
Goal-Directed Story Generation: Augmenting Generative Language
Models with Reinforcement Learning

Anonymous ACL submission

001

Abstract

The advent of large pre-trained generative lan-002
guage models has provided a common frame-003
work for AI story generation via sampling004
the model to create sequences that continue005
the story. However, sampling alone is insuf-006
ficient for story generation. In particular, it007
is hard to direct a language model to create008
stories to reach a specific goal event. We009
present two automated techniques grounded in010
deep reinforcement learning and reward shap-011
ing to control the plot of computer-generated012
stories. The first utilizes proximal policy opti-013
mization to fine-tune an existing transformer-014
based language model to generate text con-015
tinuations and be goal-seeking. The second016
extracts a knowledge graph from the unfold-017
ing story, which a policy network uses with018
graph attention to select a candidate continu-019
ation generated by a language model. We re-020
port on automated metrics on how often stories021
achieve a given goal event and human partici-022
pant rankings of coherence and overall story023
quality compared to baselines and ablations.024

1 Introduction025

Automated Story Generation is the challenge of026

designing an artificial intelligence system that can027

generate a story from a minimal number of inputs—028

often just a prompt and some storytelling knowl-029

edge and/or storytelling model. Goal-directed story030

generation is the challenge of generating stories031

with predetermined goals. A goal-driven story gen-032

eration system provides the model with a goal, gen-033

erating a story that progresses towards it.034

In this paper we have two aims. First, we035

show that a fine-tuning approach first introduced036

by Tambwekar et al. (2019) that worked on LSTMs037

does not directly translate to more modern large038

pre-trained language models such as GPT-2 (Rad-039

ford et al., 2019). Large pre-trained language mod-040

* Denotes equal contribution.

Goal: Discovery 
Context: The tobacco company Hadara creates a form
of super tobacco, which in turn is inhabited by a 

Language Model
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Continuation: form of super tobacco beetle,
which survive the cigarette processing and whose
eggs are contained in the smoke of these  killer

cigarettes, presumably called brand Alex.

Reinforcement
Learner

Option 1:

Option 2: form of super tobacco...

Option 3:
User

World Model

Figure 1: A single iteration in our generation system.
Given a goal and a context prompt, a language model
is queried for a number of possible continuations. The
system also maintains an abstract graph-based repre-
sentation of the entities and relations in the story world.
A reinforcement learning agent has learned to select op-
tions based on the abstract state and how likely the op-
tion is to move the story toward the given goal. Not
shown: the world model is then updated and the contin-
uation is added to the context for the next iteration.

els produce more natural language and can handle 041

a larger range of inputs but, like seq2seq models, 042

are not inherently goal-driven. Unfortunately, we 043

observe that large language models are harder to 044

control; our experiments with reward shaping based 045

fine-tuning toward a given goal only results in a 046

50% goal achievement rate (although fluency of 047

story outputs is greatly improved). 048

Our second aim is to introduce a new tech- 049

nique in which we train a second neural pol- 050

icy model to guide a non-fine-tuned GPT-2 to 051

a given end-goal, achieving 90+% goal success 052

rate while retaining the language model’s fluency. 053

The second model operates on an abstracted state 054

space represented as a knowledge graph—a set 055
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of 〈subject, relation, object〉 tuples. This knowl-056

