ICPC-Eval: Probing the Frontiers of LLM Reasoning
with Competitive Programming Contests

Shiyl Xu1,273:<Yiwen Hul*, Yingqian Mil’ll, Zhlpeng Chenl,
Wayne Xin Zhao!-?:3] Ji-Rong Wen!:2:3

! Gaoling School of Artificial Intelligence, Renmin University of China
2 Beijing Key Laboratory of Research on Large Models and Intelligent Governance
3 Engineering Research Center of Next-Generation Intelligent Search and Recommendation, MOE
{shiyixu45, batmanfly}@gmail.com

Abstract

With the significant progress of large reasoning models in complex coding and
reasoning tasks, existing benchmarks, like LiveCodeBench and CodeElo, are in-
sufficient to evaluate the coding capabilities of large language models (LLMs)
in real competition environments. Moreover, current evaluation metrics such as
Pass@K fail to capture the reflective abilities of reasoning models. To address
these challenges, we propose ICPC-Eval, a top-level competitive coding bench-
mark designed to probing the frontiers of LLM reasoning. ICPC-Eval includes
118 carefully curated problems from 11 recent ICPC contests held in various re-
gions of the world, offering three key contributions: 1) A challenging realistic
ICPC competition scenario, featuring a problem type and difficulty distribution
consistent with actual contests. 2) A robust test case generation method and a
corresponding local evaluation toolkit, enabling efficient and accurate local eval-
uation. 3) An effective test-time scaling evaluation metric, Refine@K, which al-
lows iterative repair of solutions based on execution feedback. The results under-
score the significant challenge in evaluating complex reasoning abilities: top-tier
reasoning models like DeepSeek-R1 often rely on multi-turn code feedback to
fully unlock their in-context reasoning potential when compared to non-reasoning
counterparts. Furthermore, despite recent advancements in code generation, these
models still lag behind top-performing human teams. We release the benchmark
at: https://github.com/RUCAIBox/Slow Thinking with LLMs

1 Introduction

Large language models (LLMs) have demonstrated exceptional performance across a diverse range
of tasks [[M]. Recent advancements in reasoning-focused models, such as OpenAI’s 01/03 series
models [P], DeepSeek-R1 [B], and Gemini 2.5 Pro Exp [@] have significantly advanced their prob-
lem analysis and reasoning capabilities. Consequently, competitive programming problems, which
necessitate the translation of complex mathematical logic into executable code, are widely employed
for such evaluations [5-]. Moreover, problems in real competitions usually involve understanding
the meaning of problem statement, making competitive programming problems a comprehensive
test of an LLM’s intelligence.

However, existing programming benchmarks still face two main challenges. Firstly, they are of rel-
atively low difficulty. With the rapid advancement of large language models (LLMs), these models

*Equal Contributions.
"Corresponding author.

https://github.com/RUCAIBox/Slow_Thinking_with_LLMs

Bronze

03-mini High
Gemini 2.5 Pro Exp
DeepSeek R1
Qwen3-32B

Grok 3 Mini Beta
QwQ-328B

o1-mini
STILL-3-Tool-32B
Qwen3-30B-A3B
Claude 3.7 Sonnet*
Claude 3.5 Sonnet
DeepSeek V3
ChatGPT-40
Qwen3-32B*

Qwen2.5-Coder-328 1 0.1

0 2 4 6 8 10
I Human [Reasoning Model [Non-Reasoning Model

Figure 1: Average number of problems solved per contest (typically 12 problems) by Al models
compared to human ICPC medalists. Despite their strong reasoning capabilities, current top models
are still unable to achieve medal-winning performance in ICPC competitions.

have achieved high scores on current benchmarks. For example, many LLMs pre-trained on code
data can score over 98% percentile on code completion benchmarks, such as rating in CodeElo [[7].
Similarly, the problems from from active coding platform like LiveCodeBench [8] and USACO [f]
do not reach the top levels of algorithmic competition difficulty, making them increasingly solv-
able by powerful reasoning models. This trend diminishes the benchmarks’ discriminative power.
Secondly, the evaluation methodology lacks accessibility and realism. While most difficult prob-
lems from actual competitions offer online evaluation on various Online Judges such as Codeforces,
LeetCode, AtCoder, and Luogu, their private test cases are typically not publicly disclosed. Con-
sequently, benchmarks like CodeElo[[Z], and LeetCode-Hard[8] rely on direct submission to these
platforms, creating barriers for researchers seeking to evaluate their own models. Moreover, the
widely used Pass@K metric fails to capture the iterative refinement process inherent in authentic
problem-solving, where even top-tier competitors rarely produce correct solutions on their first at-
tempt. Additionally, real competition scenarios provide concise feedback on submissions, such as
timeouts and incorrect answers, which are not reflected in the Pass @K metric. This limitation further
undermines its relevance in evaluating model performance in realistic contexts.

To address these challenges, we propose ICPC-Eval, a top-level competitive coding benchmark de-
signed to evaluate the advanced reasoning capabilities of LLMs. Our goal is to comprehensively
tackle issues related to problem difficulty, special judges, local evaluation, and suitable metrics for
assessing reasoning models. To achieve this, we collect sufficiently challenging problems from In-
ternational Collegiate Programming Contest (ICPC) contests, which are prestigious competitions for
university students. Specifically, we gather problems from 11 ICPC contests hosted on the QOJ and
Vjudge ® platforms. Next, we eliminate problems that contain essential non-textual images, interac-
tive elements, or lack a standard solution, ensuring that the remaining problems can be solved and
verified well. Ultimately, we retain a total of 118 problems. Among them, we develop SPJs for 12
problems that involved floating-point output or multiple valid solutions, striving to closely replicate
the problem types and difficulty distribution of actual competitions. We also tag these problems
with type labels. These problems represent the most challenging programming competitions and are
sufficient to pose significant challenges to current state-of-the-art reasoning models.

