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Abstract: Autonomous self-improving robots that interact and improve with ex-
perience are key to the real-world deployment of robotic systems. In this paper,
we propose an online learning method, SELFI, that leverages online robot expe-
rience to rapidly fine-tune pre-trained control policies efficiently. SELFI applies
online model-free reinforcement learning on top of offline model-based learning to
bring out the best parts of both learning paradigms. Specifically, SELFI stabilizes
the online learning process by incorporating the same model-based learning ob-
jective from offline pre-training into the Q-values learned with online model-free
reinforcement learning. We evaluate SELFI in multiple real-world environments
and report improvements in terms of collision avoidance, as well as more socially
compliant behavior, measured by a human user study. SELFI enables us to quickly
learn useful robotic behaviors with less human interventions such as pre-emptive
behavior for the pedestrians, collision avoidance for small and transparent objects,
and avoiding travel on uneven floor surfaces. We provide supplementary videos
to demonstrate the performance of our fine-tuned policy on our project page 1.
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1 Introduction

Reinforcement learning (RL) provides an appealing algorithmic approach for autonomously improv-
ing robotic policies in unpredictable and complex real-world settings [1–4]. For example, in the in-
door navigation scenario depicted in Fig. 1, the robot needs to not only avoid obstacles, but also deal
with unpredictable and hard-to-model situations, like the interaction with the pedestrian. Model-
based control methods can struggle with the unpredictable elements in the scene [5–7], and RL in
principle provides an appealing alternative: learn directly from real-world experience, sidestepping
the need for highly accurate modeling. However, directly performing end-to-end RL from scratch
in the real world can be difficult: discovering a high-quality policy may require a large number of
trials and encounter catastrophic failures during the training process [8–10]. This is especially prob-
lematic when it is not possible to provide external instrumentation that avoids catastrophic failures
— for example, with human interactions where failures might be inconvenient or even dangerous.

In this work, we propose a framework for robotic learning that aims to address this challenge by
utilizing model-free RL fine-tuning on top of a learning-enabled model-based policy that is pre-
computed offline. Our approach initializes the robot from a policy that already exhibits basic com-
petency in its environment, and from there further improves its behavior in the particular setting
where it is situated through trial-and-error. While a number of prior works have examined the use of
model-free RL as a fine-tuning strategy on top of pre-trained or pre-computed policies [11–14], this
is often complicated by the fact that initializing sample-efficient model-free RL methods requires
not only a policy but also a critic [3, 4, 15–18]. The policy initialization can often be derived from
a prior policy (either classic or learned), but in modern actor-critic methods, the policy is trained
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rapidly to maximize the critic’s value, and this quickly overrides any actor initialization if the critic
is not also pre-trained [3, 4, 17, 18]. Our key observation is that model-based methods that maxi-
mize some sort of planning objective can also be used to initialize the critic, such that model-free
RL Q-values are given by a linear combination of a learned model-free critic and a model-based
trajectory value estimate. In this design, as long as the critic is initialized to produce small values,
the RL process starts off by maximizing the model-based value estimate (i.e., model-based control),
and then improves further through trial-and-error interaction.

Figure 1: Overview of our proposed online learning system,
SELFI. Our method fine-tunes a pre-trained control policy trained
with model-based objective by incorporating this objective into a
Q-value function to maximize during online model-free RL.

We illustrate this design in Fig. 1, and
we instantiate our system in the con-
text of social navigation: the prob-
lem of navigating an indoor space
while avoiding undesirable behavior
around pedestrians, such as inter-
ruptions, collisions, or invasion of
their intimate distance. This problem
domain is a good fit for validating
our framework because model-based
policies can be derived from geomet-
ric models of the world and rough
predictive models of pedestrians, but
these policies can be significantly improved through model-free trial-and-error, both because the
pedestrian models might be inaccurate, and because the robot can adapt directly to the behavior of
the pedestrians in a specific downstream deployment environment. In this setting, our model-based
policies are derived from the previously proposed SACSoN [5], which constructs policies by opti-
mizing a trajectory value using a 3D reconstruction of training environments and predictive models
of humans. This model-based procedure also provides trajectory value estimates that can bootstrap
the model-free RL critic. During the real-world model-free RL phase, we improve the model-based
policy by learning a residual value critic and applying actor-critic methods as described above.

The main contributions of this paper is to propose a framework, SELFI, that takes advantage of
the best aspects of online RL and offline model-based learning. Specifically, SELFI uses online
Q-learning to fine-tune a control policy trained with offline model-based learning. SELFI rapidly
improves the performance of a pre-trained policy in the target environment without needing sig-
nificant human intervention during online learning. In our evaluations, SELFI improves the per-
formace of the pre-trained policy in multiple vision-based navigation tasks, greatly outperforming
policies trained purely offline as well as standard end-to-end model-free offline-to-online RL fine-
tuning methods. Within only two hours of fine-tuning, our policy learns complex robotic behaviors,
e.g., pre-emptive behavior for navigating around pedestrians, collision avoidance for unseen small
and transparent obstacles, and preferences for smooth and easily traversable surfaces. The robotic
behaviors learned by SELFI are shown in the supplemental videos.

2 Related Work

We review the related learning methods as well as the navigation methods on the evaluation task.