edge graph state representation explicitly captures057

the entities in a story and their relations instead of058

relying on the hidden state of the language model059

to represent the state of the story world accurately.060

Given a knowledge graph representing the state061

of the story world, our policy model predicts the062

state’s utility, which is proportional to the number063

of sentences needed to achieve a goal. We sample064

plausible continuations from GPT-2 while our pol-065

icy model selects continuations based on how they066

move their role in story progression.067

We report on a combination of automated and068

human participant evaluations. We focus on eval-069

uating our system in the domain of science fiction070

plots (Ammanabrolu et al., 2020a), consistent with071

prior work (Tambwekar et al., 2019; Ammanabrolu072

et al., 2020a). The automated evaluation shows our073

technique achieves the desired-end goal 98.73% of074

the time. Our human participant studies show that075

the full model is perceived to be significantly more076

coherent than baseline alternatives.077

2 Background and Related Work078

Many early works on story generation used plan-079

ning (Meehan, 1976; Lebowitz, 1987; Cavazza080

et al., 2003; Porteous and Cavazza, 2009; Riedl081

and Young, 2010; Ware and Young, 2010). In many082

cases, these systems are provided with a goal or083

outcome state. For example, a goal might be “char-084

acters X and Y are married”. These approaches085

require extensive domain knowledge engineering086

and templated language. Neural language models087

have been used for story generation, circumventing088

the need for knowledge engineering, and can pro-089

duce relatively fluent and natural language (Roem-090

mele, 2016; Khalifa et al., 2017; Clark et al., 2018;091

Martin et al., 2018).092

We situate our work in neural approaches to093

story generation. Neural language model based094

approaches to story generation start with a given095

text prompt and generate story continuations by096

sampling from a learned distribution over tokens;097

models trained on a corpus of the story will pro-098

duce text that appears to be a story (Roemmele,099

2016; Khalifa et al., 2017; Clark et al., 2018; Mar-100

tin et al., 2018). These techniques have improved101

with the adoption of large, pre-trained, transformer-102

based models, such as GPT-2 (Radford et al., 2019),103

which can be fine-tuned on representative data from104

a particular domain. However, larger models such105

as GPT-3 (Brown et al., 2020) may be behind 106

closed APIs that do not allow fine-tuning, mak- 107

ing it more important that we have solutions to the 108

problem of controllable text generation that do not 109

rely on fine-tuning of language models. 110

Neural story generators are inherently 111

“backward-looking” in the sense that they produce 112

tokens or sequences that are likely to occur based 113

on a window of prior tokens. As a result, it is 114

challenging to control the story’s direction will 115

unfold and neural generated stories tend to mean- 116

der or become repetitive. Story generation can be 117

controlled by conditioning generation on high-level 118

plot outlines (Fan et al., 2018; Peng et al., 2018; 119

Rashkin et al., 2020) or story in-filling (Donahue 120

et al., 2020). However, these techniques assume a 121

human or other source has already determined the 122

key plot points, and the generator provides missing 123

details. Coherence can also be increased by 124

systems that generate their plot-level abstractions 125

and then condition a language model on those 126

plot labels (Yao et al., 2019; Fan et al., 2019; 127

Peng et al., 2021). While improving perceptions 128

of narrative coherence, these techniques cannot 129

guarantee goal achievement. 130

One way to ensure goal achievement is to pro- 131

vide the final event/sentence of a story in addi- 132

tion to the first event/sentence of a story as in- 133

puts. Wang et al. (2020) propose a generation-by- 134

interpolation approach to story generation, using 135

GPT-2 to generate several candidates to go in be- 136

tween and then choose based on perplexity. The 137

C2PO system (Ammanabrolu et al., 2021) uses 138

bi-directional search from a given start and given 139

end, operating in the space of character goals as 140

inferred by the COMET commonsense inference 141

model (Bosselut et al., 2019), generating templated 142

“states”. The EDGAR system (Castricato et al., 143

2021) generates backward from a given last sen- 144

tence but cannot guarantee a given first sentence. 145

For their goal-driven story generation system, 146

Tambwekar et al. (2019) trained a LSTM-based 147

sequence-to-sequence neural model to generate 148

continuations while also increasing the likeli- 149

hood of achieving a given goal event. The 150

LSTM model produced events—tuples of the form 151

〈subject, verb, object,modifier〉. While their 152

model reliably achieved the given goal, sequences 153

of event tuples are not human-readable, requiring 154

either manual rewriting or a second model to trans- 155

late events into human-readable sentences such 156
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as (Ammanabrolu et al., 2020a). A natural pro-157

