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ABSTRACT

Multi-agent systems (MAS) based on Large Language Models (LLMs) have the
potential to solve tasks that are beyond the reach of any single LLM. However,
this potential can only be realized when the collaboration mechanism between
agents is optimized. Specifically, optimizing the communication structure be-
tween agents is critical for fruitful collaboration. Most existing approaches rely on
fixed topologies, pretrained graph generators, optimization over edges, or employ
external LLM judges, thereby adding to the complexity. In this work, we introduce
a response-conditioned framework that adapts communication on-the-fly. Agents
independently generate responses to the user query and assess peer contributions
using an approximation of the Shapley value. A directed acyclic graph (DAG) is
then constructed to regulate the propagation of the responses among agents, which
ensures stable and efficient message transmission from high-contributing agents
to others. This graph is dynamically updated based on the agent responses from
the previous collaboration round. Since the proposed framework enables the self-
organization of agents without additional supervision or training, we refer to it
as SELFORG. The SELFORG framework goes beyond task- and query-level opti-
mization and takes into account the stochastic nature of agent responses. Experi-
ments with both strong and weak LLM backends demonstrate robust performance,
with significant gains in the weak regime where prior methods collapse. We also
theoretically show that multiple agents increase the chance of correctness and that
the correct responses naturally dominate the information flow.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2023; Dubey et al., 2024; Anthropic, 2025; Qwen et al.,
2025) have rapidly advanced capabilities across planning, analysis, coding, and dialog, yet a single
LLM still faces notable limitations: stochastic or unreliable generations, hallucinations, and diffi-
culty with long-horizon, multi-step tasks. A natural response has been to move from a solitary model
to a multi-agent system (MAS) of LLMs, where agents interact, critique, and refine one another’s
outputs (Li et al., 2023; Chen et al., 2024; Zhuge et al., 2024; Qian et al., 2024b; Ye et al., 2025a).
In principle, this collective can surpass an individual model by pooling complementary reasoning
paths; in practice, however, the gains depend critically on how the agents are orchestrated: who
communicates with whom, when, and how final outputs are aggregated.

Prior work has explored a spectrum of communication topologies. Fixed structures include chains,
trees, complete graphs, and random graphs; scalable studies compare these patterns across task
families such as mathematical reasoning, knowledge reasoning, and coding (Qian et al., 2025).
Beyond static designs, some approaches treat the topology as optimizable: edges are sampled and
trained with policy gradients or masks (e.g., GPTSwarm (Zhuge et al., 2024), AgentPrune (Zhang
et al., 2025a)). A complementary line delegates topology design to a separate model that outputs
a task/query-specific communication graph (e.g., G-Designer (Zhang et al., 2025b), MAS-GPT (Ye
et al., 2025b). Others rely on an external LLM “judge” to rank, filter, or make final decisions
(Ebrahimi et al., 2025). While effective in certain settings, these strategies introduce substantial
overhead: pretraining a graph generator; reinforcement learning over edges; repeated calls to a
judge LLM.
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Figure 1: Overview of SELFORG. A queryQ is distributed toN agents, each producing a response
Rn. Responses are embedded, contributions estimated via Shapley-based valuation, and a directed
acyclic communication graph is formed where edges reflect contributions and high-contribution
agents lead. The figure depicts a single round; the process is iterated for T rounds.

A common hypothesis in this literature is that there exists a “best” topology per task category (e.g.,
math vs. coding). This idea has evolved toward finer granularity, that the query should determine
the topology (one graph per problem). We argue that both views are ultimately brittle. Because
LLM agents are inherently stochastic, the information that matters for coordination is not the static
task label nor the problem identity, but the state the agents are actually in – their concrete responses
at a given time step. Two agents may answer the same query differently across runs; a topology
that was ideal yesterday may be suboptimal today. Thus, the communication pattern should be
decided on the fly, conditioned on the current pool of responses. Searching for a universally superior
topology per task or per query is therefore potentially confounded and fragile: it risks overfitting to
incidental response patterns or to powerful base models whose single-shot accuracy already masks
orchestration weaknesses.

This state-driven perspective is especially revealing in the weak-backend regime, where each agent
has a modest chance of being correct. In such settings, the value of orchestration should be to
amplify rare correct responses and suppress noise, not to lean on an already-competent model.
Our approach embraces this principle: we propose a decentralized, response-conditioned framework
in which agents (i) independently produce initial answers, (ii) locally assess peers via a Shapley
value-inspired contribution valuation, and (iii) construct a directed acyclic communication graph
(DAG) that routes information from high-contribution agents to others. This yields a lightweight
system with no external judge, no pretrained topology generator, and no edge-level reinforcement
learning, yet it adapts its structure per instance.

We make the following contributions:

1. We construct a per-instance DAG directly from agents’ current responses via semantic
alignment, avoiding fixed topologies, pretrained graph generators, and edge-level RL.

2. We quantify influence with a Shapley-inspired utility, together with efficient approximation
and ranking-stability guarantees, enabling lightweight, model-agnostic credit assignment.

3. We analyze why multi-agent interaction amplifies correct signals and why correct respon-
ders dominate contributions, and we validate SELFORG across various reasoning bench-
marks and multiple backbones.

2 METHODOLOGY

We propose a multi-agent collaborative framework that adaptively constructs its communication
structure without relying on external judges, pretrained graph generators, or reinforcement learning
for edge optimization. The key principle is to leverage agents’ own responses to estimate their con-
tributions, estimate these contributions using Shapley values, and enforce a directed acyclic com-
munication graph (DAG) for stable information propagation. In what follows, we describe each
component in detail. The overall pipeline of SELFORG is illustrated in Figure 1.
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2.1 SYSTEM OVERVIEW

We formalize the collaboration in a multi-agent system as a dynamic directed graph G(t) = (V, E(t)),
where V = {v1, . . . , vN} represents the set of nodes (with |V| = N ) and E(t) denotes the set of
edges in collaboration round t ∈ [T ]. Each node vn ∈ V represents an agent An, instantiated with a
backend LLM. Each agent An receives a prompt P(t)

n and generates a responseR(t)
n :

R(t)
n = An(P(t)

n ) = An(P(t)
n,sys,Pn,user,P(t)

n,coll), (1)

where Pn,sys represents the system prompt that describes the agent’s role and current state, Pn,user
denotes the user prompt, which includes the given tasks, and Pn,coll includes responses from other
agents (if available) and externally retrieved knowledge.

