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Abstract

World models have recently attracted growing interest in Multi-Agent Reinforce-
ment Learning (MARL) due to their ability to improve sample efficiency for policy
learning. However, accurately modeling environments in MARL is challenging
due to the exponentially large joint action space and highly uncertain dynamics
inherent in multi-agent systems. To address this, we reduce modeling complex-
ity by shifting from jointly modeling the entire state-action transition dynamics
to focusing on the state space alone at each timestep through sequential agent
modeling. Specifically, our approach enables the model to progressively resolve
uncertainty while capturing the structured dependencies among agents, providing
a more accurate representation of how agents influence the state. Interestingly,
this sequential revelation of agents’ actions in a multi-agent system aligns with
the reverse process in diffusion models—a class of powerful generative models
known for their expressiveness and training stability compared to autoregressive or
latent variable models. Leveraging this insight, we develop a flexible and robust
world model for MARL using diffusion models. Our method, Diffusion-Inspired
Multi-Agent world model (DIMA), achieves state-of-the-art performance across
multiple multi-agent control benchmarks, significantly outperforming prior world
models in terms of final return and sample efficiency, including MAMuJoCo and
Bi-DexHands. DIMA establishes a new paradigm for constructing multi-agent
world models, advancing the frontier of MARL research. Codes are open-sourced
at https://github.com/breez3young/DIMA.

1 Introduction

Learning accurate world models to capture environmental dynamics is crucial for effective decision-
making. In the realm of model-based reinforcement learning (MBRL), such models play a pivotal
role by enabling policy training through learning in imagination [1, 2, 3, 4], facilitating planning with
look-ahead search [5, 6], or combining both approaches [7, 8]. While MBRL has achieved significant
success in single-agent settings, extending these methodologies to multi-agent scenarios presents
unique challenges, necessitating new approaches for multi-agent world modeling.

In multi-agent settings, where multiple agents simultaneously interact within a shared environment,
two primary challenges emerge. First, the joint action space grows exponentially with the number of
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agents [9, 10], making it computationally expensive to directly handle joint dynamics. Second, the
complex interdependencies among agents [11] make it difficult to accurately capture how individual
actions impact global state transitions. Current multi-agent world modeling approaches face a
fundamental tradeoff. On one end of the spectrum, centralized modeling schemes directly capture
full joint dynamics but incur computational costs that scale exponentially with the number of agents.
On the other end, decentralized approaches [12, 13, 14] model individual agent dynamics separately
and rely on additional mechanisms, such as sophisticated communication or aggregation modules,
to recover the global state. However, this misalignment between decentralized model structure and
the global Markov decision process (MDP) can impose inherent limitations on model accuracy and
those communication or aggregation modules do not have explicit signal for supervision, further
hindering the training. This tradeoff motivates a fundamental rethinking of the world model structure:
Can we develop a centralized modeling scheme that maintains global consistency without auxiliary
components in decentralized methods, while keeping computational complexity manageable as the
number of agents increases?
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Figure 1: Illustration of the DIMA world model.
From the temporal perspective, each environmen-
tal timestep is modeled as a complete denoising
process, analogous to diffusion models. Within
each timestep, we further consider an agent-wise
perspective, where the introduction of each individ-
ual agent’s action information represents a single
denoising step, progressively reducing uncertainty
about the next state.

To address this challenge, we adopt a sequen-
tial agent modeling perspective that processes
agents’ actions incrementally, as illustrated in
Figure 1. Specifically, consider a multi-agent
system at timestep t with global state st. When
all agents’ actions a1:nt are unknown, the next
state st+1 remains highly uncertain. As agents’
actions are progressively revealed, this uncer-
tainty gradually decreases. This sequential un-
certainty reduction process bears striking simi-
larity to the reverse process in diffusion models
[15, 16, 17], where generation is framed as iter-
ative denoising from noise to clean samples.

Inspired by this conceptual similarity and the
recent success of diffusion models in image-
based world modeling [18, 19, 20], we propose
Diffusion-Inspired Multi-Agent world model
(DIMA), which reformulates multi-agent dy-
namics prediction as a modified conditional de-
noising process. Despite employing a central-
ized modeling scheme, DIMA achieves com-
putational complexity that scales linearly with
the state space dimensionality, regardless of the
number of agents. We summarize our contribu-
tions as follows:

• We leverage the connection between sequential agent modeling and diffusion processes to reformu-
late multi-agent dynamics prediction as a conditional denoising process. This enables a centralized
modeling scheme that reduces complexity without additional communication mechanisms.

• We propose DIMA, a centralized multi-agent world model tailored for model-based MARL, and
derive its corresponding evidence lower bound (ELBO), providing theoretical insights. We then
instantiate DIMA within the EDM training framework [21] and integrate it into the learning-in-
imagination paradigm for policy optimization.

• We evaluate DIMA on challenging continuous MARL benchmarks, including MAMuJoCo [22]
and Bi-DexHands [23], in low-data regimes. Experimental results show that DIMA consistently
improves the prediction accuracy of environment dynamics and outperforms both model-free and
strong model-based MARL baselines in terms of sample efficiency and overall performance.

2 Preliminaries
2.1 Multi-Agent Systems as Dec-POMDP

We focus on fully cooperative multi-agent systems where all agents share a team reward signal. We
formulate the system as a decentralized partially observable Markov decision process (Dec-POMDP)
[11], which can be described by a tuple (N ,S,A, P,R,Ω,O, γ). N = {1, ..., n} denotes a set
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of agents, S is the finite global state space, A =
∏n
i=1Ai is the product of finite action spaces of

all agents, i.e., the joint action space, P : S ×A × S → [0, 1] is the global transition probability
function, R : S ×A → R is the shared reward function, Ω =

∏n
i=1 Ω

i is the product of finite
observation spaces of all agents, i.e., the joint observation space, O = {Oi, i ∈ N} is the set of
observing functions of all agents. Oi : S → Ωi maps global states to the observations for agent i,
and γ is the discount factor. Given a global state st at timestep t, agent i is restricted to obtaining
solely its local observation oit = Oi(st), takes an action ait drawn from its policy πi(·|oi≤t) based on
the history of its local observations oi≤t, which together with other agents’ actions gives a joint action
at = (a1t , ..., a

n
t ) ∈ A, equivalently drawn from a joint policy π(·|o≤t) =

∏n
i=1 π

i(·|oi≤t). Then
the agents receive a shared reward rt = R(st,at), and the environment moves to next state st+1

with probability P (st+1|st,at). The aim of all agents is to learn a joint policy π that maximizes the
expected discounted return J(π) = Es0,a0,...∼π [

∑∞
t=0 γ

tR(st,at)]. Note that recent approaches
[12, 13, 14] build the multi-agent world models via modeling P (ot+1|ot,at) in the joint observation
and action space, which mismatches with the transition formulation in Dec-POMDP. However, DIMA
is trained to recover the well-defined global state transition P (st+1|st,at) according to the proposed
multi-agent dynamics formulation.

2.2 Score-based Diffusion Models

In this work, we directly utilize the unified framework and the accompanying practical design choice
of diffusion models introduced by Karras et al. [21].

Notation. Let us consider a diffusion process {xτ}τ∈[0,T ] indexed by a continuous time variable
τ ∈ [0, T ], with corresponding marginals {pτ}τ∈[0,T ], and boundary conditions p0 = pdata and
pT = pprior, where pprior is usually a pure Gaussian distribution in practical implementation. For
clarity, we use the superscript τ to denote the diffusion process timestep and the subscript t to denote
the trajectory timestep.