gression to this work would be to apply the reward-158

shaping based fine-tuning approach from Tamb-159

wekar et al. to a large pre-trained language model,160

which we demonstrate in section 4.161

Knowledge graphs have been shown to improve162

natural language understanding in related story-163

like domains such as interactive narrative game164

playing (Hausknecht et al., 2020). Knowledge165

graphs “lift” language to a structured representa-166

tion, which facilitates forward-looking planning167

algorithms such as reinforcement learning (Am-168

manabrolu and Riedl, 2018; Ammanabrolu and169

Hausknecht, 2020; Ammanabrolu et al., 2020b;170

Ammanabrolu and Riedl, 2021).171

3 Methodology172

Our goal is to generate stories that (1) are able173

to reliably reach a specific goal, (2) follow a logi-174

cal plot leading to the goal sentence, (3) and have175

reasonable lengths (ie. do not jump straight to gen-176

erating a closing sentence). For our system a goal is177

any sentence that contains a verb that is a member178

of a specific, given VerbNet (Schuler, 2005) class.179

For example, the verbs: find, guess, and solve are180

members of the VerbNet class discover-84.181

Our method depends on two models: a language182

model (GPT-2 (Radford et al., 2019)) and a policy183

model trained via reinforcement learning to select184

alternative continuations that progress the story in-185

crementally toward the goal. We show that both186

models are needed to achieve all three objectives.187

3.1 Dataset and Preprocessing188

We use the science fiction plot corpus (Am-189

manabrolu et al., 2020a). The dataset contains190

1400+ generalized science fiction stories of variable191

lengths. The stories have named entities replaced192

with tags denoting category and number within a193

story, maintaining consistency for named entities.194

We perform the following pre-processing steps:195

1. Dataset Splitting We performed a 70:30 split196

on our training data, resulting in sets of size197

1102 and 472 stories, respectively.198

2. Verb class extraction For each sentence, we199

parse the sentences using SpaCy (Honnibal200

et al., 2020), and then we extract the verbs201

from the parsed sentences. We then lemmatize202

each verb and match it to its VerbNet class203

(Schuler, 2005).204

3. Tokenization We use the Huggingface pre- 205

trained GPT2 tokenizer to tokenize our sen- 206

tences and prepare our model’s input queries. 207

We fine-tune GPT-2 on the science fiction dataset; 208

we refer to this model as GPT2-sci-fi. 209

3.2 Reward Function 210

Our policy model is trained using reinforcement 211

learning. The reward function must produce greater 212

reward for sentences that are more likely to be 213

found near a goal and less reward for sentences 214

that are less likely to be found near a goal. For 215

purposes of experimental simplicity, a goal is a 216

sentence that contains a verb that is a member of 217

a given goal VerbNet verb class (e.g., admire, 218

which encapsulates verbs such as “love”). Any 219

VerbNet class can be chosen, though the choice 220

affects goal achievement; common verb classes 221

result in high achievement regardless of model, 222

and sparse verbs result in a poor reward signal. For 223

example, “discover” has 43% of the frequency of 224

our most common verb class (“say”), and “admire” 225

25%. We verified that goal rates are acceptable in 226

our base corpus (Table 1) before proceeding. 227

Reward shaping refers to the pre-computation 228

of rewards for a particular decision space based 229

on heuristically computed approximations of true 230

utility. We use a reward function adapted from 231

Tambwekar et al. (2019). Given an input prompt— 232

a complete sentence describing an event in the story 233

being generated—a continuation sentence is gen- 234

erated. Output is truncated at the first period or 235

20 tokens, whichever comes first. The verb is ex- 236

tracted from the continuation and a reward R(v), 237

which is made up of two components. The first 238

component computes the distance a sentence with 239

a given verb class tends to be from the goal: 240

r1(v) = log
∑

s∈S(v,g)
(len(s)− dists(v, g)) (1) 241

where s ∈ S(v, g) is the set of all stories containing 242

both the current verb class v and the goal verb 243

class g. len(·) is the number of sentences in the 244

story and dists(·) is the number of sentences in s 245

between that with v and the sentence with g. The 246

second component computes the frequency that a 247

verb class co-occurs in a story along with the goal: 248

r2(v) = log
count(v, g)

count(v)
(2) 249

where count(v, g) is the number of stories con- 250

taining the verb class v and the goal verbclass g, 251
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DQN

Candidate Sentences
(a1, ..., a25) 

Pruned Sentences
(a1, ..., an) 
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...
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Figure 2: KG-DQN architecture. The DQN model and the graph attention are the only trainable components. The
language model is a frozen component. The solid lines indicate gradient flow.

whereas count(v) is the number of stories contain-252

ing v. The final reward is given as:253

R(v) =
1

|verbs|
× r1(v)× r2(v) (3)254

For efficiency, the reward for all verbs are com-255

puted and stored in advance.256

3.3 Verb Clustering257

Tambwekar et al. (2019) observed that naively re-258

warding a story generator based on distance to a259

goal verb induces a model to skip to the end of260

a story in a single continuation. To ensure that261

the model generates sequential sentences in the262

story and does not jump directly to the goal sen-263

tence, verbs are clustered depending on their re-264

ward value as calculated in equation 3. Following265

Tambwekar et al., we use the Jenks Natural Breaks266

optimization technique (Jenks and Caspall, 1971),267

an off-the-shelf clustering algorithm appropriate268

for our 1-Dimensional non-uniform data. How-269

ever, clusters computed with methods such as 1D270

k-means, or even quantiles or equal intervals would271

have still resulted in ordered clusters as described272

above. The result is a set of ordered verb clusters273

estimating how “close” a verb class is to the goal274

verb class. These clusters provide further reward275

guidance, though applied differently depending on276

the specific reinforcement learning algorithm used.277

During generation, the “source” is the most recent278

verb class’s cluster, and the “target” is the next con-279

secutive cluster in the direction of the goal cluster.280

3.4 Knowledge Graph Guided Deep Q 281

Network 282

The policy model is trained to pick the best con- 283

tinuation from an un-tuned language model. We 284

formulate the problem of selecting a continuation 285

sentence that moves the story closer to the goal 286

as a Markov Decision Process (MDP) with the 287

state being a knowledge graph that represents the 288

current state of the story world. A knowledge 289

graph is a set of binary relation triples of the form 290

〈subject, relation, object〉. This story world state 291

representation explicitly captures the entities in a 292

story and the relations between entities. This con- 293

strains the state space to a discrete, but infinite, set 294

of graphs. It also allows the policy model to fo- 295

cus on elements of the story world that are likely 296

to matter for the purposes of maintaining logical 297

coherence and goal achievement. 298

3.4.1 Policy Model Architecture 299

Our policy model is a variation of Deep Q Net- 300

works (DQN). A DQN takes a world state obser- 301

vation and predictsQ(s, ai) the utility of an action 302

ai performed in a state s. In the case of our sys- 303

tem, a state is a knowledge graph and an action 304

is a continuation generated by GPT2-sci-fi. Each 305

action/continuation is embedded and concatenated 306

to an embedding of the knowledge graph. The 307

nodes of the knowledge graph are embedded us- 308

ing GPT2-sci-fi word embeddings, then we obtain 309

a single vector representation using multi-headed 310

graph attention (Veličković et al., 2018). The graph 311

is concatenated with the continuation and passed 312
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through a fully connected layer to produce the util-313

