this policy. We demonstrate that ERRLESS achieves near
state-of-the-art exact symbolic recovery on the AI Feynman benchmark (Udrescu
& Tegmark, 2020). Beyond exact recovery, we demonstrate that the mean of the
posterior predictive approximated by ERRLESS achieves a coefficient of deter-
mination (𝑅2) of 0.98, highlighting the benefits of the Bayesian perspective in
symbolic regression.

1 INTRODUCTION

Symbolic regression (SR) is the problem of searching over a space of algebraic expressions, using
a certain library of primitive operators, to find a function that most closely maps the inputs ob-
served in a dataset to their corresponding outputs. SR is a common problem in the natural sciences,
where datasets are small and noisy, domain priors constrain plausible formulas, and interpretability
is important (Bongard & Lipson, 2007; Schmidt & Lipson, 2009; Udrescu & Tegmark, 2020). Most
existing algorithms for SR (Petersen et al., 2019; Biggio et al., 2021; Mundhenk et al., 2021; Tenachi
et al., 2023; Kamienny et al., 2023) have the goal of finding a single best expression. With limited
data, such a point estimate can be unreliable and hides the uncertainty about the expression arising
from the noise and scarcity of data.

The need to model uncertainty in SR has been recognized in the literature and addressed by a
Bayesian perspective on the problem (Jin et al., 2019; Guimera & Sales-Pardo, 2025). In this
view, one posits a (structured) prior over expression structures and parameters and a model of
observation noise. A dataset of (input, output) pairs then induces a posterior distribution over
expressions, and the aim of Bayesian SR is to sample from this posterior. Previous Bayesian SR
methods use reversible-jump Markov chain Monte Carlo (MCMC) (Green, 1995) or sequential
Monte Carlo (SMC) (Bomarito & Leser, 2025; Guimera & Sales-Pardo, 2025), but these methods
rely on handcrafted proposal distributions and can be costly to scale. In this paper, we instead seek
an approach that amortizes the sampling process using a neural network.

We formulate the construction of an expression as a sequential decision-making problem, turning
the Bayesian SR task into the reinforcement learning (RL) problem of training a policy to sample
expressions from the posterior. To achieve unbiased sampling at convergence, we train this policy
using a maximum-entropy RL objective with the unnormalised posterior log-density as the reward

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝑇0

⊗
⊗

⊗

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊤

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∅

𝑐

𝑚

𝑐

□2

𝑐

□2

√
□

𝑚 𝑐

□2log

𝑚 𝑐

□2

𝑐𝑚

□2

×

𝑐𝑚

+
𝑐𝑚

Figure 1: Generation process for the expression 𝐸 = 𝑚𝑐2. Valid states are shown in gray, while
invalid states are highlighted in red. Black arrows indicate valid transitions, and pink arrows indicate
invalid transitions. Leaf nodes are represented by double-outlined circles, unary operators by single-
outlined squares, and binary operators by double-outlined squares. Wiggly arrows denote states that
can terminate and transition to the terminal state.

(§3.2). The resulting system, which we call ERRLESS (Entropy-Regularised Reinforcement
Learning for Expression Structure Sampling), is capable of learning a policy that samples expres-
sion structures and their real-valued parameters; once trained, the policy can be sampled to produce
approximate posterior samples efficiently.

Successfully applying entropy-regularized RL to Bayesian SR requires careful design choices. ER-
RLESS uses a generation process that constructs expression syntax trees in a bottom-up (postorder)
manner to allow effective imposition of constraints, imposes structural priors to avoid ill-formed, re-
dundant, or unlikely subexpressions, and can incorporate additional constraints to restrict the search
space to forbid dimensionally incompatible compositions of physical units (§2.1). The parametriza-
tion and training of the policy similarly require appropriate design of neural architectures and off-
policy training schemes (§3.3). Finally, unlike previous Monte Carlo-based methods, ERRLESS
amortizes sampling of both expression structures and parameter values into a single neural policy
and avoids explicit per-candidate constant fitting.

On the Feynman Symbolic Regression Database (Udrescu & Tegmark, 2020), ERRLESS achieves
a competitive exact symbolic recovery rate and produces posterior samples that improve predictions
when data are few and noisy. Beyond exact recovery, the posterior predictive mean reaches a median
𝑅2 of 0.98 on the noisiest setting, showing the value of modeling uncertainty over expressions with
a Bayesian view.

We summarize our contributions as follows:

• We design a novel generation process (environment) for symbolic regression that enables bottom-
up expression construction, incorporates dimensional analysis, and imposes structural constraints.

• We formulate Bayesian symbolic regression, including inference of scalar parameters in expres-
sions, as an end-to-end policy-learning problem within this environment.

• We demonstrate that ERRLESS achieves competitive exact symbolic recovery compared to state-
of-the-art approaches on the Feynman Symbolic Regression Database.

• We show that our approach captures the posterior distribution effectively, facilitating downstream
applications in settings with scarce and noisy data.

2 BAYESIAN SYMBOLIC REGRESSION

Notation. Scalar (resp. vector) random variables, or variables whose type has not been specified,
are denoted x (resp. x), and their realization is denoted 𝑥 (resp. x). The probability distribution of
a discrete random variable x is denoted 𝑃x (in uppercase) and that of a continuous random variable,
or a variable whose type has not been specified, is denoted 𝑝x (in lowercase). Let N (resp. R) be the
set of natural (resp. real) numbers, and N>0 ≔ N \ {0} (resp. R>0 ≔ {𝑥 ∈ R | 𝑥 > 0}). For 𝑛 ∈ N,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

we denote the set of integers {1, . . . , 𝑛} (or the empty set when 𝑛 = 0) as [𝑛]. For a set 𝑆, we denote
by |𝑆 | its cardinality and by 𝑆∗ ≔

⋃
𝑛∈N 𝑆

𝑛 the set of all finite sequences (strings) over 𝑆.

2.1 THE SPACE OF EXPRESSIONS

Let 𝐷, 𝐾, 𝑀 ∈ N. For ease of understanding, we will first define the space of expression trees,
ignoring physical unit constraints, then modify it to include these constraints.

Expression trees. We fix a vocabulary Σ ≔ V ⊔ C ⊔ O of symbols, where V ≔ {𝑣𝑖}𝑖∈[𝐷] is a
set of variable symbols, C ≔ {𝑐𝑘}𝑘∈[𝐾] is a set of constant symbols, and O ≔ {𝑔 𝑗 } 𝑗∈[𝑀] is a set of
operator symbols (O is referred to as operator library). Every operator 𝑔 ∈ O is equipped with an
arity 𝑟𝑔 ∈ N∗ and a semantic function 𝜙𝑔 : X𝑔 → R, where X𝑔 ⊆ R𝑟𝑔 . For example, the operator ‘+’
is binary and 𝜙+ : R2 → R, (𝑥, 𝑦) ↦→ 𝑥 + 𝑦; the operator log is unary and 𝜙log : R>0 → R, 𝑥 ↦→ log 𝑥.

An expression tree T is a finite, rooted, ordered tree where each leaf is labeled with a symbol from
V ⊔ C, and each internal node with 𝑟 children is labeled with a 𝑔 ∈ O such that 𝑟𝑔 = 𝑟. Let
𝐼C (T) ⊆ [𝐾] (resp. 𝐼V (T) ⊆ [𝐷]) be the set of indices of constants (resp. variables) appearing in
T. The constants {𝑐𝑘}𝑘∈𝐼C (T) are thought of as symbolic placeholders: a constant assignment is a
vector θ ∈ R |𝐼C (T) | that specifies numerical values for these symbols.