To address the challenges of inaccessible private test cases and the over-reliance on Online Judges,
ICPC-Eval introduces a robust test case generation method. This process utilizes large language
models (LLMs) to synthesize C++ input data “generators” for each problem. These generators are
specifically prompted to create both random inputs (sampled uniformly from defined ranges) and
challenging corner-case inputs (based on edge cases and specially structured instances identified
from the problem statement). Outputs for these generated inputs are produced using known accepted

3https://tmi .ac/ and https://vijudge.net/

https://qoj.ac/
https://vjudge.net/

Table 1: Comparison of different programming evaluation benchmarks. Each benchmark is cate-
gorized by its source, difficulty level, locality (i.e. whether can be evaluated locally), special judge
support (SPJ), whether it ensures zero false positives (Zero FP), and the evaluation metric.

Name Source Difficulty Local? SPJ? Zero FP? Metric
HumanEval Handwritten * 4 X X Pass@K
USACO USACO *k v X 4 Pass@K
LiveCodeBench LeetCode, efc. * % v X X Pass@K
CodeElo CodeForces *k X v v Pass@K
ProBench ICPC Kk X v v Pass@K
ICPC-Eval ICPC Kk ok v v v Refine@K

solutions, and the entire set of synthesized test cases is rigorously validated to ensure they correctly
identify errors in a curated collection of known incorrect programs (e.g. those that fail with Wrong
Answer or Time Limit Exceeded on the online judge). This approach creates an efficient and
accurate local evaluation toolkit. Furthermore, to capture the critical iterative refinement process
involved in solving complex competitive programming problems, we simulate the actual competition
environment and propose Refine@K as an effective test-time scaling evaluation metric. This metric
assesses an LLM’s ability to improve its solution within a budget of K attempts. After the initial
code generation based on the problem, if the solution fails to compile or passes example cases but
fails hidden test cases, the model receives specific execution feedback and is prompted to iteratively
refine its code within the K-attempt limit. This approach provides a more nuanced evaluation of a
model’s reasoning capabilities compared to traditional simple sampling metrics (e.g. Pass@K).

We comprehensively evaluate 15 state-of-the-art LLMs, with the results shown in Figurell and Ta-
bleB. We observe that even the best-performing model such as 03-mini High still exhibits a signif-
icant performance gap compared to top human participants, highlighting the high difficulty level
of ICPC-Eval. Additionally, we find that Refine@K scales robustly with increasing output lengths
across models, indicating its promise as an efficient method for evaluating test-time scaling. Fur-
thermore, through ablation studies, we verify that Refine@K is more suitable than Pass@K for
evaluating the reasoning capabilities of models.

The main contributions of our work can be summarized into three aspects as follows.

e A challenging benchmark featuring top-difficulty problems curated from recent ICPC, ensuring
a rigorous test of advanced reasoning without data collaboration.

o A novel test case generation and validation methodology that leverages LLM:s to create compre-
hensive local test suites, including a local evaluation toolkit, enabling robust and accessible offline
assessment.

o An effective test-time scaling evaluation metric, Refine@K, designed to measure an LLM’s
ability to iteratively refine its solutions based on execution feedback over multiple attempts.

2 Related Work

Code Benchmarks. Early benchmarks like HumanEval [9] and MBPP [I0] focus on relatively
simple, manually curated function generation tasks. However, these benchmarks face limitations in
scalability and comprehensive test coverage. To assess more complex reasoning capabilities, APPS
[1] and CodeContests [T2] introduce problems from competitive programming. xCodeEval [[3] fur-
ther expands the scope by incorporating multilingual and multitask programming challenges. While
these benchmarks may include a limited set of local test cases, their verification primarily relies
on publicly available problem descriptions and sample test cases. This reliance is often inadequate
for rigorous solution verification, as crucial hidden test cases remain undisclosed. More recent ef-
forts, such as LiveCodeBench [8] and USACO [B], curate tasks from active coding platforms. While
these benchmarks increase task difficulty, they may not consistently reflect the highest levels of al-
gorithmic complexity found in ICPC contests. Additionally, they often lack support for local special
judges (SPJs) and do not ensure complete test coverage, which can lead to false positives. Bench-

Table 2: Distribution of contest problems across algorithmic tags. Each problem may be associated
with one or more tags. "WFs’ and *CFs’ denote World Finals and Continental Finals, respectively.

Domain Topic Coun.t

WFs & CFs Regionals Total
Algorithm Basics Greedy, Divide-and-conquer, etc. 7 27 34
Computational Geometry Sweep Line, Rotating Calipers, etc. 6 11 17
Data Structure Segment Tree, Binary Search Tree, etc. 6 24 30
Dynamic Programming Knapsack, DP on Trees, Bitmask, efc. 11 27 38
Graph Theory Dijkstra, Network Flow, etc. 4 22 26
Mathematics Combinatorics, Number Theory, efc. 15 33 48
Search Algorithm DFS, BES, Backtracking, efc. 15 20 35
String Algorithm KMP, Z-algorithm, Suffix Array, etc. 5 1 6
All 31 87 118

marks like CodeElo [[7], which focus on high-difficulty problems from Codeforces, typically require
submissions to online judges. This requirement limits local reproducibility and restricts access to
SPJ-based evaluations. These limitations underscore the need for benchmarks that combine extreme
difficulty with robust, comprehensive, and fully accessible local evaluation infrastructures.

Iterative Refinement. Iterative refinement is an intuitive approach that enhances model perfor-
mance by incorporating execution feedback in a multi-turn dialogue setting. Previous studies have
primarily focused on training-based methods to elicit the models ability for self-reflection [I4, T5].
Some work has also explored incorporating execution feedback directly into inference, but such
methods tend to underperform compared to multiple sampling when applied to non-reasoning mod-
els [I6, 7]. With the recent advances in reasoning models, reflective thinking has emerged even
without explicit feedback [, B]. Our goal is not to propose a new method for improving model
capabilities, but rather to introduce an evaluation metric that models the process of reflectionbetter
aligning with real-world usage scenarios.

