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Abstract

Learning personalized decision policies that gener-
alize to the target population is of great relevance.
Since training data is often not representative of the
target population, standard policy learning meth-
ods may yield policies that do not generalize target
population. To address this challenge, we propose a
novel framework for learning policies that general-
ize to the target population. For this, we character-
ize the difference between the training data and the
target population as a sample selection bias using a
selection variable. Over an uncertainty set around
this selection variable, we optimize the minimax
value of a policy to achieve the best worst-case
policy value on the target population. In order to
solve the minimax problem, we derive an efficient
algorithm based on a convex-concave procedure
and prove convergence for parametrized spaces of
policies such as logistic policies. We prove that, if
the uncertainty set is well-specified, our policies
generalize to the target population as they can not
do worse than on the training data. Using simu-
lated data and a clinical trial, we demonstrate that,
compared to standard policy learning methods, our
framework improves the generalizability of poli-
cies substantially.

1 INTRODUCTION

Learning personalized policies has become integral to
modern decision-making in a variety of domains such as
medicine [Hill and Su, 2013], and public policy [Kube et al.,
2019]. Since in these domains exploration is costly or oth-
erwise infeasible, many methods have been proposed for
off-policy learning, i. e., policy learning from existing data
[e. g., Dudík et al., 2014, Kallus, 2018, Athey and Wager,
2021, Tschernutter et al., 2022].

A major challenge in off-policy learning is the generalizabil-
ity of policies. Generalizability is concerned with whether a
policy learned on the data for training (i. e., training data) is
also effective in the target population. Standard methods for
policy learning yield policies that are effective on the target
population, if, and only if, the training data is representative
of the target population [e. g., Beygelzimer and Langford,
2009, Dudík et al., 2014]. However, this may not hold true in
practice [e. g., Buchanan et al., 2018, Cole and Stuart, 2010,
Downs and Black, 1998, Flores et al., 2021, Norris et al.,
2001, Rothwell, 2005]. For instance, a review of HIV/AIDS
clinical trials found that women are largely underrepresented
in these trials [Gandhi et al., 2005, Greenblatt, 2011], so
that data from these trials is not representative of the actual
target population (i.e., the population of HIV-positive pa-
tients in the USA). Therefore, when data from such trials is
used to derive policies, standard methods for policy learning
may not generalize to the target population. As such, these
policies may be ineffective or even harmful on the target
population and, therefore, not relevant in practice.

In this paper, we develop a framework for learning policies
from training data that generalize to the target population.1

For this, we characterize the difference between training
data and target population as a sample selection bias using
an unknown selection variable [e. g., Cortes et al., 2008,
Manski, 1989]. If we had oracle access to the true selection
variable, we could re-weight the data accordingly in order to
obtain the value of a policy on the target population. Since,
in practice, the true selection variable is unknown, the value
of a policy on the target population is not identifiable from
training data. Instead, we derive bounds on the odds-ratio
of the selection probability, which yields an uncertainty set
around the true selection probabilities. Then, our framework
optimizes the minimax value of a policy to achieve the best
worst-case policy value on the target population. We prove
that, if the uncertainty set is well-specified, our framework
yields policies that do not do worse on the target population

1Code available at github.com/tobhatt/
GeneralOPL.
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than the worst-case policy value estimated from the training
data. As such, these policies can generalize to the target pop-
ulation. In order to efficiently optimize the minimax value
of a policy, we show that it can be written as a difference
of convex functions (DC) program. Then, by leveraging the
structure of the adversarial subproblem, we develop a tai-
lored minimax convex-concave procedure (MMCCP). We
prove that MMCCP converges for certain parameterized
spaces of policies such as logistic policies. Using synthetic
data and a clinical trial, we demonstrate that standard policy
learning methods generalize poorly, while our framework
improves the generalizability of policies substantially. As
such, our framework enables to learn reliable policies that
can be implemented in the target population.

2 PRELIMINARIES

In this section, we describe the setup, formulate the problem
of generalizing policies, and discuss related work.

2.1 SETUP

We consider a binary treatment T P t0, 1u, covariates
X P X � Rd, and the outcome Y P R. We use the conven-
tion that lower outcomes are preferred. Using the Neyman-
Rubin potential outcomes framework [Rubin, 2005], let
Y p0q, Y p1q be the potential outcomes for each of the treat-
ments. Further, let a policy π be a map from the covariates to
the probability of treatment assignment, i. e., π : X Ñ r0, 1s.
Then, the policy value of π is given by

V pπq � ErY πs � ErπpXqY p1q � p1� πpXqqY p0qs.
(1)

The objective of policy learning is to find a policy π in
a policy class Π that minimizes the policy value, i. e.,
π P argminπPΠ V pπq.
We make the following three standard assumptions [Ru-
bin, 1974]: (i) consistency (i. e., Y � Y pT q); (ii) positivity
(i. e., 0   ppT � 1 | X � xq   1 for all x); and (iii) strong
ignorability (i. e., Y p0q, Y p1q KK T | X). Then we can iden-
tify the policy value in (1) in terms of the observed data
pX,T, Y q.