Let TΣ be the space of expression trees over Σ.

Evaluation. Let T ∈ TΣ, 𝐾 ′ ≔ 𝐼C (T), and 𝐷′ ≔ 𝐼V (T). Given a constant assignment θ ≔

(𝜃𝑘)𝑘∈𝐾 ′ ∈ R𝐾
′
, one can define a partial evaluation function 𝑓T,θ : R𝐷′ → R for T on every input

x ≔ (𝑥𝑖)𝑖∈𝐷′ ∈ R𝐷
′

recursively as follows:

• each leaf of T labeled 𝑣𝑖 (resp. 𝑐𝑘) evaluates to 𝑥𝑖 (resp. 𝜃𝑘);
• each internal node of T labeled with operator 𝑔 having children that evaluate to 𝑎1, . . . , 𝑎𝑟𝑔 evalu-

ates to 𝜙𝑔 (𝑎1, . . . , 𝑎𝑟𝑔) if (𝑎1, . . . , 𝑎𝑟𝑔) ∈ X𝑔, otherwise the evaluation is undefined.

Sequence representation. An expression tree T can be canonically represented as a sequence
W(T) ∈ Σ∗ by listing the labels of its nodes in postorder traversal, a representation also known
as reverse Polish notation (Łukasiewicz, 1929). For example, the expression sin(𝑣1 + 𝑐1 × 𝑣2) is
represented by the sequence (𝑣1, 𝑐1, 𝑣2,×,+, sin). (It is well-known that such an expression can
be evaluated, when real numbers are substituted for the variables and constants, by traversing the
sequence from left to right and maintaining a stack.)

Unit constraints. One can additionally constrain the space of trees by modifying the above defini-
tions to include dimension information. We assume that each variable 𝑣𝑖 has an associated physical
unit (e.g., meters, kilograms), represented as a vector u𝑖 ∈ Rℓ (called unit vector), where ℓ ≔ 7
is the number of base units.1 Each coordinate of u𝑖 represents the exponent of its corresponding
unit, e.g., velocity has units m s−1, represented as (1, 0,−1, 0, 0, 0, 0). Dimensionless variables are
represented by the zero vector (0, . . . , 0) ∈ Rℓ . All constants 𝑐𝑘 are treated as dimensionless.

Every operator 𝑔 is assumed to have constraints on the unit vectors of its arguments, as well as a
mapping from the unit vectors of the arguments to the unit vector of its output. Formally, every 𝑔
has a unit assignment function, a partial function U𝑔 : (Rℓ)𝑟𝑔 → Rℓ that returns the unit vector of
the operator’s output if the operator can be applied to inputs with the given units (and is undefined
otherwise). Let T ◦ ⊆ TΣ be the set of those expression trees which are dimensionally valid: when
evaluating bottom-up, U𝑔 is never undefined when evaluated on the unit vectors of the children of
any internal node. See §A.1 for the assignment functions of operators in the library we use.

Example. Consider the following operators applied to uvel ≔ (1, 0,−1, 0, 0, 0, 0), utime ≔

(0, 0, 1, 0, 0, 0, 0), and uangle ≔ (0, 0, 0, 0, 0, 0, 0):

• +: U+ (uvel,utime) is undefined (incompatible units: time and velocity cannot be added), but
U+ (uvel,uvel) = uvel (adding two velocities gives a velocity);

• ×: U× (uvel,utime) = (1, 0, 0, 0, 0, 0, 0) (multiplying velocity and time gives a distance);
• sin: Usin (uangle) = uangle (sine of a scalar is a scalar), but Usin (uvel) is undefined.

1In physics, the International System of Units is based on seven base units: meter (m), kilogram (kg), second
(s), ampere (A), kelvin (K), mole (mol), and candela (cd).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 BAYESIAN SYMBOLIC REGRESSION

We fix a prior probability distribution 𝑃(T) over the set of valid expression trees T ◦ and a conditional
prior distribution 𝑝(θ | T) over the space R𝐾 of constant assignments.

Let {(x𝑖 , y𝑖)}𝑁𝑖=1 be a collection of random variables such that, for every 𝑖 ∈ [𝑁], (x𝑖 , y𝑖) takes
values in X × R, and each realization x𝑖 ∈ X of x𝑖 defines the following conditional distribution:

y𝑖 | (x𝑖 = x𝑖 ,T, 𝜃) ∼ 𝒩
(
𝑓T,θ (x𝑖), 𝜎2) , (1)

where 𝜎2 ∈ R>0 is a fixed noise variance and the y𝑖’s are conditionally independent given the x𝑖’s.
That is, y𝑖 is the evaluation of the expression given by T, θ with inputs x𝑖 , with added Gaussian
noise.

We observe a dataset D ≔ {(x𝑖 , 𝑦𝑖)}𝑁𝑖=1. The posterior of (T, θ) given D satisfies the following
relation:

𝑝(T, θ | D) ∝ 𝑝(T, θ) · 𝑝(D | T, θ);

∝ 𝑝(T, θ)
𝑁∏
𝑖=1

𝑝(𝑦𝑖 | x𝑖 ,T, θ) 𝑝(x𝑖 | T, θ)︸ ︷︷ ︸
= 𝑝 (x𝑖)

, (x𝑖’s are independent of T and θ) ;

∝ 𝑝(T, θ)
𝑁∏
𝑖=1

exp
(
−

(
𝑦𝑖 − 𝑓T,θ (x𝑖)

)2

2𝜎2

)
, (by (1)) . (2)

The objective of Bayesian symbolic regression is to sample from the posterior distribution. Hav-
ing formulated the mathematical setting, in the next sections, we introduce the framework used to
approximate this distribution in practice.

3 METHODOLOGY

We introduce ERRLESS (Entropy-Regularised Reinforcement Learning for Expression Structure
Sampling), a scalable approach for Bayesian symbolic regression, illustrated in Fig. 1. §3.1 intro-
duces a sequential decision-making process for sampling expression trees that enforces constraints
during generation, §3.2 describes learning objectives for decision-making policies, and §3.3 de-
scribes the policy architecture used to sample expressions.

For concreteness, we specify the set of operators we will use in our experiments: the unary opera-
tors

{
sin, cos, log, exp,□2,

√
□,−□

}
and the binary operators

{
+,−, /,×

}
. However, the algorithm

described below is not restricted to this particular choice.

3.1 BOTTOM-UP GENERATION

Most approaches in the literature (Petersen et al., 2019; Li et al., 2023) employ top-down generation,
where internal nodes (i.e., operators) are sampled before leaf nodes (input variables and constants).
With top-down generation, the intermediate expression at each step contains ‘holes’ to be filled. As
a result, the expression can only be evaluated, and the posterior density computed, at the end of the
generation. Moreover, with top-down generation, enforcing physical unit constraints is inefficient:
since the operands may not yet be specified at intermediate steps, assigning units requires traversing
the full depth of the tree once the units have been determined.

In contrast, bottom-up generation offers two main advantages. First, some intermediate states are
valid and complete expressions. Second, because leaf nodes (and therefore operands) are specified
from the outset, newly added operators can be constrained to be compatible with the known physical
units of the operands.