Online learning: There are various data-driven methods for adapting control policies to their real-
world environments through interactions. In learning-based settings, DAgger [19] is a general frame-
work that iteratively trains a control policy with expert labeled demonstrations. Additionally, model-
based learning can fine-tune control policies by utilizing differentiable dynamic forward models to
define an objective function with visual foresight [20–22], reward prediction [23], and state predic-
tion [5, 24, 25]. This type of learning can be combined with an optimization algorithm to generate
action commands online, just as in model predictive control [26–29]. However, for any model-based
approach, the performance of the learned control policy is limited to the accuracy of the model and
the quality of the dataset. Model-based RL, which learns a model from interactions with the real
world, is subject to similar limitations [30–32].
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Model-free RL accumulates data, including rewards from real-world interactions, and trains a con-
trol policy to maximize the expected sum of discounted rewards from future timesteps [1–4]. Al-
though model-free RL does not suffer from modeling errors, running model-free RL from scratch
requires a significant amount of time for for data collection and learning. In addition, certain interac-
tions with the environment can be dangerous for the robot itself and humans. Prior work has studied
how offline learning addresses this issue by pre-training policies in simulation [33, 34] or in the real
world using behavior cloning [25, 35, 36] or offline RL [11, 12, 37, 38]. Hybrid approaches use a
learned dynamics model or a control policy learned with model-based RL to initialize a model-free
learner, making it more sample efficient [39, 40].

Our proposed approach is closely related to Residual RL [14], which decomposes the policy’s output
into a solution from an existing controller and the actions from a residual policy trained with model-
free RL. By leveraging the existing controller, residual RL stabilizes the robot’s behavior during the
early stages of online learning and learns the target behavior via the flexibility of model-free RL.
However, the confusion between the existing and learned control policies due to composing them
in the action space restricts the performance of residual RL. Different from these previous works,
our proposed method, SELFI, seamlessly composes model-based learning and model-free RL in the
objective space. SELFI is a flexible and stable method for online fine-tuning with model-free RL
because it incorporates the objective used in offline model-based learning in the learned Q-values.

Social navigation: Social navigation has been extensively explored in [41–43]. Model-based ap-
proaches relying on dynamic pedestrian models have been utilized for behavior modeling [6, 7, 44–
46]. Many existing techniques determine the robot’s actions based on predicted pedestrian behav-
ior [47–53]. Furthermore, social navigation has also been explored using model-free learning ap-
proaches, such as reinforcement learning [54–60]. Unlike vision-based navigation [21, 25, 61–63]
as our evaluation task, which only uses RGB camera observations, these approaches rely on detected
pedestrian poses and/or multiple metric sensors such as LiDARs and/or depth cameras [64, 65].

The most related work, SACSoN [5], utilizes the model-based learning architecture to learn a so-
cially unobtrusive policy in vision-based navigation setting. However, even simple socially compli-
ant behaviors are still challenging to learn due to the modeling errors. Hence, we apply our proposed
method, SELFI, to fine-tune the pre-trained SACSoN policy to improve its performance. We con-
duct comparisons with baseline methods as well as other online fine-tuning methods in the same
task setting, vision-based navigation as our method.

3 Combining Model-based Control with Online Model-Free RL

3.1 Preliminaries

We apply our hybrid model-based and model-free learning algorithm to a Markov Decision Process
(MDP)M. We first briefly explain model-free RL and model-based learning, respectively.

Model-free RL: In RL, we want to maximize the expected sum of discounted rewards. Q-
learning algorithms [4, 66] solve this task by learning a function approximating Qπθ (s, a) =

E{st,at}∼Mπ

∑∞
t=0 γ

tr(st, at) where trajectories with states st and actions at are sampled from the
closed-loop dynamics ofM under the policy πθ. γ indicates the discount factor for future rewards
r. Here, mathematical symbols without a subscript representing time show the current time state
and action, e.g., s = s0, a = a0. The Q-function for the optimal policy obeys the Bellman equation,
and it can be trained to minimize the TD error δ = r(s, a)+γmaxa′ Qπθ (s′, a′)−Qπθ (s, a) where
s′ and a′ indicate the next step s and a, respectively. In the actor-critic setting, we learn both an
approximation for the action-value function Qπθ (s, a) and for the policy that maximizes the action-
value function Q(s, a) as πθ(s). This enables tractable optimization over large action spaces where
the max in the Bellman equation cannot be efficiently computed.

Model-based learning: In the model-based learning setting, we optimize an objective over open-
loop sequences of virtual actions τ = {ât}t=0...H−1 using an approximate dynamics model and
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reward estimate as argmaxτ={ât}

[
J(s, τ) :=

∑H−1
t=0 γtr̂(ŝt, ât)

]
s.t. ŝt+1 = f̂(ŝt, ât) where ŝt

is the predicted state under the approximate dynamics described by f̂ , which can be either learned
or given. ât is the t−th virtual action, which is estimated at the current time state. Note that ŝ0 = s
and â0 = a in J(s, τ). We assume that the dynamics ŝt+1 = f̂(ŝt, ât) and rewards r̂(ŝt, ât) are
easy to compute and differentiable, allowing us to directly optimize the sequence of actions online
with gradient-based trajectory optimization [26, 28]. Instead of optimizing this objective online
(analogous to traditional nonlinear model-predictive control methods), model-based learning amor-
tizes this optimization by learning the parameters θ of a control policy τ = πθ(s) to optimize this
objective offline. This distills the optimization problem into an offline base policy πθ, represented
as a neural network mapping observations to sequences of actions τ . At runtime, actions are then
sampled from the learned policy πθ. A number of prior methods have proposed similar methods for
model-based learning [20, 21, 23, 25].