A directed edge e(t)m→n ∈ E(t) indicates that agent An incorporates information from agent Am in
round t. The presence (or absence) of an edge reflects the usefulness of Am’s response for An.
Thus, edges encode the information flow among agents. The graph can be equivalently expressed as
an adjacency matrix A(t) ∈ {0, 1}N×N , where A

(t)
n,m = 1 if e(t)m→n ∈ E(t), otherwise 0.

2.2 DECENTRALIZED INITIALIZATION

This first stage of SELFORG (referred to as collaboration round t = 0) aims to generate a pool
of diverse, but potentially noisy responses from N agents. Given the user query Q, each agent
independently generates its own initial response R(0)

n . For this initial round, P(0)
n,coll = ∅ because

agent An receives no input from other agents. We map each agent response R(0)
n to an embed-

ding r
(0)
n = f(R(0)

n ) with a lightweight model f (e.g., all-MiniLM-L6 (Reimers & Gurevych,
2019)), which need not be the same LLM used by the agents. These embeddings provide a fixed-
dimensional, semantically meaningful representation of the agent responses. Subsequent stages use
these response embeddings to infer contributions and construct the communication graph.

2.3 CONTRIBUTION ESTIMATION

Given responses {r1, . . . , rN} from theN agents, we wish to estimate the contribution of individual
agents towards generating the collective response. We frame the problem of contribution estimation
as computing Shapley values (Shapley, 1953), a well-known concept in cooperative game theory.
For a cooperative game, the Shapley value of agent n is

ϕn =
∑

S⊆[N ]\{n}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {n})− v(S)] . (2)

Here, v(S) is the utility of coalition S. Computing the true Shapley value using Eq. 2 requires 2N
evaluations, which is intractable for large N . Furthermore, an efficient mechanism is required to
evaluate v(S). This challenge is well-known in collaborative learning scenarios, where quantifying
each player’s contribution is crucial for tasks such as incentive mechanisms, fairness, and robustness
(Lyu et al., 2020; Wang et al., 2020; Xu et al., 2021; Tastan et al., 2024; 2025a;b).

In this work, we adopt an approximation strategy inspired by Xu et al. (2021). Firstly, we define
the utility of a coalition S as the cosine similarity between the average response embedding of the
agents in S and the average response embedding of all agents. Moreover, instead of enumerat-
ing all coalitions, we compare each agent’s embedding rn directly against the average embedding
ravg = (1/N)

∑N
n=1 rn. In other words, the true Shapley value ϕn is approximated by the estimated

contribution ψn of agent An, which is defined as

ϕn ≈ ψn := cos(rn, ravg). (3)

The above approximation reduces the complexity of Shapley value computation from exponential to
linear in N . Intuitively, the contribution is estimated based on how well an agent’s response aligns
with the collective (average) response. We now formalize the quality of this approximation.
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Theorem 1 (Approximation Bound (Xu et al., 2021)). Suppose ∥rn∥ = Γ for all n ∈ [N ] and
|⟨rn, ravg⟩| ≥ 1/I for some I > 0. Then

ϕn − Lnψn ≤ IΓ2, (4)

where Ln is a multiplicative factor that can be normalized away (Xu et al., 2021).

Corollary 1 (Ranking Stability). Let Ln be the multiplicative factor from Theorem 1, and let L =
minj Lj . If

ψn − ψk >
2 I Γ2

L
, (5)

then the normalized Shapley scores ϕ̃n = ϕn/Ln satisfy ϕ̃n > ϕ̃k.

All proofs are deferred to the appendix. Thus, the approximate Shapley value ψn not only pro-
vides an efficient approximation but also preserves the relative ordering of contributions when the
separation between agents is sufficiently large.

2.4 COMMUNICATION GRAPH FORMATION

Algorithm 1 SELFORG

Require: QueryQ, similarity threshold τ , optional
neighbor budget k, total rounds T

Ensure: Final responseR⋆

1: R(0)
n ← An(Q), ∀n ∈ [N ]

2: (G(0), π(0), {ψ(0)
n })← ALG. 2({R(0)

n }, τ, k)
3: for t = 1 to T do
4: for n in π(t−1) do
5: Collect {R(t−1)

m : em→n ∈ E(t−1)}
6: Form prompt P(t)

n ← (Q, peer outputs)
7: Update responseR(t)

n ← An(P(t)
n )

8: end for
9: (G(t), π(t), {ψ(t)

n })←ALG. 2({R(t)
n }, τ, k)

10: Aggregate responses (Eq. 6)
11: R⋆ ← argmaxn cos(r

(t)
n , r

(t)
centroid)

12: SetR⋆ as round output (fed to leading agent
in next round)

13: end for
14: returnR⋆ from final round T

Given the current responses {r(t)1 , . . . , r
(t)
N }

from N agents, our goal is to form a directed
acyclic communication graph G(t+1) =
(V, E(t+1)) that governs how information
flows among agents in the next round of
collaboration (t + 1). To form this graph,
we first estimate the agent contributions as:
ψ
(t+1)
n = cos(r

(t)
n , r

(t)
avg). We also com-

pute pairwise similarities between the agent
responses by computing the cosine similar-
ity between their response embeddings, i.e.,
S
(t)
n,m = cos(r

(t)
n , r

(t)
m ).

To avoid a fully connected graph, we retain
only semantically meaningful links: for agent
An, an incoming candidate edge e

(t+1)
m→n ∈

E(t+1) is activated (set to 1) if and only if
Sn,m ≥ τ , where τ is a similarity thresh-
old and ψ(t+1)

m > ψ
(t+1)
n . Alternatively, one

may achieve sparsification by restricting ac-
tive edges to k-most similar neighbors of each
agent.

The communication graph formed based on the above heuristics may still contain cycles. To avoid
such cycles, we find the agent with the least estimated contribution within the detected cycle and
remove the edge directed from the weaker agent (lower ψ(t+1)) towards the stronger agent (higher
ψ(t+1)). This approach guarantees that more contributive agents remain upstream in the information
flow. After the removal of the cycle, a topological ordering of the graph is computed, with ties
broken in favor of nodes (agents) with higher ψ(t+1).

The resulting graph balances two principles:

(i) local alignment, since each agent selectively listens only to semantically aligned peers, and

(ii) global reliability, since contribution scores govern the final order and ensure correctness
amplification.