Sequential generation of expression trees. Recall that an expression tree T is uniquely repre-
sented by its postorder representation W(T) ∈ Σ∗. Therefore, generating an expression tree is
equivalent to generating its sequence representation by appending one symbol at a time from left
to right. Because all operator nodes appear after their arguments in postorder traversal, the dimen-
sional validity and arity constraints correspond to restrictions on continuations of partial sequences.
The problem of modeling a probability distribution over expression trees is thus reduced to one of
autoregressive sequence modeling.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We define the token alphabet A ≔ Σ ⊔ {⊤}, where ⊤ is a special symbol marking sequence termi-
nation. A distribution over the set of trees T ◦ is equivalent to a distribution over A∗:

𝜋(𝑤1𝑤2 . . . 𝑤𝑛⊤) = 𝜋(𝑤1)𝜋(𝑤2 | 𝑤1) . . . 𝜋(𝑤𝑛 | 𝑤1 . . . 𝑤𝑛−1)𝜋(⊤ | 𝑤1 . . . 𝑤𝑛), 𝑤𝑖 ∈ A, (3)

where the support of each next-symbol distribution respects the unit and arity constraints, as well
as the restriction that generation of ⊤ is permitted only after a sequence that represents a complete
expression tree. (We must also make the assumption that every partial sequence can be continued to
a sequence ending in ⊤, which holds with the library of operators we consider.)

Length and redundancy constraints. We remark that constraints on the number of nodes in the
expression tree T can also be expressed as restrictions on the support of the next-token distributions
of W(T) in (3). In addition, structural constraints in the target distribution that disallow ill-formed,
redundant, or unlikely compositions can also be expressed as restrictions on next-token distribu-
tions. The constraints we impose prohibit: (i) composing functions with their inverses (e.g.,

√
□

2),
(ii) nesting trigonometric functions (e.g., sin(cos(□))), (iii) nesting exponentials (e.g., 𝑒𝑒

□
), and

(iv) applying unary operators directly to constants. Fig. 2 shows how our construction rules and
constraints make the search space much smaller and thus more efficient to explore.

Samplers of expressions and parameters as policies. A distribution 𝜋 over sequences of the
form (3) respecting the imposed constraints, together with a conditional distribution 𝜋(θ | T) over
constant assignments given a tree, define a joint distribution over (T, θ). In the next section, we
will describe how this autoregressively factorized distribution can be trained to sample the Bayesian
posterior defined in §2.2 using reinforcement learning methods.

3.2 MAXIMUM-ENTROPY RL TRAINING OF EXPRESSION SAMPLERS

Above, we have identified a distribution 𝜋 over pairs (T, θ) with a distribution over sequence repre-
sentations and a conditional distribution over constant assignments:

𝜋(T, θ) = 𝜋(T)𝜋(θ | T) = 𝜋(W(T)⊤)𝜋(θ | T),
where 𝜋(W(T)⊤) has an autoregressive factorization (3). Suppose that 𝜋 is a parametric model
𝜋𝜑 , which can be evaluated to obtain next-token logits for sequential generation of W(T)⊤ and the
parameters of the distribution over θ given T (for example, the mean and covariance of a Gaussian
from which θ is sampled). Our goal is to fit 𝜑 so that 𝜋𝜑 (T, θ) equals the posterior 𝑝(T, θ | D)
defined in (2), which is given as an unnormalized probability density function.

Define

𝑅(T, θ) = log 𝑝(T, θ) + log
𝑁∏
𝑖=1

exp
(
−

(
𝑦𝑖 − 𝑓T,θ (x𝑖)

)2

2𝜎2

)
,

so that 𝑝(T, θ | D) ∝ exp(𝑅(T, θ)). When 𝑅 is thought of as a reward provided to a sampler
that generates T and θ following the conditional distributions of 𝜋𝜑 , training 𝜋𝜑 to maximize its
expected reward E(T,θ)∼𝜋𝜑 [𝑅(T, θ)] is equivalent to minimizing cross-entropy between 𝜋𝜑 and the
posterior, which is achieved by sampling the posterior mode. However, one can instead consider the
entropy-regularized reinforcement learning problem

max
𝜑

[
E(T,θ)∼𝜋𝜑 [𝑅(T, θ)] + H [𝜋𝜑]

]
, (4)

where H[𝜋𝜑] is the entropy of the modeled distribution. A key property of entropy-regularized,
or maximum-entropy RL (Haarnoja et al., 2018; Eysenbach & Levine, 2022) is that the solu-
tion to (4) minimizes KL divergence between 𝜋𝜑 and the distribution with density proportional
to exp(𝑅(T, θ)), i.e., the posterior. This property has been exploited in various instances of learn-
ing to sample by sequential decision-making (Deleu et al., 2024), and efficient off-policy training
algorithms for solving (4) have been proposed.

Training objective. One such off-policy objective is trajectory balance (TB) objective (Malkin
et al., 2022), denoted by LTB, which is a special case of a path consistency learning objective
(Nachum et al., 2017) in deterministic environments with sparse terminal rewards. TB requires
additionally learning a scalar parameter log 𝑍𝜑 (corresponding to the initial state’s value function
in reinforcement learning), which, at convergence, gives the normalizing constant (the likelihood of
D). The objective associated with (T, θ) is:

LTB (T, θ; 𝜑) ≔
[

log 𝑍𝜑 + log 𝜋𝜑 (T, θ) − 𝑅(T, θ)
]2
. (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Because (5) can be minimized to 0 for all samples simultaneously, training algorithms can optimize
this objective w.r.t. 𝜑 over (T, θ) sampled from some behavior policy that does not necessarily
coincide with the current state of 𝜋𝜑 itself. We describe our off-policy training choices in §3.3.
(Because the reward can equal 0, we apply smoothing to prevent log 0 in the loss; see §A.2.)

3.3 ERRLESS DESIGN CHOICES

1 2 3 4 5 6
Maximum #Nodes

101

102

103

104

105

106

107

#
E

xp
re

ss
io

ns

Unconstrained

ERRLESS without unit constraints

ERRLESS with unit constraints

Figure 2: Growth of search space size in
maximum number of nodes (in log-scale).

Parametrization of the policy. We represent each
partial expression as a sequence of tokens and pa-
rameterize the policy with a transformer (Vaswani
et al., 2017). The transformer encodes the sequence
into an embedding that is supplied to two predic-
tion heads: (i) a head that produces the logits over
the next action at each step of the construction pro-
cess, for a sequence that has not terminated in ⊤,
and (ii) a head that outputs the mean and variance
of a Gaussian distribution from which the values of
the constants are sampled, for a sequence that has
terminated (see §B for more details).

Prior and tempering. We choose a tempered uni-
gram prior 𝑃(T) over expression trees at temperature
(see §A.2 for more details) together with length constraints and the redundancy constraints described
in §3.1. For the prior 𝑝(θ | T) over constant assignments, we chose the uniform prior over the inter-
val [0, 10], with a penalty for the number of constants used. Additionally, to encourage our policy
to sample small expressions, we use a soft-length prior (Landajuela et al., 2021) centered around 8
with variance 5 (see §B.3 for more details).

Training policy. To encourage exploration, we use off-policy training and use 𝜖-greedy explo-
ration with annealed 𝜖 along with a prioritized replay buffer. See §B for all relevant hyperparameters
and training details.