3.2 SELFI learning architecture

In SELFI, we combine the strengths of model-based learning with the strengths of model-free
learning to enable finetuning in the real world. We wish to decompose the critic value Q into
a model-based objective J and a learned residual objective Q̄ as Q(s, τ) = J(s, τ) + Q̄(s, a)
where a is the first action â0 in the sequence of virtual actions τ = {â0, . . . , âH−1}. We train
Q̄(s, a), which corresponds to the part of the overall objective that is not considered by model-
based learning. We fine-tune the pre-trained control policy πθ(s) to maximize the combined Q-
function Q(s, τ). Accordingly, we first assume r(st, at) in timesteps t = 0 . . . H − 1 has the form,
r(st, at) = r̂(ŝt, ât) + r̄(st, at) where r̂(ŝt, ât) is the model-based reward and r̄(st, at) is the un-
modeled residual reward. Hence, we have:

Q(s, τ) =

∞∑
t=0

γtr(st, at) =

H−1∑
t=0

γtr̂(st, at)︸ ︷︷ ︸
J(s,τ)

+

H−1∑
t=0

γtr̄(st, at) +

∞∑
t=H

γtr(st, at)︸ ︷︷ ︸
Q̄(s,a)

. (1)

The model-free Q̄ includes i) the reward terms that cannot be directly modeled and ii) the value of
the long-horizon returns that are ignored by the limited-horizon model-based learning. As usual,
Q(s, τ) should obey the Bellman equation Q(s, τ) = r(s, a) + γQ(s′, πθ(s

′)) and the critic for
Q̄(s, a) can be trained to minimize the TD error δ̃:

y ← r(s, a) + γQ(s′, πθ(s
′)); δ̃ = y −Q(s, τ). (2)

In practice we use a delayed copy of Q̄ as a target network to compute target values [18]. During
online learning, we calculate the gradient of πθ by back-propagation to maximize the hybrid objec-
tive Q(s, τ). By including the model-based objective term J(s, τ) in Q(s, τ), the initial estimate of
Q(s, τ) already provides reasonable values with a suitably initialized Q̄(s, a) (e.g., with small initial
weights), which significantly stabilizes performance early in training. Then, Q̄(s, a) can be further
trained with online interactions to learn the target robotic behaviors.

3.3 SELFI implementation

As our underlying RL algorithm, we use a variant of twin delayed deep deterministic policy gradi-
ents (TD3) [18], which is a sample-efficient and stable algorithm for training deterministic control
policies. Fig. 1 shows the system overview of SELFI for real-world learning. Similar to [13], policy
training is implemented on an workstation while the robot’s onboard computer is used for inference.

On the workstation, we train with batch data from both the offline and online dataset to avoid over-
fitting to the online data. Half of the batch data is chosen from the offline dataset, and the other half
is from online data, which is collected by the robot. We update the actor once for every two updates
to the critic, maximizing Q(s, τ) = J(s, τ) + Q̄(s, a) with respect to the policy.

On the robot, we calculate the learned policy to obtain the sequence of actions τ = {ât}t=0...H−1

and execute the first action â0, adding Gaussian noise ϵ to encourage exploration. Then, the robot
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Figure 2: SELFI architecture overview. Before online learning, we train the encoder and the actor by
maximizing the differentiable model-based objective. In the online phase, we combine the offline objective
with the learned Q-value from model-free RL to fine-tune the actor.

sends the collected data to the workstation, where it is stored in the replay buffer. Periodically, the
updated actor weights are sent from the workstation to the robot so it can use the latest policy.

4 SELFI System Setup

We evaluate SELFI on for a vision-based social navigation task, where a robot navigates an indoor
environment with pedestrians. We employ SACSoN [5] as the offline model-based objective. In the
online phase, SELFI fine-tunes the pre-trained policy to learn socially-compliant behavior including
1) pre-emptive avoidance of oncoming pedestrians, 2) collision avoidance for the small or transpar-
ent objects, and 3) avoiding travel on uneven floor surfaces. These behaviors are difficult to learn
purely from offline model-based learning due to the modeling errors and insufficient information in
the offline dataset. In this section, we describe the implementation of SELFI on top of SACSoN.

4.1 Offline Learning with SACSoN

We briefly describe the learning procedure in SACSoN. Details are shown in the original paper [5].

Offline model-based objectives: As shown in Fig. 2, we represent the control policy by an en-
coder gϕ coupled to an actor network πθ. We train the policy to maximize the model-based ob-
jective [5], Jsacson(s, τ) :=

∑H−1
t=0 r̂poset + r̂geomt + r̂pedt + r̂regt where the r̂pose reward encourages

goal-reaching behavior, r̂geom [25] penalizes collision with static obstacles (via signed point-cloud
distance), r̂ped [5] is to learn socially unobtrusive behavior and r̂reg acts as a regularization term
to encourage smooth motion. All objectives in Jsacson are differentiable with respect to the action
sequence τ and can therefore calculate the gradient of gϕ and πθ via τ and learn them.

Offline training: The offline policy πθ and gϕ are trained on the 80-hour HuRoN dataset [5] for
vision-based navigation including over 4000 human-robot interactions. Observations consist of a
2-second sequence of six 128×256 omnidirectional camera images from a Ricoh Theta S, together
with the goal image Ig , and predict a sequence of eight future actions. To allow the critic to handle
any actuator delays in the system, we concatenate the previous action with the extracted image
features as shown in Fig. 2.

4.2 Online Learning with SELFI

We demonstrate an instantiation of SELFI for the socially-compliant navigation, following Sec. 3.2
and Sec. 3.3. Here, we describe the specific procedure we use for online RL finetuning.

Learning setting: To obtain the target robotic behavior as fast as possible during online learning,
SELFI fine-tunes the actor πθ with a frozen encoder gϕ as shown in Fig. 2. It corresponds to defining
the extracted feature from the encoder as s in formulation of SELFI. To estimate Q̄, we feed the
feature s and the sequence of action τ to the critic, as shown in right part of Fig. 2. By sharing the
encoder with the actor, we efficiently learn both actor and critic. In the TD error calculation, we
assume J(s, τ) ≈ γJ(s′, τ ′) to train the small critic network during the brief online learning phase.