2.2 PROBLEM FORMULATION

Suppose we are interested in learning a policy that min-
imizes the policy value under the target distribution
pX,T, Y q � P, i. e., VTargetpπq. However, we are not given
data from the target distribution, but only data from a (po-
tentially different) training distribution pX,T, Y q � PTrain.

Standard policy learning methods assume that the training
and target distributions are identical. However, even in care-
fully designed clinical trials, the subjects in the trial are often

not representative of the target population, i. e., PTrain � P
[e. g., Buchanan et al., 2018, Cortes et al., 2008, Downs and
Black, 1998, Flores et al., 2021, Gandhi et al., 2005, Green-
blatt, 2011, Rothwell, 2005]. Hence, standard methods for
policy learning yield policies that minimize the policy value
on the training data, i. e., VTrainpπq � ETrainrY πs. However,
since the policy value depends on the underlying data distri-
bution, these policies may not minimize the policy value on
the target population, i. e., VTargetpπq � ErY πs. This can be
seen when writing ErY πs in terms of the distribution PTrain
using a change of probability measure:

ErY πs � ETrainrRY πs, (2)

where the random variable R � dP{dPTrain is the Radon-
Nikodým derivative,2 also know as density ratio. As a direct
implication, if PTrain � P and, thus, R � 1, it follows that

ErY πs � ETrainrY πs. (3)

In other words, a policy learned from training data using
standard methods may not generalize to the target popula-
tion, and, as such, may be of little help in practice.

In this paper, we consider the realistic setting in which the
training data is not representative of the target population.
We propose a framework for learning policies that generalize
to the target population only given data from the training
distribution, i. e., tpXi, Ti, Yiquni�1 � PTrain.

2.3 RELATED WORK

Despite the vast literature on off-policy learning, less work
considers the problem of learning policies that generalize to
the target population. Below, we summarize works on off-
policy learning and works on external validity in causality,
which is closely related to generalizability.

Off-policy learning. Off-policy learning meth-
ods can be broadly divided into three categories:
(i) Direct methods estimate the outcome functions
µtpxq � ErY ptq | X � xs and plug them into (1), i. e.,
V̂ DMpπq � 1

n

°n
i�1 πpXiqµ̂1pXiq � p1� πpXiqqµ̂0pXiq

[e. g., Bennett and Kallus, 2020]. This approach is closely
related to estimating the conditional average treatment
effect, i. e., ErY p1q � Y p0q | Xs [Shalit et al., 2017, Hatt
et al., 2022]. Direct methods are known to be weak against
model misspecification with regards to µtpxq. (ii) Weighting
methods re-weight the outcome data such that it looks as
if it were generated by the policy that is evaluated [e. g.,
Bottou et al., 2013, Horvitz and Thompson, 1952, Kallus,
2018, Li et al., 2011]. A common choice for weights are the
normalized inverse propensity weights [Swaminathan and
Joachims, 2015], i. e., V̂ NIPWpπq � 1

n

°n
i�1 2W

IPW
i p1 �

2The standard assumption that P is absolute continuous with
respect to PTrain, i. e., P ! PTrain, is made in order to ensure that
the Radon-Nikodým derivative is well-defined.



2Tiqp1 � Ti � πpXiqqYi{p 1n
°n
j�1W

IPW
j q, where

W IPW
i � 1{pp1 � 2Tiqp1 � Ti � πbpXiqqq and

πbpxq � P pT � 1 | X � xq is the so-called behav-
ior policy, which was used to generate the training
data. (iii) Doubly robust methods combine direct and
weighting methods typically using the augmented inverse
propensity weight estimator [Athey and Wager, 2021,
Dudík et al., 2014, Thomas and Brunskill, 2016]. When the
direct estimate of µ̂t is biased, the doubly robust method
weights the residuals by the inverse propensity weights
in order to remove the bias, i. e., V̂ DRpπq � V̂ DMpπq �
1
n

°n
i�1W

IPW
i p1� 2Tiqp1� Ti � πpXiqqpYi � µ̂TipXiqq.

The above methods have become the standard for off-policy
learning. Despite their widespread use, the above methods
implicitly assume that the training data, which is used to
learn the policy, is representative of the target population.
As such, when the training data is not representative of the
target population, we cannot rely on the above methods, as
policies may not generalize to the target population.