4 RELATED WORKS

Symbolic regression with deep learning. Deep symbolic regression (Petersen et al., 2019, DSR;)
trains an autoregressive recurrent neural network (RNN) policy via risk-seeking policy gradient al-
gorithms. Tenachi et al. (2023) uses the same learning algorithm but enforces constraints on physical
units at each step of the generation. ERRLESS differs from both approaches by taking a Bayesian
perspective using maximum entropy RL to train the policy and using a bottom-up generative process.
Mundhenk et al. (2021) combine DSR with genetic programming, resulting in improved exploration
and recovery of benchmark formulas. Beyond RL, NeSymReS (Biggio et al., 2021) is a transformer
pre-trained on an equation corpora, yielding zero-shot generalization across diverse symbolic regres-
sion tasks. Kamienny et al. (2023) integrates a pre-trained model within Monte Carlo Tree Search
(MCTS). Contrary to these approaches ERRLESS does not rely on existing datasets and adopts the
Bayesian perspective on symbolic regression.

Bayesian symbolic regression and probabilistic modeling. The method Bayesian Symbolic Re-
gression (BSR; Jin et al., 2019) uses reversible-jump MCMC (Green, 1995) to sample expressions
from the posterior distribution. Bomarito & Leser (2025) replaces MCMC with sequential Monte
Carlo (SMC). Finally, Guimera & Sales-Pardo (2025) provides a statistical physics perspective on
Bayesian symbolic regression. Unlike existing BSR methods that rely on handcrafted proposal
distributions and computationally intensive MCMC sampling, ERRLESS learns an amortized pos-
terior sampler with maximum entropy reinforcement learning.

Sampling discrete structured posteriors with maximum-entropy reinforcement learning.
ERRLESS builds upon prior work on maximum entropy RL for sampling from discrete structured
distributions (Buesing et al., 2020; Bengio et al., 2021). The trajectory balance objective (Malkin
et al., 2022), equivalent to path consistency learning (Nachum et al., 2017), has been used for poste-
rior inference over decision trees (Mahfoud et al., 2025), causal models (Deleu et al., 2022; 2023),
phylogenetic trees (Zhou et al., 2024). GFN-SR (Li et al., 2023) uses trajectory balance to learn
policies for sampling expressions on small synthetic benchmarks. ERRLESS deviates from GFN-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Posterior predictive metrics on the synthetic dataset. We report the accuracy of the
mean of the posterior predictive (𝑅2

PP) as well as the negative log-likelihood (NLL) on the test set
for all noise levels. The results are averaged across the datasets and the seeds.

Noise level → 𝛾 = 0.001 𝛾 = 0.01 𝛾 = 0.1

Algorithm ↓ Metric → 𝑅2
PP NLL 𝑅2

PP NLL 𝑅2
PP NLL

ERRLESS 0.90 −514.81 0.86 -516.83 0.91 −526.72
Gaussian Process −0.30 −15.80 −0.31 −16.26 −0.40 −40.85

−2 −1 0 1 2
x

−3

−2

−1

0

1

2

3

y

ERRLESS
Training region
Posterior mean
Training samples
x+ sin (5.5x)

−2 −1 0 1 2
x

−3

−2

−1

0

1

2

3 Gaussian Process

Figure 3: Samples from the posterior. ERRLESS and a Gaussian process are trained on noised
values (white circles) of the ground-truth function (solid black line) at points in the training domain
(beige). The posterior mean (dashed blue line) – the mean of the individual posterior samples (pur-
ple) – fits the true function well on the beige interval in both cases, but ERRLESS extrapolates
better outside the training region.

SR using a better generative process for constructing expressions, incorporating explicit priors, and
evaluation on large-scale benchmarks complemented by improved training.

5 EXPERIMENTAL SETUP

In this section, we describe our experimental setup. We compare our approach against the baselines
from La Cava et al. (2021) and PhySO (Tenachi et al., 2023), a state-of-the-art symbolic regression
method. A detailed description of these baselines is provided in Appendix §B.5. In §5.1, we briefly
summarize the benchmark datasets, and in §5.2, we outline the evaluation metrics.

5.1 DATASETS

Synthetic dataset. We construct a small dataset of five expressions to closely study the quality
of posterior modeling. Each expression has 20 points for training and 100 points for testing. We
set the maximum number of nodes to 𝐿 = 6 and the maximum number of constants to 𝐾 = 1.
The expressions contain at most two variables. We give an overview of the expressions and their
corresponding datasets in §B.1.

Feynman Symbolic Regression Database. We use the Feynman Symbolic Regression Database
(Udrescu & Tegmark, 2020), a standard benchmark for symbolic regression comprising 120 physics-
inspired expressions originating from the Feynman Lectures on Physics (Feynman et al., 2015).
Following Tenachi et al. (2023), we remove 4 expressions involving arccos or arcsin, leaving 116
expressions in total2. Each expression is paired with 1M sampled points; we subsample 10,000 for
training (to compute the reward) and 25,000 for testing, as per the SRBench protocol (La Cava
et al., 2021). We set 𝐿 = 35 and 𝐾 = 3.

The benchmark datasets are originally noise-free. Following the protocol of La Cava et al. (2021),
we add Gaussian noise to the ground-truth targets in the train set only. The noise is sampled from

2The expressions removed are: feynman I 26 2, feynman I 30 5, feynman II 11 17 and
feynman test 10

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60
Solution Rate (%)

PhySO
ERRLESS

AFP_FE
DSR

gplearn
AFP

AIFeynman
EPLEX

ITEA
GP-GOMEA

Operon
SBP-GP

BSR
FFX

FEAT
MRGP

Target Noise
0.001
0.01
0.1

(a) Exact symbolic recovery rate

0 50
Accuracy Solution Rate (%)

Operon
GP-GOMEA

SBP-GP
PhySO
MRGP

AFP_FE
AIFeynman

EPLEX
ERRLESS

AFP
FEAT

gplearn
ITEA
DSR
BSR
FFX

Target Noise
0.001
0.01
0.1

(b) Rate of accuracy (𝑅2 > 0.999)

Figure 4: Results on the Feynman Symbolic Regression Database: (a) Exact symbolic recovery
rate and (b) rate of accuracy.

𝒩

(
0, 𝛾

√︃
1
𝑁

∑𝑁
𝑖=1 𝑦

2
𝑖

)
, where 𝛾 controls the noise level. For each expression, we run our algorithm

with five random seeds and three noise settings: 𝛾 ∈ {0.001, 0.01, 0.1}. Importantly, the noise is
sampled once per dataset and kept fixed across all runs to ensure comparability.

5.2 METRICS

Let 𝑌 = {𝑦𝑖}𝑁𝑖=1 (resp. 𝑌 = {𝑦̂𝑖}𝑁𝑖=1) denote the target (resp. prediction) and their mean 𝑌 (resp. ¯̂𝑌).

Prediction accuracy. We use the coefficient of determination 𝑅2 as our accuracy metric between
the target 𝑌 and prediction 𝑌 :

𝑅2 ≔ 1 −
∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)

2∑𝑁
𝑖=1

(
𝑦𝑖 − 𝑌

)2 .

The coefficient 𝑅2 ≤ 1 quantifies the fraction of variance in the target 𝑌 explained by the model:
𝑅2 = 1 indicates a perfect fit, 𝑅2 = 0 indicates performance equivalent to predicting the mean of 𝑌 ,
and 𝑅2 < 0 is worse than that baseline.