Since most decisions regarding graph formation (except cycle detection and removal) are made lo-
cally, the resulting graph G is quite dynamic. Crucially, it is not predetermined by human design, but
emerges from the content of the agent responses, embodying a form of self-organizing team struc-
ture. Each agent effectively votes on who should influence it, and the collective result is a network
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of embeddings from 5 correct and 5
wrong responses.

Figure 2: Analysis of Qwen-1.5B over 100 runs on the same math problem (GSM-Hard).

that channels information from the most promising agents to the ones that need help. For example,
if one agent produces a particularly strong response and others recognize its value, many edges will
point from the stronger agent to others, making it a hub of influence akin to a spontaneously elected
leader. Thus, the topology adapts on-the-fly to the query at hand and the stochastic responses of the
agents, rather than being fixed in advance. The full procedure is summarized in Algorithm 1.

2.5 RESPONSE PROPAGATION AND AGGREGATION

Once the communication graph G(t+1) is formed, the next round of collaboration (t + 1) is ini-
tiated. There could be cases when the leader (root node) receives a message from the previous
round (Algorithm 1, line 12) or it could coincide with its own response; in the latter case it is al-
lowed to self-reflect on its previous response, i.e., P(t+1)

root,coll ⊇ R
(t)
root. This ensures that the round

begins with the most reliable response so far, while still leaving room for refinement. For the subse-
quent nodes in the graph, the response from the previous node is included in their collective prompt
P(t+1)
n,coll ⊇ R

(t+1)
m , if e(t+1)

m→n = 1. This response propagation procedure continues until all nodes
in the current communication graph are processed. At the end of the response propagation, the
agent contributions are re-estimated and the communication graph for the next collaboration round
is formed. This process is repeated for a fixed number of collaboration rounds T or until some early
stopping criterion is met.

Thus, a multi-round procedure naturally emerges: (i) the first round establishes contributions and
the influence structure, (ii) the highest-contributor’s response initializes the next round, and (iii)
subsequent agents refine or align their responses through the updated communication graph. In
practice, two rounds are typically sufficient: the first for exploration, the second for consolidation.

After response propagation over multiple collaboration rounds, the final aggregate response of the
multi-agent system is obtained as follows. First, the contribution-weighted centroid of the response
embeddings after round T is computed as:

r
(T )
centroid =

∑N
n=1 ψ

(T )
n r

(T )
n∑N

n=1 ψ
(T )
n

, (6)

where r
(T )
n is the response embedding of agent An in the last round and ψ(T )

n is its contribution
score. The final aggregate response is not generated anew, but chosen among the existing responses
{R(T )

n }Nn=1. Specifically, we select the response whose embedding aligns closest to the centroid:

Rfinal = Rn⋆
, where n⋆ = argmax

n∈[N ]

cos
(
r(T )
n , r

(T )
centroid

)
. (7)

2.6 PROBABILISTIC MODELING OF MULTI-AGENT SYSTEM

We now provide a probabilistic perspective to explain why our framework amplifies correct re-
sponses, particularly when the underlying LLMs are weak. The following analysis highlights two
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complementary mechanisms: (i) with multiple agents, the probability that at least two agents are
correct grows rapidly with N ; and (ii) whenever multiple agents agree on the same response, that
response is overwhelmingly likely to be correct. Together, these principles explain why correctness
not only appears more often in multi-agent settings but also dominates the contribution scores.

We begin with the experiments in Figure 2. Figure 2a shows that while the correct answer con-
sistently appears across 100 runs of Qwen-1.5B, wrong answers are scattered with little overlap.
Panel 2b shows a cosine similarity of embeddings from 5 correct and 5 incorrect responses: correct
answers form a tight cluster, whereas incorrect ones are scattered. Finally, an intervention study
shows that when an agent receives input from the top-contributor, its probability of solving the task
rises from 49% to 69%. These findings motivate the need for contribution estimation and leader
selection in SELFORG.

If each agent independently answers correctly with probability p ∈ (0, 1), then the probability that
at least two of N agents correct is 1 − (1 − p)N − Np(1 − p)N−1. This is an increasing function
withN that quickly approaches 1. Therefore, even weak agents collectively increase the chance that
agreement on correctness is present in the system. The role of SELFORG is then to identify these
consensuses and amplify them. In the following straightforward lemma, we argue that consensus
about a correct answer (Xc) is more likely than consensus about an incorrect answer (Xi) using
observations from Figure 2.
Lemma 1 (Agreement Concentration). Let one agent be correct with probability p ∈ (0, 1) and
otherwise choose one of K incorrect answers with probabilities p1, . . . , pK ,

∑K
k=1 pk = 1− p. For

two independent agents,

Pr[Xc] = p2 >

K∑
k=1

p2k = Pr[Xi]

whenever the errors are sufficiently dispersed (as in Fig. 2a), e.g., maxk pk ≤ p2

1−p .

We now connect the above probabilistic intuition to the contribution estimation of SELFORG. Fig-
ure 2b empirically supports the following assumption: embeddings of correct answers cluster to-
gether, while embeddings of wrong answers remain scattered.
Assumption 1. Suppose there exist constants α > β such that:

(i) For all n,m ∈ S (correct cluster), cos(rn, rm) ≥ α;

(ii) For all n ∈ S, k /∈ S, cos(rn, rk) ≤ β,

(iii) For all k, ℓ /∈ S, cos(rk, rℓ) ≤ β,

Lemma 2 (Contribution Dominance). Under Assumption 1, for every n ∈ S and k /∈ S we have
ψn > ψk, where ψn = cos(rn, rall) is the contribution score.

Lemmas 1 and 2 together yield the following guarantee:
Corollary 2 (Correctness Amplification). If at least two agents output the correct response, then this
response is strictly more likely to receive high contribution scores than any incorrect alternative. The
communication graph, therefore, routes information preferentially from correct agents, amplifying
their signals while suppressing noise.

Together, these results formalize why SELFORG remains effective under the weak-backend regime.