Distributionally robust optimization. A related, yet funda-
mentally different idea is distributionally robust optimiza-
tion (DRO) [e. g., Duchi and Namkoong, 2018], which stud-
ies robustness towards distributional shifts. DRO has found
application in off-policy learning by optimizing worst-case
policy values [Si et al., 2020] and individualized treatment
rules [Zhao et al., 2019b, Mo et al., 2020]. While gener-
alizability is related to DRO, since the difference between
training and target distribution can be seen as a distribu-
tional shift, it is fundamentally different, as DRO allows
for arbitrary changes in distribution. In contrast, generaliz-
ability considers a training distribution that is, potentially,
not representative of the target population, but derived from
the target population. That is, generalizability considers
differences in the distributions the arise from an unknown
selection mechanism into the training data. Moreover, DRO
and its applications require the decision-maker to quantify
the distance between training and target distribution in terms
of some divergence measure (typically the Kullback-Leibler
divergence), which may be notoriously difficult for domain
experts such as clinicians. In contrast, our approach allows
for user-friendly and intuitive calibration of the parameters
involved in the uncertainty set due to recognizing that the
differences arises from an unknown selection mechanism.

External validity in causality. Different to policy learning,
causal inference aims to estimate causal effects from obser-
vational data [Bottou et al., 2013, Kuzmanovic et al., 2021,
Hatt and Feuerriegel, 2021]. External validity in causal in-
ference is concerned with whether causal effect estimates
obtained from a study sample are also valid for the target
population. A common approach to address this is to re-
weight the data with the inverse of a subject’s probability
to be selected into the study sample [e. g., Buchanan et al.,
2018, Cole and Stuart, 2010, Dahabreh et al., 2019, Imai
et al., 2013, Stuart et al., 2011]. This idea has been extended

to a doubly robust method for off-policy learning [Uehara
et al., 2020]. Predominantly used in economics, the Heck-
man correction is another technique that is also based on a
subject’s selection probability [Heckman, 1979]. However,
in order to estimate these selection probabilities, all existing
approaches assume that data from both the study sample
and the target population is given. In practice, however, we
are only given data from the study sample and not from
the target population. Other approaches include approxima-
tions of the bias arising from the difference in the study
sample and target population by using weights that do not
depend on the selection variable [Andrews and Oster, 2017],
by bounding the weights directly [Aronow and Lee, 2013],
or, in addition, by constraining the shape of the population
outcome distribution [Miratrix et al., 2018].

Different to the above approaches and more practically, we
do not assume that we have access to samples from the target
population and, therewith, we cannot estimate a subject’s se-
lection probability. As a remedy, we present our framework
for learning generalizable policies in the following.

3 GENERALIZING OFF-POLICY
LEARNING UNDER SAMPLE
SELECTION BIAS

In this section, we introduce our framework for learning
policies that generalize to the target population. For this,
we first characterize the difference between the training
distribution PTrain and the target distribution P as a sample
selection bias (Section 3.1). Then, based on this, we derive
an uncertainty set and optimize the minimax policy value
to achieve the best worst-case policy value (Section 3.2).
We prove that policies learned in this way do not do worse
on the target population than the worst-case policy value
and, as such, can be generalized to the target population
(Section 3.3).

3.1 SAMPLE SELECTION BIAS

In this section, we characterize the difference between the
training distribution PTrain and the target distribution P as a
sample selection bias using a selection variable [e. g., Cortes
et al., 2008, Manski, 1989]. This then allows us to charac-
terize the Radon-Nikodým derivative R � dP{dPTrain in (2)
in terms of the selection variable.

We represent the selection bias with a selection variable
S P t0, 1u. If, for a subject, S � 1, the subject is included
in the training data, and, if S � 0, the subject is excluded
from the training data. As a result, we can write the training
distribution in terms of the target distribution:

PTrainp�q � Pp� | S � 1q. (4)

Based on this, we characterize the Radon-Nikodým deriva-



tive, which enables us to write the policy value on the target
population in terms of the selection variable S and the train-
ing distribution PTrain.

Proposition 1. Under the sample selection bias, we can
write the Radon-Nikodým derivative R � dP{dPTrain as

R � P pS � 1q
PpS � 1 | X,T, Y q , (5)

and, therefore, we can write the policy value on the target
population as

VTargetpπq � ETrain

�
P pS � 1q

PpS � 1 | X,T, Y qY
π

�
. (6)

See Appendix A.1 for a proof. If, hypothetically, we ob-
served S, we could estimate R � P pS � 1q {PpS � 1 |
X,T, Y q3 and re-weight the data accordingly in order to
obtain the policy value on the target population. However,
we never observe the selection variable S, since we only
observe the training data for which S � 1. This renders the
selection variable S unidentifiable from the training data.
Instead, we use an uncertainty set over which we optimize
the minimax policy value on the target population.