ODE Expression. Song et al. [17] models the forward and reverse diffusion processes with stochastic
differential equations (SDEs) which describe how the desired distribution of sample x evolves over
time τ . Assuming the stochasticity only comes from the initial sample xT of prior distribution
pprior, Karras et al. [21] expresses diffusion models via its corresponding probability flow ordinary
differential equation (ODE) [17] which continuously increases or reduces the noise level of the image
when moving forward or backward in time, respectively. The defining characteristic of the probability
flow ODE is that evolving a sample xτa ∼ pτa(x) = p(x;σ(τa)) from time τa to τb (either forward
or backward in time) yields a sample xτb ∼ pτb(x) = p(x;σ(τb)), where σ(τ) is a schedule that
defines the desired noise level at time τ . It is described by

dx = −σ̇(τ)σ(τ)∇x log p
τ (x) dτ,

where the dot denotes a time derivative. ∇x log p
τ (x) is the score function [24] associated with the

marginals {pτ}τ∈[0,T ] along the process. Equipped with the score function, we can thus smoothly
mold random noise into data for sample generation, or diffuse a data point into random noise.

Denoising Score Matching. By using the score matching objective [24], we can evaluate the score
function easily. Specifically, Dθ(x; τ) is a parameterized denoiser function that minimizes the
expected L2 denoising error for samples x0 drawn from pdata for every σ(τ),

L(θ) = Ex0∼pdata(x),xτ∼p(xτ |x0)[∥Dθ(x
τ ; τ)− x0∥2], (1)

where xτ ∼ p(xτ |x0) denotes that xτ is obtained by applying Gaussian noise of scale σ(τ) to clean
sample x0. Then the score estimation can be given by∇x log p

τ (x) = (Dθ(x; τ)− x)/σ(τ)2 at any
given time τ . Thanks to this estimation, we can solve the ODE by numerical integration, i.e., taking
finite steps over discrete time intervals with the help of various ODE solvers.

3 Methodology
In the following, we first elucidate our proposed formulation of modeling multi-agent dynamics from
a diffusion-inspired perspective in §3.1. Based on this formulation, we derive the corresponding
ELBO and score matching objective for implementing the diffusion model that incorporates such a
perspective. Then, we describe the behavior learning process within the world model in §3.2.
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3.1 Modeling Multi-Agent Dynamics from a Diffusion-Inspired Perspective

Given a dataset {(o1, s1,a1, r1, . . . ,oTi , sTi ,aTi , rTi)}i containing all collected episodes, the aim
of the multi-agent world model is to precisely predict how the next state is like based on an action
intervention, i.e., recovering the unknown ground truth environment dynamics P (st+1|st,at).
Diffusion-Inspired Formulation. Supposing there are n agents {1, 2, . . . , n} and n noise levels
{σn, . . . , σ2, σ1} that satisfy σmax = σn > · · · > σ1 > σ0 = 0, the noisy sample s(i)t+1 is corrupted
from the clean next state s(0)t+1 := st+1 by adding noise of the corresponding level σi. Note that
here we use the superscript to denote the diffusion process timestep except for the action notation
a. Following the definition in [25], we start by defining a similar conditional Markovian forward
diffusion process q̂,

q̂(s
(0)
t+1) := p(st+1), (2)

q̂(s
(k+1)
t+1 |s

(k)
t+1, st, a

1:n
t ) := q(s

(k+1)
t+1 |s

(k)
t+1), (3)

q̂(s
(1):(n)
t+1 |s(0)t+1, st, a

1:n
t ) :=

n∏
k=1

q̂(s
(k+1)
t+1 |s

(k)
t+1, st, a

1:n
t ), (4)

where q denotes the unconditional forward diffusion process. While the conditional forward diffusion
process q̂ is conditioned on the control signal (st, a1:nt ), we can prove that it behaves exactly like the
unconditional one q. The following equations hold,

q̂(s
(k+1)
t+1 |s

(k)
t+1) = q̂(s

(k+1)
t+1 |s

(k)
t+1, st, a

1:n
t ), q̂(s

(1):(n)
t+1 |s(0)t+1) = q(s

(1):(n)
t+1 |s(0)t+1). (5)

The detailed proof is referred to Dhariwal and Nichol [25]. Since the above equations suggest that
the forward diffusion process is independent of the control signal (st, a1:nt ), we can now fully focus
on describing our formulation via the conditional reverse diffusion process.

To describe how the predicted next state gets sharpened progressively with sequentially given action
of each agent, we have to specify the conditioning order. Without loss of generality, we adopt the
descending order of agent id (n, n − 1, . . . , 1) as the conditioning order. Formally, we make the
following assumption in terms of the global state transition.
Assumption 1 (Diffusion-Inspired Decomposition of Multi-Agent Dynamics). In our diffusion-
inspired formulation with the descending order of agent id (n, n−1, . . . , 1) as the conditioning order,
the global state transition P (st+1|st, a1:nt ) yields the next state in a manner akin to a typical reverse
diffusion process, i.e., satisfying

P (st+1, s
(1):(n)
t+1 |st, a1:nt ) = p(s

(n)
t+1)

n∏
k=1

p(s
(k−1)
t+1 |s

(k)
t+1, a

k
t , st), (6)

where s(n)t+1 is corrupted with the noise of maximum level σn, practically indistinguishable from pure
Gaussian noise.

Under the assumption, we have the following new form of Evidence Lower Bound (ELBO) on the
logP (st+1|st, a1:nt ).
Theorem 2 (ELBO under the Diffusion-Inspired Formulation). Under Assumption 1, the log-
likelihood of the multi-agent global state transition (i.e., the evidence of the transition) is lower
bounded as follows,

logP (st+1|st, a1:nt ) ≥ E
q(s

(1)
t+1|s

(0)
t+1)

[log p(s
(0)
t+1|s

(1)
t+1, a

1
t , st)]︸ ︷︷ ︸

reconstruction term

−DKL(q(s
(n)
t+1|s

(0)
t+1)∥p(s

(n)
t+1))︸ ︷︷ ︸

prior matching term

−
n∑
k=2

E
q(s

(k)
t+1|s

(0)
t+1)

[
DKL(q(s

(k−1)
t+1 |s

(k)
t+1, s

(0)
t+1)∥p(s

(k−1)
t+1 |s

(k)
t+1, a

k
t , st))

]
︸ ︷︷ ︸

denoising matching term

. (7)

The detailed proof is deferred to §A. The denoising matching term in Eq. (7) secretly reveals
that we can learn a parameterized denoising intermediate step pθ(s

(k−1)
t+1 |s

(k)
t+1, a

k
t , st) that matches
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the tractable ground-truth denoising intermediate step q(s(k−1)
t+1 |s

(k)
t+1, s

(0)
t+1), thereby realizing the

formulation we propose. When we utilize Gaussian noise for corruption in the forward diffusion
process, the denoising matching term can be simplified as a variant of Eq. (1):

L(θ) = E
[∑n

k=1
∥Dθ(s

(k)
t+1;σk, st, a

k
t )− st+1∥2

]
, given the order (n, . . . , 2, 1) (8)

However, there are still two properties to be incorporated into Eq. (8). (i) Permutation Invariance.
Note that our formulation merely provides a novel perspective for modeling multi-agent dynamics,
rather than changing the underlying mechanism of global state transitions. In other words, regardless
of how the conditioning order of a1:nt is specified, the next state should remain unchanged given the
same current state and joint action, i.e., exhibiting permutation invariance. Therefore, for any possible
order ρ = (i1, i2, . . . , in) uniformly sampled from the whole permutation set Perm{1, 2, . . . , n},
we should optimize an expectation of Eq. (8) over the whole permutation set. (ii) Condition-
Independent Noising Process. According to Eqs. (2)-(5), the conditional forward diffusion process
is independent of the conditions. It allows us to randomly sample the noise levels {σ1, . . . , σn} with
the predefined continuous-time noise scheduler σ(τ) in §2.2.