Reward design: The reward is designed as r(s, a) = v⃗ · ĝ + Cs + Cd to incentivize smoothness
and progress towards the goal, while avoiding collisions: The first term maximizes velocity towards
the next goal, where ĝ := [xg, yg, θg] and v⃗ := [v, 0, ω] are goal direction and velocity vectors
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Table 1: Closed-loop Evaluation of trained control policies. IDV is intimate distance violation duration,
NCO is near-collision duration, and UFS is duration on uneven floor surface, CP is the number of
collision for pedestrians, CO is the number of collision for the tiny objects, Int is the number of
interventions by teleoperators, SPL is Success weighted by Path Length [70] and STL is Success
weighted by Time Length [71]. SPL and STL are calculated by assuming that the robot reaches the
goal position even regardless of there being a human intervention. ∗ indicates using the ground truth
goal pose for generating the velocity commands.

Method IDV [s] ↓ NCO [s] ↓ UFS [s] ↓ CP ↓ [#] CO ↓ [#] Int ↓ [#] SPL ↑ STL ↑
Sampling-based motion planning∗ 21.512 11.633 10.212 1.333 3.333 0.733 0.808 0.652
Residual RL 28.731 12.365 8.073 3.200 4.333 2.067 0.817 0.641
SACSoN with fine-tuning 18.018 11.229 3.578 0.800 2.667 0.733 0.838 0.596
Ours 7.978 3.938 3.067 0.200 1.400 0.267 0.918 0.739

expressed in the robot’s current frame [13]. To obtain the local goal pose g, we build an approximate
localization system that incorporates visual odometry and AR markers along the robot’s trajectory.
The specific choice of AR markers is a design decision to facilitate easy online learning, and other
mechanisms for localization based on visual odometry(see Appendix F). v and ω are the linear and
the angular velocity commands for the two-wheel-drive robot in â0. We use Cs and Cd to denote
the rewards for avoiding static obstacles and dynamic obstacles (pedestrians) respectively:

Cs =


−Cc (if collision is True)
−Cb (else if bumpy is True)
0.0 (otherwise)

Cd =

{
−Ch (if dh < 0.5 + rr)

0.0 (otherwise)
. (3)

Here, Cc, Cb, and Ch are positive constants that penalize undesirable behaviors. We set Cc = Cb =
0.3 and Ch = 0.1, and do not tune these values for our experiments.

The robot triggers a collision event using the robot’s bumper sensor, and a bumpy event (caused by
an uneven floor) when the measured acceleration exceeds a fixed threshold. Note that these sensors
are not mandatory and can be substituted by the other sensors commonly used in navigation [13].
To detect intimate distance violations, we estimate the distance dh to the closest pedestrians using a
combination of semantic segmentation [67, 68] and monocular depth estimation [69]. rr = 0.5 m is
the radius of the circular robot footprint with margin.

Others: We set the discount factor γ = 0.97, accounting for long trajectories of human-robot inter-
action behaviors. In addition, the workstation sends the policy model parameters θ to the robot every
50 training steps (approx. 1 minute wall clock time). Since we conduct online learning for maxi-
mum of two hours, the maximum number of training steps is about 6000. On online learning, we
set the batch size as 76. The learning rate of Adam optimizer is set as 0.0001. All other parameters
follow the authors’ implementation of TD3 [18] and SACSoN [5].

5 Evaluation

Our experiments evaluate SELFI in the real world, studying the following research questions:
Q1. Does SELFI lead to better final policy performance than existing approaches?
Q2. Does SELFI reduce interventions during the fine-tuning process (without degradation)?

Please see Appendix A for more details on a prototype robot and whole navigation system for our
evaluation. And we show the details of our online training and evaluation setup in Appendix B.

Performance analysis of the fine-tuned control policy: We compare to the strongest baselines,
Residual RL and SACSoN with fine-tuning. We fine-tune our method as well as these baselines
and evaluate the fine-tuned policy. In addition, we evaluate Sampling-based motion planning
as the classical motion planning. The details of these baseline methods and the online training
setups are shown in Appendix B and G. In evaluation, it is difficult to conduct extensive and repro-
ducible comparisons in the highly populated natural environments, because they are uncontrolled,
with pedestrians walking in and out of the scene at random. Therefore, to conduct a more controlled
and reproducible comparison with each of the baselines, addressing Q1, we focus on the “organized”
environments specifically.
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Figure 3: Evaluation of socialness by human rating. The height of each bar indicates the mean and the
range line indicates the standard deviation. Larger is better in all ratings. ∗ indicates the statistical significance
of our method on the t-test with p < 0.05. † indicates scale reversed for analyses.

Figure 4: Visualization of the robot behavior when interacting with the pedestrian. Robots and pedestri-
ans with the same color indicate the same time. The black dotted lines indicate the time of closest proximity.

We run our robot five laps each in three different environments, with a control policy fine-tuned by
our methods and two selected baselines. For more details regarding the experimental setups, please
refer to the appendix C.1. Table 1 shows quantitative analysis with our method and selected the
three strongest baselines (The measured metrics are shown on the caption).

Our method has the best scores for all metrics. In particular, our method reduces IDV and NCO
by more than 50% against the strongest baseline and increases SPL and STL by about 10 %. CP
and CO are improved by adding a negative reward for collisions detected by the mechanical bumper
sensor. Although we penalize the collision in the model-based objective, it is based on the estimated
poses, which is less accurate than using the bumper sensors. Hence, our learned Q values signif-
icantly improve on CP and CO. The reward design for the pedestrians can help prevent the robot
from stacking in front of the pedestrians, which may worsen STL. Moreover, online learning could
improve basic goal-reaching performance and reduce human interventions. These positive aspects
suppress the undesired deviations and significantly improve the SPL.