3 EXPERIMENTS

Our empirical evaluation largely follows the MASLab benchmark protocol (Ye et al., 2025a). We
test SELFORG across various LLM backbones: Qwen (Qwen-2.5-{1.5, 3, 7, 14, 32, 72}B) (Qwen
et al., 2025), LLaMA (LLaMA-3-8B-Instruct, LLaMA-3.3-70B-Instruct) (Dubey et al., 2024), Fal-
con (Falcon3-7B-Instruct) (TII, 2024; Almazrouei et al., 2023), and Mistral (Mistral-7B-Instruct-
v0.3) (Jiang et al., 2023a) on mathematics (MATH (Hendrycks et al., 2021), GSM8K (Cobbe
et al., 2021), GSM-Hard (Gao et al., 2023), AQUA-RAT (Ling et al., 2017), AIME-2024), science
(GPQA (Rein et al., 2024)), and knowledge (MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang

6
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Table 1: Main results on Qwen-2.5-1.5B-Instruct. Comparison of SELFORG with single-agent
prompting and multi-agent baselines across seven reasoning benchmarks. AVG reports mean accu-
racy, while AVG-R reports average rank across methods (lower is better).

Method MATH GSM8K AQUA GSM-H MMLU MMLU-P AIME AVG AVG-R
Qwen-2.5-1.5B-Instruct

Single 49.20 70.40 51.18 36.20 49.60 28.80 3.33 41.24 2.57
CoT 46.80 69.20 53.54 36.20 50.60 28.60 3.33 41.18 2.71

DyLAN 49.80 67.80 51.18 27.20 50.00 15.40 3.33 37.82 4.00
MacNet 45.40 64.20 49.21 29.40 42.00 26.00 0.00 36.60 4.57

G-Designer 42.20 61.40 44.48 24.20 40.00 22.00 0.00 33.47 5.86
AgentVerse 45.20 69.00 50.39 27.80 38.20 24.00 0.00 36.37 4.86

AutoGen 11.60 69.40 28.74 5.40 12.20 5.20 0.00 18.93 6.06

SELFORG 52.40 74.60 58.27 38.00 53.80 31.60 6.67 45.05 1.00

Table 2: Main results on large models (LLaMA-3.3-70B-Instruct & Qwen-2.5-72B-Instruct).
Comparison of SELFORG with baselines across reasoning benchmarks. AVG reports mean accuracy
and AVG-R reports average rank across methods (lower is better).

Method MATH GSM8K AQUA GSM-H MMLU MMLU-P GPQA AIME AVG AVG-R
LLaMA-3.3-70B-Instruct

Single 74.80 96.20 77.56 54.00 84.40 68.40 55.36 23.33 66.76 3.88
CoT 75.00 95.80 79.92 57.40 85.20 71.00 56.70 26.67 68.46 2.50

DyLAN 77.60 95.20 76.38 53.00 83.60 31.60 58.04 26.67 62.76 4.25
MacNet 74.80 96.00 79.13 55.20 83.00 65.40 58.26 26.67 67.31 3.63

AgentVerse 76.80 94.60 76.38 51.20 83.60 69.20 55.36 26.67 66.73 4.50
AutoGen 70.80 93.00 79.50 51.40 82.60 64.60 52.68 30.00 65.57 5.13

SELFORG 79.80 96.60 81.10 56.80 85.00 72.40 59.82 30.00 70.19 1.25

Qwen-2.5-72B-Instruct

Single 83.00 95.00 81.10 63.80 82.40 70.60 46.65 20.00 67.82 2.88
CoT 82.80 95.20 80.71 62.00 82.80 71.40 44.20 16.67 66.97 3.50

DyLAN 80.60 95.40 77.95 63.20 84.20 69.20 46.43 13.33 66.29 3.75
MacNet 81.40 95.40 79.13 62.80 83.20 65.60 40.40 16.67 65.58 4.13

AgentVerse 82.80 95.20 77.17 57.80 81.40 71.20 45.98 23.33 66.86 4.13
AutoGen 81.20 95.80 78.35 64.20 82.60 69.40 45.54 13.33 66.30 3.75

SELFORG 84.40 96.20 80.71 64.20 83.80 71.20 47.77 23.33 68.95 1.38

et al., 2024)) benchmarks. We set the default max token limit as 2048 and a temperature 0.5. Our
baselines include single call, chain-of-thought (CoT) (Wei et al., 2022), AutoGen Wu et al. (2024),
AgentVerse Chen et al. (2024), G-Designer Zhang et al. (2025b), DyLAN Liu et al. (2024), and
MacNet Qian et al. (2025). SELFORG defaults to use N = 4 agents, top-2 neighbors and at most 3
rounds. Additional configurations, baseline methods, and other details are provided in Appendix B.

3.1 MAIN EXPERIMENTAL RESULTS

Table 1 highlights the key advantage of SELFORG in scenarios where orchestration is most chal-
lenging. With Qwen-1.5B, all multi-agent baselines cluster around average accuracies of roughly
33 − 37%, showing limited ability to harness collaboration when the underlying agents are weak.
In contrast, SELFORG achieves an average accuracy of 45.05%, a clear margin above all baselines,
while also attaining the best average rank (AVG-R). This represents a gain of nearly +4 points over
the strongest non-collaborative baseline (single agent or CoT). These results confirm our central
hypothesis: when responses are noisy and correctness is sparse, a response-conditioned, adaptive
graph provides the necessary amplification mechanism to elevate correct signals and suppress noise.
We include G-Designer at a small scale; see Appendix B for discussion.

We also test SELFORG on stronger backbone models (Table 2). For LLaMA-70B, SELFORG
achieves the highest average accuracy (70.19%) and best AVG-R (1.25), outperforming all base-
lines. The same holds for the Qwen-72B model, where SELFORG attains the best average rank
(1.38) with clear gains over prior methods. These results demonstrate that SELFORG remains effec-
tive even with frontier-scale models, providing complementary improvements.
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Dataset AQUA-RAT MMLU-Pro
Model Single SELFORG Single SELFORG

1.5B 51.18 58.27 28.80 31.60
3B 65.35 73.62 42.60 46.20
7B 73.62 78.35 53.20 56.40
14B 75.79 81.50 61.80 65.40
32B 79.53 83.07 67.40 70.20
72B 81.10 80.71 70.60 71.20 1.5B 3B 7B 14B 32B 72B

Model

50

60

70

80

Ac
cu

ra
cy

AQUA-RAT

Single
SelfOrg

1.5B 3B 7B 14B 32B 72B
Model

30

40

50

60

70
MMLU-Pro

Single
SelfOrg

Figure 3: Scaling laws of Qwen-2.5-X-Instruct models across two reasoning benchmarks (AQUA-
RAT and MMLU-Pro). The table shows exact accuracy values for different model sizes under the
Single and SELFORG settings, while plot visualizes performance trends.