Putting the above two together, we finally derive the optimization objective of DIMA,

L(θ) = E{σ1,...,σn}∼σ(τ)Eρ∼Perm{1,2,...,n}

[∑n

k=1
∥Dθ(s

(k)
t+1;σk, st, a

ik
t )− st+1∥2

]
= EτEk∼Uniform{1,2,...,n}

[
∥Dθ(s

τ
t+1;σ(τ), st, a

k
t )− st+1∥2

]
, (9)

where k ∼ Uniform{1, 2, . . . , n} indicates that the agent index k is uniformly sampled from the set
{1, 2, . . . , n}.
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Figure 2: Comparison between conventional flat-
tened multi-agent modeling and DIMA’s sequential
agent modeling. Light gray indicates clean states;
dark gray indicates noisy states.

Comparison with Conventional Approaches.
We present a concise illustration to highlight
the fundamental difference between our DIMA
and recent diffusion-based methods [26, 27] in
modeling multi-agent dynamics. As shown in
Figure 2, recent methods attempt to inject the
entire joint action information into the progres-
sively denoised next state at every intermediate
step, whereas DIMA incorporates only a single
agent’s action at each step. Denoting the state
space size as |S| and the individual action space
size as |A|, DIMA compresses the relevant in-
formation from a |S| × |A| × |S| space into
a |S| space for each intermediate state transi-
tion pθ(s

(k−1)
t+1 |s

(k)
t+1, a

k
t , st). In contrast, exist-

ing methods must handle a significantly higher
cost due to compressing information from a
|S| × |A|n × |S| space into |S|. This simple qualitative analysis demonstrates that despite model-
ing multi-agent dynamics in a centralized manner, DIMA enjoys a linear complexity in modeling
difficulty with respect to the number of agents.

Practical Implementation. Inspired by the success of DIAMOND [18], a powerful single-agent
diffusion-based world model, we adopt a similar design choice and employ the EDM framework [21]
to effectively train the desired diffusion model. Specifically, the denoiser Dθ is reparameterized using
the EDM preconditioners as follows:

Dθ(s
τ
t+1;σ(τ), st, a

k
t ) = cτskips

τ
t+1 + cτoutFθ(c

τ
ins

τ
t+1; c

τ
noise, st, a

k
t ), (10)

where Fθ is the neural network. These preconditioners (cτskip, c
τ
out, c

τ
in, c

τ
noise) are detailed in §B. In

addition, we incorporate two practical techniques to further improve DIMA’s predictive performance:
(i) we maintain a running mean and standard deviation of global states to normalize the state before
training, ensuring stable dynamics ranges; (ii) we augment the model input with a fixed window of
past k global states and joint actions to provide richer temporal context for next-state prediction.

3.2 Learning Behaviors in Imagination

To support reinforcement learning with imagined rollouts, we pair DIMA with two necessary compo-
nents. The first is a reward and termination model fϕ where reward prediction and termination pre-
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diction are framed as scalar regression and binary classification tasks, respectively. Motivated by the
advanced sequence modeling capability of Transformer [28], we employ a Transformer architecture as
the backbone. As illustrated in Figure 3, the model takes sequences of (. . . , st, a1:nt , st+1, a

1:n
t+1, . . .)

as input and predicts reward and termination at each timestep via two separate 3-layer multilayer
perceptron (MLP) heads on top of the shared output embedding. The model is built upon MinGPT
implementation [29]. The second component is a special auto-encoder gφ(o1:nt |st) that encodes
the global state st into a compact latent space and decodes it into the joint observation o1:nt . We
implement this using a simple yet effective VQ-VAE [30] with Finite Scalar Quantization [31]. We
adopt an actor-critic framework to learn the behavior policy of each agent, where the actor and critic
are parameterized by two 3-layer MLPs, πψ(ait|oit) and Vξ(st), respectively.

MinGPT

𝑠𝑠𝑡𝑡−2 𝑎𝑎𝑡𝑡−21:𝑛𝑛 𝑠𝑠𝑡𝑡−1 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−11:𝑛𝑛 𝑎𝑎𝑡𝑡1:𝑛𝑛

state emb. joint action emb. valid output emb.

𝑟𝑟𝑡𝑡−2 𝛾𝛾𝑡𝑡−2 𝑟𝑟𝑡𝑡−1 𝛾𝛾𝑡𝑡−1 𝑟𝑟𝑡𝑡 𝛾𝛾𝑡𝑡 Figure 3: Overview of the reward
and termination model. DIMA ad-
dresses reward and termination pre-
diction from a global perspective
using a transformer architecture to
capture temporal correlations. Both
functions share the same backbone
with separate prediction heads.

Thanks to DIMA’s global state transition predictions, we can leverage oracle information from the
global state to train a centralized critic, which in turn guides the optimization of decentralized agent
actors. This naturally aligns with the centralized training with decentralized execution (CTDE)
paradigm commonly used in model-free MARL [32, 33, 34]. Moreover, this provides a clear
advantage over recent model-based MARL methods that also rely on learning in imagination [12, 14].
As these methods typically model local observation dynamics for scalability, they lose the benefits of
accessing oracle global state, which our approach fully exploits. Here we train the actor and critic
with MAPPO [34]. λ-return [1] is used as the target to update the value function. The details of
behavior learning objectives and algorithmic description are presented in §C and §F, respectively.

As we evaluate DIMA under the learning in imagination paradigm, our approach iteratively executes
a cycle that comprises three steps: (i) collecting experience by executing the policy, (ii) updating the
world model with the collected experience, and (iii) learning the policy through imagined rollouts
within the learned world model. Note that throughout the whole procedure, the historical experiences
stored in the replay buffer are only used for training the world model, while the policy is optimized
through unlimited imagined trajectories generated by the world model.

4 Related Works
Diffusion Model for RL. Diffusion models [16, 35] have been applied in reinforcement learning
(RL) for its strong generation capability. Specifically, they are capable of modeling complex action
distributions in online RL [36, 37, 38, 39], offline policy learning [40, 41, 42], and imitation learning
[43, 44, 45]. Other works also adopt diffusion models as planners to generate state-action sequences
[46, 47, 48]. Recently, diffusion policies are also used as an action expert to combine with LLMs and
obtain visual-language-action model [49, 50]. For dynamics modeling, diffusion models have been
employed as alternatives to autoregressive models to learn the complex transition function of MDPs
[18, 51, 19], while they are limited in the single-agent domain. MADiff [26] learns the distribution of
the whole trajectory in the offline multi-agent settings, without modeling the step-wise transitions.
Other works [52, 53, 54] treat diffusion-based world modeling as a video generation problem without
taking actions as a condition, limiting their abilities. In contrast, our proposed DIMA predicts future
states based on sequential action conditions, which effectively builds the multi-agent world model.