Exact symbolic recovery (La Cava et al., 2021). Given a predicted expression tree T with pa-
rameters θ and a ground-truth tree T∗ with parameters θ∗: (T, θ) is considered equivalent to (T∗, θ∗)
if 𝑓T,θ does not reduce to a constant and either 𝑓T,θ/ 𝑓T∗ ,θ∗ reduces to a non-zero constant or
𝑓T,θ − 𝑓T∗ ,θ∗ reduces to a constant3.

Rate of accuracy (La Cava et al., 2021) Given a predicted expression tree T with parameters θ:
(T, θ) is said to be accurate if the test set 𝑅2 of 𝑓T,θ is strictly bigger than 0.999.

6 RESULTS

6.1 POSTERIOR MODELING OVER SMALL EXPRESSIONS

We evaluate posterior modeling and compare ERRLESS against a Gaussian process on the synthetic
datasets introduced in §5.1. We draw 1000 samples from the posterior for both methods. Table 1
shows that our approach accurately models the posterior over expression trees, as indicated by the
accuracy of the posterior predictive mean (𝑅2

PP) and the negative log-likelihood (NLL). In Figure 3,
we can see that ERRLESS produces posterior samples that fit the data even though the training
region is small enough not to reveal the true shape of the function. The posterior predictive mean
mirrors the ground-truth function, and the posterior samples fit the train set accurately while only
diverging slightly from the function on the test set.

3Intuitively, this criterion accounts for equivalent expressions that differ only by a multiplicative or additive
constant, ensuring that structurally equivalent formulas are recognized even if they are scaled or shifted.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.2 DISCOVERING PHYSICS FORMULAS

Posterior modeling. We draw 1000 samples from our approximate posterior to compute the pos-
terior predictive (see §C). We use a cold posterior at temperature 1

2 (i.e., raising the modeled distri-
bution to a power, cf. Zhang et al. (2018); Wenzel et al. (2020)). For noise level 𝛾 = 0.1, the mean
posterior predictive of ERRLESS attains a median 𝑅2 of 0.98 on the Feynman Symbolic Regres-
sion Database, and 0.97 for 𝛾 ∈ {0.01, 0.001}. These results show that our method is effective for
downstream scientific tasks where it is important to have an ensemble of models explaining the data
and combining their predictions to obtain uncertainty estimates as well.

Exact symbolic recovery and fit quality. For 𝛾 = 0.001, ERRLESS attains an exact symbolic
recovery rate of 44.31%, compared to 58.78% for the state-of-the-art PhySO. On the rate of ac-
curacy metric – defined as the proportion of expressions with 𝑅2 > 0.999 – ERRLESS reaches
42.76%, while PhySO achieves 63.30%. As shown in Fig. 4, our method is notably more robust
to noise, exhibiting only minor variations in both symbolic recovery and accuracy across different
noise levels. Furthermore, ERRLESS significantly outperforms BSR, a Bayesian symbolic regres-
sion approach, in exact symbolic recovery. The performance gap between ERRLESS and PhySO
is partly explained by training budgets. Both methods are limited to 1M samples, but while PhySO
optimizes directly for the reward, ERRLESS must approximate the posterior, a task that typically
requires a larger training budget.

6.3 QUALITATIVE ANALYSIS

We examine expressions discovered by our sampler, and highlight the case of the ground-truth ex-
pression 𝜌0/

√︃
1 − 𝑣2

𝑐2 . The highest-scoring candidate found by ERRLESS was 𝜌0
cos(𝑣/𝑐) . Although these

two expressions appear unrelated at first glance, their denominators have the same second-order
Taylor approximation in 𝑣

𝑐
at 0. The length of the postorder representation of the ground-truth ex-

pression is greater than that of its approximate counterpart, which is unfavored by the prior. An
extreme example of the same is the ground-truth expression 0.159ℎ𝜔/(exp

(
0.159 ℎ𝜔

𝑇𝑘𝐵

)
− 1

)
, which has the

first-order Taylor approximation 𝑇𝑘𝐵. The prior strongly favors 𝑇𝑘𝐵, and the two expressions have
similar likelihood: the linear approximation achieves a test set 𝑅2 of 0.99.

These results can be explained by the fact that ERRLESS incorporates a prior that favors concise
expressions, as opposed to methods that only optimize the quality of fit. With more data samples,
we would expect the likelihood to eventually dominate the prior in the reward, and the ground-truth
expression would have a higher score.

7 CONCLUSION

We introduced ERRLESS, a scalable approach to Bayesian symbolic regression, using maximum-
entropy reinforcement learning to amortize posterior sampling over algebraic expressions describ-
ing a stochastic dependence of a target variable on its inputs. We formulate expression synthesis
as a sequential decision-making process and prune the search space by enforcing dimensional con-
straints during bottom-up construction. On the Feynman Symbolic Regression Database (Udrescu
& Tegmark, 2020), ERRLESS achieves an exact symbolic recovery rate competitive with state-of-
the-art methods such as PhySO (Tenachi et al., 2023), while approximating the full posterior distri-
bution, rather than returning a single-point estimate. The posterior predictive mean achieves strong
accuracy (median 𝑅2 = 0.98), demonstrating robustness in noisy regimes. Such posterior samples
enable interpretable model discovery, hypothesis aggregation, and uncertainty-aware extrapolation
beyond the training support, all of which are key to scientific discovery.

Limitations and future work. While our method accurately models the posterior over expres-
sions, performance can degrade on long or highly complex target expressions. Future work could
condition the sampler on the temperatures of the log-likelihood and the priors, to better trade off
complexity and accuracy. Additionally, amortizing the sampler over datasets would allow poste-
rior sampling at inference time without the need for retraining. Symbolic regression methods that
amortize over datasets have already shown promise in optimizing for the best expression given a
dataset (Biggio et al., 2021; Kamienny et al., 2023). This naturally motivates extending ERRLESS
to learn the operator library itself, allowing for re-usable constructs that recur across datasets (Ellis
et al., 2021).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic program-
ming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
pp. 879–886. ACM, 2014.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow net-
work based generative models for non-iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. International Conference on Machine Learning
(ICML), 2021.

Geoffrey F Bomarito and Patrick E Leser. Bayesian symbolic regression via posterior sampling.
Philosophical Transactions of the Royal Society A, 2025.

Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

Lars Buesing, Nicolas Heess, and Theophane Weber. Approximate inference in discrete distributions
with Monte Carlo tree search and value functions. Artificial Intelligence and Statistics (AISTATS),
2020.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Van-
derPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Min-
ing and Machine Learning, pp. 108–122, 2013.

Andrei Constantin, Deaglan Bartlett, Harry Desmond, and Pedro G. Ferreira. Statistical patterns
in the equations of physics and the emergence of a meta-law of nature. arXiv preprint arXiv:
2408.11065, 2024.

F. O. de Franca and G. S. I. Aldeia. Interaction-transformation evolutionary algorithm for symbolic
regression. Evolutionary Computation, pp. 1–25, December 2020.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Char-
lin, and Yoshua Bengio. Joint Bayesian inference of graphical structure and parameters with a
single generative flow network. Neural Information Processing Systems (NeurIPS), 2023.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete prob-
abilistic inference as control in multi-path environments. Uncertainty in Artificial Intelligence
(UAI), 2024.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping in-
ductive program synthesis with wake-sleep library learning. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, pp.
835–850, 2021.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL
problems. International Conference on Learning Representations (ICLR), 2022.