3 ICPC-Eval: Task and Construction

In this section, we describe the ICPC-Eval benchmark in detail, including its problem collection,
data distribution, test case generation, and evaluation metric design (i.e. Refine@K). We present a
basic comparison of ICPC-Eval and other coding benchmarks in Table .

3.1 Problem Collection

We curate a total of 11 ICPC contests, comprising 139 raw problems. Among these, 3 are from
ICPC World Finals or Continent Finals, and 8 come from Regional contests. Our selection process
follows these criteria: 1) recency: We prioritize contests held from October to December 2024,
except for the 2023 ICPC World Finals, as their publicly available manuals are limited. We can
update our benchmark annually using the latest ICPC problems, which helps minimize the risk of
data contamination. 2) minimal contamination: We verify online that platforms like VJudge dis-
play user-submitted solutions as images and employ strict anti-crawling mechanisms, reducing the
likelihood of these contests being included in the training corpus of models. 3) representativeness:
We ensure the contests are representative of the typical problem distribution and difficulty found in
ICPC contests. This approach ensures that our curated contests are both current and reflective of the
ICPC’s standards, while also minimizing the risk of data contamination.

To ensure the quality and consistency of the dataset, we implement a series of filtering and format-
ting steps on the collected problems. Initially, we eliminate 8 problems that fall into the following
categories: 1) non-textual images, such as diagrams or pictures, 2) interactive problems, or 3)
lacking a standard solution. However, we retain problems that include tables or textual images,
provided they can be accurately represented in plain text without losing information. Additionally,

I ~
ICPC Problem Random Cases Generator Random Case 1
Problem Description #include <iostream>
. s D int main () { Input Output
Define an “arrow string” as a data = random(... ...) 53 5>
string that meets the Y || S>ee>
Input & Output Example = } I
:> oes Corner Cases Generator —
- #include <iostream> Corner Case 1
>>>-> LLM int main () { Generator G
...... npu
Generate i - nerat e
Time limite: 1000 ms e e Oenerate || "aa =
Memoty limite: 1024mb | . || .. || || .
g Y, S (= Y, L J
- X - ¢ "3
Final Eval Case £~ Competitors’ Codes d
ICPC Problem % L 1= , Validati
All Cases AC Code RE Code alidation
, ,
Success r T :
[WACode ! [TLE Code

Figure 2: The complete pipeline for test case generation and validation, enabling efficient local
evaluation.

out of the 25 problems that utilize special judges, we exclude 13 problems for which it was not fea-
sible to develop correct and efficient special judges. We retain the remaining 12 problems and write
dedicated special judges for each of them. Finally, we standardize all remaining problem descrip-
tions into a unified I&TEX format to facilitate better comprehension and processing by models. After
these data cleaning steps, we obtain a total of 118 problems, which constitute the final ICPC-Eval
test set.

3.2 Problem Distribution

Due to the high difficulty of ICPC problems, a single problem may involve one or more algorithmic
domains. Therefore, instead of assigning each problem to a mutually exclusive category, we anno-
tate each problem with its relevant algorithmic tags. Based on the common types of recent ICPC
problems, we divide the algorithmic domains into eight areas: Algorithm Basics (Algo), Dynamic
Programming (DP), Mathematics (Math), Data Structure (DS), Graph Theory (GT), Computational
Geometry (CG), Search Algorithm (SA), and String Algorithm (Str). To annotate these tags, we uti-
lize the gemini-2.5-flash-preview—-04-17-thinking model, providing it with detailed classi-
fication criteria, problem statements, and their correct solution code. By reviewing the Al-generated
solution explanations and classification suggestions, we manually assign tags to each problem. The
detailed classification criteria and prompt are available in Appendix B2.

We present the distribution of problems across these tags in Table D. As illustrated, the majority of
problems involve at least one advanced algorithmic domain: Mathematics, Dynamic Programming,
or Search Algorithm. Additionally, we observe that the World Finals and Continent Finals provide
a more comprehensive examination of algorithmic knowledge. This indicates that ICPC-Eval estab-
lishes a notably more challenging baseline for state-of-the-art models.

3.3 Test Case Generation

During data collection, we observe that the lack of robust local test cases often poses significant
inconvenience to evaluation. Existing code evaluation benchmarks either necessitate the use of
crawlers for OJ submissions or involve problems that are overly simplistic. To tackle the difficulties,
we propose a test case data construction process leveraging LLMs to generate robust local test cases.

Input Generator. We utilize the gemini-2.5-pro-preview-03-25 API to synthesize input data
generators written in C++. These generators are designed to produce input data tailored to spe-
cific problems. For each problem, two types of generators are implemented: a random genera-
tor, G,4nq4, Which samples uniformly from the defined data range, and a corner case generator,

G corner» Which generates inputs based on carefully crafted edge cases. Comprehensive prompts and
examples for test case generators are provided in Appendix B73.

Output Generation and Validation. To generate outputs for each input data point, we collect one
Accepted program for each problem from QOJ. The correctness of these programs is rigorously
validated using a feature called “Hacks” on QOJ, where the community contributes additional test
cases, beyond the official ones, to identify potential flaws in the programs. To further validate the
reliability of the synthesized test cases, we manually collect three programs with statuses of either
Wrong Answer, Time Limit Exceeded, or Runtime Error. We compare the evaluation results
on these curated programs to validate these test cases are exhibiting similar behaviour with official
test cases. We ask the model to regenerate the generators that failed in any these check to ensuring
zero false positives of test cases. As shown in Figure [, our generated test cases have successfully
differentiate the correct and incorrect programs.