Multi-Agent RL. In cooperative MARL, agents coordinate to maximize a joint reward function.
Centralized Training with Decentralized Execution (CTDE) [55] is a foundational framework that
leverages the global state of agents during training to facilitate policy learning while relying on partial
information during execution. CTDE framework serves the basis for both value-based [32, 33, 56]
and policy-based MARL methods [57, 34, 58]. Additionally, some works reformulate MARL as a
sequential decision-making problem [59, 60], offering insight into sequential denoising in diffusion-
based dynamics. Model-based MARL has gained significant attention for its ability to explicitly model
the underlying MDPs in multi-agent environments. Notable examples include MAZero [13], which
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adapts MuZero-style planning with MCTS, and Dreamer-based methods [12, 61, 14], which leverage
learning in imaginations for multi-agent setups [1, 2, 62]. These approaches have demonstrated the
potential of model-based methods to improve coordination in multi-agent systems.

More recently, diffusion models have been introduced into MARL to enhance coordination and
trajectory modeling, motivated by their advanced modeling capabilities. MADiff [26] first introduces
diffusion models in MARL through offline trajectory learning via attention-based diffusion. Subse-
quent works have extended the use of diffusion models in MARL. Specifically, DoF [63] investigates
offline MARL by factorizing a centralized diffusion model into multiple sub-models, aligning with the
CTDE framework. Similarly, MADiTS [27] explores diffusion-based data augmentation by stitching
high-quality coordination segments together. While effective, these methods primarily use diffusion
models as goal-conditioned trajectory generators, failing to account for the underlying multi-agent
dynamics. Our proposed DIMA addresses this research gap by constructing an effective world model
that explicitly captures the multi-agent dynamics. By leveraging the strengths of diffusion-inspired
modeling, DIMA assists policy training and improves the overall performance of MARL.

5 Experiments
5.1 Experiments Setup

Environments. We evaluate our method on two widely-used multi-agent continuous control bench-
marks requiring heterogeneous-agent cooperation: Multi-Agent MuJoCo (MAMuJoCo) [22] and
Bimanual Dexterous Hands (Bi-DexHands) [23]. MAMuJoCo extends MuJoCo [64] to multi-agent
settings by partitioning a robot into agents controlling different degrees of freedom (DoFs), requir-
ing coordination for coherent movement. We use seven agent-partitioning settings: HalfCheetah
[2x3, 3x2, and 6x1]; Walker [2x3 and 3x2]; and Ant [2x4 and 4x2]. Bi-DexHands features dual
ShadowRobot hands (26 DoFs each) performing precise bimanual manipulation. We evaluate on
four tasks: ShadowHandPen, ShadowHandDoorOpenOutward, ShadowHandDoorOpenInward, and
ShadowHandBottleCap. To highlight the sample efficiency of learning in imaginations, we adopt
a low-data regime [65], limiting real-environment samples to 1M for MAMuJoCo and 300k for
Bi-DexHands, adjusted for their different episode lengths. In model-based MARL where policies
are learned in imaginations, performance directly reflects the accuracy of the world model, enabling
transparent evaluation.

Baselines. We compare DIMA against two strong model-based baselines with the same policy
learning paradigm as ours – MAMBA [12] and MARIE [14]. MAMBA extends DreamerV2 [39]
to the multi-agent context and establishes an effective Recurrent State Space Model (RSSM)-based
world model. MARIE incorporates Transformer-based autoregressive world modeling [3] with
CTDE principle and demonstrates remarkable sample efficiency on the benchmark with discrete
action space. We also compare DIMA with strong model-free baselines, including two on-policy
algorithms MAPPO [34] and HAPPO [58], and an off-policy algorithm HASAC [66, 67]. HASAC
is a heterogeneous-agent extension of SAC [68] which is well known for its high sample efficiency.
Each algorithm is evaluated using 4 random seeds per scenario. For each random seed, we report
the averaged episode return across 10 evaluation episodes at fixed intervals of environment steps. To
ensure a fair comparison, we restrict the imagination horizon H = 15 for all model-based algorithms.
Results of MARIE would not be reported in Bi-DexHands due to severe out-of-memory issues under
our available computational resources.

5.2 Main Results

DIMA consistently outperforms all evaluated baselines across a wide range of multi-agent
continuous control tasks, achieving superior sample efficiency and higher final returns. As
shown in Figure 4 and 5, DIMA exhibits rapid and consistent policy convergence across all chosen
MAMuJoCo and Bi-DexHands tasks, while other model-based baselines fail to demonstrate such
stable learning behavior. This highlights the advantage of our approach in leveraging an effective
world modeling formulation that is better aligned with the global state transitions of the environment.
MARIE and MAMBA suffer from a mismatch with the true global transition dynamics inherent
in Dec-POMDPs due to their integration of local dynamics modeling with the CTDE principle.
This discrepancy potentially imposes an inherent limitation on model accuracy, particularly in
environments like MAMuJoCo where inter-agent dependencies are strongly correlated. Although
enjoying world modeling complexity at a linear rate, such architectural misalignment limits their
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Figure 4: Curves of averaged episode returns for all methods in MAMuJoCo.
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Figure 5: Curves of averaged episode returns for all methods in Bi-DexHands.

scalability to highly coupled settings. Interestingly, MARIE and MAMBA perform comparably
to—or even worse than sample-inefficient on-policy model-free methods HAPPO and MAPPO (e.g.,
in HalfCheetah [3x2, 6x1]), whereas DIMA consistently demonstrates superior performance. This
performance gain reflects the accuracy and robustness of DIMA in enabling more precise and reliable
imaginations for policy optimization.

A similar trend is observed in the Bi-DexHands benchmark, characterized by the control of two
dexterous hands, each with 26 DoFs (i.e., ait ∈ R26). Benefiting from the expressiveness of the
diffusion model, DIMA is able to more accurately capture especially sophisticated and contact-rich
dynamics. By learning a denoising generative process under our formulation, DIMA enables more
faithful representations of the underlying transition distribution and leads to more stable, coherent
imagined trajectories for downstream policy learning, compared to RSSM-based models. As a result,
DIMA substantially improves the learning of dexterous manipulation policies in scenarios requiring
fine-grained, high-precision coordination. The numerical results are further provided in §E.

5.3 Model Analysis

DIMA demonstrates substantially more accurate and stable long-horizon predictions than
existing multi-agent world models. To better evaluate the model capabilities among MAMBA,
MARIE and our DIMA, we visualize their imagined trajectories alongside the ground truth (GT)
on Ant [2x4] task. As visualized in Figure 6, DIMA generates a consistent imagined trajectory that
closely aligns with the ground truth (GT) across the full prediction horizon H = 15, maintaining
coherent agent structures and motion patterns. In contrast, MARIE and MAMBA both exhibit
significant degradation as the horizon extends, and suffer from varying degrees of distortions. These
issues are especially pronounced at challenging future timesteps such as t = 4 and t = 12, highlighted
by red bounding boxes. The qualitative results underscore DIMA’s superior modeling capability
and stability in capturing complex continuous multi-agent control dynamics, which is critical for
generating reliable imagined rollouts that support sample-efficient policy learning.