ity for that combination of graph and continuation.314

Knowledge graph triples are extracted from sen-315

tences using Stanford Open Information Extraction316

(OpenIE) (Angeli et al., 2015). OpenIE is a com-317

mon and well-established method of extracting re-318

lation tuples, that has been demonstrated on related319

domains (cf. (Ammanabrolu and Riedl, 2018; Am-320

manabrolu and Hausknecht, 2020)), and therefore321

a good proof of concept despite potential noise.322

The knowledge graph is updated with new triples323

after each sentence added to the story, thus creat-324

ing an implicit transition function. We train this325

policy network model by using the output of the326

base GPT2-Sci-Fi as if continuation sentences are327

actions and the knowledge graph as a discrete state,328

using the DQN algorithm (Mnih et al., 2015). We329

refer to our full knowledge graph informed policy330

model as KG-DQN and is shown in Figure 2.331

3.5 Policy Model Training332

KG-DQN takes as input a knowledge graph and333

a potential action—a sentence generated by a334

frozen GPT2-sci-fi—and outputs the expected util-335

ity Qθ(G, a) of taking that action a given the cur-336

rent state knowledge graph G. The standard DQN337

training loop (Mnih et al., 2015) populates an ex-338

perience replay buffer, which collects up combina-339

tions of states, actions, and rewards. The experi-340

ence replay buffer is sampled and loss is computed341

relative to a target network, which is periodically342

replaced by a frozen version of the DQN being343

trained. The full training loop is as follows:344

1. Given a current query sentence at and knowl-345

edge graph Gt generate 25 potential candi-346

dates using GPT2-sci-fi.347

2. Clean candidates that do not contain complete348

sentences or verbs. Truncate the remaining349

candidates to form complete sentences.350

3. Choose the next action at+1 ε-greedily. The351

chosen action and updated knowledge graph352

will become inputs for the next time step.353

4. Using OpenIE, extract relevant knowledge354

triples and update knowledge graph to Gt+1.355

5. Add 〈Gt, at+1, Gt+1, reward, query〉 tuple356

to our experience replay buffer.357

6. Every 100 stories, sample our replay buffer358

and calculate yj = rj for terminating actions,359

or yj = rj + γmaxa′Qθ(Gj+1, a
′) for non-360

terminating ones. Perform gradient descent in361

Q with loss (yj − Qθt(Gj , aj))2 where θt is 362

the frozen target network. 363

7. Every 300 stories, update target network θt. 364

During step 3 in the training loop, the agent can 365

choose exploration with probability ε or exploita- 366

tion. If exploitation is chosen we first tentatively 367

prune out actions that do not lead from the current 368

verb cluster to the next “closest” verb cluster to 369

the goal. If that is impossible, we then fall back to 370

picking the action/sentence according to the high- 371

est estimated reward from the set of all candidates. 372

This is contrast to the standard approach of choos- 373

ing the action with the maximum predicted utility 374

from our policy. In this way we bias the model 375

towards choosing cluster-optimal jumps and dis- 376

courage behavior like jumping immediately to the 377

goal (which would not create a coherent story). 378

4 Baselines and Additional Models 379

All generation models are based on the GPT-2 380

117M model (Radford et al., 2019) fine-tuned for 381

story generation on NER-replaced science fiction 382

data (Ammanabrolu et al., 2020a), which we refer 383

to as GPT2-sci-fi. We experiment with five differ- 384

ent models: 385

1. GPT2-Sci-Fi, the baseline model. 386

2. GPT2-RS, the base story generation model 387

additionally fine-tuned with reward shaping 388

based on the reward function in Section 3.2. 389

This model is a near-literal update of Tamb- 390

wekar et al. (2019) to work on GPT2 instead 391

of a custom-trained seq2seq language model. 392

Details of the model and its training are below. 393

3. KG-DQN, our model (see Section 3). 394

4. DQN, Same as above but ablating/removing 395

the knowledge graph representation. In this 396

case, the state is the same as the action—the 397

input sentence. This model has 36,138 train- 398

able parameters compared to KG-DQN with 399

177,750 trainable parameters. 400

5. KG-DQN-RS, combining the KG-DQN pol- 401

icy with a frozen GPT2-RS fine-tuned net- 402

work instead of GPT2-sci-fi. 403

We did not include systems that use high-level plot 404

guidance inputs (eg. (Fan et al., 2018; Peng et al., 405

2018; Rashkin et al., 2020)) as baselines because 406
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they accept additional guidance inputs that our tech-407