3.4 Refine@K: Towards Better Test-time Scaling Metrics

To accurately evaluate the correctness of code generation, the Pass@K metric has been proposed
in previous research [IT8]. We begin by reviewing the commonly used Pass@K evaluation method.
Pass@K aims to estimate the probability that, given a sampling budget of K, at least one of the gen-
erated samples will pass the test cases on average. To better approximate this expected probability,
LLMs typically sample /N code completions (where N > K), and compute the metric based on the
accuracy of each sample as follows:

("&°)
Pass@K := E [1-— £
Problems [(I]\(])
where C' is the number of samples that pass all unit tests. Pass@K is a commonly used metric to
assess the performance of programming at test-time scaling by gradually increasing K [9, T9]. How-
ever, with the development of reflection and reasoning abilities in recent LLMs, it underestimates the
comprehensive capabilities of these models. This is because in real-world chat scenarios, these mod-
els are often used in multi-turn conversations with environmental feedback instead of sampling N
responses from an i.i.d. distribution. This challenge is particularly pronounced in ICPC-style compe-
titions, where models are often faced with problems of high cognitive complexity, for which human
competitors similarly rely on multiple submission attempts to reach solutions. In fact, according
to official statistics from the 2024 ICPC Asia Chengdu Regional Contest, teams submit an average
of 1.95 attempts per solved problem, underscoring the centrality of feedback-driven refinement in
realistic competition settings. Therefore, to more accurately assess the algorithmic reasoning capa-
bilities of models, we propose a new metric, Refine@K, i.e. whether the model can pass the test
within K response and refinement chances:

{LLM(Problem) ifi=1,

Response; = . .
LLM(Problem, Response;_1, Feedback;—1) ifl <i < K.

It measures a model’s true algorithmic capability when provided with additional external informa-
tion. In the first turn, the model receives the full problem statement in ISTX format, including the
task description, input/output specifications, and example test cases. In subsequent turns, the model
is additionally provided with its previous response and corresponding evaluation feedback. We pro-
vide detailed information about how feedback is incorporated during evaluation in Section E1l. We
also demonstrate in Section that Refine@K serves as a more effective test-time estimator than
Pass@K when evaluating reasoning models.

4 Experiment

4.1 Experiment Setup

Models. We comprehensively evaluate 15 state-of-the-art LLMs. Unless otherwise specified
(via API endpoint), all evaluations are conducted using open-weight models hosted with vLLM

304 ® Reasoning Models 03-mini High
m Non-reasoning Models °

---- FitLine

251

Gemini 2.5 Pro Exp

[
=
\
\
\

JDeepSeek R _/."(fv;enS-3ZB

.Grok—S - . QwQ-32B

Refine@5 Score
O

-7

_.-="" ST of-Mini
= o ° . Qwen3-30B-A3B

--=""" Claude 3.7 Sonnet*

=}

5 Claude 3.5 Sonnet /,/’

. A DeepS’e,eJ()\fS'
ChatGPT-40 __--~ = Qwen3-32B*
Qwen-Max® = Qwen2.5-Coder

10° 10°

. Average Output Length (log scale) .
Figure 3: Refine@K scales robustly with increasing output lengths across different models. The

output length is measured in tokens.

0

0.8.5. For reasoning models, we include OpenAl ol-mini (via 0o1-mini-2024-09-12), Ope-
nAI 03-mini High (via 03-mini-2025-01-31-high), DeepSeek R1 (via deepseek-reasoner),
Gemini 2.5 Pro Experimental (via gemini-2.5-pro-exp-03-25), Grok 3 Mini Thinking
Mode [20] (via grok-3-mini-beta), QwQ-32B [ZT1], and STILL-3-TOOL-32B [2Z]. For non-
reasoning models, we evaluate ChatGPT-40 (via chatgpt-4o-latest), Claude 3.5 Sonnet (via
claude-3-5-sonnet-20241022), DeepSeek V3 0324 (via deepseek-chat), and Qwen Max
(via qwen-max-2025-01-25). Additionally, we assess latest hybrid reasoning models including
Claude 3.7 Sonnet [23] (non-thinking mode only, via claude-3-7-sonnet-20250219), Qwen3-
32B (both thinking and non-thinking mode), and Qwen3-30B-A3B [24] (thinking mode only). Due
to performance issues encountered while evaluating the thinking mode of Claude 3.7 Sonnet, and
our inability to determine if these are caused by the API we used, we are temporarily withholding
the results for its thinking mode.

Evaluation. For generation hyperparameters, we configure locally-evaluated models with
temperature 0.6 and top_p 0.95. For API-evaluated models, we use their default hyperparam-
eters to better unleash their reasoning capabilities. All generated code is compiled using GNU GCC
14 with the -std=c++23 flag to ensure maximum compatibility. The program runs on an Intel Xeon
Platinum 8160 processor at 2.10 GHz. We use Ref ine@5 as the primary evaluation metric. If compi-
lation fails, the error message is returned as feedback. If compilation succeeds, we run the example
test cases. Any mismatched outputs are returned alongside the expected outputs. Only code that
passes all example tests is further evaluated on hidden test cases, where feedback is limited to the er-
ror type (Wrong Answer, Runtime Error, Time Limit Exceeded, Memory Limit Exceeded,
or Unknown Error). Detailed prompts and refinement guidelines are provided in Appendix Bl

4.2 Main Results

In this section, we evaluate the performance of the comparison models on ICPC-Eval and provide a
detailed analysis. As provided in Table B, we have the following observation:

Execution Feedback Elicits Reflection of Reasoning Models. As one of our core contributions,
we demonstrate that our proposed execution-feedback-based Refine@K metric effectively induces
reasoning capabilities in models, enabling more efficient evaluation of test-time scaling. For in-
stance, we found that most of models require more than one turns to generate correct responses. For
instance, we found that reasoning models scale effectively as the inference turn budget increases,
while non-reasoning models exhibit minimal reflection abilities and scaling potential. We further
validate these findings by comparing Refine @K with Pass@K in Section B72.