3.2 LEARNING GENERALIZABLE POLICIES BY
OPTIMIZING MINIMAX POLICY VALUE

We derive an uncertainty set aroundR � P pS � 1q {PpS �
1 | X,T, Y q over which we maximize the policy value to
obtain the worst-case policy value. Then, our framework
optimizes the minimax policy value to achieve the best
worst-case policy value on the target population.

If we had oracle access to the true Radon-Nikodým deriva-
tive R�i � R�i pXi, Ti, Yiq, we could estimate the policy
value on the target population using Proposition 1, that is,
by re-weighting the data with R�. This often leads to high
variance estimates due to probabilities close to zero. As a
remedy, since ErR�s � 1, we use the empirical sum of
the true Radon-Nikodým derivatives as a control variate
to normalize the estimate. This gives rise to the following
Hajek estimator for the policy value on the target population
VTargetpπq:

V̂ �Targetpπq �
°n
i�1R

�
i ψipπq°n

i�1R
�
i

, (7)

where ψipπq corresponds to one of the three standard meth-
ods for policy learning: direct, weighting, and doubly robust
methods. Formally, ψipπq is either ψDM

i pπq, ψNIPW
i pπq, or

3Under the standard assumption P ! PTrain, the selection vari-
able satisfies positivity, i. e., PpS � 1 | X,T, Y q ¡ 0. Therefore,
the ratio P pS � 1q {PpS � 1 | X,T, Y q is well-defined.

ψDR
i pπq given as:

ψDM
i pπq � πpXiqµ1pXiq � p1� πpXiqqµ0pXiq, (8)

ψNIPW
i pπq � 2W IPW

i p1� 2Tiq
1
n

°n
j�1W

IPW
j

p1� Ti � πpXiqqYi,
(9)

ψDR
i pπq � ψDM

i pπq�
W IPW
i p1� 2Tiqp1� Ti � πpXiqqpYi � µTipXiqq. (10)

The outcome functions µtpxq and the weights W IPW need
to be estimated from data. Any ψpπq in (8), (9), or (10) can
be chosen for estimating the policy value as long as the data
is re-weighted with the Radon-Nikodým derivative R�.

Since the true R� is unknown, we instead derive a worst-
case policy value on the target population. This allows to
ensure that our policy does not do worse than expected
once it is implemented in the target population. For this,
we maximize (7) over an uncertainty set around R�. We
consider an uncertainty set motivated by sensitivity analysis
in causality [e. g., Kallus et al., 2019, Kallus and Zhou, 2018,
Rosenbaum, 2002, Zhao et al., 2019a], which restricts by
how much PpS � 1 | X,T, Y q can vary from PpS � 1q via
the odds-ratio characterization as follows:

1

Γ
¤ P pS � 1q p1� PpS � 1 | X,T, Y qq

PpS � 1 | X,T, Y qp1� P pS � 1qq ¤ Γ, (11)

where Γ ¥ 1. For Γ � 1, we have equal probability of
selection, i. e., PpS � 1 | X,T, Y q � PpS � 1q and,
thus, no difference between the training data and the target
population. Larger values of Γ allow for larger variation
in the probabilities of selection. The bounded odds-ratio in
(11) immediately yields an uncertainty set for the Radon-
Nikodým derivative:

R �tR P Rn� : l ¤ Ri ¤ u, @iu, (12)

where l � 1� P pS � 1q � ΓP pS � 1q
Γ

, (13)

where u � Γp1� P pS � 1qq � P pS � 1q . (14)

The uncertainty set R includes all Radon-Nikodým deriva-
tives R that satisfy the odds-ratio restriction in (11). For
a given policy, we seek the maximum policy value on the
target population among all Radon-Nikodým derivatives in
the uncertainty set. This yields the following worst-case
policy.

Definition 1. (Worst-case policy value.) The worst-case
policy value on the target population under the bounded
odds-ratio with parameter Γ is given by

V Targetpπ;Rq � max
RPR

°n
i�1Riψipπq°n

i�1Ri
, (15)

where ψipπq corresponds to either (8), (9), or (10).