To evaluate how well our method behaves around humans, we also conduct additional experiments
with twelve human subjects. We recruited twelve subjects from among graduate students, visiting
scholars, and staff members on campus. We consider the balance to be as diverse in gender (6 male,
6 female), professional-level (7 student, 5 non-student), and origin (4 North America, 5 Asia, 2
Europe, 1 Latin America) as possible. For more details, please refer to the appendix C.2. Following
[72], subjects were asked nine qualitative questionnaires [72] with a 7-point Likert scale from “Not
at all” to “Very much” after each experiment. To mitigate bias in favor of the first method, we present
the questionnaires [72] in Fig. 3 before running evaluations with the first method.

Figure 3 shows the means and standard deviations of the scores from this study. Note that we flip the
score for the last question such that higher is better for the entire bar plot. Residual RL often violates
the intimate distance and occasionally collides with the human subject. As the result, Residual RL
has the worst score. SACSoN with fine-tuning shows similar behavior in navigation and the closest
score to our method. However, our method performs better overall. The statistical significance of
our method is confirmed in four questions, (4), (6), (8) and (9) on the t-test with p < 0.05.

Figure 4 visualizes the robot behavior when the pedestrian and robot pass each other. In these
time lapse illustrations, the color of the pedestrian and robot indicates the timestep (i.e., a yellow
pedestrian and a yellow robot indicate the same point in time). In addition, we use a black dotted
line for the robot and the pedestrians when robots and people are in closest proximity. In all cases,
the pedestrian gets stuck in front of or behind the robot running the baseline method (right), and
the robot penetrates the intimate distance for an extended length of time. Especially in case A
and D, the baseline fails to reach the goal position and collides with obstacles. With our method, an
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evasive maneuver is initiated at an early stage and succeeds in smoothly passing a pedestrian without
getting stuck (left). Although the robot is close to the pedestrians when passing, our control policy
minimizes how long the robot penetrates the pedestrian’s intimate distance.

Figure 5: Visualization of the robot behavior of
avoidance for small obstacles and uneven floor mat.

Figure 5 shows the time lapsed images when
avoiding the small unseen objects and the un-
even rubber mat. Our method naturally avoids
colliding with the small objects, though this
presents a challenge for the initial SACSoN
policy. In addition, our methods avoids travel-
ing on the uneven mat since we give a negative
reward Cs during online training. Please see our supplemental materials for more details.

Interventions during online training: Reducing human interventions is important in online train-
ing to enable autonomous adaptation in the real world. However, it is known that the data distribution
shift between offline and online training causes performance degradation, leading navigation fail-
ures and a lot of interventions to keep online learning in navigation. To evaluate the online training
process, we count the number of human interventions in each navigation loop for Q2.

Figure 6: The number of intervention on online
learning in three different environments. The lines
indicate the mean and the areas indicate the standard
deviation. The horizontal axis indicates the number of
times the robot laps the loop reference.

Figure 6 shows mean and standard deviation of
the interventions in three environments. Our
method gradually decreases the number of in-
terventions during online training, and it almost
reaches to zero at 15 laps. It means that SELFI
can consistently improve the performance with-
out degradation. On the other hand, the number
of interventions increase for the baselines over
the first few laps. Afterwards, the baselines de-
crease the number of interventions. However,
the baselines still need a few human interven-
tions to complete navigation.

Please see additional evaluation with more baselines in Appendix E and supplemental videos.

6 Discussion

We proposed an online self-improving method, SELFI, to quickly fine-tune a control policy pre-
trained with model-based learning. SELFI combines model-based learning and model-free RL its
training objectives to take advantage of the best parts of both approaches. The same objectives
used in offline learning are introduced into online learning to stabilize the learning process. The
performance of the pre-trained policies are improved via Q-functions from online model-free RL.

In the evaluation, SELFI was implemented to fine-tune the SACSoN policy [5] for vision-based nav-
igation. SELFI enables us to quickly learn complex robotic behavior, such as pre-emptive collision
avoidance for pedestrians, collision avoidance for the small and transparent obstacles, and prefer-
ences for traversing on smooth surfaces. These behaviors are difficult to learn on offline training
due to the modeling errors and data distribution shift. In addition, compared to various baseline
methods, SELFI did not require much human intervention during online learning. The performance
of the trained control policy by SELFI is also visualized in the supplemental materials.

While our method enables us to quickly fine-tune a pre-trained policy, it has some limitations. For
effective online learning, the balance between objectives from model-based learning and the learned
Q-function is important, but this balance cannot be predicted in advance and requires some trial-
and-error with real robots. Although the reward for socialness is given only for intimate distance
violations, human-in-the-loop online learning with human evaluations can lead to better behavior.
And a more diverse multiple public datasets on offline training is practically required for robustness.
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Appendix
A Robotic system

For online learning in the real-world, we build a vision-based navigation system that uses a topologi-
cal graph of the environment, where nodes denote visual observations and edges denote connectivity.

Hardware setup: Figure 7[a] shows the overview of our prototype robot. We use an omnidirec-
tional camera to observe {It}t=−M...0 and Ig . This allows us to observe a 360◦ view for capturing
the pedestrians even behind the robot. The robot is equipped with an NVIDIA Jetson Orin AGX
onboard computer, which runs inference of trained models at 3 Hz. We use two additional cam-
eras to estimate visual odometry and to detect long-term localization fiducials, following the setup
of Hirose et al. [5]. We use an IMU to measure bumpiness and uneven terrain and a bumper sensor
to detect collisions. In addition to on-robot compute, we use a workstation for fast, online training.
The workstation is equipped with an Intel i9 CPU, 96GB RAM, and an NVIDIA RTX 3090ti GPU.

Figure 7[b] shows small obstacles, which we place for online learing(left) as well as our evalua-
tion(right). In our evaluation, we place the obstacles, which is not seen in online training.