nique does not have access to. Nor do we include408

systems that are not goal-directed (eg., (Fan et al.,409

2019; Yao et al., 2019; Peng et al., 2021)) as base-410

lines because they are not encumbered by the ad-411

ditional success criteria. We also do not include412

infilling systems (eg. (Donahue et al., 2020; Am-413

manabrolu et al., 2021; Wang et al., 2020).414

We did not include the technique by Tambwekar415

et al. (2019) directly as a baseline because they416

used humans to transcribe event tuples into natural417

language sentences. Our technique, however, is418

designed to generate natural language. Without the419

translation, the event tuples are uninterpretable and420

with it there cannot be a fair comparison. Unfortu-421

nately, the technique described by Tambwekar et al.422

also cannot be directly applied to models that pro-423

duce full-sentence outputs instead of event tuples.424

One of the issues with fine-tuning GPT-2 on verb425

usage is that verbs that move the story closer to a426

goal ending may be rare. Re-sampling (aka teacher-427

forcing) can be used when the vocabulary draws428

from event tuples. However, swapping a verb with-429

out rewriting the entire continuation sentence can430

produce nonsensical results and was found not to431

improve goal-reaching behavior when applied to432

GPT-2. Instead, our GPT2-RS baseline acts as an433

update to Tambwekar et al. to account for neu-434

ral language models that produce sentence outputs.435

We update the technique with an alternative verb436

restriction approach to make sure that our model437

sees mostly verbs from our clusters during training.438

During training, for each given query, we generate439

twenty candidate sentences. We then we check if440

any of these sentences satisfies the following condi-441

tion on the order and distance of source and target442

verbs’ clusters:443

1. The difference between the target verb clus-444

ter and the source verb cluster is one or zero.445

This sentence will get full reward based on446

Equation 3.447

2. The difference between the target verb and the448

source verb clusters is positive but higher than449

one. This means that the verbs are in the cor-450

rect order but are further than they should be.451

Here, we discount the rewards by a factor of452

one over the difference between the clusters.453

In all other cases, the model will give no rewards.454

The clustering ensures that stories have reasonable455

lengths and reduce the model’s bias to immediately 456

produce sentences containing the goal verb. 457

As an initial step, the model is given a randomly 458

sampled batch of the training sentence as query sen- 459

tences; the objective is to fine-tune an underlying 460

language model using the reward shaping function. 461

We include more details about the GPT-RS training 462

steps in appendix B. 463

In time, the GPT2-RS training process fine-tunes 464

the base language to prefer certain continuations 465

based on how likely they are moving the story to- 466

ward the given end-goal. 467

5 Automated Evaluation 468

To evaluate our models, we conduct an extensive 469

set of automatic and human evaluations in order 470

to determine: (1) Does GPT2-RS-based RL fine- 471

tuning with our described reward function work 472

well when applied to GPT-2 for story generation? 473

(2) Is there a significant difference between using a 474

policy gradient method (PPO) versus a value-based 475

method like DQN? (3) Does the explicit inclusion 476

of knowledge graphs affect story generation perfor- 477

mance? Our automated evaluation metrics are: 478

1. Goal Achievement Rate—the percentage of 479

stories that produced a sentence with the target 480

verb. 481

2. Average Perplexity scores. 482

3. 4-gram repetition (Guan et al., 2020), mea- 483

sures the fraction of stories with at least one 484

repeated 4-gram. 485

4. Average Story Length in number of sentences. 486

5.1 Experimental setup 487

We selected two verb class goals, admire-31.2 488

and discover-84, chosen because they are 489

sparse enough to not be generated by accident but 490

not rare for stories. We then trained models for 491

each goal. We include the details of the models 492

training in appendix C. 493

We use our test set of 472 first sentences from the 494

Sci-Fi stories dataset as seeds to generate stories 495

using our RL trained models and baseline models. 496

All models could generate up to a maximum of 15 497

continuations to achieve the goal (for a total length 498

of 16 sentences). Story generation terminated when 499

the target goal was reached, the model failed to any 500

more valid sentences, or 15 total sentences had 501

been generated without meeting the goal condi- 502

tion. For generation, KG-DQN-RS, KG-DQN, and 503
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Goal Model Goal
Rate

Story
Length REP-4

ad
m

ir
e Base Corpus 32.42% 86.51 0.24

GPT2-Sci-Fi 16.74% 15.01 0.3556
GPT2-RS 41.95% 8.67 0.0339

DQN 72.25% 4.54 0.2331
KG-DQN 91.74% 4.84 0.1314

KG-DQN-RS 94.70% 5.11 0.0445

di
sc

ov
er

Base Corpus 49.47% 86.51 0.24
GPT2-Sci-Fi 18.86% 15.26 0.3369

GPT2-RS 33.47% 9.71 0.0466
DQN 96.19% 4.56 0.1123

KG-DQN 98.09% 4.72 0.1123
KG-DQN-RS 98.73% 4.38 0.0466

Table 1: Results of Automated Experiments.