Then, we seek the optimal policy in a policy class Π, which
minimizes the worst-case policy value on the target popula-
tion, i. e.,

πpΠ,Rq P argmin
πPΠ

V Targetpπ;Rq. (16)

In particular, a policy learned with our framework gener-
alizes to the target population, since it does not do worse
on the target population than the worst-case policy value
estimated using the training data. For this, a decision-maker
only has to quantify the population selection probability,
i. e., PpS � 1q and appropriately choose the maximum de-
viation from it via Γ. We discuss data-driven approaches to
choose these quantities in Section 3.4. We derive a tailored
convex-concave procedure for optimizing (16) in Section 4.

3.3 THEORETICAL GUARANTEES FOR
GENERALIZABILITY

We prove that, if the Radon-Nikodým is appropriately
bounded, the worst-case policy value, V Targetpπ;Rq, is
asymptotically an upper bound for the true policy value on
the target population, VTargetpπq. As such, a policy learned
with our framework does not do worse on the target popu-
lation than the worst-case policy value. Similar to [Athey
and Wager, 2021], we express the flexibility of a policy
class Π using the notion of the Rademacher complexity, i. e.,
RnpΠq.4

Theorem 1. (Generalization bound.) Suppose the true
Radon-Nikodým derivative is appropriately bounded, i. e.,
R� P R and, therefore, l ¤ R�i ¤ u, and we have bounded
outcomes, i. e., |Y |   C. Then, for a constant Kψ depend-
ing on ψpπq and for some δ ¡ 0, we have that,

VTargetpπq ¤ V Targetpπ;Rq�2C u

l
Kψ

�
RnpΠq�

b
18 logp4{δq

n

	
,

(17)
with probability at least 1� δ and for any π P Π.

See Appendix A.2 for a proof. All policy classes we con-
sider have

?
n-vanishing Rademacher complexity, i. e.,

RnpΠq � Opn�1{2q. Therefore, Theorem 1 proves that,
asymptotically, V Targetpπq is an upper bound for VTargetpπq.
This guarantees that πpΠ,Rq from (16) does not do worse
on the target population than the worst-case policy value,
which is calculated using training data. In particular, since
πpΠ,Rq minimizes the right hand side of (17), πpΠ,Rq is
the best policy that guarantees to generalize to the target
population. Our bound in Theorem 1 holds without com-
plete knowledge of the selection variable and proves that
our framework yields policies that generalizes to the target
population.

4The empirical Rademacher complexity of a policy class Π is
defined as RnpΠq �

1
2n

ΣσPt�1,�1un supπPΠ| 1n
°n

i�1 σiπpXiq|.

Note that in Theorem 1, we use the true nuisance functions
instead of estimates, since it has been shown that this does
not affect the leading term in the convergence rate of the
policy value (see Athey and Wager [2021]; Sec. 3.1, Sec. 3.2,
and Lemma 4). This holds true if the nuisance functions have
finite second moment and we use consistent estimators for
the nuisance functions andL2 errors decay with 1{nζ , where
ζ depends on the nuisance functions. Hence, to provide a
generalization bound on the policy value, it is enough to
consider the true nuisance functions as we did in Theorem 1.

3.4 CALIBRATION OF Γ AND P pS � 1q

In this section, we discuss two approaches to calibrate the
parameters Γ and P pS � 1q in (11), which are context-
dependent: (i) Practitioner calibration with domain knowl-
edge and (ii) data-driven calibration.

(i) Practitioner calibration: This approach is based on do-
main knowledge of practitioners about variables that impact
selection into training data. First, P pS � 1q, the population
probability of inclusion, needs to be quantified. If the study
is randomized, a value � 1{2 is reasonable. Second, Γ, the
largest deviation from P pS � 1q, needs to be quantified.
Our framework allows a practitioner-friendly choice of cali-
bration parameters. In fact, both questions may be simply
answered using domain knowledge.

(ii) Data-driven calibration: Although our framework en-
ables practitioners to choose appropriate calibration param-
eters, we provide a fully data-driven approach for calibrat-
ing Γ and P pS � 1q. To this end, we consider a setting
in which samples from one of the covariates of the target
population are provided. This is reasonable, since we of-
ten have limited understanding of the target population and,
for instance, know covariates such as the distribution of
gender or age in the target population. Once we are given
one covariate, e. g., xage, we proceed in two steps: (1) For
calibrating P pS � 1q, we approximate P pS � 1 | X,Y, T q
via an estimate of P pS � 1 | xageq and, based on this,
we approximate P pS � 1q by averaging over xage, i. e.,
1
n

°n
i�1 P pSi � 1 | xage,iq. (2) For calibrating Γ, we take

the maximum of the odds-ratio in (11) with the above esti-
mates for P pS � 1q and P pS � 1 | xageq plugged in, which
yields a value for Γ. We use this data-driven calibration pro-
cedure in our experiments (Section 5).