Richard P. Feynman, Robert B. Leighton, and Matthew Sands. The Feynman lectures on physics,
vol. I: The new millennium edition: Mainly mechanics, radiation, and heat. Basic Books, 2015.

Peter J Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model deter-
mination. Biometrika, 82(4):711–732, 1995.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Roger Guimera and Marta Sales-Pardo. Bayesian symbolic regression: Automated equation discov-
ery from a physicists’ perspective. arXiv preprint arXiv:2507.19540, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic regression. Associ-
ation for the Advancement of Artificial Intelligence (AAAI), 2019.

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep gen-
erative symbolic regression with Monte-Carlo-tree-search. International Conference on Machine
Learning (ICML), 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affenzeller. Parameter
identification for symbolic regression using nonlinear least squares. Genetic Programming and
Evolvable Machines, December 2019.

William La Cava, Thomas Helmuth, Lee Spector, and Jason H. Moore. A probabilistic and multi-
objective analysis of lexicase selection and epsilon-lexicase selection. Evolutionary Computation,
27(3):377–402, September 2019a.

William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H. Moore. Learning
concise representations for regression by evolving networks of trees. International Conference
on Learning Representations (ICLR), 2019b.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de Franca, Marco Virgolin, Ying
Jin, Michael Kommenda, and Jason Moore. Contemporary symbolic regression methods and their
relative performance. Neural Information Processing Systems (NeurIPS) Datasets and Bench-
marks, 2021.

Mikel Landajuela, Brenden K. Petersen, Soo K. Kim, Cláudio P. Santiago, Ruben Glatt, T. Nathan
Mundhenk, Jacob F. Pettit, and Daniel M. Faissol. Improving exploration in policy gradient
search: Application to symbolic optimization. arXiv preprint arXiv:2107.09158, 2021.

Sida Li, Ioana Marinescu, and Sebastian Musslick. GFN-SR: Symbolic regression with generative
flow networks. arXiv preprint arXiv:2312.00396, 2023.

Mohammed Mahfoud, Ghait Boukachab, Michał Koziarski, Alex Hernández-Garcı́a, Stefan Bauer,
Yoshua Bengio, and Nikolay Malkin. Learning decision trees as amortized structure inference.
arXiv preprint arXiv:2503.06985, 2025.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. Neural Information Processing Systems (NeurIPS),
2022.

Trent McConaghy. FFX: Fast, scalable, deterministic symbolic regression technology. In Genetic
Programming Theory and Practice IX, pp. 235–260. Springer, 2011.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. Neural Information Processing Systems (NeurIPS), 2021.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing sys-
tems, 30, 2017.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim,
and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients. International Conference on Learning Representations (ICLR),
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Michael Schmidt and Hod Lipson. Age-fitness pareto optimization. In Genetic Programming Theory
and Practice VIII, pp. 129–146. Springer, 2011.

Trevor Stephens. gplearn: Genetic programming in python, with a scikit-learn inspired api. https:
//github.com/trevorstephens/gplearn, 2015.

Wassim Tenachi, Rodrigo Ibata, and Foivos I. Diakogiannis. Deep Symbolic Regression for Physics
Guided by Units Constraints: Toward the Automated Discovery of Physical Laws. The Astro-
physical Journal, 959(2):99, December 2023.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16), April 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing
Systems (NIPS), 2017.

Marco Virgolin, Tanja Alderliesten, and Peter AN Bosman. Linear scaling with and within seman-
tic backpropagation-based genetic programming for symbolic regression. In Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1084–1092, 2019.

Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter A N Bosman. Improving model-
based genetic programming for symbolic regression of small expressions. Evolutionary Compu-
tation, 2020.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Światkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes
posterior in deep neural networks really? International Conference on Machine Learning (ICML),
2020.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as
variational inference. International Conference on Machine Learning (ICML), 2018.

Mingyang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Math-
ieu Blanchette, and Yoshua Bengio. PhyloGFN: Phylogenetic inference with generative flow
networks. International Conference on Learning Representations (ICLR), 2024.

Jan Łukasiewicz. Elementy logiki matematycznej. Wydawnictwa Koła matematyczno-
fizycznego słuchaczów Uniwersytetu warszawskiego, t. 18. Nakładem komisji wydawniczej Koła
matematyczno-fizycznego słuchaczów Uniwersytetu warszawskiego, [Warszawa], 1929.

12

https://github.com/trevorstephens/gplearn
https://github.com/trevorstephens/gplearn

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Bottom-up generation 14

A.1 Operator physical unit constraints and assignments 14
A.2 Reward function . 14

B Experimental details 15
B.1 Datasets . 15
B.2 Replay buffer . 16
B.3 Soft length prior . 16
B.4 Hyperparameters . 16
B.5 Baselines . 16

C Posterior predictive 18

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A BOTTOM-UP GENERATION

A.1 OPERATOR PHYSICAL UNIT CONSTRAINTS AND ASSIGNMENTS

We show the values of the partial unit assignment function for the operators that we use in our library
in Table 2.

Operator 𝑔 Unit assignment function U𝑔

+ U+ (u1,u2) = u1 if u1 = u2, else undefined
− U− (u1,u2) = u1 if u1 = u2, else undefined
× U× (u1,u2) = u1 + u2
/ U/ (u1,u2) = u1 − u2

sin Usin (u) = 0 if u = 0, else undefined
cos Ucos (u) = 0 if u = 0, else undefined
log Ulog (u) = 0 if u = 0, else undefined
exp Uexp (u) = 0 if u = 0, else undefined
□2 U□2 (u) = 2u√
□ U√

□ (u) = 1
2u

−□ U−□ (u) = u

Table 2: Physical unit assignment function for the full operator library. When a variable is dimen-
sionless, its unit vector is 0.

A.2 REWARD FUNCTION

Unigram prior over expressions. Following Constantin et al. (2024), mathematical formulas are
known to obey Zipf’s law. We leverage this observation by constructing a unigram prior over oper-
ators based on their empirical frequencies. Specifically, we use Encyclopaedia Inflationaris as the
reference corpus, extract operator frequencies (Table 1 in their paper), discard operators not included
in our library, and renormalize the distribution. The resulting frequencies for our operator set are
shown in Table 3.

Table 3: Unigram prior over operators, variables, and constants. Frequencies are normalized after
restricting to our operator library.