Goal Model Perplexity

admire GPT2-Sci-Fi 39.36
GPT2-RS 40.034

discover GPT2-Sci-Fi 39.36
GPT2-RS 38.95

Table 2: Perplexity Values

DQN were all run with a “breadth” of 25 candidate504

stories per step, generating from our test stories,505

with evaluation taking about 30 minutes per model.506

For GPT2-sci-fi and GPT2-RS we ran them as gen-507

erative models.508

5.2 Automated Evaluation Results509

The results of our automated experiments can be510

found in Table 1, and perplexity values in Table 2.511

We do not compute a perplexity for DQN models,512

as the generated tokens are from the base model,513

which is frozen. In order to best align results514

to compare models, in our model-generated sto-515

ries, story length was only taken from stories that516

reached the goal. For the base-corpus, REP-4 was517

calculated over the first 16 sentences only.518

As can be seen from Table 1, in all our experi-519

ments KG-DQN-RS achieve the goal most often,520

slightly more often than KG-DQN. For both goals,521

GPT2-RS provided modest gains over baseline, but522

not as much as our DQN models. With both goal523

verbs, DQN models provide significant gains over524

baseline goal reaching behavior, with the knowl-525

edge graph augmented DQN outperforming the526

vanilla DQN, implying that knowledge graphs are527

important for goal reaching behavior (although in528

the discover goal the difference is less distinct).529

Also as can be seen from KG-DQN-RS, our DQN530

based approach is independent of the underlying531

language model used to generate candidates.532

While the DQN models are able to achieve re-533

ductions in REP-4 score, the presence of GPT2-RS534

finetuning seems to account for the greatest reduc- 535

tions in repetition. 536

Although GPT2-RS fine-tuning alone was 537

enough to bring goal-reaching over the GPT2-Sci- 538

Fi baseline, perplexity is essentially unaffected, 539

6 Human Participant Evaluations 540

Human participant evaluations are believed to be 541

the best practice in evaluating generated story qual- 542

ity. We asked human judges to compare pairs of sto- 543

ries generated by different models given the same 544

input prompts. Judges had to choose the better 545

story (or equal) according to four criteria: 546

• Grammar: This story exhibits correct gram- 547

mar. 548

• Avoids Repetition: The story avoids repeti- 549

tion. 550

• Plausable Order: This story’s events occur 551

in a plausible order. 552

• Local Causality: This story’s sentences 553

make sense given sentences before and after 554

them. 555

These questions have been used in a number of 556

other story generator evaluations (Purdy et al., 557

2018; Tambwekar et al., 2019; Ammanabrolu et al., 558

2020a, 2021; Castricato et al., 2021; Peng et al., 559

2021). Plausible order and local causality ques- 560

tions are surrogates for coherence, which can be 561

interpreted by human judges in different ways. 562

6.1 Experimental Setup and Methodology 563

As mentioned in Section 3.1, our baseline GPT2- 564

Sci-Fi was fine-tuned on NER-replaced data. This 565

NER replacement makes story comprehension diffi- 566

cult for human subjects. We use FitBERT (Havens 567

and Stal, 2019) which is a pre-trained BERT (De- 568

vlin et al., 2019) to “fill in the blanks” using named 569

entities from the original Sci-Fi dataset for the rel- 570

evant category and taking the option with the best 571

BERT-score (Zhang et al., 2020). We use these 572

re-populated sentences for human evaluation. 573

We chose a common set of seeds that were suc- 574

cesses with all but GPT2-Sci-Fi and sampled a 575

further subset of 80 seeds for human evaluation. 576

We recruited 64 participants on Prolific 577

(www.prolific.co). We presented each participant 578

with five pairwise comparisons. The story pairs 579

given in randomized order, ensuring that all pairs 580

are seen equally by participants and that order does 581

not impact the participants’ answers. 582

The average completion time for this task is 30 583
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Models Grammar Avoids Repetition Plausible Order Local Causality
Win % Lose % Win % Lose % Win % Lose % Win % Lose %

ad
m

ir
e

KG-DQN-RS vs KG-DQN 24.81∗ 61.29 25.81∗ 38.71 9.68∗ 45.16 9.68∗ 61.29
KG-DQN vs DQN 29.03* 29.03 35.48∗ 22.58 38.71∗ 25.81 45.16∗ 22.58
GPT2-RS vs GPT2-Sci-Fi 6.45∗ 38.71 35.48∗ 19.35 19.35∗ 32.26 16.13∗ 38.71
KG-DQN vs GPT2-Sci-Fi 58.06∗ 12.90 29.03∗ 25.81 61.29∗ 19.35 61.29∗ 19.35
KG-DQN vs GPT2-RS 45.16∗ 12.90 48.39∗ 16.13 41.93∗ 25.81 38.71∗ 16.13

di
sc

ov
er

KG-DQN-RS vs KG-DQN 12.5∗ 50.0 12.5∗ 25.0 15.63∗ 56.25 15.63∗ 56.25
KG-DQN vs DQN 34.38∗ 28.13 25.0∗ 31.25 31.25∗ 25.0 28.13∗ 43.75
GPT2-RS vs GPT2-Sci-Fi 16.13∗ 51.62 62.5∗ 25.81 22.58∗ 48.39 16.13∗ 54.84
KG-DQN vs GPT2-Sci-Fi 71.88∗ 9.38 34.38∗ 9.38 45.16∗ 22.58 50.0∗ 12.5
KG-DQN vs GPT2-RS 34.38∗ 6.25 38.71∗ 16.13 50.0∗ 21.88 46.88∗ 25.0

Table 3: Human-participant pairwise evaluation results showing the percentage of participants who preferred the
first model vs. the second. Each model was conditioned on the same eight first story sentences. * indicates
significant results at p < 0.01 confidence level using a Wilcoxon sign test on win-lose pairs. Green cells are wins
of the first model, and yellow cells are ties.

minutes, and the participants were compensated $6584

upon successful completion. To ensure high data585

quality, we added a checker question to ensure that586

the person reads and understands the tasks and a587

text field. In addition, every comparison asks the588

participants to explain their answers.589

6.2 Human Participant Study Results590

We show the results of our pairwise comparison591

experiment in Table 3. Our results show that par-592

ticipants preferred the stories generated GPT2-RS593

model over the baseline GPT2-sci-fi model in repe-594

tition avoidance for both goals. However, partici-595

pants prefer the baseline in all other dimensions.596

The two-network KG-DQN model significantly597

(p < 0.01) outperforms the GPT2-sci-fi baseline598

and GPT2-RS along all dimensions. We note that599

participants often report ties; our analyses show600

that when participants report a difference, the dif-601

ference significantly favors KG-DQN. One reason602

for the high occurrence of ties is that it is easy for603

participants to escape tricky judgements by choos-604

ing to report a tie.605

The DQN ablation (removing the knowledge606

graph from KG-DQN) shows a degradation of per-607

formance, strongly suggesting that the knowledge608

graph state representation is the factor in the re-609

inforcement learning of the second network that610

plays the most important role.611

When we add the reward shaped language model612

fine-tuning into KG-DQN to create KG-DQN-RS,613

we do not observe much to improving the story614

generation except for repetition avoidance.615

6.3 Qualitative Evaluation of Stories616

Even though our models do a great job generating617

stories that reach a specified goal, we make some618

observations about the stories. We notice that the 619

longer the story gets, the more hallucinations make 620

their way into the story, diverging from the main 621

topic even when the verbs are still going in the 622

direction of the goal. Stories generated with the 623

GPT2-RS model tend to be longer with many ran- 624

dom character introductions, while the KG-DQN- 625

RS, KG-DQN and DQN models are much more 626

concise with a clear direction towards the goal. We 627

see this is Table 1, where the DQN-based models 628

tend to be shorter, achieving a goal verb after on 629

average 4-5 events. This is likely due to the verb 630

clusters, which control how many “hops” the sys- 631

tem has to take before arriving at the goal. Tables 632

4 and 5 in Appendix E exemplify our models’ out- 633

put for a given prompt when trained on the goals, 634

Admire-31.2 and Discover-84. 635

7 Conclusions 636

Large-scale pre-trained language models are diffi- 637

cult to control, especially in the case of neural story 638

generation in which one desires a story to end with 639

a desired goal event. While there has been some 640

progress on making neural story generation models 641

capable of progressing toward a given goal, those 642

techniques do not transfer to large pre-trained lan- 643

guage models. We show that reinforcement learn- 644

ing can be used to train policy models that are goal- 645

aware and guide large language models. These 646

results provide a step toward story generation ca- 647

pabilities that benefit from the quality of language 648

generation afforded by large pre-trained language 649

models and also the ability to specify how a story 650

ends, which up until now has not been achieved. 651
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A Broader Impacts882