Navigation system: Similar to [21, 61, 73], we construct our vision-based navigation system using
a topological memory. We update the goal image Ig based on localization in the topological map
to navigate towards a distant goal position. Before deployment, we collect the map by human
teleoperation and record the subgoal images and the corresponding global goal poses at 0.5 Hz
as {Igi , p

g
i }i=0...L along the robot’s trajectories. Here, L indicate the number of the nodes in the

topological map. During inference, we estimate the global robot pose p and decide the closest node
number ic as the current node by ic = argmini ∥pgi − p∥ and feed Igic+1 as the goal image Ig . We
estimate p with incorporating visual odometry and AR markers as shown in the appedix.

Figure 7: Overview of the prototype robot(left) [74] and small obstacles(right).

B Evaluation setup

We evaluate following baselines in addition to our proposed method for comparative evaluation.

Sampling-based motion planning: This baseline generates fifteen motion primitives [75, 76] at
every time step and selects the best one considering goal reaching, static and dynamic obstacles
such as the pedestrians. To control the robot, we give the velocity commands corresponding to the
selected motion primitive. The details are shown in the Appendix G.

TD3+BC→TD3 [18, 38]: This baseline uses TD3+BC [38], an offline RL method, to train the
encoder, actor, and critic offline. During online training, we fine-tune the pre-trained actor and critic
with TD3 [18] while freezing the encoder.

FastRLAP [13]: FastRLAP employs the pre-trained encoder from offline RL and trains the critic
and the actor from scratch online while freezing the encoder. Different from the original FastRLAP,
we use TD3+BC [38] and TD3 as offline and online learning algorithms, respectively.
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Figure 8: Three environments on online training and evaluation. We conduct online training in three
different challenging environments, [a] the open space facing restrooms, elevator hall and café space, [b] the
entrance hall with many pedestrians, and, [c] the office area with narrow corridors. [a] and [c] have many glass
walls, which are difficult for collision avoidance and cause lighting condition changes.

Residual RL [14]: In residual RL, the policy is given by the sum of a base policy and a learned
policy, a = πbase(s) + πRL(s), where πbase is the pre-trained control policy and πRL is the ac-
tor trained with online RL (TD3). We evaluate two choices for πbase: (1) the pre-trained control
policy maximizing only

∑H−1
t=0 r̂poset to simply move towards the goal position, and (2) the pre-

trained SACSoN policy, maximizing the total objective Jsacson. We label the latter as Residual RL†.
Residual RL provides an alternative way to combine prior policies with online model-free RL, and
therefore represents a natural prior method for comparing with SELFI.

SACSoN with fine-tuning [5]: This baseline trains the entire control policy by maximizing the
SACSoN objective Jsacson on the HuRoN dataset, and then fine-tunes the actor online by maximizing
Jsacson again. The online objective does not use the additional (non-differentiable) online reward
terms r.

All learning-based baselines use the same network structure, except that single-step methods (all
except Ours and SACSoN with fine-tuning) predict only a single action a rather than a sequence
τ . Unless specified, all RL-based methods use the same reward.

We conduct our experiments in three challenging environments in Fig. 8, which are in different
regions of the same building. Environment 1 is an entrance and café area, which naturally has a lot
of pedestrians. The environment’s lighting conditions and furniture placement change significantly
over time. This environment also contains glass walls and chairs with thin legs, which can be
difficult to detect as obstacles. Environment 2 is the entranceway to an office building, also with
significant pedestrian traffic. Environment 3 is a loop through several hallways, desk areas, and
working spaces. Pedestrians are less frequent in this environment, but the corridors are narrow and
require avoiding difficult static obstacles such as glass walls, and present a challenge in avoiding
pedestrians in confined spaces.

In these three environments, we design the looped trajectories, which the last node is same pose as
the initial node, as shown by red lines in Fig. 8, and feed the first goal image when arriving at the
last node to continuously train the control policy online. We conduct online learning while rotating
these loops and stop training when the robot run 15 laps or two hours. During online training,
we randomly place small objects shown in Fig. 7[b](left) to learn the collision avoidance behavior
for the small objects. Since Environment 1 includes many challenges for our task, we evaluate all
methods in this environment and conduct the overall evaluations with the selected baselines in three
environments.

C Evaluation with human participants

For Q1, we conduct two types of experiments, 1) comparative evaluations with relevant baselines
and 2) human subject experiments to evaluate how well our methods behave. For 1), we conduct
the experiments in the “organized” environments for reproducible comparisons. For 2), we conduct
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our experiments in the “unorganized” environments to obtain various evaluations of each human
subject’s senses. We explain the details of the experimental setups in each experiment.

C.1 Reproducible comparisons

It is difficult to conduct extensive and reproducible comparisons in highly populated natural envi-
ronments because pedestrians are walking in and out of the scene at random intervals. Therefore, to
conduct a more controlled and reproducible comparison with each of the baselines, we focus on the
“organized” environments.

Before the experiments, we instruct the human participants to follow pre-defined trajectories (as
repeatably as possible) to have consistent testing conditions. However, if the robot interferes with
a person’s path, the pedestrians were asked to slow down or stop as needed. If the robot can not
give way to the pedestrians, the pedestrians change their path as they deem fit, to interact with
the robot and then come back to the original trajectories. All subjects are asked to follow these
instructions across the experiments. We conduct the experiments across different days, as well as
times of day, mimicking the range of lighting conditions and changes in environment layout that
a robot would experience over several days. In each experiment, we randomly place the small
unseen objects shown in Appendix A into the scene to increase the clutter in the scene and evaluate
the collision avoidance performance. However, we conduct the experiments under approximately
equivalent conditions for each method.

C.2 Human subject experiments

To incorporate various human subjects into our evaluation, we ask the human subjects to interact
with the robot and evaluate its behaviors without specifying specific ways for the subjects to interact
with the robot. This prevents biased behavior and insights from the human subjects. Additionally,
we ask the human subjects to have similar interactions with the robot across all methods to maintain
fairness in the evaluation. To assure the behaviors of the pedestrians were as natural as possible, we
did not always observe and follow the robot during online training. Subjects were not told which
method was being used for each trial. Before the evaluation, we explain the rough robot route from
the start to the goal position.