In case the uncertainty regarding the calibration parameters
remains high, large values for Γ can be chosen, yielding a
wide uncertainty set and conservative policies.

4 OPTIMIZING GENERALIZABLE
POLICIES

In this section, we derive an efficient algorithm for optimiz-
ing the minimax policy value in (16). For this, we consider



a parameterized policy class Π � tπp�, θq : θ P Θu and the
minimax problem

min
θPΘ

max
RPR

°n
i�1Riψipθq°n

i�1Ri
, (MMP)

where ψipθq denotes ψipπp�, θqq and corresponds to either
(8), (9), or (10). The above minimax problem is non-trivial,
since it is in general non-convex in θ. We first derive a
closed-form solution of the worst-case policy value subprob-
lem (Section 4.1). Then, based on this, we develop a tailored
convex-concave procedure that solves (MMP) (Section 4.2).

4.1 CLOSED-FORM SOLUTION OF WORST-CASE
POLICY VALUE

The solution of (MMP) involves the worst-case policy value
subproblem in (15). We derive a closed-form solution of the
subproblem and the corresponding Radon-Nikodým deriva-
tive at the optimal solution in Theorem 2.

Theorem 2. (Closed-form solution of worst-case policy
value.) Let piq denote the ordering such that ψp1qpθq ¤
. . . ¤ ψpnqpθq. Then, an optimal solution of the worst-case
policy value subproblem (15) is given by

V Targetpπ;Rq �
l
°k�

i�1 ψpiqpθq � u
°n
i�k��1 ψpiqpθq

lk� � upn� k�q ,

(18)
with

k� � inf
!
k P t0, . . . , nu : (19)

l
°k
i�1 ψpiqpθq � u

°n
i�k�1 ψpiqpθq

lk � upn� kq ¤ ψpk�1qpθq
)
. (20)

The Radon-Nikodým derivative at optimal solution is given
by Rpiq � l1tpiq ¤ k�u � u1tpiq ¡ k�u.

See Appendix A.3 for a proof. Theorem 2 is appealing for
two reasons: (i) We prove that V Targetpπ;Rq is efficiently
solved by a linear search over the sorted data. (ii) We prove
that the worst-case policy value is given by a maximum over
a finite set, which we use in the following section to show
that the minimax problem can be written as a difference-of-
convex functions (DC) problem. Based on this, we develop a
convex-concave procedure to efficiently solve the minimax
problem in (MMP).

4.2 MINIMAX CONVEX-CONCAVE PROCEDURE

In this section, we develop the minimax convex-concave
procedure (MMCCP) to efficiently solve the minimax prob-
lem (MMP). For this, we derive a DC-representation of the
worst-case policy value based on its closed-form solution in
Theorem 2. For this, the following assumptions are made.

Assumption 1. The set Θ is nonempty, compact, and con-
vex. Furthermore, π is a DC-function in θ, i. e., πpX, θq �
g̃pX, θq � h̃pX, θq, where g̃ and h̃ are convex in θ, and
differentiable.

Note that Assumption 1 is very general as the class of DC-
functions is very rich. For instance, it includes all twice con-
tinuously differentiable functions [Horst and Thoai, 1999].
We later show that Assumption 1 is fulfilled for the estab-
lished policy class of logistic policies. First, we show that
ψipθq can be written as a DC-function.

Lemma 1. (DC-representation of ψipθq.) Under Assump-
tion 1, ψipθq is a DC-function in θ, i. e.,

ψipθq � gipθq � hipθq, (21)

where gi and hi are convex in θ.

See Appendix A.4 for a proof. Now, using Lemma 1 and
Theorem 2, we prove that the worst-case policy value can
be written as a DC-function.

Theorem 3. (DC-representation of worst-case policy
value.) Under Assumption 1, the worst-case policy value
V Targetpπ;Rq is a DC-function in θ, i. e.,

V Targetpπ;Rq � gpθq � hpθq, (22)

where gpθq and hpθq are convex and given by

gpθq � max
RPR

°n
i�1Riψipθq°n

i�1Ri
�

ņ

i�1

hipθqci, (23)

hpθq �
ņ

i�1

hipθqci, (24)

with gi and hi from Lemma 1, and non-negative constants
ci for all i.

See Appendix A.5 for a proof. Finally, with the DC-
representation of the worst-case policy value in Theorem 3,
we can write the original minimax problem in (MMP) as a
DC-program, i. e.,

min
θPΘ

gpθq � hpθq, (25)

where gpθq and hpθq are convex and given in Theorem 3.
Hence, we can solve the minimax problem via a convex-
concave procedure [Sriperumbudur and Lanckriet, 2009,
Yuille and Rangarajan, 2003]. This yields our tailored
MMCCP for solving (MMP) as outlined in Algorithm 1.
Next, we prove that the sequence pθkqkPN generated by
MMCCP yields monotonically decreasing worst-case pol-
icy values and converges under mild assumptions.