Token Frequency
∗ 0.1770
/ 0.1328
− 0.0476
+ 0.0454
□2 0.0365
exp 0.0210√
□ 0.0199

−□ 0.0177
log 0.0133
cos 0.0072
sin 0.0048

Variables 0.2877
Constants 0.1892

Choice of 𝜎 for training. In practice, using the same 𝜎 used to generate data in the log-likelihood
is impractical and yields a log-likelihood that is very large in magnitude, which introduces numerical
instabilities during the training. Let 𝜎′ be the new alternative standard deviation to be used in the
log-likelihood, the pair (T∗, θ∗) with the highest log-likelihood ℓ𝑚𝑎𝑥 , and a pair (T, θ) with a log-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

likelihood ℓ0. Let Δmax = ℓ0 − ℓmax, then we can express it as:

Δmax = ℓ0 − ℓmax

=
𝑁

2𝜎′2

[
MSE(T, θ) − MSE(T∗, θ∗)

]
Where MSE(T, θ) = 1

𝑁

∑𝑁
𝑖=1

(
𝑦𝑖 − 𝑓T,θ (x𝑖)

)2 is the mean-squared error. We can now solve for 𝜎′:

𝜎′2 =
𝑁

2Δmax

[
MSE(T, θ) − MSE(T∗, θ∗)

]
(6)

We choose Δmax ≔ 200 and MSE(T, θ) =
(
1 − 𝑅2

min
)

Var(T∗, θ∗), where Var(T∗, θ∗) denotes the
variance of the ground-truth outputs generated by (T∗, θ∗) on the training set, and we choose 𝑅2

min ≔

0.3.

With this definition, any candidate expression (T, θ) whose 𝑅2 score falls below 𝑅2
min is automat-

ically assigned a log-likelihood smaller than −Δmax = −200. To avoid excessively large penalties,
we clamp all log-likelihood values to a minimum of −200.

When the evaluation of an expression with given input x occurring in the computation of the reward
for (T, θ) fails due to the presence of an operator with inputs outside of its domain (for example,
when evaluating

√
𝑐1 · 𝑣1 with 𝑐1 = −5 and 𝑣1 = 2), the minimum reward is also automatically

assigned.

B EXPERIMENTAL DETAILS

B.1 DATASETS

Synthetic. Table 4 shows the five expressions we used for benchmark alongside the ranges used
for the training and test set, respectively.

Table 4: Synthetic dataset. Variables are sampled uniformly from the specified intervals.

Expression Training range Test range
𝑥 + sin(5.5𝑥) 𝑥 ∼ 𝒰(−0.5, 0.5) 𝑥 ∼ 𝒰(−2, 2)
4.567 · 𝑒𝑥 + 𝑦 𝑥, 𝑦 ∼ 𝒰(−1, 1) 𝑥, 𝑦 ∼ 𝒰(−2, 2)
sin(𝑦 + 2.5𝑥) 𝑥, 𝑦 ∼ 𝒰(0, 1) 𝑥, 𝑦 ∼ 𝒰(0, 3)√︁
𝑥2 + 𝑦2 𝑥, 𝑦 ∼ 𝒰(0, 1) 𝑥, 𝑦 ∼ 𝒰(0, 3)

sin(𝑥) cos(𝑦) 𝑥, 𝑦 ∼ 𝒰(0, 1) 𝑥, 𝑦 ∼ 𝒰(0, 3)

Feynman Symbolic Regression Database. We show characteristics of the Feynman Symbolic
Regression Database (Udrescu & Tegmark, 2020) (see Fig. 5). In particular: (i) the distribution over
the number of variables in a given expression in the dataset, (ii) the distribution over expression
lengths of a given expression in the dataset, and (iii) the ratio of expressions with physical units
compared to unitless ones.

2 4 6 8 10
Number of Variables

0

10

20

30

Co
un

t

Distribution of Number of Variables

10 20 30
Number of nodes

0

5

10

15

20

25

30

Co
un

t

Distribution of Expression Length

False True
Has Units

0

20

40

60

80

100

co
un

t

Presence of Units

Figure 5: Exploratory analysis of the Feynman Symbolic Regression Database. Left: histogram
of the number of variables per expression. Center: distribution of expression tree lengths. Right:
proportion of expressions in which all variables are associated with physical units.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 REPLAY BUFFER

We use a modified version of the prioritized replay buffer where each expression tree T can be stored
up to a maximum of 𝑁repeat times in the buffer. This is to ensure that the model is trained on different
values of the constants for the same expression. When a new batch of elements is added, we apply
a first filtering step where we only keep the ones that have a reward higher than the minimal reward
in the buffer. This ensures that the minimum reward in the buffer never decreases, and that we don’t
hinder the quality of the samples in the buffer. After that, we perform a second filtering step where
we make sure that none of the added expression trees are repeated more than 𝑁repeat times.

B.3 SOFT LENGTH PRIOR

Landajuela et al. (2021) observe that if the initial action logits are set to zero, the resulting distribu-
tion over expression lengths is biased toward expressions whose lengths are close to the maximum
allowed. To mitigate this, they propose a soft length prior, which introduces a negative penalty on
actions likely to produce overly long expressions. Let 𝐿 denote the maximum number of nodes in
an expression tree, and let 𝑁nodes be the current number of nodes. For fixed parameters 0 < 𝜂 < 𝐿

and 𝜈 ∈ R>0, the soft length prior is implemented as an additional logit vector added to the policy
logits:

• Variable and constant actions: Their logits are penalized according to − (𝑁nodes−𝜂)2

2𝜈2 1𝑁nodes<𝜂

which discourages adding variables or constants when the expression is still short.
• Binary operator actions: Their logits are penalized as − (𝑁nodes−𝜂)2

2𝜈2 1𝑁nodes>𝜂 which discourages
adding binary operators once the expression grows longer than 𝜂.

• Unary operator actions: Their logits remain unchanged, i.e. equal to 0.

where 1 denotes the indicator function. The above logit is for the top-down generation case, where
binary operators are responsible for growing the expression length and the variable/constants nodes
for shrinking it. Since we do bottom-up generation, it’s the opposite. The variable and constant
nodes, by virtue of being sampled first, make the expression length larger, while binary operators do
the opposite. That is why we flip the logits for binary operators and variable/constants.

B.4 HYPERPARAMETERS

Policy. Recall that an expression tree T is uniquely represented by its postorder sequence W(T) ∈
Σ∗. We first embed it using a learnable embedding matrix with hidden dimension 256 to get a repre-
sentation. A learned positional embedding is then added to this representation, which is processed
by a Transformer encoder with 2 layers and 4 attention heads (Vaswani et al., 2017). The output of
the encoder is used in two ways:

• Action selection: A linear layer maps the representation to logits over the discrete action space
(operators, variables, and termination).

• Constant generation: The same representation is passed through a linear layer to produce the mean
and variance of a Gaussian distribution, from which constant values are sampled.

Off-policy training. We use 𝜖-greedy policy where 𝜖 decays exponentially from 1 to 0.01 during
the training. We use a prioritized replay buffer with a capacity of 10000 trajectories. The batch size
is set to 800 with 55% of the samples in the batch coming from the replay buffer. We train the policy
for a total of 1250 iterations, which corresponds to 1M visited states.

Reward function. The inverse temperature of the prior factors is 𝛼 = 0.1 for the expression tree
log-prior and 𝜆 = 0.2 for the parameters log-prior.

Optimization. We use the Adam optimizer without weight decay (Kingma & Ba, 2015). The
policy log 𝜋𝜑 (T, θ) learning rate is set to 0.001 and that of the log-partition function log 𝑍𝜑 to 0.01.

B.5 BASELINES

AFP / AFP FE (Schmidt & Lipson, 2011; 2009). Age-Fitness Pareto optimization (AFP) is a
genetic programming (GP) strategy that frames search as a bi-objective problem over prediction
error and individual age. Each candidate solution is assigned a fitness value and an age, defined
as the number of generations since creation. At each generation, selection operates on the Pareto
front with respect to these two objectives, favoring individuals that are either accurate and relatively

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

young or novel relative to the current population. By rewarding both accuracy and youth, AFP
maintains diversity and reduces premature convergence, while still steering the search toward low-
error expressions.