D Weighting objectives on online training

Similar to the other learning algorithms, our approach needs to find the best balance of each objective
on online training. In our case, we first perform online learning with small weights for the learned
objective Q̄(s, a) and gradually increase the weights. The small weighting for the learned objective
makes online learning more stable and facilitates the analysis of learning results. Once we find a
good weight in one environment, we use the same value in the different environments.

E Pre-training with data from the target environment

When robots operate continuously in the same environment, they can directly collect and utilize a
large amount of in-domain data. In the supplemental evaluation, we show that a large offline dataset
of interactions from the target environment can boost the performance of our method during online
training. Specifically, we use offline RL to train our actor and critic on the collected dataset from
the target environment on top of SACSoN. Then, we fine-tune both networks online by SELFI.

During offline RL training, we leverage the collected dataset from our study. While finding good
hyperparameter for online learning, we collected a dataset of 50 hours of experience in Environment
1. Figure 9 shows the number of intervention for each loop in Environment 1. Even at beginning, our
method leverages a large dataset, Ours + prior data only needs one intervention and can navigate
the robot without any interventions after 5 laps, because of faster training with the pre-trained actor
and critic on the large dataset. Similar to Table 1, Table 2 shows the mean value of the selected
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metrics on 5 laps in the Environment 1. Ours + prior data shows a remarkable gap against Ours in
every metric except SPL. Since Ours + prior data takes a larger deviation from the original path to
avoid violating the intimate distance of close pedestrians (to decrease IDV), SPL is slightly worsen.

In addition to Ours + prior data, we show the results of the all other baselines including FastRLAP,
TD3+BC→TD3 and Residual RL† in Fig. 9 and Table 2. FastRLAP and TD3+BC→TD3 can also
improve the performance of the control policy during online training. However, online training for
two hours or 15 laps is not sufficient, and these methods require many interventions. Surprisingly,
applying Residual RL† with the pre-trained SACSoN policy as πbase actually decreases in perfor-
mance during online training, giving worse performance than Residual RL. We hypothesize that in
this case πRL must learn a copy of the SACSoN policy to predict the result of a particular action, sat-
urating the capacity of the network due to the base policy’s high complexity. We find that Residual
RL and SACSoN with fine-tuning are the strongest baselines. And we think that Sampling-based
motion planning can be the proper baseline from non learning-based approach. Hence we prioritize
these three baselines in our further evaluations in Sec. 5.

Figure 9: The number of intervention on online learning in Environment 1. Ours + prior data indicates
our method leveraging large dataset in same environment. Residual RL† uses the SACSoN policy as πbase. The
horizontal axis indicates the number of times the robot laps the loop.

Table 2: Closed-loop Evaluation of trained control policies at Environment 1. Ours + prior data indicates
our method leveraging large dataset in same environment. Residual RL† uses the SACSoN policy as πbase. ∗
indicates the use of the ground truth goal pose to generate velocity commands.

Method IDV [s] ↓ CP ↓ [#] Int ↓ [#] SPL ↑ STL ↑
Sampling-based motion planning∗ 23.909 1.800 0.400 0.839 0.678
TD3 + BC→TD3 34.632 0.800 6.600 0.773 0.383
FastRLAP 43.623 2.000 10.000 0.702 0.306
Residual RL 21.754 4.200 3.000 0.780 0.568
Residual RL† 39.627 2.800 9.400 0.598 0.466
SACSoN with fine-tuning 19.534 0.200 1.000 0.788 0.549
Ours 10.712 0 0.600 0.932 0.699
Ours + prior data 6.610 0 0.200 0.900 0.713

F Robot pose estimation with AR markers

For reward calculation, we first estimate the robot’s global position p. Using p, we can get an
estimate of g, the goal position in the robot’s local frame, which we can directly use for our reward
calculation. Additionally, p is useful to localizing the robot’s position in a topological map, which
provides our policy the current subgoal image ic.

For localization, we mount a tracking camera, Intel T265 on our robot that measures visual odome-
try. However, the Intel T265 can not maintain the same globalframe before and after rebooting due
to battery replacement. In addition, the shaky robot motion and insufficient visual features deterio-
rate the accuracy of visual odometry. To have same global frame and to get a more accurate estimate

17



of the robot’s global position, we place one AR marker every 15 [m] along the robot’s trajectory and
suppress the localization error for stable online learning.

Figure 10 shows an overview of our localization system using AR markers. Before starting online
learning, we collect {T g

i , T
ARg

i }i=1...O in conjunction with a topological map. T g
i is the robot

position matrix computed from visual odometry and T
ARg

i is the position matrix of i-th AR marker
in the robot’s local frame when detecting i-th AR marker. Here, we assume the robot’s motion during
teleoperation is smooth enough for us to have an accurate estimate of T g

i from visual odometry. O
is the number of AR markers on the robot’s trajectory. When detecting the i-th AR marker during
online learning, we calculate the correlation matrix T c

i to estimate T from the visual odometry T vo
t :

T = T c
i · T vo

t . (4)

When detecting the i-th AR marker during online learning, T can be defined as follows,

T = T g
i · T

ARg

i · (TARr
i )−1. (5)

Figure 10: Overview of robot’s position estimation with
AR markers. We update the correlation matrix T c

i when
the robot detects an AR marker, and we apply it to suppress
the error from the noisy visual odometry T vo

t until the robot
detects the next AR marker.