Our approach guides the pre-trained language mod-883

els to generate coherent stories that reach a pre-884

specified goal. We focus on generating sentences885

with the correct verb order. Because we do not fine-886

tune the pre-trained language model, we do not887

prevent the prejudicial biases and toxicity (Sheng888

et al., 2019; Ousidhoum et al., 2021) in these mod-889

els from surfacing in the generated stories. How-890

ever, if candidate sentences that are toxic do not891

move a story toward its goal and the policy model892

may reduce toxicity as a side-effect. Because our893

technique works in a plug-and-play fashion with894

language models, we can reduce potential biases by895

using a language model trained to mitigate those bi-896

ases, such as Peng et al. (2020). Moreover, during897

generation, because we select one from 25 candi-898

date sentences each time, we can use an additional899

filter for toxicity toxicity or visible biases. This900

is a strategy increasingly used by systems such as901

Google’s Meena (Adiwardana et al., 2020).902

The pursuit of automated story generation is cou-903

pled an inherent risk associated with the passing904

off of fictional generated stories as non-fiction. Ma-905

licious actors may use any language modeling ap-906

proach to create stories for the purpose of persua-907

sion or misinformation. This can currently be done908

by prompting a language model on a topic, but909

without an guarantee about the direction the story910

takes or the end. Our technique gives users more911

control of how an ending occurs, which potentially912

gives users more say over the “message” of the913

story. However, verb class goals are not as precise914

as the prompts, and the state of the art in automated915

story direction is still at the stage of short, simple916

stories.917

Our goal-reaching method has applications be-918

yond story generation. In particular, the method can919

be thought of as a task planner where the elements920

of the plan can only be expressed indirectly though921

language. Aside from entertainment contexts, this922

is a step toward being able to interact with speech923

dialogue systems to brainstorm task plans—i.e., to924

plan a set of errands—or to coordinate actions with925

a robot without programming.926

B GPT-RS Training Details927

The steps of training for the GPT-RS model are:928

1. The base language model generates a target929

sentence based on a query. The base model930

uses top-k sampling in the generation. We 931

choose k = 1000 to produce better story re- 932

sults with less repetition in transformer mod- 933

els as stated in (See et al., 2019). If this target 934

sentence has a verb with a positive difference 935

then we move on to the next step. Otherwise, 936

we sample a new query sentence from the 937

training data and try again. 938

2. The reward model then gives the reward 939

amount this sentence should receive according 940

to the criteria described above. 941

3. To fine-tune our base language model us- 942

ing the reward shaping function, we follow 943

(Ziegler et al., 2019) approach in RL fine- 944

tuning GPT-2 using the Proximal Policy Opti- 945

mization algorithm (PPO2). We utilize the 946

source sentences, target sentences, and as- 947

signed rewards to update the base model’s 948

(policy) loss. We utilize the Transformer Re- 949

inforcement Learning library1 which provides 950

an implementation of PPO2 compatible with 951

the Huggingface transformers library.2 952

C Models training details and 953

hyperparameters 954

The KG-DQN and DQN models were trained for 955

20 epochs each, and the best model every 5 epochs 956

was taken for evaluation. We used a batch size of 957

256 and replay buffer of 800 using Adam. Our 958

hyperparameters are discount factor = 0.99, learn- 959

ing rate = 0.001, ε = 0.1, with epsilon decaying 960

following ε = (ε− 0.01)/1000 every training step. 961

The GPT2-RS models were trained for 40 962

epochs each, and the best model every 10 epochs 963

were taken for evaluation. We use similar settings 964

to the ones described in (Ziegler et al., 2019) with 965

KLβ = 0.1, KLtarget = 6.0, learning rate of 966

7.07 × 10−8 and 4 PPO epochs at each training 967

epoch. 968

The KG-DQN-RS models simply combined the 969

already trained components from KG-DQN and 970

GPT2-RS respectively, with no further fine-tuning. 971

D Computing Infrastructure 972

Our GPT2-RS models were trained and evaluated 973

using Google Colab, on a Nvidia Tesla V100 GPU. 974

KG-DQN and DQN were trained and evaluated 975

1https://github.com/lvwerra/trl
2https://huggingface.co/transformers/index.html
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locally on two machines: the first machine had 2976