Different Models Exhibit Expertise in Different Domains. We find that models vary in domain-
specific strengths. For instance, Gemini 2.5 Pro Exp performs well in basic algorithms, data struc-

Table 3: Refine@5 performance of models across various algorithmic domains and full ICPC-Eval
test set. Note that a single problem may involve one or more algorithmic domains. The symbol *
indicates non-thinking mode for hybrid-reasoning models, while #T represents the average number
of correct response turns.

Domains
Models Full #T
Algo CG DP DS CT Math SA Str

Reasoning Models

03-mini High 265 176 211 333 231 292 167 500 28.8 1.21
Gemini 2.5 ProExp 20.6 59 132 300 115 229 00 375 220 127
DeepSeek R1 11.8 0.0 105 233 115 8.3 00 250 144 206
Grok 3 Mini Beta 176 00 79 100 7.7 104 00 250 11.8 1.57
QwQ-32B 147 0.0 105 167 7.7 125 00 125 11.8 1.57
o1-mini 8.8 00 53 100 7.7 125 00 250 84 1.4

STILL-3-Tool-32B 8.8 00 79 67 00 104 00 250 &4 1.6

Hybrid-reasoning Models
Qwen3-32B 147 00 105 200 11.5 104 00 250 144 135
Qwen3-30B-A3B 11.8 00 2.6 10.0 3.8 8.3 00 250 75 1.6
Claude 3.7 Sonnet” 11.8 00 26 100 338 8.3 00 250 59 22

Non-reasoning Models
Claude 3.5 Sonnet 59 00 00 33 38 6.3 00 250 42 22

Qwen3-32B" 59 00 00 33 00 2.1 00 125 25 1.67
DeepSeek V3 59 00 00 67 00 2.1 00 250 42 10
ChatGPT-40 59 00 00 33 00 4.2 00 125 34 175
Qwen Max 2.9 00 00 33 00 0.0 00 00 08 20

Qwen2.5-Coder-32B 29 00 00 00 00 0.0 00 00 08 1.0

tures, and mathematics, while Grok 3 Mini Beta shows strength only in basic algorithms. Overall,
computational geometry and search algorithms are the most challenging areas for LLMs, as they
require intricate programming, where minor mistakes can cause failure. Except for 03-mini High
and Gemini 2.5 Pro Exp, all other models failed to solve any problems in these two domains.

Refine @K scales robustly with increasing output lengths. Figure B reveals a positive correla-
tion between Refine@5 scores and the average output length of models. Reasoning models exhibit
significantly longer average outputs compared to non-reasoning models, and this trend is mirrored
in their Refine@5 scores. Notably, 03-mini High, which has the longest average output length,
achieves the highest Refine@5 score. Claude 3.7-nothinking, which produces the longest outputs
among non-reasoning models, attains a Refine@K score comparable to that of some reasoning mod-
els. This indicates that a longer CoT implies deeper thinking, and refine@K provides an accurate
measure of a model’s intrinsic reasoning ability.

5 Ablation Study

5.1 Comparing ICPC-Eval with Other Code Benchmarks

To demonstrate the advantages of ICPC-Eval, we curate several state-of-the-art models across com-
monly used coding benchmarks [24, 5].

As shown in Table B, these models all perform worse on ICPC-Eval compared to other bench-
marks (e.g., 03-mini High achieves 67.4% on LiveCodeBench vs. 28.8% on ICPC-Eval), high-
lighting the challenging nature of ICPC-Eval. Moreover, unlike existing benchmarks, where high
performance scores limit differentiation, ICPC-Eval produces more varied results, allowing for bet-
ter discrimination of coding capabilities. For instance, while Grok 3 Mini Beta and 03-mini High
achieve comparable accuracy on LiveCodeBench (66.7% vs. 67.4%), their performance diverges
substantially on ICPC-Eval (11.8% vs. 28.8%).

Table 4: ICPC-Eval presents a more challenging nature compared to other code benchmarks.

ICPC-Eval LiveCodeBench CodeElo
Refine@K Pass@K Rating / Percentile

03-mini High 28.8% 67.4% -

Gemini 2.5 Pro Exp 22.0% 67.8% 2001/ 97.9%
DeepSeek R1 14.4% 64.3% 2029 / 98.1%
Qwen3-32B 14.4% - 197771 97.7%
Grok 3 Mini Beta 11.8% 66.7% -

Claude 3.5 Sonnet 4.2% 36.4% 710/ 24.1%
DeepSeek V3 4.2% 27.2% 1134/ 54.1%

5.2 Comparison of Refine@K and Pass@K

To demonstrate that Refine @K is a more suitable metric than Pass @K for evaluating the code reason-
ing capabilities of LLMs, we conducted comparative experiments using two model pairs: QwQ-32B
vs. Qwen-2.5-Coder-32B (see Figure Bd), and DeepSeek-R1 vs. DeepSeek-V3 0324 (see Figure EB).
Importantly, each pair is derived from the same base model (i.e. Qwen-2.5-32B and DeepSeek-V3),
which eliminates confounding factors related to differences in pre-training.

20 30

. .