Together, these results demonstrate that SELFORG consistently outperforms prior orchestration
frameworks. Gains are most pronounced in the low-capacity regime, where amplification of cor-
rect signals is crucial, but remain competitive even for frontier-scale models.

3.2 SCALING LAWS

We analyze how SELFORG scales with model size by evaluating Qwen-2.5-X-Instruct models rang-
ing from 1.5B to 72B parameters on AQUA-RAT and MMLU-Pro (Table 3). Across most sizes,
SELFORG consistently improves over the single-agent baseline. For example, gains are most pro-
nounced in the weak-to-medium regime, with the 3B model improving from 65.35 to 73.62 on
AQUA-RAT and from 42.60 to 46.20 on MMLU-Pro. At larger scales, improvements persist but
become smaller, reflecting that strong single agents already achieve high reliability.

Interestingly, at the extreme high end (72B), the benefit nearly vanishes on AQUA-RAT, where ac-
curacy slightly decreases from 81.10 to 80.71. This suggests diminishing returns when base models
are sufficiently strong that agreement across agents offers limited additional signal. Nevertheless,
SELFORG never underperforms substantially, and its advantages are clearest when individual models
are weak or moderately strong, confirming the theoretical expectation that multi-agent collaboration
amplifies correctness most in the low-resource regime.

3.3 HETEROGENEOUS AGENTS

Model AQUA-RAT MMLU-Pro
Qwen 76.38 51.60

Falcon 61.42 47.00
LLaMA 44.09 40.60
Mistral 25.20 26.80

Single (↑) / AQUA-RAT (↓)
Model Single SELFORG

Mix 53.94 66.14
Mix 41.60 50.40

Figure 4: Heterogeneous Agents. Left: accuracies on AQUA-
RAT and MMLU-Pro for each backbone and for the mixed-pool
baseline (Single) vs. SELFORG . Right: percentage of times each
agent attains contribution rank r (rank-1 highest).

We evaluate SELFORG in set-
tings where agents are instanti-
ated with heterogeneous back-
bones: Qwen2.5-7B, Falcon3-
7B, Llama-3-8B, and Mistral-
7B. Although similar in param-
eter count, these models differ
substantially in ability (Table 4,
top), with Qwen strongest, Mis-
tral weakest, and Falcon serving
as the second-best. Since multi-
agent success depends on agree-
ment among strong contributors,
the system’s performance is ef-
fectively bounded by Falcon’s
reliability while aiming to approach Qwen’s level.

The lower part of Table 4 compares the Single baseline (where one model is randomly sampled
per query) and SELFORG . The Single setting yields 53.94 accuracy on AQUA-RAT and 41.60 on
MMLU-Pro, whereas SELFORG improves to 66.14 and 50.40. Thus, SELFORG leverages agree-
ment between strong models while still extracting useful signals from weaker ones, outperforming
the stochastic baseline and approaching the best single-agent.
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Contribution rank distributions (Figure 4) further illustrate this effect: Qwen and Falcon dominate
higher ranks, while LLaMA and Mistral are usually relegated lower, though occasionally contribut-
ing at mid-rank when aligned with stronger peers.

We further evaluate configurations that mix strong and weak agents, with detailed results presented
in Appendix D.1. Beyond accuracy, we also analyze efficiency in terms of token usage (Ap-
pendix D.2). Additional ablation studies examine the impact of the number of agents, the effect of
reform across rounds, and the role of the embedding model in contribution estimation (Appendix E).

4 RELATED WORK

Multi-Agent Systems. Early multi-agent systems such as CAMEL (Li et al., 2023) and AutoGen
(Wu et al., 2024) introduced role-based LLM agents that collaborate through dialogue. Debate-style
systems encourage adversarial or diverse reasoning to refine answers (Du et al., 2023; Liang et al.,
2024; Subramaniam et al., 2025), while dynamic orchestration (AgentVerse (Chen et al., 2024),
DyLAN (Liu et al., 2024)) adapts team composition or roles during execution. More recent efforts
aim for automatic workflow generation (Hu et al., 2025; Zhang et al., 2025c;b; Ye et al., 2025b),
though these rely on strong meta-agents or pretrained generators, adding overhead and limiting
autonomy. Multi-agent collaboration has also been applied to diverse domains including software
(Hong et al., 2024; Qian et al., 2024a), recommendation (Zhang et al., 2024), medicine (Tang et al.,
2024), finance (Li et al., 2024), education (Zhang et al., 2025e), and science (Zeng et al., 2024).

Communication Graphs. Prior work has explored a spectrum of communication topologies. Fixed
structures include chains, trees, complete graphs, and random graphs, with recent studies system-
atically comparing these patterns across task families such as mathematical reasoning, knowledge
reasoning, and coding (Qian et al., 2025). Beyond static designs, some approaches treat the topol-
ogy as optimizable: edges are sampled and trained with policy gradients or masks (Zhuge et al.,
2024; Zhang et al., 2025a; Qian et al., 2025). A complementary line delegates topology design to a
separate model that outputs a task- or query-specific communication graph (Zhang et al., 2025b; Ye
et al., 2025b). Other frameworks rely on an external LLM “judge” to rank, filter, or finalize outputs
(Liu et al., 2024; Zhang et al., 2025c; Zhuge et al., 2025; Ebrahimi et al., 2025). While effective
in constrained settings, these strategies incur substantial overhead: pretraining graph generators,
optimization over edges, or repeated calls to a judge LLM.

These approaches assume that an optimal or near-optimal graph exists either per task category or
even per query. However, such assumptions can be misleading: because LLM agents are stochastic,
the same agent may succeed on one query and fail on another. Our method instead constructs the
graph on-the-fly, adapting dynamically to the actual responses produced.