DIMA scales robustly to longer horizons with significantly lower compounding error. DIMA
demonstrates superior scalability and robustly mitigates compounding errors, a capability we validated
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by testing on prediction horizons (H = 25) significantly longer than those seen during training
(H = 15). This setup provides a rigorous out-of-distribution (OOD) generalization test for auto-
regressive world models. The results in Table 1 are conclusive: on the Ant [2x4] benchmark, DIMA
not only exhibits the lowest L1 accumulated observation and reward errors at the training horizon
(H = 15) but significantly widens this performance gap against MARIE and MAMBA at the
unseen H = 25 horizon. This finding underscores DIMA’s effectiveness in long-range predictive
accuracy. Downstream policy performance using this extended imagination horizon is detailed in
§E.2.

Table 1: Accumulated observation and reward errors at extended prediction horizons (H = 25) on Ant
[2x4]. Results are averaged over 100 trajectory segments. DIMA exhibits the lowest compounding
error.

Methods Obs Accumulation Errors Rew Accumulation Errors
@ H = 15 @ H = 25 @ H = 15 @ H = 25

DIMA 2.42±0.93 4.32±1.44 15.01±9.88 31.07±17.63

MARIE 3.54±1.60 6.62±2.68 21.64±17.51 47.66±32.02

MAMBA 3.98±1.54 6.85±2.51 38.90±24.48 71.67±41.78
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Figure 7: Visualization of long-term predictions with different conditioning orders, together with the
accompanying cumulative observation errors curve.
DIMA effectively preserves permutation invariance over long-horizon multi-agent predictions.
To validate whether and how DIMA exhibits the desired permutation invariance property elaborated
in §3.1, we evaluate its unrolling behavior under different conditioning orders of agent actions.
As shown in Figure 7 (left), we generate imagined rollouts from the same initial state and joint
action set, but vary the conditioning order using three representative orders: random, ascending
and descending w.r.t. agent ids. DIMA produces visually consistent rollouts across different orders
until notable visual differences emerges at t = 12, highlighted by the red bounding box. This
demonstrates that DIMA maintains this consistency effectively up to a long prediction horizon at least
H = 10. To further quantify the consistency, we plot the mean cumulative observation errors over
prediction horizons under each order, as depicted in Figure 7 (right). The resulting curves seems quite
aligned, with no significant deviation among the three conditions, indicating that DIMA exhibits the
permutation invariance property within a considerably long horizon via optimizing Eq. (9). Details
of this experiment setup are provided in §E.

5.4 Ablation Study

Our proposed formulation improves sample efficiency and stability in low-data regimes. To
evaluate the core contribution of DIMA’s agent-wise sequential modeling, we compare it against a
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"Joint" modeling baseline, which adopts the conventional centralized approach of conditioning on the
full joint action a1:n

t at every denoising step. The primary benefit of our sequential formulation is
the reduction of modeling complexity from an exponential to a linear dependency on the number of
agents. This reduction is particularly impactful in low-data regimes, where a simpler model can learn
more effectively. We conducted experiments on several Bi-DexHands tasks with 8 independent runs.
As shown in Table 2, on the ShadowHandBottleCap task, our sequential approach (DIMA) achieves
higher returns and lower variance at 100k and 150k steps. As the data budget increases (200k-300k),
the performance of the joint model catches up, and both methods converge to a similar performance.
This aligns with our hypothesis: sequential modeling provides a significant sample efficiency boost
when data is scarce. This benefit is even more pronounced in more complex tasks. Table 3 shows
that on DoorOpenOutward and DoorOpenInward, DIMA (Sequential) maintains a clear performance
advantage and reduced variance over the Joint model even at the 300k step limit. This demonstrates
that for harder tasks, the reduced modeling complexity of sequential modeling remains beneficial for
longer, leading to more stable and effective policy learning. This addresses the key request from the
review process to validate the benefit of sequential modeling.

Table 2: Ablation study on ShadowHandBottleCap comparing sequential (DIMA) vs. joint modeling
under varying data budgets (8 runs). Sequential modeling shows superior performance and lower
variance in lower-data regimes.

Method 100K Steps 150K Steps 200K Steps 250K Steps 300K Steps

Joint 234.1±20.6 238.6±22.9 246.7±10.9 243.7±18.2 255.2±7.0

Sequential (Ours) 251.8±17.3 248.2±11.6 246.3±14.6 251.9±12.7 249.2±10.7

Table 3: Ablation study on complex Bi-DexHands tasks at 300k steps (8 runs). The advantage of
sequential modeling persists in more challenging environments.

Method DoorOpenOutward @ 300K steps DoorOpenInward @ 300K steps

Joint 302.5±76.9 235.1±68.1

Sequential (Ours) 352.4±40.5 290.3±30.4

Sequential Modeling Retains Full Predictive Accuracy with Reduced Complexity. We conducted
a direct empirical comparison of prediction error between sequential and joint modeling, independent
of downstream policy optimization, to validate our design choice. We utilized a 1M-step replay dataset
from HASAC, training both models on the first 500k transitions and evaluating their accumulated L1
observation errors on a held-out set of the final 500k transitions (averaged over 100 segments). As
shown in Table 8 from §E.4, our sequential model achieves predictive accuracy that is statistically on
par with the more complex joint modeling approach. Across three challenging Bi-DexHands tasks and
at both H = 15 and extended H = 20 horizons, the error metrics are statistically indistinguishable
when considering the standard deviations. It provides direct, quantitative evidence that the reduced
modeling complexity (and associated benefits, e.g., computational efficiency) of our sequential
approach comes at no cost to raw predictive capability. This result confirms that the added complexity
of joint modeling is unnecessary for achieving high-fidelity predictions in these environments.

6 Conclusion

This paper presented a multi-agent world model motivated by the conceptual similarity between
the progressive denoising process and the incremental reduction of uncertainty in predicting the
global next state in MARL. Then, we propose DIMA that models multi-agent dynamics from a
centralized perspective while achieving reduced complexity, seamlessly aligning the world model
with the underlying MDPs to obtain more accurate predictions. To validate the efficacy of DIMA, we
integrated it into the learning-in-imagination training scheme and conducted extensive experiments on
the MAMuJoCo and Bi-DexHands benchmarks. The results demonstrated DIMA’s superior accuracy
and robustness in predicting environment dynamics, as well as its ability to enhance sample efficiency
and overall performance. Despite its effectiveness, DIMA may encounter scalability challenges when
applied to large-scale multi-agent systems with hundreds of agents. To address this, we plan to
explore grouping techniques to further extend DIMA’s applicability and scalability in future work.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The paper’s contributions and scope are concretely claimed in the abstract and
introduction. Our key contributions are summarized in §1.
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made in the paper.
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2. Limitations
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Justification: We discuss the limitation of our approach at the end of §6.
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of the paper (regardless of whether the code and data are provided or not)?
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Justification: We provide the training details and hyperparameters in §G.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: First, we use online Reinforcement Learning setup, which only requires
available simulators. The evaluated environments in our experiments are reported in §5.1.
As for the code of our approach, we promise we would release our code when this work gets
accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the training details and hyperparameters in §G. And we describe
the chosen tasks and evaluation protocol in §5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We plot the mean episode return curves in §5.2 with shaded areas represent-
ing the deviation of episode returns. And we report the number of seeds we use in our
experiments in §5.1.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computational resources we used in §G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics, and make sure that our research conducted
in the paper conform with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in §H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite works of related assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 2

Proof. Given the log-likelihood of the global state transition, we have the following:
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where the last inequality results from Jensen’s inequality. Under the definition and property of the
conditional Markovian forward diffusion process q̂ in Eqs. (2)–(5) and Assumption 1, we can rewrite
Eq. (11) as follows,
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where we denote st+1 := s
(0)
t+1. Then, RHS of Eq. (12) can be further simplified,
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]
Therefore, the evidence of dynamics transition can be bounded as follows:

logP (st+1|st, a1:Nt ) ≥ E
q̂(s

(1)
t+1|s

(0)
t+1)

[log p(s
(0)
t+1|s

(1)
t+1, st, a

1
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(n)
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(k)
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(0)
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t , st))

]
.