Theorem 4. (Theoretical Analysis of MMCCP.) Suppose
the outcomes are bounded, i. e., |Y |   C, and Assumption 1
holds. Then, the following holds true:



Algorithm 1 MMCCP

Input: Initial theta θ0, convergence tolerance δtol
Set k Ð 0
repeat

Solve the convex problem:
θk�1 P argminθPΘ maxRPR

°n
i�1 Riψipθq°n

i�1 Ri
�

n°
i�1

ciphipθq � xθ,∇hipθkqyq
Set k Ð k � 1

until ∥θk � θk�1∥   δtol

1. The sequence pθkqkPN generated by MMCCP satisfies
the monotonic descent property, i. e., for all k P N,

max
RPR

°n
i�1Riψipθk�1q°n

i�1Ri
¤ max

RPR

°n
i�1Riψipθkq°n

i�1Ri
.

(26)

2. If g̃ and h̃ from Assumption 1 are strongly convex,5 then
every limit point θ� of pθkqkPN is a stationary point6 of
(MMP). Furthermore, it holds: lim

kÑ8
∥θk�1 � θk∥ � 0.

See Appendix A.6 for a proof. To summarize, we develop
a tailored convex-concave procedure that efficiently solves
(MMP). This is only possible since we proved that the worst-
case policy value has a DC-representation (see Theorem 3).
In particular, our algorithm can be used on a rich class of
policies and converges under mild assumptions. We now
demonstrate that Assumption 1 holds for an established
parameterized policy class which we use in our experiments.

Logistic policies: Logistic policies are defined by
πpX, θq � σpθ⊺Xq, where σpzq � 1{p1 � e�zq. To find
a DC-representation, it is sufficient to decompose σpzq.
Hence, we set z � θ⊺X and write

g̃logpzq �
#

1
4z � 1

2 , if z ¥ 0,
1
2 tanhp 12zq � 1

2 , else,
, (27)

h̃logpzq �
#

1
4z � 1

2 tanhp 12zq, if z ¥ 0,

0, else.
(28)

It is straightforward to check that both functions are con-
vex. They can be made strongly convex by adding λ

2 z
2 to

both functions. Since g̃Log and h̃Log are differentiable, As-
sumption 1 is fulfilled and, hence, MMCCP converges for
logistic policies. In Appendix C, we show that Assump-
tion 1 also holds for linear policies. In addition, logistic

5A function f is strongly convex, if ρpfq ¡ 0, where ρpfq is
the modulus of strong convexity of a convex function f , which is
defined as ρpfq � suptρ ¥ 0 : fp�q � ρ

2
∥�∥22 is convexu.

6Note that the objective function is in general not differen-
tiable, see Appendix D. Hence, we consider stationary points in
the context of convex analysis, i. e., 0 P Bgpθ�q X Bhpθ�q, where
B denotes the subgradient.

policies also satisfy the generalization bound in Theorem 1,
since they have

?
n-vanishing Rademacher complexity. This

can be seen by using that σ is Lipschitz together with the
Rademacher bound for linear classes [Maurer, 2006] and
the scalar concentration inequality [Maurer, 2016].

5 EXPERIMENTS

In this section, we compare several policy learning methods
to policies learned with our framework on the example
of logistic policies. We demonstrate that our framework
generalizes substantially better to the target population.

5.1 SIMULATION STUDY

We first consider a simulation study to demonstrate the effect
of unrepresentative training data. For this, we consider the
following data-generating process for the target population:

X � N5pµ, I5q, T | X � Bernp1{2q, (29)
Y | pX, T q � mpXq � T � CpXq � ϵ, (30)

where mpXq � β⊺
0X � 3ξ, CpXq � 5{2 � β⊺

1X � 4ξ,
ξ � Bernp1{2q, and ϵ � N p0, 1q. The covariate mean is
µ � r-1, 1{2, -1, 0, -1s and the outcome means are β0 �
r0, 3{4, -1{2, 0, -1s and β1 � r-3{2, 1, -3{2, 1, 1{2s, respectively.
We sample from the target population using the following
selection variable

S � Bern
�

1

2
� 0.95

2
tanhp-10CpXqq

	
, (31)

which yields training data that is unrepresentative for the
tail of the covariate distribution.7 As baselines, we con-
sider three established policy learning methods: the direct
method (DM), the normalized inverse propensity weights
method (NIPW), and the doubly robust method (DR). We
compare these established methods against our general-
izable methods with each of the three ψpθq in (8), (9),
and (10): the worst-case policy value obtained with the
direct method (GenDM), obtained with the normalized IPW
(GenNIPW), and with the doubly robust method (GenDR).
We use kernel and logistic regression for estimating µtpxq
and W IPW. The parameter PpS � 1q is chosen by the
data-driven calibration in Section 3.4 and Γ is varied across
t1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, . . . , 10.0u. Details on imple-
mentation of MMCCP are in Appendix D.