Contribution Assessment in Collaborative Systems. Numerous systems in LLM-based MAS as-
sess agent quality with additional LLMs. For instance, LLM-Blender (Jiang et al., 2023b) uses an
additional LLM for pairwise comparisons, incurringO(N2) operations forN agents, while DyLAN
(Liu et al., 2024) introduces a dedicated LLM agent to score responses; other MAS frameworks
similarly rely on judge models to value and select contributions (Ebrahimi et al., 2025). Outside
multi-agent systems, the broader literature on contribution valuation offers principled tools originat-
ing from cooperative game theory (Shapley, 1953), with concrete instantiations in federated learning
(McMahan et al., 2017; Jia et al., 2019). FL works measure participant contributions via Shapley
values (Jia et al., 2019; Xu et al., 2021; Liu et al., 2022; Tastan et al., 2024), influence functions
(Rokvic et al., 2024), self-reported information (Kang et al., 2019), and utility-game formulations
(Wang et al., 2019). We draw a direct parallel to MAS and instantiate Shapley-style contribution es-
timates over agent responses (Section 2.3), eliminating external judges and additional training while
maintaining principled contribution estimation.

5 CONCLUSION

We presented SELFORG, a framework for orchestrating LLM-based multi-agent systems without ex-
ternal pretrained topology generators or reinforcement learning. By leveraging response-conditioned
contribution estimation and adaptive graph formation, SELFORG amplifies correct signals and sup-
presses noise. Our theoretical analysis and empirical results across diverse reasoning benchmarks
confirm that it consistently outperforms prior orchestration baselines.
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Nurbek Tastan, Samuel Horváth, and Karthik Nandakumar. Aequa: Fair model rewards in collab-
orative learning via slimmable networks. In Forty-second International Conference on Machine
Learning, 2025a. URL https://openreview.net/forum?id=Tw81RElDpe.
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A MATHEMATICAL PROOFS

A.1 PROOF OF THEOREM 1

Proof. We adapt the argument of (Xu et al., 2021) to our setting.

By definition,

ϕn =
∑

S⊆[N ]\{n}

wS∆n(S), ∆n(S) = v(S ∪ {n})− v(S), wS =
|S|!(N − |S| − 1)!

N !
. (8)

Let x =
∑

j∈S rm and recall ravg = 1
N

∑N
j=1 rm.

Exact decomposition. Expanding the marginal contribution (difference in the utilities) ∆n(S)
and regrouping gives

∆n(S) = v(S ∪ {n})− v(S) (9)

=
⟨x+ rn, ravg⟩
∥x+ rn∥∥ravg∥

− ⟨x, ravg⟩
∥x∥∥ravg∥

(10)

=
1

∥ravg∥

(
⟨x, ravg⟩
∥x+ rn∥

− ⟨x, ravg⟩
∥x∥

+
⟨rn, ravg⟩
∥x+ rn∥

)
(11)

=
1

∥ravg∥

(
∥x∥ − ∥x+ rn∥
∥x+ rn∥

· ⟨x, ravg⟩
∥x∥

+
⟨rn, ravg⟩
∥x+ rn∥

)
(12)

=
∥x∥ − ∥x+ rn∥
∥x+ rn∥

⟨x, ravg⟩
∥x∥∥ravg∥

+
1

∥x+ rn∥
⟨rn, ravg⟩
∥ravg∥

(13)

=
∥x∥ − ∥x+ rn∥
∥x+ rn∥︸ ︷︷ ︸

AS

·v(S) + ∥rn∥
∥x+ rn∥︸ ︷︷ ︸

BS

·ψn (14)

where v(S) = cos(x, ravg) and ψn = cos(rn, ravg). AS =
∥x∥ − ∥x+ rn∥
∥x+ rn∥

andBS =
∥rn∥
∥x+ rn∥

.

Plugging this back into the original equation of Shapley value gives the exact split

ϕn =
∑
S
wS AS v(S) +

[∑
S
wS BS

]
ψn = Ln ψn +

∑
S
wS AS v(S). (15)

Bounding the error. Consider the ratio

|AS | |v(S)|
BS ψn

=
|∥x∥ − ∥x+ rn∥|

Γ
· | cos(x, ravg)|
cos(rn, ravg)

. (16)

Using (i) the reverse triangle inequality |∥x∥− ∥x+ rn∥| ≤ ∥rn∥ = Γ, (ii) | cos(x, ravg)| ≤ 1, and

(iii) the alignment assumption (|⟨rn, ravg⟩| ≥
1

I
), we obtain

|AS | |v(S)|
BS ψn

≤ I Γ ∥ravg∥ ≤ I Γ2, (17)

using ∥ravg∥ ≤ Γ (average of Γ-norm vectors). Averaging with weights wS (linear interpolation in
our case) preserves this bound, yielding

ϕn − Lnψn ≤ I Γ2. (18)

This concludes the proof.
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A.2 PROOF OF COROLLARY 1

Proof. From Theorem 1, we can write

ϕ̃ℓ = ψℓ +
Rℓ

Lℓ
, |Rℓ| ≤ IΓ2. (19)

Then,

ϕ̃n − ϕ̃k ≥ (ψn − ψk)−
|Rn|
Ln
− |Rk|

Lk
≥ (ψn − ψk)−

2IΓ2

L
. (20)

Hence, if ψn − ψk > 2IΓ2/L, then ϕ̃n > ϕ̃k.

A.3 PROOF OF LEMMA 1

Proof. By independence, Pr[Xc] = p2 and Pr[Xi] =
∑

k p
2
k. Using dispersion,

K∑
k=1

p2k ≤ (max
k

pk)

K∑
k=1

pk = (1− p)max
k

pk ≤ (1− p) p2

1− p
= p2. (21)

Strict inequality holds unless all mass concentrates on a single incorrect option at exactly maxk pk =
p2

1−p . Hence, agreement is more likely on the correct answer.

This completes the proof.

A.4 PROOF OF LEMMA 2

Proof. Fix n ∈ S. Decompose

⟨rn, ravg⟩ = ⟨rn, rn⟩ +
∑
j∈S
j ̸=i

⟨rn, rm⟩ +
∑
u/∈S

⟨rn, ru⟩. (22)

By assumptions (i)-(ii),

⟨rn, rn⟩ = Γ2, ⟨rn, rm⟩ ≥ Γ2α (j ∈ S \ {i}), ⟨rn, ru⟩ ≤ Γ2β (u /∈ S). (23)

Hence
⟨rn, ravg⟩ ≥ Γ2 + (m− 1) Γ2α+ (N −m) Γ2β. (24)

Now fix k /∈ S. Similarly,

⟨rk, ravg⟩ = ⟨rk, rk⟩ +
∑
v∈S
⟨rk, rv⟩ +

∑
w/∈S
w ̸=k

⟨rk, rw⟩. (25)

By assumptions (ii)-(iii),

⟨rk, ravg⟩ ≤ Γ2 +mΓ2β + (N −m− 1) Γ2β = Γ2 + (N − 1) Γ2 β. (26)

Subtracting yields

⟨rn, ravg⟩ − ⟨rk, ravg⟩ ≥ (m− 1) (α− β) Γ2 > 0. (27)

Since avg ψr = cos(rr, ravg) share the same denominator ∥rr∥ ∥ravg∥ = Γ ∥ravg∥, the inequality
implies ψn > ψk.