(13)

As shown by [25], the conditional forward diffusion process q̂ behaves identically to the unconditional
one q. Therefore, we can substitute the q̂ with the q in Eq. (13), concluding our proof.

B EDM Preconditioners and Noise Scheduler

To keep input and output signal magnitudes fixed to the same scale and avoid large variance in gradient
magnitudes on a per-sample basis, Karras et al. [21] introduced the following preconditioners for
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normalization and re-scaling output to stabilize and improve the training dynamics of the network:

cτin =
1√

σ(τ)2 + σ2
data

(14)

cτout =
σ(τ)σdata√
σ(τ)2 + σ2

data

(15)

cτnoise =
1

4
log(σ(τ)) (16)

cτskip =
σ2

data

σ2
data + σ(τ)2

, (17)

where σdata = 0.5 in our experiment hyperparameter setup. The noise scheduler for training the
diffusion model follows the same design in [21], described as follows:

σ(τ) = τ, log(σ) ∼ N (Pmean, P
2
std), (18)

where Pmean = −0.4 and Pstd = 1.2.

C Behavior Learning Details

Inspired by the success of MARIE [14], we adopt MAPPO [34] to train both the actor and critic inside
the imaginations of DIMA. A key distinction from MARIE is that our model explicitly predicts the
global state, enabling seamless integration with CTDE techniques as well as actor–critic architectures
commonly used in model-free MARL. Therefore, we implement both the actor ψ and critic ξ with
two 3-layer MLPs together with ReLU activation and Layer Normalization, respectively. Similar to
off-the-shelf CTDE model-free MARL algorithms, we adopt actor parameter sharing across agents.

Critic loss function. We utilize λ-return in DreamerV1 [1], which employs an exponentially
weighted average of different k-steps TD targets to balance bias and variance as the regression target
for the critic. Given an imagined trajectory {ŝt, ô1:nt , a1:nt , r̂t, γ̂t}Ht=1 over all agents, λ-return is
calculated recursively as,

Vλ(ŝt) = r̂it + γ̂t ·

{
(1− λ)Vξ(ŝt) + λVλ(ŝt+1) if t < H

Vξ(ŝt) if t = H
(19)

The objective of the critic ξ is to minimize the mean squared difference Lξ with λ-returns over
imagined trajectories, as

Lξ = Eπψ
[∑H−1

t=1

(
Vξ(ŝt)− sg

(
Vλ(ŝt)

))2
]
, (20)

where sg(·) denotes the stop-gradient operation. We optimize the critic loss with respect to the critic
parameters ξ using the Adam optimizer.

Actor loss function. The objective for the actor πiψ(·|ôit) := πψ(·|ôit) is to output actions that
maximize the prediction of long-term future rewards made by the critic. To incorporate intermediate
rewards more directly, we train the actor to maximize the same λ-return that was computed for
training the critic. In terms of the non-stationarity issue in multi-agent scenarios, we adopt PPO
updates, which introduce importance sampling for actor learning. The actor loss function for agent i
is:

Liψ = −Eπiψold

[H−1∑
t=0

min
(
rit(ψ)At, clip(r

i
t(ψ), 1− ϵ, 1 + ϵ)At

)
+ ηH(πiψ(·|ôit))

]
(21)

where rit(ψ) = πiψ/π
i
ψold

is the policy ratio and At = sg(Vλ(ŝt)− Vξ(ŝt)) is the advantage. Unlike
MAPPO, we choose not to design agent-specific global states, as such designs are overly hand-crafted
and inject task-specific human priors, which undermines the generality and soundness of the approach.
Instead, we retain the environment’s original agent-agnostic global state shared among all agents,
and feed it into the value function Vξ . As a result, the estimated advantage function At is also shared
across all agents during actor updates. We optimize the actor loss with respect to the actor parameters
ψ using the Adam optimizer. Overall hyperparameters are shown in Table 4.
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Table 4: Behaviour learning hyperparameters.

Hyperparameter Value
Common
Imagination horizon (H) 15
λ 0.95
Clipping parameter ϵ 0.1

MAMuJoCo
Discount factor γ 0.99
η 0.001

Bi-DexHands
Discount factor γ 0.95
η 0.01

D Illustrations of Experimental Environments

HalfCheetah 6-agent partitioning

(b) MAMuJoCo

ShadowHandPen ShadowHandBottleCap ShadowHandDoorOpenInward

(a) Bi-DexHands
Figure 8: Illustrations of the experimental environments in our work. Left: Visualizations of three
Bi-DexHands tasks: removing a pen cap, opening a bottle cap, and opening a door inwards. Right:
Visualization of 6-agent partitioning w.r.t. HalfCheetah in MAMuJoCo.
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E Additional Results

E.1 Additional Experiments: Detailed Returns of All Methods on MAMuJoCo and
Bi-DexHands

Table 5: Comparison of final episode returns across MAMuJoCo and Bi-DexHands benchmarks.
We report the mean final episode return and standard deviation over 4 random seeds. DIMA
consistently outperforms all baselines across all chosen tasks on both MAMuJoCo and Bi-DexHands.
The best result per task is highlighted in bold and shaded in blue color, while the second-best is
underlined.

Tasks Steps Methods

DIMA (Ours) MARIE MAMBA HASAC HAPPO MAPPO

MAMuJoCo
Ant-2x4

1M

4881±756 4471±553 1314±756 1344±282 1716±449 859±47

Ant-4x2 4766±450 1173±136 1618±931 850±126 1917±253 854±41

HalfCheetah-2x3 6370±121 4045±275 2813±1580 2499±1081 2628±893 3196±75

HalfCheetah-3x2 6175±212 2380±1145 3029±798 2872±890 3402±317 2936±766

HalfCheetah-6x1 5643±163 1738±1213 1848±220 2044±110 2939±1113 925±121

Walker2d-2x3 3329±1056 2822±997 124±19 1135±210 1007±282 752±216

Walker2d-3x2 4084±357 604±349 466±103 958±715 932±513 1004±480

Bi-DexHands
BottleCap

300K

259.9±4.1 - 203.8±5.2 210.9±6.1 100.7±3.8 104.0±2.3

DoorOpenInward 290.4±29.0 - 225.0±79.4 246.3±7.0 30.7±2.5 65.8±6.9

DoorOpenOutward 367.1±19.4 - 177.4±43.1 221.9±7.3 58.8±4.6 96.4±8.5

BottleCap 24.4±11.4 - 4.3±0.4 0.0±0.0 0.0±0.0 0.0±0.0

Table 6: Policy learning performance (final return) of DIMA with different imagination horizons
(H = 15 vs. H = 25).