We present the results for the different values of Γ in Fig-
ure 1. Specifically, we show by how much our methods
improve over the policy regret, VTargetpπ̂q � VTargetpπ�q, of
the corresponding baseline policy (i. e., DM, NIPW, and
DR) when tested on the target population. Our methods
achieve lower policy regrets on the target population across

7Note that we multiply the second term in (31) with 0.95
2

to
ensure that the selection probability remains strictly positive.
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Figure 1: Policy regret improvement of our methods (blue) over the baseline methods (green) on the target population for different values
of Γ. Compared to the baseline methods (i. e., DM, NIPW, and DR), our methods (i. e., GenDM, GenNIPW, and GenDR) show superior
generalizability and, as such, improve the policy regret by up to 40 % at the true Γ� � 8. Lower is better.

all methods and across all values of Γ. Specifically, relative
to the policy regret of the baseline policy (green line), our
methods (blue line) improve the policy regret on the target
population by up to 40 %. By construction, for Γ � 1 (left
end of plots), our methods resemble the baseline methods
and yield the same policy regret. When we increase Γ, our
policies achieve substantial improvements of the policy re-
gret on the target population over the baselines. The best
policy regret on the target population is achieved for Γ � 8,
which is consistent with the simulation specifications, as
the true Γ� � 8. For Γ � 8, relative to the baseline poli-
cies, our methods improve the policy regret by up to 40 %.
This demonstrates that policies learned with our framework
generalize substantially better to the target population.

5.2 EXPERIMENTS ON CLINICAL TRIAL DATA

We evaluate our methods using the AIDS Clinical Trial
Group (ACTG) study 175 [Hammer et al., 1996], which
is particularly suited for evaluating our framework. This is
because HIV-positive females tend to be underrepresented,
which makes these studies not representative of the target
population (i. e., the HIV-positive population in the USA)
[Gandhi et al., 2005, Greenblatt, 2011]. In fact, in the ACTG
175 study, only 5.8 % of the patients are female, whereas
HIV-positive females are more common in the USA popula-
tion. The outcome Y is the difference between the cluster
of differentiation 4 (CD4) cell counts at the beginning of
the study and the CD4 counts after 20� 5 weeks. The aver-
age treatment effects on the male and female subgroups are
-8.97 and -1.39, respectively, suggesting a large discrepancy
in treatment effects between both subgroups. We consider
two treatment arms: one treatment arm for both zidovudine
(ZDV) and zalcitabine (ZAL) (T � 1) vs. one treatment arm

for ZDV only (T � 0), comprising 1, 056 patients in total.
We consider 12 covariates (details on the covariates are in
Appendix B). Again, we compare our methods against the
established baseline methods. This is a real-world clinical
trial and, hence, we cannot access the true policy values on
the target population. However, we investigate the behavior
of our policies by studying the percentage of patients that are
treated (i. e., πpXq ¡ 0.5) for varying Γ. For our GenDR,
the result is presented in Figure 2. The results for GenDM
and GenNIPW are in Appendix E. We find that, compared
to the baseline policy, our policy treats fewer patients for
increasing Γ. This seems reasonable, since females are un-
derrepresented and have a lower average treatment effect.
Specifically, the baseline policy tends to treat more patients,
since there are more patients in the study that benefit from
the treatment. However, in the target population (with a
greater proportion of females), fewer patients are expected
to benefit (due to the lower treatment effect in the female
subgroup). Our policy accounts for the underrepresentation
of females and, as such, tends to treat fewer patients. This
result indicates the potential of our framework for learning
policies that generalize to the target population.

6 CONCLUSION

We propose a novel framework for learning policies that
generalize to the target population by optimizes the minimax
policy value on the target population. We prove that our
framework yields policies that do not do worse on the target
population than the worst-case policy value. We solve the
minimax problem via a tailored convex-concave procedure
for which we prove convergence for parametrized spaces of
policies. Experiments demonstrate the benefit of learning
generalizable policies using our framework.



Figure 2: Percentage of patients with πpXq ¡ 0.5 for our GenDR
policy method. Fewer patients are treated for increasing Γ.
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