[9] @

Qo Q

€15 €

=] 3520

= z

T 10 kel

(9] [}

a @ 10

© 5 ©

o o

0 0
1 5 10 15 20 1 5 10 15 20
K (Attempts) K (Attempts)
—e— QwQ (Refine@20) Qwen2.5-Coder (Refine@20) —e— DeepSeek R1 (Refine@20) —— DeepSeek V3 (Refine@20)
-a- QwQ (Pass@20) Qwen2.5-Coder (Pass@20) -a- DeepSeek R1 (Pass@20) -+- DeepSeek V3 (Pass@20)
—== QwQ (Refine@5, Pass@4) Qwen2.5-Coder (Refine@5, Pass@4) —— DeepSeek R1 (Refine@5, Pass@4) —=~- DeepSeek V3 (Refine@5, Pass@4)
(a) QwQ vs. Qwen2.5-Coder (b) DeepSeek R1 vs. DeepSeek V3

Figure 4: Comparison of Refine@K and Pass @K methods across different models.

As illustrated in Figure B, the performance gap between Refine@K and Pass@K widens with an in-
creasing number of attempts for the same model. Specifically, for reasoning models like QwQ-32B
and DeepSeek-R1, Refine@K consistently outperforms Pass@K across all K values. In contrast,
for non-reasoning models such as Qwen-2.5-Coder-32B and DeepSeek-V3, Pass @K is significantly
higher than Refine @K, and increasing the number of attempts yields minimal improvement in Re-
fine@K. These findings indicate that reasoning models have the ability to iteratively refine their
responses based on previous outputs and feedback, with Refine@K more effectively capturing this
behavior than simple rollout. In contrast, non-reasoning models lack these reflective capabilities and
may be negatively impacted by prior incorrect responses, resulting in poorer performance compared
to simple resampling, as also reported in previous studies [T6]. This comparison highlights the fun-
damental differences in problem-solving abilities between reasoning and non-reasoning models and
underscores that Refine@K is a more appropriate metric for assessing the intrinsic capabilities of
reasoning LLMs.

As an additional step in this direction, Appendix [A reports new evidence that a small reasoning
model (Qwen3-1.7B) benefits from Refine @K with increasing K, whereas two larger non-reasoning
models (Qwen-2.5-Coder-32B, DeepSeek-V3) show limited gainssupporting the view that parame-
ter scaling and test-time scaling follow distinct dynamics.

6 Conclusion, Limitation, and Future Work

In this work, we introduce ICPC-Eval, a challenging benchmark consisting of 118 carefully se-
lected competitive programming problems from recent ICPC contests, together with a robust local

evaluation pipeline and the test-time scaling metric Refine @K. Our results show that, despite steady
progress, state-of-the-art models still exhibit a substantial gap to top human teams on ICPC-Eval. We
further observe that Refine@K more faithfully captures feedback-driven, iterative problem solving
than Pass @K, particularly for reasoning models, and scales robustly with output length.

Limitations. While ICPC-Eval aims to emulate realistic contest conditions, several limitations
remain. (1) Scope: the current release focuses on 11 recent contests and primarily features C++
problems from Asia, Europe, and North America; expanding geographic and temporal coverage
will improve representativeness. (2) Language coverage: we currently evaluate C++ to align with
ICPC practice; extending to additional languages (e.g., Python, Java) is an important next step. (3)
Task modality: problems that fundamentally rely on images or interactive protocols are excluded;
evaluating multimodal and interactive tasks is left for future work.

Future Work. We will periodically refresh ICPC-Eval with new contests to reduce contamination
risk and broaden the distribution of tasks and regions; add multilingual evaluation beyond C++; and
extend to multimodal and interactive settings. Beyond core LLMs, the framework naturally supports
tool-augmented agents (e.g., debuggers and profilers).

These findings highlight the rigor and importance of ICPC-Eval as a benchmark for advancing the
study of reasoning in large language model-based programming.

Acknowledgments

This work was partially supported by National Natural Science Foundation of China under Grant
No. 92470205 and 62222215, Beijing Natural Science Foundation under Grant No. L.233008 and
Beijing Municipal Science and Technology Project under Grant No. Z231100010323009. Xin Zhao
is the corresponding author.

References

[1] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A Survey
of Large Language Models. (arXiv:2303.18223), 2025.

[2] Introducing OpenAl ol. https://openai.com/o1/, 2024.

[3] DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui
Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu,
Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R.J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang
Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang,
Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang,
Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang
Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yonggiang Guo, Yuan
Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan
Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian
Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun
Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and

10

[4

—

[5

—

[6

—_

[7

—

[8

—_—

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

Zhen Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning.
(arXiv:2501.12948), 2025.

Gemini 2.5: Our most intelligent AI model.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and Contamination Free Evaluation of
Large Language Models for Code. (arXiv:2403.07974), 2024.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can Language Models Solve Olympiad
Programming? (arXiv:2404.10952), 2024.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren, Bofei
Gao, Yibo Miao, Yunlong Feng, Zekun Wang, Jian Yang, Zeyu Cui, Yang Fan, Yichang Zhang, Binyuan
Hui, and Junyang Lin. CodeElo: Benchmarking Competition-level Code Generation of LLMs with
Human-comparable Elo Ratings. (arXiv:2501.01257), 2025.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language Agents with Verbal Reinforcement Learning. (arXiv:2303.11366), 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Woj-
ciech Zaremba. Evaluating Large Language Models Trained on Code.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring Coding Challenge Competence
With APPS. (arXiv:2105.09938), November 2021.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-Level Code Generation with AlphaCode.
Science, 378(6624):1092-1097, December 2022.

Mohammad Abdullah Matin Khan, M. Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code Understanding,
Generation, Translation and Retrieval. (arXiv:2303.03004), November 2023.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-Play Fine-Tuning Converts
Weak Language Models to Strong Language Models. (arXiv:2401.01335), June 2024.

Carlo Baronio, Pietro Marsella, Ben Pan, and Silas Alberti. Multi-turn rl training for cuda kernel genera-
tion. https://cognition.ai/blog/kevin-32b.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama. Is
Self-Repair a Silver Bullet for Code Generation? (arXiv:2306.09896), February 2024.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. OpenCodelnterpreter: Integrating Code Generation with Execution and Refinement.