This completes the proof.
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B IMPLEMENTATION DETAILS

Baselines. We use the benchmark authors’ implementations where available (Ye et al., 2025a).

• MacNet (Qian et al., 2025) is run with 5 agents and the random topology, following the
paper’s strongest reported configuration.

• DyLAN (Liu et al., 2024) uses 4 agents and 3 rounds.
• AgentVerse (Chen et al., 2024) and AutoGen (Wu et al., 2024) are run with their public

defaults adapted to the benchmark.
• G-Designer (Zhang et al., 2025b) is evaluated on Qwen-2.5-1.5B-Instruct; we omit larger

models because it requires training a separate graph generator, and thus latency-inefficient
(see Sections 1 and 4 for discussion).

We include G-Designer (Zhang et al., 2025b) in our Qwen-1.5B experiments, as it is
among the most closely related graph-optimizing methods. However, its design differs
fundamentally from SELFORG. G-Designer trains a separate graph generator that outputs
a communication topology conditioned on the query and predefined agent roles. While this
is effective with stronger backbones, it does not adapt to the responses actually produced
by weak agents, which are often noisy. As a result, its learned graphs fail to amplify correct
signals in the low-capacity regime, leading to poor empirical performance (see Table 1).

For larger models, we do not run G-Designer, since it requires training a dedicated
graph generator. This introduces substantial overhead and deviates from our goal of ef-
ficient, judge-free orchestration. Our design philosophy emphasizes lightweight, response-
conditioned self-organization without external generators or meta-agents, as discussed in
Sections 1 and 4.

• To compare with single agent execution methods, we incorporate evaluations against sin-
gle execution and chain-of-thought (CoT) prompting (Wei et al., 2022).

SELFORG configuration. SELFORG is configured as:

• Agent pool: {Assistant, Programmer, Mathematician, Economist,
Psychologist, Historian, Lawyer, Doctor}.

• Number of agents: for math-based tasks: 4 agents with fixed roles (from the pool), and
for science and knowledge: 5 agents up to psychologist.

• Neighbor selection: top-2 neighbors per agent (by pairwise cosine similarity S); similarity
threshold τ = 0.5 for edge formation.

• Rounds and structure: maximum of 3 rounds (including decentralized initialization);
with DAG enforcement.

• Contribution estimation: we use all-MiniLM-L6-v2 embedding model with embed-
ding dimension of 384 (lightweight sentence embedding model).

• Aggregation: contribution-weighted centroid (Equation 6); final answer is the nearest re-
sponse to the centroid.

• Reform policy: we reform the DAG in each round from updated responses.

Agent Profiling. We adopt a standard community template for defining agent roles, widely used
in prior multi-agent system benchmarks. In our experiments, a subset of four/five agents is instan-
tiated per run (default), selected in fixed order unless otherwise specified. Each role is assigned a
default prompt template (system instruction) from the benchmark community, without additional
fine-tuning or hand-engineering. This ensures that performance differences arise from orchestration
rather than custom role design.

The role descriptions are provided below.

Evaluation. We use a direct scoring approach using a task-specific evaluator (xVerify (Chen et al.,
2025)), which is fine-tuned to assess correctness across various domains (Ye et al., 2025a).
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Assistant
You are a super-intelligent AI assistant capable of performing tasks
more effectively than humans.

Mathematician
You are a mathematician.
You are good at math games, arithmetic calculation, and long-term
planning.

Economist
You are an economist.
You are good at economics, finance, and business. You have
experience on understanding charts while interpreting the
macroeconomic environment prevailing across world economies.

Psychologist

You are a psychologist.
You are good at psychology, sociology, and philosophy. You give
people scientific suggestions that will make them feel better.

Programmer

You are a programmer.
You are good at computer science, engineering, and physics. You
have experience in designing and developing computer software and
hardware.

Historian
You are a historian.
You research and analyze cultural, economic, political, and social
events in the past, collect data from primary sources and use it
to develop theories about what happened during various periods of
history.

Lawyer

You are a lawyer.
You are good at law, politics, and history.

Doctor
You are a doctor and come up with creative treatments for illnesses
or diseases. You are able to recommend conventional medicines,
herbal remedies and other natural alternatives. You also consider
the patient’s age, lifestyle and medical history when providing your
recommendations.
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C GRAPH FORMATION FUNCTION

Algorithm 2 Graph Formation

Require: Responses {Rn}Nn=1, similarity threshold τ , optional neighbor budget k
Ensure: Graph G = (V, E), topological order π, contribution scores {ψn}Nn=1

1: Compute embeddings rn ← f(Rn), ∀n ∈ [N ]
2: Form similarity matrix S
3: Get contribution scores {ψn}Nn=1 (Eq. 3)
4: Initialize edge set E ← {}
5: for n = 1 to N do
6: N ← {m ̸= n : Sn,m ≥ τ }
7: if k specified then
8: keep top-k in N
9: end if

10: for m ∈ N do
11: add edge em→n to E
12: end for
13: end for
14: while E contains a cycle do
15: Identify cycle C
16: Remove edge from lower-ψ to higher-ψ node in C
17: end while
18: Obtain topological order π of G = (V, E)
19: return (G, π, {ψn})

D ADDITIONAL EXPERIMENTS

D.1 WEAK AGENT IN A POOL

To test the robustness of SELFORG in a setting with a weak agent present, we evaluate configurations
where weaker agents are introduced alongside stronger peers. Figure 5 reports the distribution of
contribution ranks assigned across two scenarios: (i) three powerful agents backed by the Qwen-
2.5-7B-Instruct model paired with one Qwen-2.5-1.5B-Instruct agent, and (ii) two agents of each
type.