AIFeynman (Udrescu & Tegmark, 2020). AIFeynman is a physics-inspired, multi-stage method
designed to discover symbolic expressions by systematically breaking down a complex problem into
simpler ones. It does not learn a single generative model but rather follows a deterministic, divide-
and-conquer strategy. First, a neural network is trained to high accuracy on the dataset D. This
network is then treated as an “oracle” and is probed to discover properties of the underlying function,
such as symmetries, separability, or polynomial structure. Based on these discovered properties, the
original problem is recursively simplified. The final, simplified sub-problems are then solved using
a combination of brute-force search and polynomial fitting.

BSR (Jin et al., 2019). Bayesian symbolic regression (BSR) directly addresses the problem of
posterior inference over the space of expressions. Similar to our approach, BSR also aims to sample
from the posterior distribution 𝑝(T, θ | D), where T is the expression tree structure and 𝜃 represents
its constant parameters. Due to the varying dimensionality of its parameter space (due to constantly
changing tree structure), BSR employs Reversible-Jump MCMC (RJMCMC), a technique that al-
lows the MCMC sampler to propose “moves” between models of different dimensions (e.g., adding
or removing a node in the tree T) while maintaining the detailed balance condition. This approach
relies on handcrafted proposal distributions for these moves, so it can be computationally intensive
and often fails to explore the posterior landscape sufficiently.

DSR (Petersen et al., 2019). Deep symbolic regression (DSR) was a seminal work that first
framed the symbolic regression task as a reinforcement learning (RL) problem. DSR employs a
Recurrent Neural Network (RNN) as a policy, which autoregressively generates an expression tree
T token by token in a top-down, pre-order traversal. A complete expression constitutes a trajectory,
and the quality of this expression (e.g., its 𝑅2 score on the dataset D) serves as the reward 𝑅(T).
The policy is trained using a risk-seeking policy gradient algorithm, which biases the search towards
high-reward expressions and helps escape local optima. The ultimate goal of DSR is to find a single
best-fitting expression that maximizes the expected reward.

PhySO (Tenachi et al., 2023). PhySO uses the same learning framework as DSR for training their
policy, but they add physical units constraints where they force the expression to be dimensionally
valid at each generation step.

EPLEX (La Cava et al., 2019a). EPLEX is an advanced parent selection method for Genetic Pro-
gramming designed to excel in continuous-valued regression tasks. Traditional selection methods
rely on an aggregate fitness score (like average error), which loses information about performance
on individual data points. EPLEX addresses this by filtering the population sequentially on a random
ordering of individual training cases.

FEAT (La Cava et al., 2019b). FEAT is a hybrid method for symbolic regression that combines
evolutionary computation with linear models. Instead of evolving a single monolithic expression,
FEAT evolves a set of simpler expression trees that serve as features. These features are then used
as inputs to a linear model. The key innovation is a feedback mechanism where the coefficients
learned by the linear model are used to guide the evolutionary search, prioritizing the mutation and
replacement of less impactful features.

FFX (McConaghy, 2011). FFX is a non-evolutionary, deterministic algorithm for symbolic re-
gression that casts the problem as a feature selection task within a generalized linear model. The
method operates in two main stages: first, it deterministically generates a massive library of can-
didate basis functions by applying a predefined set of nonlinear operators and interactions to the
input variables. Second, it employs path-wise regularized learning (specifically, an elastic net) to
efficiently search this vast feature space.

GP-GOMEA (Virgolin et al., 2020). GP-GOMEA is a model-based evolutionary algorithm that
aims to improve search efficiency by explicitly learning and exploiting the structure of promising
solutions. Unlike traditional GP, which relies on blind genetic operators like crossover and mutation,
GP-GOMEA learns a “linkage model” in each generation. This model, typically a Linkage Tree built
using mutual information between nodes in the population’s expression trees, identifies groups of
genes (sub-programs) that work well together.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

gplearn (Stephens, 2015). GPLearn is a Python library that implements tree-based genetic pro-
gramming for symbolic regression within the scikit-learn API (Buitinck et al., 2013). Candi-
date models are mathematical expression trees evolved using standard GP operators such as sub-tree
crossover and mutation, with fitness measured by prediction error.

ITEA (de Franca & Aldeia, 2020). ITEA is an evolutionary algorithm that operates on a con-
strained representation called Interaction Transformation (IT). Unlike the free-form trees in tradi-
tional GP, an IT expression is restricted to a linear combination of nonlinear terms. ITEA evolves a
population of these structured expressions using a mutation-only strategy.

MRGP (Arnaldo et al., 2014). MRGP is a hybrid technique that integrates tree-based GP with
the LASSO regularization method. Unlike conventional GP, MRGP does not directly compare the
final program’s output with the target variable. Instead, it constructs a set of sub-expressions from
the program and fits a linear combination of these sub-expressions to the target output. The target
variable is then compared against the output of the resulting regression model.

Operon (Kommenda et al., 2019). Operon is a modern, highly efficient C++ framework for GP
in symbolic regression. It focuses on improving performance and scalability through advanced ar-
chitectural choices, including representing expression trees in a cache-friendly, continuous memory
layout. It also implements a fine-grained, low-overhead concurrency model for parallel execution.

SBP-GP (Virgolin et al., 2019). SBP-GP is a GP method that guides variation using semantic
backpropagation (SB). Instead of random tree changes, SB computes the output each sub-tree should
produce to help the overall expression match the target, by propagating the target values down
through the tree using function inverses. New sub-trees are then generated or selected to better
match these desired outputs.

C POSTERIOR PREDICTIVE

For any test input x∗, the posterior predictive distribution of the corresponding output y∗ is given
by:

𝑝(y∗ | x∗,D) =
∑︁

T

∫
𝑝(y∗ | x∗,T, θ) 𝑝(T, θ | D) dθ (7)

Intuitively, this distribution weighs the contribution of all expression trees and their parameters.

Mean of the posterior predictive. In general, the mean is:

E [y∗ | x∗,D] =
∑︁
𝑇

∫
𝑝(T, θ | D)E [y∗ | x∗,T, θ] dθ

Since the likelihood model is a Gaussian (1), we have E [y∗ | x∗,T, θ] = 𝑓T,θ (x∗) which yields:

E [y∗ | x∗,D] = ET,θ
[
𝑓T,θ (x∗)

]
(8)

In practice, we compute the above quantity by drawing expression trees with their parameters from
the learned approximation to the posterior. A tempered posterior can be obtained by weighting these
samples by their probability under the trained sampler raised to a power. For example, for a posterior
at temperature 1

2 , we simply reweight the samples by their likelihood under the trained model.

18

	Introduction
	Bayesian symbolic regression
	The space of expressions
	Bayesian symbolic regression

	Methodology
	Bottom-up generation
	Maximum-entropy RL training of expression samplers
	ERRLESS design choices

	Related works
	Experimental setup
	Datasets
	Metrics

	Results
	Posterior modeling over small expressions
	Discovering physics formulas
	Qualitative analysis

	Conclusion
	 Appendix
	Bottom-up generation
	Operator physical unit constraints and assignments
	Reward function

	Experimental details
	Datasets
	Replay buffer
	Soft length prior
	Hyperparameters
	Baselines

	Posterior predictive