Here T is on the same global coordinate as
T g
i . Hence, we can obtain T c

i by calculat-
ing T g

i · T
ARg

i · (T vo
t · T

ARr
i )−1. During

online learning, we update T c
i every time

we detect an AR marker, and we use T c
i to

calculate T until the robot detects the next
AR marker. The robot pose p is uniquely
calculated from the robot pose matrix T .
And, the goal pose ĝ on the robot local co-
ordinate can be uniquely calculated from
T−1Tg , where Tg is the global goal pose
matrix for the goal image Ig .

While we use AR markers due to our de-
sign decision using only an RGB camera
and limitations of the Intel T265, it is im-
portant to note that the usage of AR mark-
ers is not mandatory. Our system setup
serves as just one example. If potential
users relax the restriction of using only the camera, they can leverage other sensors such as GPS,
LiDAR, and/or depth cameras to estimate the robot’s pose without requiring AR markers. It’s worth
mentioning that we can run our system without AR markers during inference using other vision-
based localization techniques [21, 25, 61, 74, 77], but we use AR markers to identify the corre-
sponding goal image ID, focusing on evaluating the trained control policy.

G Details of sampling-based motion planning

We implemented sampling-based motion planning as the baseline to bridge the learning-based ap-
proach with broader robotic motion planning. We generated 15 motion primitives assuming steady
linear and angular velocity commands for 8 steps (2.664 s), which is the same horizon as our
method and the strongest baseline, SACSoN. The pairs of linear and angular velocity commands
are (vs, ωs) = (0.0, 0.0), (0.2, 0.0), (0.2, 0.3), (0.2, 0.6), (0.2, 0.9), (0.2, −0.3), (0.2, −0.6), (0.2,
−0.9), (0.5, 0.0), (0.5, 0.3), (0.5, 0.6), (0.5, 0.9), (0.5, −0.3), (0.5, −0.6), (0.5, −0.9). We selected
these 15 motion primitives by balancing computational load and navigation performance.

By integrating these velocity commands for 8 steps, we obtained 15 trajectories such as
{{spji}i=1...8}j=1...15, where spji is the i-the virtual robot pose on the j-th motion primitive. To
select the best motion primitive, we calculated the following cost value for each primitive.

Jj
s = mini(p

g
ic+1 −

spji )
2 + Cob + Cped (6)
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Here, pgic+1 indicates the next subgoal pose. The first term on the right-hand side calculates the
squared errors between all 8 poses in the j-th motion primitive and the goal pose and selects the
minimum one to evaluate the goal-reaching performance. Cob is a constant value used to filter out
trajectories that collide with static obstacles. We calculate Cob as follows:

Cob =

{
1000.0 (if ds < rr)

0.0 (otherwise)
, (7)

where ds is the minimum distance between all 8 poses in the j-th motion primitive and the esti-
mated point clouds corresponding to the static obstacles. Similar to SACSoN [5] and ExAug [25],
a collision is determined when the distance between the static obstacle and the robot is less than the
robot’s radius rr. To ensure fair evaluation with other methods in vision-based navigation that only
uses an RGB camera, we utilize estimated point clouds from the current observation of the RGB
camera. Additionally, Cped is a constant value used to filter out trajectories that violate the intimate
distance with pedestrians. Following SACSoN [5], we predict the future trajectory of pedestrians as
{ppedi }i=1...8 and assess whether each motion primitive violates the intimate distance or not.

Cped =

{
1000.0 (if dped < 0.5 + rr)

0.0 (otherwise)
. (8)

Here, dped = mini dist(ppedi ,s pji ), and dist() is the function used to calculate the distance between
two poses. The values of Cob and Cped are set to 1000.0, which is much larger than the first term on
the right-hand side in Eqn 6, to filter out inappropriate motion primitives during the selection pro-
cess. We choose the motion primitive with the minimum Jj

s and assign the corresponding velocity
commands vs and ωs to control the robot during navigation. Note that we utilize the same point
cloud estimator as well as the pedestrians’ trajectory predictor as our method and SACSoN to have
fair comparison.

Figure 11 shows the implemented sampling-based motion planning. Since pedestrians are not
present in [b], this baseline selects the motion primitive that moves toward the goal position. How-
ever, in [a], where the pedestrian’s predicted trajectory crosses between the robot’s current position
the goal position, the baseline selects a motion primitive that maintains a sufficient distance from
the pedestrian’s predicted trajectory. After the pedestrian passes through the area, the baseline will
select a trajectory towards the goal. In Fig. 11, the blue lines with the “x” markers are the motion
primitives and the black dots are the estimated point clouds.

Figure 11: Overview of sampling-based motion planning.

H Details of network structure

Each raw image from the robot’s omnidirectional camera is a front- and back-side fisheye image
stiched side-by-side. We resize the stiched images and concatenate them in the channel direction
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such that the resulting image data 6 × 128 × 128. To extract temporally consistent features in the
observation and goal image, we channel-wise concatenate the goal image and a history of observa-
tion images as 48 × 128 × 128 input and feed it into the encoder, gϕ. Note that 6 channels are for
current observation, 6×6 channels are for the history of past observations, and the last 6 channels are
for the goal image. The encoder has eight convolutional layers with batch normalization and ReLU
activation function in each layer to extract a 512-dimensional feature vector. The feature vector is
then fed into the actor πθ, a full-connected MLP.

The extracted features for the actor are concatenated with the previous action commands ã to handle
the deadzone, which is a result of system delay and backlash in the robot hardware. The actor πθ has
three fully connected layers with batch normalization and ReLUs to generate τ . The last layer has a
hyperbolic tangent function to limit the velocity commands within upper and lower boundaries.

We concatenate τ and the extracted features from the image encoder and feed it into the critic to
estimate Q̄. The critic is designed with five fully connected layers, batch normalization, and ReLUs.
The last layer has a linear function instead of ReLUs to allow us to estimate negative values.

Figure 12: Overview of network structure in our implementation.
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