Scenarios DIMA w/ H = 15 DIMA w/ H = 25

Ant [4x2] (4-agent) 4766±450 4328±1058

HalfCheetah [6x1] (6-agent) 5643±163 6310±335

E.2 Additional Experiments: Policy Learning with Longer Imagination Horizons

We investigated the downstream impact on policy learning when utilizing the extended imagination
horizon (H = 25) during the whole training process. The final policy returns are presented in
Table 6. The results are environment-dependent and provide critical insights. On HalfCheetah [6x1],
training with a longer horizon (H = 25) yields a substantial performance improvement. This strongly
suggests that when DIMA’s long-range predictions are stable, the policy optimizer can successfully
leverage these extended rollouts to discover more complex and far-sighted strategies, leading to
superior returns. Conversely, on Ant [4x2], we observe a performance degradation accompanied by
significantly higher variance. This indicates that for this specific task, while comparatively lower
than baselines (as shown in Table 1), the accumulated prediction errors in H = 25 rollouts are still
sufficient to introduce noise that misleads the policy learning. This phenomenon underscores both
the practical potential of DIMA in scalable model-based MARL (demonstrated on HalfCheetah) and
highlights a key challenge: ensuring that the predictive accuracy is robust enough to provide a stable
gradient signal for policy learning across all task types.

E.3 Additional Experiments: Comparison on Training Compute

We measure the training time and GPU memory usage of all evaluated model-based MARL methods,
including our proposed DIMA. All experiments were conducted using a single NVIDIA RTX 4090
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GPU to ensure a fair comparison across methods and tasks. As shown in the table below, DIMA
is substantially more efficient than MARIE in both training time and GPU memory usage, and is
comparable to or slightly more efficient than MAMBA.

Table 7: Comparison on consumed computational resources over 2 test scenarios.

Methods Training Time Usage of GPU Mem

Ant-2x4
DIMA 1d 19h 3.10 GB
MARIE 3d 17h 14.33 GB
MAMBA 1d 1h 2.74 GB

Ant-4x2
DIMA 1d 19h 3.15 GB
MARIE 3d 17h 3.10 GB
MAMBA 1d 1h 4.37 GB

E.4 Ablation: Sequential vs. Joint Modeling Prediction Accuracy

Table 8: Ablation study comparing the cumulative L1 observation errors of sequential vs. joint
modeling. Models were trained on 500k transitions and evaluated on a 500k held-out set. Sequential
modeling achieves statistically indistinguishable prediction accuracy, validating its design.

Task Method Obs L1 Error @ H = 15 Obs L1 Error @ H = 20

DoorOpenOutward Sequential (Ours) 5.333±0.273 7.081±0.325

Joint 5.345±0.267 7.092±0.324

DoorOpenInward Sequential (Ours) 5.563±0.326 7.447±0.393

Joint 5.565±0.322 7.453±0.386

Pen Sequential (Ours) 6.667±1.764 8.936±2.328

Joint 6.676±1.762 8.947±2.322

E.5 Experiment Details: Imagination Evaluation across Different Conditioning Orders

To evaluate DIMA’s imagination under different conditioning orders on the 2-agent Ant [2×4] task,
we collect 10 episodes by using the final policy induced by our algorithm, and randomly sample 100
trajectory segments to form our trajectory segment dataset. For each segment, we generate imagined
rollouts using DIMA with different action conditioning orders.

As the EDM framework decouples inference-time sampling from training, the number of denoising
steps need not match the number of agents. Thus, we set the number of denoising steps equal to 4, i.e.,
twice the number of agents. Letting the agent set be {1, 2}, we consider three conditioning orders: (i)
random order: (2, 1, 1, 2), (ii) ascending order w.r.t. agent id: (1, 1, 2, 2), and (iii) descending order
w.r.t. agent id: (2, 2, 1, 1).

To provide a quantitative evaluation in Figure 7 (right), we compute the L1 error per observation
dimension at each timestep between the 100 sampled trajectory segments and their corresponding
imagined rollouts, and accumulate the errors over the prediction horizon. All observation L1 errors
are averaged across 2 agents.

F Overview of DIMA with Learning in Imaginations

We summarize the overall training procedure of DIMA paired with learning in imaginations in
Algorithm 1 below. We denote as D the replay databuffer which stores data collected from the real
environment.
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G Training Details and Hyperparameters

G.1 Model Architecture Details

State decoder. To enable decentralized execution of policies trained within DIMA’s imagination
rollouts, each agent must make decisions based solely on its local observation rather than the shared
global state. To support such policy learning, we introduce a necessary state decoder that maps the
global state st into the corresponding joint local observations o1:nt .

Due to our online model-based MARL setup, the state decoder must be continually updated under
a non-stationary data distribution which also shifts continually. Using a vanilla MLP as the state
decoder in this setting may lead to issues such as overfitting or mode collapse. To mitigate these risks,
we incorporate additional regularization into the decoder design by adopting a Vector Quantized
Variational Autoencoder (VQ-VAE) [30], which enforces a compact latent codebook representation
via vector quantization. Among various VQ-VAE variants, we choose Finite Scalar Quantization
(FSQ) [31] as our final implementation as it removes any auxiliary losses and achieves remarkably
high codebook utilization, which indicates its strong and effective regularization.

Our implementation is based on the open-source repository: https://github.com/lucidrains/
vector-quantize-pytorch. We simply build the encoder Eφ and decoder Dφ as MLPs to deal
with continuous non-vision global states and joint local observations. The decoder is designed with
the same hyperparameters as the encoder. The loss function for learning the autoencoder is as follows:
LFSQ(Eφ, Dφ) = E(st,o1:nt )∼D

[
∥o1:nt −Dφ(Eφ(st) + sg(round(f(Eφ(st))))− Eφ(st))∥2

]
,

(22)
where f is a bounding function such that i-th channel/entry in ẑt = round(f(Eφ(st))) takes one of
Li unique values (here f : z → ⌊Li/2⌋ tanh(z) for i-th channel/entry) and round is the operation
to map real-valued inputs to the nearest integers. Therefore, we have an implicit codebook C with
|C| =

∏d
i=1 Li. After training the VAE, our state decoder can be expressed by gφ(o1:nt |st) =

Dφ(round(f(Eφ(st)))). The hyperparameters are listed in Table 9.

Diffusion model for dynamics modeling. We use the 1-D variant adapted from the U-Net 2D
in DIAMOND [18] as the backbone of the diffusion model Dθ. To predict the next state st+1, the
diffusion model Dθ is initially conditioned on the current global st, joint action a1:nt and the diffusion
time τ . To improve next-global-state prediction accuracy, we empirically augment the temporal
context by additionally incorporating the last 2 global states and joint actions, extending it from st
and a1:nt to st−2:t and a1:nt−2:t. Note that the effect of sequential denoising is confined to the joint
action a1:nt conditioning at the current timestep t, and does not extend to the past joint actions.

Inspired by the success of DIAMOND, we directly adopt the same conditioning mechanism in
DIAMOND, and use temporal stacking for global state conditioning and adaptive group normalization
for joint action and diffusion time conditioning. The hyperparameters are listed in Table 9.