(arXiv:2402.14658), January 2025.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy Liang.
SPoC: Search-based Pseudocode to Code.

11

[19] Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey, Chendong Song,
Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu, Jonas Bayer, Julien
Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani, Moreira Machado, Pauline
Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding Li, Yazhe Niu, Yann Fleureau,
Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying Liu, and Jia Li. Kimina-Prover
Preview: Towards Large Formal Reasoning Models with Reinforcement Learning. (arXiv:2504.11354),
April 2025.

[20] Grok 3 Beta The Age of Reasoning Agents | XAl
[21] Qwen Team. QwQ-32b: Embracing the power of reinforcement learning, March 2025.

[22] Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao,
Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An empirical study on
eliciting and improving rl-like reasoning models. arXiv preprint arXiv:2503.04548, 2025.

[23] Claude 3.7 Sonnet and Claude Code.
[24] Qwen Team. Qwen3: Think Deeper, Act Faster.

A Additional Experiments: Refine@K vs. Pass@K under Varying Model
Types

Table 5: Problems solved versus K for a small reasoning model and two larger non-reasoning mod-
els.

Model Setting K=1 K=5 K=10 K=15 K=20
Qwen3-1.7B Refine @20

Qwen3-1.7B Pass@20

Qwen3-1.7B Refine@5, Pass@4

1
1
1
Qwen-2.5-Coder-32B Refine @20 1
Qwen-2.5-Coder-32B Pass@20 1
Qwen-2.5-Coder-32B Refine @5, Pass@4 1
5
5
5

DeepSeek-V3 Refine@20
DeepSeek-V3 Pass@20
DeepSeek-V3 Refine@5, Pass @4

N O U= = =
OO Q= = W
005 NN W =W WA
)
L
O 5O W~ W WA

We supplement the main results with a controlled study contrasting a small reasoning model (Qwen3-
1.7B) with two larger non-reasoning models (Qwen-2.5-Coder-32B and DeepSeek-V3). The table
below reports the number of problems solved as K increases under three settings: Refine@20,
Pass@20, and a matched budget comparison (Refine@5 vs. Pass@4). The results show a clear
upward trend for the reasoning model under Refine @K, whereas the two non-reasoning models ex-
hibit minimal or inconsistent improvements under Refine@K despite stronger capacitysupporting
that Refine@K captures a distinct feedback-driven reasoning capability separate from raw model
size.

B Prompts

B.1 Prompt Used for ICPC-Eval

Initial generation:

12

You are a coding expert. Given a competition-level coding problem, you need to write a C++ program
(C++23) to solve it. Please consider the efficiency and time complexity of the algorithm to meet the
time limit requirements of the problem. You may start by outlining your thought process.
In the end, YOU MUST provide the complete code in a code block enclosed with “* “*.
In the end, YOU MUST provide the complete code in a code block enclosed with “* ““*.
In the end, YOU MUST provide the complete code in a code block enclosed with “* “*.
Problem: {title}

Time limit: {time_limit_ms}ms

Memory limit: {memory_limit_mb}MB

[Description]

{description}

[Input]

{input}

[Output]

{output}

[Sample Input i]

{sample_input_i}

[Sample Output i]

{sample_output_i}

[Note]

{note}

Refinement (Fail on Sample Test Cases):

The code you generated encountered an error when tested locally: {correct_info}. {Suggestion}.
Please modify your code. You should analyze the reasons for the error. You may start by outlining
your thought process.

In the end, YOU MUST provide the complete code in a code block enclosed with “* ““*.

In the end, YOU MUST provide the complete code in a code block enclosed with “* ““*.

In the end, YOU MUST provide the complete code in a code block enclosed with “* ““*.

Refinement(Fail on Final Test Cases):

The code you generated encountered an error after submitting to the Contest Judge: {correct_info}.
{Suggestion}. Please modify your code. You should analyze the reasons for the error. You may start
by outlining your thought process.

In the end, YOU MUST provide the complete code in a code block enclosed with “* ““*.

In the end, YOU MUST provide the complete code in a code block enclosed with ““ ““*.

In the end, YOU MUST provide the complete code in a code block enclosed with “* ““*.

13

B.2 Prompt Used for Annotating Algorithmic Domains

[Category 1]: Algorithm Basics

Enumeration, Simulation, Recursion & Divide and Conquer, Greedy, Sorting, Binary Search, Dou-
bling, Construction

[Category 2]: Search

DEFS, BFS, Bidirectional Search, Heuristic Search, A*, Iterative Deepening Search, IDA*, Backtrack-
ing, Dancing Links, Alpha-Beta Pruning, Other Search Methods

[Category 3]: Dynamic Programming (DP)

Introduction to Dynamic Programming, Basic Dynamic Programming, Memoization, Knapsack DP,
Interval DP, DP on DAGs, Tree DP, Bitmask DP, Digit DP, Plug DP, Counting DP, Dynamic DP,
Probability DP, DP Optimization, Other DP Methods

[Category 4]: Advanced String Algorithms

String Matching, String Hashing, Trie, Prefix Function and KMP Algorithm, BoyerMoore Algorithm,
Z-Function (Extended KMP), Automaton, AhoCorasick Automaton, Suffix Array (SA), Suffix Au-
tomaton (SAM), Suffix Balanced Tree, Generalized Suffix Automaton, Suffix Tree, Manacher, Palin-
drome Tree, Sequence Automaton, Minimal Representation, Lyndon Decomposition, MainLorentz
Algorithm

[Category 5]: Mathematics

Number Systems, Bit Manipulation, Binary Set Operations, Balanced Ternary, High-Precision Arith-
metic, Fast Exponentiation, Permutations and Combinations, Radians and Coordinate Systems, Com-
plex Numbers, Number Theory, Polynomials and Generating Functions, Combinatorics, Linear Alge-
bra, Linear Programming, Abstract Algebra, Probability Theory, Game Theory, Numerical Algorithms,
FourierMotzkin Elimination, Order Theory, Young Tableaux, Matroid, BerlekampMassey Algorithm
[Category 6]: Advanced Data Structures