Nvidia GeForce GTX 1080 GPUs, the second had977

four Nvidia GeForce GTX 2080Ti GPUs.978

E Generated Story Samples979

In Table 4 and Table 5 we show examples of some980

generated stories from our models.981
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KG-DQN-RS
A Rogues scientist works in a Cavern, watched by a Rogues general and a guard. Alex and Blake finish
working in ten forward. Alex makes an all-out attack on the team, killing all except Cameron. Blake dead,
leaving them both shocked. Before Morgan decides to leave. B’le investigator kills Cameron. Alex turns
around and heads back with Alex’s investigator. Trusted, Alex follows a guard into the murder of Robin.
KG-DQN
A Rogues scientist works in a Cavern, watched by a Rogues general and a guard. Alex asks what will
happen when the Manbot is removed. Hedgwick believes that Blake will survive.
DQN
A Rogues scientist works in a Cavern, watched by a Rogues general and a guard. Alex’s name is Blake.
Cameron is watching the news. Alex does not believe her and Cameron does not believe her.
GPT2-RS
A Rogues scientist works in a Cavern, watched by a Rogues ran away, while Alex watches a happenance.
I kept saying i kept from murdered like an fleas; you never turn life on me. Alex complains, but tries to
tell her she’s safe. J marketa pulls a gun on Alex. Morgan shoots at it, and then immediately throws it into
the vapor. Blake notices the same thing from Cameron’s office. Cameron postulates that to perfect the
finisher after they work together, a normally impossible task. However Morgan base the idea one way
or the other. Most especially Robin forcing Riley to put up with his section head problem. Meanwhile
Cameron is having trouble depression. Alex and laranth are both having trouble believing the story.
GPT-2 Sci-Fi
A Rogues scientist works in a Cavern, watched by a Rogues general and a guard. Alex watches them both
die. Morgan and Blake look on. Ultimately killing each other. Bailey is taken to Cameron. Bailey is also
saved in a holding Spacebarn, with the guard gone. Ellis and Morgan walk off together. Bailey is taken
into custody, while Blake is taken into custody. Ellis is then taken to Hqs. Bailey is arrested, with the
guard’s body taken away. Ellis is then taken into custody. Blake is then taken into custody while the killer
is taken into custody of Robin. Morgan is taken to a Safetech guard. Riley, under guards’ knife. Jordan is
then taken into custody and held for interrogation. Hqs, where Cameron is later held for questioning in a
holding Spacebarn. Hqs, where Cameron is later taken to Morgan.
Goal: Admire
Prompt: A ORGANIZATION0 scientist works in a LOCATION0, watched by a ORGANIZATION0

Table 4: Story Output Examples from each model, for the goal Admire
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KG-DQN-RS:
The tobacco company Hadara creates a form of super tobacco, which in turn is inhabited by a form of
super tobacco beetle, which survive the cigarette processing and whose eggs are contained in the smoke
of these killer cigarettes, presumably called brand Alex. Cameron, acknowledges the smoking man as
being Alex. Morgan, the man confirms that he and his partner are actually doing the same thing. Bailey
and Blake look down at the dead man, reply that they had better go. Alex seeing Cameron dead but doors
closing.
KG-DQN:
The tobacco company Hadara creates a form of super tobacco, which in turn is inhabited by a form of
super tobacco beetle, which survive the cigarette processing and whose eggs are contained in the smoke
of these killer cigarettes, presumably called brand Alex. Blake’s research into the beetles also wasashes
on the ground. Upon seeing that Blake is not who she is, Blake goes to see Blake.
DQN:
The tobacco company Hadara creates a form of super tobacco, which in turn is inhabited by a form of
super tobacco beetle, which survive the cigarette processing and whose eggs are contained in the smoke
of these killer cigarettes, presumably called brand Alex. Cameron, in Millennia time, discovers the truth.
GPT2-RS:
The tobacco company Hadara creates a form of super tobacco, which in turn is inhabited by a Alex woman
Blake runs across. Witnesses a b Bothhuman carrying a boy. Went into the autopsy site while he went
walking. Cameron finds blood on the wounds and goes Invanova to investigate. Cameron notes red blood
evacuate from the victims as well andhead stationed by Morgan. Shortly afterwards, they find Robin
heading toward the Carkoon. Cameron says Robin has answered and she’s coldly blamed Robin. However,
Robin insists that she and she just have a disappearances. I don’t know what i’m supposed to do. I’m not
supposed to die this time, Blake informs Blake’s. Pleased with that, Blake job outlook. K-7i tells them
that the incident was simply a result of attacks. Cameron insists that something to do with it. Androgum
brushes aside an idea that prove to be impossible. Down on Robin who drops a Grenade on Morgan, but
it’s too late. Morgan runs over to the fire escape where Morgan finds a resources needed by those releases.
GPT-2 Sci-Fi:
The tobacco company Hadara creates a form of super tobacco, which in turn is inhabited by a form of
super tobacco beetle, which survive the cigarette processing and whose eggs are contained in the smoke
of these killer cigarettes, presumably called brand Alex. Shortly thereafter, the beetle kills Blake, and they
open fire in a room. Unfortunately, there is no response. They find a small explosion in the room, just as
the beetle destroyed their factory. Cameron, alone with Jorjie, is captured by the insects. Hedril is able to
escape. Blake manages to escape. Morgan is captured with Robin, Cameron’s body cuffed. Riley and
Jordan also find themselves both restrained. Riley and held. Jordan is taken into Jaime’s chamber. Alex is
taken into custody as a possible suspect. And told of the gun charges Riley brought to Alex’s Homeworld’s.
Shelkonwa is brought to Riley, but then taken to Riley’s Homeworld. Where she’s questioned by an angry
autopsy. Who demands to be sent before Alex’s assistant, a state of mind. States that Alex is trying to see
if Blake was really Blake a suspect.
Goal: Discover
Prompt: The tobacco company LOCATION0 creates a form of super tobacco, which in turn is inhabited
by a

Table 5: Story Output Examples from each model, for the goal Discover
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