Transformer as reward and termination model. The Transformer for predicting the reward and
termination is built upon the implementation of minGPT [29]. Given a fixed imagination horizon H ,
it first takes a sequence of length 2H composed of global states and joint actions (. . . , st, a1:nt , . . .),
and encodes every single global state and joint action into de-dimensional embedding tensor via
2 separate encoding functions. Then the sequence tensor of shape 2H × de is forwarded through
fixed Transformer blocks. Finally, the Transformer predicts reward and termination via two separate
3-layer MLP heads fϕ(rt|s≤t, a1:n≤t ) and fϕ(γt|s≤t, a1:n≤t ), respectively. In general, the loss function
is described by

Lϕ = E
[∑H

t=1
− log fϕ(rt|s≤t, a1:n≤t )− log fϕ(γt|s≤t, a1:n≤t )

]
. (23)

But in practice, we optimize the reward prediction with a smooth L1 loss function and the termination
prediction with a cross-entropy loss function. The hyperparameters are listed in Table 9.

G.2 Computational Resources Used for Training

All our experiments including the evaluation of chosen baselines are run on a machine with a single
NVIDIA RTX 4090 GPU, a 24-core CPU, and 256GB RAM.
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G.3 Baseline Implementation Details

In our experiments, we reran and evaluated all baseline methods. To ensure fairness for comparisons,
we followed the optimal hyperparameters provided in their official implementations, listed below:

• MARIE: https://github.com/breez3young/MARIE;
• MAMBA: https://github.com/jbr-ai-labs/mamba;
• HASAC, HAPPO and MAPPO: https://github.com/PKU-MARL/HARL.

G.4 DIMA hyperparameters

We list the hyperparameters of DIMA paired with learning in imaginations in Table 10.

H Broader Impact

Our work introduces DIMA, a diffusion-inspired multi-agent world model that significantly improves
sample efficiency in cooperative multi-agent control environments. By enabling more faithful
imagined rollouts, DIMA can accelerate the development of complex autonomous systems—such
as multiple real robots coordination, traffic management, and energy-efficient buildings—thereby
reducing real-world trial costs. However, these capabilities also carry potential risks: misuse of high-
fidelity neural simulators for adversarial planning could exacerbate privacy and security concerns.
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Algorithm 1: DIMA paired with learning in imaginations
Procedure training_loop():

for epochs do
collect_experience(steps_collect)
for steps_state_decoder do

update_state_decoder()
for steps_diffusion_model do

update_diffusion_model()
for steps_reward_end_model do

update_reward_end_model()
for steps_actor_critic do

update_actor_critic()

Procedure collect_experience(n):
s0, o

1:n
0 ← env.reset()

for t = 0 to n− 1 do
Sample ait ∼ πiψ(ait|oit), ∀ agent i
st+1, o

1:n
t+1, rt, γt ← env.step(a1:nt )

D ← D ∪ {st+1, o
1:n
t+1, a

1:n
t , rt, γt}

if γt = 1 then
st+1, o

1:n
t+1 ← env.reset()

Procedure update_state_decoder():
Sample state-observation pair (st, o1:nt ) ∼ D
Compute LFSQ in Eq. (22)
Update State Decoder gφ

Procedure update_diffusion_model():
Sample sequence

(
st−L+1, a

1:n
t−L+1, . . . , st, a

1:n
t , st+1

)
∼ D

Sample log(σ) ∼ N (Pmean, P
2
std) and get τ = σ since σ(τ) := τ

Sample sτt+1 ∼ N (x0t+1, σ
2I)

Sample a chosen agent id k ∼ Uniform{1, 2, . . . , n}
Compute ŝ(0)t+1 = Dθ(s

τ
t+1; τ, a

k
t , st−L+1:t, a

1:n
t−L+1:t−1︸ ︷︷ ︸

extra temporal context

)

Compute loss L(θ) = ∥ŝ(0)t+1 − st+1∥2 in Eq. (9)
Update Diffusion Model Dθ

Procedure update_reward_end_model():
Sample sequence

(
st, a

1:n
t , rt, γt, . . . , st+H−1, a

1:n
t+H−1, rt+H−1, γt+H−1

)
∼ D

for i = t to t+H − 1 do
Compute r̂i ∼ fϕ(r̂i|s≤i, a1:n≤i ) and γ̂i ∼ fϕ(γ̂i|s≤i, a1:n≤i )

Compute Lϕ =
∑t+H−1
i=t CrossEntropy(γ̂i, γi) + SmoothL1(r̂i, ri) corresponding to

Eq. (23)
Update Reward and Termination Model fϕ

Procedure update_actor_critic():
Set the joint action condition order ρ = (i1, i2, . . . , in)
Sample starting point

(
st−L+1, o

1:n
t−L+1, a

1:n
t−L+1, . . . , st, o

1:n
t

)
∼ D of the imagination

Let ô1:nt = o1:nt
for i = t to t+H − 1 do

Sample aji ∼ π
j
ψ(a

j
i |ô

j
i ) ∀ agent j

Sample the reward r̂i and the termination γ̂i with fϕ
Sample the next global state ŝt+1 by iteratively denoising with Dθ and ρ
Sample the next joint observation state ô1:nt+1 with gφ

Update actor πiψ and critic Vξ via Lξ and Liψ over imaginations {ŝi, ô1:ni , a1:ni , r̂i, γ̂i}t+H−1
i=t
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Table 9: Architecture details.

Hyperparameter Value
State Decoder (gφ)
MLP layers 3
Hidden size 512
Activation GELU [69]
FSQ Levels Li [8, 6, 5]

Diffusion Model (Dθ)
Global state conditioning mechanism Temporal stacking
Joint action conditioning mechanism Adaptive Group Normalization
Diffusion time conditioning mechanism Adaptive Group Normalization
Residual blocks layers [2, 2, 2]
Residual blocks channels [64, 64, 64]
Residual blocks conditioning dimension 256

Reward and Termination Model (fϕ)
Embedding dimension de 256
Transformer block layers 6
Attention heads 4
Embedding dropout 0.1
Attention dropout 0.1
Residual dropout 0.1
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Table 10: Hyperparameters for DIMA.

Hyperparameter Value
Batch size for State Decoder training 256
Batch size for Diffusion Model training 64
Batch size for Reward and Termination Model training 128
Optimizer for State Decoder AdamW
Optimizer for Diffusion Model AdamW
Optimizer for Reward and Termination Model AdamW
Optimizer for Actor & critic Adam
Learning rate for State Decoder 0.0003
Learning rate for Diffusion Model 0.0001
Learning rate for Reward and Termination Model 0.0001
Learning rate for Actor & critic 0.0005
Gradient clipping for State Decoder 10
Gradient clipping for Diffusion Model 1
Gradient clipping for Reward and Termination Model 10
Gradient clipping for Actor & critic 10
Weight decay for State Decoder 0.01
Weight decay for Diffusion Model 0.01
Weight decay for Reward and Termination Model 0.01
λ for λ-return computation 0.95
Discount factor γ see Table 4
Entropy coefficient see Table 4
Buffer size (transitions) 2.5× 105

Training steps per epoch 200
Training steps per epoch for policy learning 4

Sampling Environment steps per epoch 200 in MAMuJoCo
500 in Bi-DexHands

PPO epochs 5
PPO Clipping parameter ϵ 0.1
Number of imagined rollouts 600
Imagination horizon H 15

Diffusion sampling solver Euler

Number of denoising steps
{
2 · |N | if |N | ≤ 2

|N | if |N | > 2
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