Stack, Queue, Linked List, Hash Table, Disjoint Set Union, Heap, Block Data Structures, Monotonic
Stack, Monotonic Queue, Sparse Table (ST), Binary Indexed Tree (Fenwick Tree), Segment Tree,
Partition Tree, Binary Search Tree & Balanced Tree, Skip List, Persistent Data Structures, Tree of
Trees, K-D Tree, Dynamic Tree, Decomposition Tree, PQ Tree, Finger Tree, Huffman Tree, Loser
Tree

[Category 7]: Graph Theory

Graph Representation, DFS (Graph Theory), BES (Graph Theory), Tree Problems, Matrix-Tree The-
orem, Directed Acyclic Graphs, Topological Sort, Minimum Spanning Tree, Steiner Tree, Minimum
Arborescence, Minimum Diameter Spanning Tree, Shortest Path, Vertex Splitting, Difference Con-
straints, k-Shortest Paths, Congruent Shortest Path, Connectivity, Cycle Counting Problems, 2-SAT,
Eulerian Graph, Hamiltonian Graph, Bipartite Graph, Minimum Cycle

[Category 8]: Computational Geometry

2D Computational Geometry Basics, 3D Computational Geometry Basics, Distance, Pick’s Theorem,
Triangulation, Convex Hull, Sweep Line, Rotating Calipers, Half-Plane Intersection, Closest Pair of
Points, Randomized Incremental Algorithm, Inversion Transformation, Miscellaneous Computational
Geometry

The above are the 8 categories of algorithm competition problems and their subcategories. Next, I
will provide you with an algorithm problem and its correct code solution. Please read them and deter-
mine which of the above 8 categories the problem belongs to. Each problem may belong to multiple
categories. If a problem involves any subcategory under a category, it is considered to belong to that
category. First, introduce the core algorithms involved in the problem, then output the categories the
problem belongs to in Python list format, e.g., ["Category1EnglishName", "Category2EnglishName",
...], using the names of the categories. Then, explain each category inclusion one by one.

B.3 Prompt Used for Synthesizing Test Cases

Random case Generator:

14

You are a programming contest expert. Given a competitive programming problem and it’s standard
solution code, you need to write a C++ program(C++11) to generate random test input data for the
problem. Please ensure that the generated test data satisfies all constraints in the problem description.
Your C++ program should generate a set of valid test input data when executed, which should test the
correctness and efficiency of solutions. The range of generated random data should be consistent with
the requirements of the problem, do not use small range for simplicity. Your program must use the
system’s default time as the random seed and output only the test input data (without any extra prompts
or commentary). In the end, YOU MUST provide the complete C++ code in a code block enclosed
with ““ ““I11 YOU MUST provide the complete C++ code in a code block enclosed with “* ““!!! YOU
MUST provide the complete C++ code in a code block enclosed with ““ ““!!!

Corner case Generator:

You are a programming contest expert. Given a competitive programming problem and its standard
solution code, you need to write a C++ (C++11) program that generates diverse random test input data
for the problem. Unlike standard generators, your program must randomly decide at runtime which
type of test input to produce, choosing from multiple types that include edge cases, boundary extreme
values, and specially structured cases. You must ensure that the input data generated after each run
of this generator and its output data is greatly different and diverse. The generated data must satisfy
all constraints detailed in the problem description and cover the full range of allowed values, ensuring
that any submitted solution is thoroughly tested for both correctness and efficiency. Your program
must use the system’s default time as the random seed and output only the test input data (without any
extra prompts or commentary). In the end, YOU MUST provide the complete C++ code in a code
block enclosed with “* ““!!! YOU MUST provide the complete C++ code in a code block enclosed
with ““ ““I11 YOU MUST provide the complete C++ code in a code block enclosed with “* “*!1!

C Dataset Details

C.1 Selected ICPC Contests

Table 6: Selected ICPC Contests.

Contest Category
The 2023 ICPC World Finals World Final
The 2024 ICPC Asia East Continent Final Contest Continent Final
The 2024 ICPC North America Championship Continent Final
The 2024 ICPC Asia Chengdu Regional Contest Regional
The 2024 ICPC Asia Hangzhou Regional Contest Regional
The 2024 ICPC Asia Hong Kong Regional Contest Regional
The 2024 ICPC Asia Nanjing Regional Contest Regional
The 2024 ICPC Asia Shanghai Regional Contest Regional
The 2024 ICPC Asia Shenyang Regional Contest Regional
The 2024 ICPC Northwestern Europe Regional Contest Regional
The 2024 ICPC Central Europe Regional Contest Regional

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

15

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer "

" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering " "or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA|
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

16

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data

17

is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: [NA|

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not
be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [NA|

Guidelines:

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|

19

https://neurips.cc/public/EthicsGuidelines

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

20

13.

14.

15.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

21

paperswithcode.com/datasets

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: [NA]
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	ICPC-Eval: Task and Construction
	Problem Collection
	Problem Distribution
	Test Case Generation
	Refine@K: Towards Better Test-time Scaling Metrics

	Experiment
	Experiment Setup
	Main Results

	Ablation Study
	Comparing ICPC-Eval with Other Code Benchmarks
	Comparison of Refine@K and Pass@K

	Conclusion, Limitation, and Future Work
	Additional Experiments: Refine@K vs. Pass@K under Varying Model Types
	Prompts
	Prompt Used for ICPC-Eval
	Prompt Used for Annotating Algorithmic Domains
	Prompt Used for Synthesizing Test Cases

	Dataset Details
	Selected ICPC Contests