Table 3 summarizes AQUA-RAT performance under these settings. In case (i), where three strong
and one weak agent are present, the single-agent performance is 71.65, while SELFORG raises it to
75.98, approaching the 76.77 level achieved when all four agents are strong. In case (ii), with two
strong and two weak agents, SELFORG again yields large gains, improving accuracy from 66.54 in
the single baseline to 74.80. These results demonstrate that SELFORG is able to reliably mitigate
the drag introduced by weaker models, often recovering performance close to the all-strong setting.

Table 3: Performance with weak agents in the pool (AQUA-RAT). Comparison of SELFORG
against single-agent baselines in the (3 strong vs 1 weak) and (2 strong vs 2 weak) settings.

Method A1 A2 A3 A4 AQUA-RAT Note
Single 1.5B 51.18 Single agent; Qwen-1.5B backbone (single weak)
Single 7B 76.77 Single agent; Qwen-7B backbones (single strong)

Single 7B 7B 7B 1.5B 71.65 Backbone assignment is random per query (7B prob. 0.75)
SELFORG 7B 7B 7B 1.5B 75.98 Each agent uses its fixed backbone

Single 7B 7B 1.5B 1.5B 66.54 Backbone assignment is random per query (7B prob. 0.5)
SELFORG 7B 7B 1.5B 1.5B 74.80 Each agent uses its fixed backbone

In setting (i), the weak agent is consistently identified as the least contributive, being placed in
rank-4 in the majority of runs (68.1%). The stronger 7B models distribute across the higher ranks,
demonstrating that the contribution estimation mechanism sharply separates weak from strong par-
ticipants. The observation supports the theoretical guarantee in Section 2.6, namely that agreement
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among correct agents amplifies their contribution scores, relegating weaker outliers downstream in
the communication graph.

The case (ii) exhibits a more competitive dynamic. While the .15B agents remain overrepresented
in the lower ranks, they also occasionally occupy intermediate positions (ranks 2 and 3), and the
separation between strong and weak agents becomes less pronounced (due to the fact that the weak
agents occasionally produce correct answers, thus leading to increased variability in contribution
signals). Nevertheless, the stronger agents still dominate the top positions, ensuring that information
flow in the communication graph is largely governed by higher-quality responses.
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Figure 5: Heatmaps of ranking outcomes with a weak agent in the pool. Each heatmap depicts the
percentage (%) of times agents were assigned to contribution ranks (rank 1 = highest contribution,
rank 4 = weakest). The y-axis denotes the model type (Qwen-2.5-{7,1.5}B-Instruct) assigned to
each agent.

D.2 TOKEN CONSUMPTION

We compare SELFORG to prior coordination frameworks with respect to both accuracy and token
efficiency. Figures 6 and 7 visualize this trade-off, where bubble area corresponds to total token
usage. For clarity, only DyLAN and MacNet are included among the baselines in the plots. Although
AgentVerse and AutoGen achieve lower token usage than all other methods, their performance is
substantially weaker (Table 1), with AutoGen in particular failing across nearly all benchmarks.
Since our objective is to highlight the efficiency of coordination methods that remain competitive in
accuracy, we restrict the visualization to DyLAN and MacNet.

By contrast, DyLAN and MacNet represent stronger baselines that consume a similar number of
tokens as SELFORG . DyLAN exhibits relatively competitive performance on some reasoning tasks,
but its overall average lags behind, especially on challenging datasets such as MMLU-Pro. MacNet
shows modest efficiency advantages in prompt token usage but suffers from accuracy degradation
across nearly all tasks. In both cases, SELFORG outperforms these baselines in accuracy while
maintaining a comparable token budget, indicating a more favorable accuracy-efficiency trade-off.

50.0 52.5 55.0 57.5
Accuracy (%)

1.35

1.40

1.45

1.50

To
ke

n 
co

ns
um

pt
io

n

1e6 AQUA-RAT

46 48 50 52
Accuracy (%)

1.00

1.25

1.50

1.75

2.00

2.25
1e6 MATH

45 50
Accuracy (%)

1.95

2.00

2.05

2.10

1e6 MMLU

37.5 40.0 42.5 45.0
Accuracy (%)

1.6

1.7

1.8

1e6 AVG

DyLAN MacNet SelfOrg

Figure 6: Visualization of performance and completion token consumption. Each bubble corre-
sponds to a coordination method, with bubble area proportional to token consumption. Correspond-
ing table: Table 1.
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Figure 7: Visualization of performance and prompt token consumption. Each bubble corre-
sponds to a coordination method, with bubble area proportional to token consumption. Correspond-
ing table: Table 1.

Table 4: Token consumption across coordination methods. Completion tokens (top) and prompt
tokens (bottom) consumed on each dataset on Qwen-2.5-1.5B-Instruct model. Corresponding table:
Table 1.

Method MATH GSM8K AQUA-RAT GSM-Hard MMLU MMLU-P AIME
completion tokens

DyLAN 2249026 2086972 1312830 2468878 1961663 2786528 238078
MacNet 1056599 1806092 1513390 2238769 2137874 2925015 243205

AgentVerse 1077488 609241 530435 711561 338957 703302 74665
AutoGen 487744 282592 202713 371429 271488 390695 53990

SELFORG 2002530 1858577 1369879 2214019 1934568 1587246 213939

Method MATH GSM8K AQUA-RAT GSM-Hard MMLU MMLU-P AIME
prompt tokens

DyLAN 10391904 4706386 3241463 5719811 6267944 10847226 797505
MacNet 2647651 536500 829202 486320 1149266 1471736 61122

AgentVerse 3309868 2048995 1793383 2283561 1338962 2723973 240881
AutoGen 2026745 1292144 874703 1564267 1442236 2050001 176709

SELFORG 6016239 3836070 2556599 4351062 4038531 4251306 325588

D.3 EFFICIENT SELFORG

While the main pipeline of SELFORG proceeds through multiple rounds, not all rounds are equally
necessary. In practice, if the agents already achieve strong agreement, further refinement may waste
tokens without improving accuracy. To address this, we introduce an early-stopping mechanism
based on natural consensus among peers.

Consensus Criterion. Let the similarity matrix S ∈ [−1, 1] be defined as in Section 2.4, where
Si,j = cos (rn, rm) encodes the pairwise agreement between agents i and j. We define the minimum
consensus across all pairs as Smin = mini̸=j Si,j . Intuitively, Smin captures the weakest agreement
within the system. If this minimum exceeds a predefined threshold γ ∈ [0, 1], then the agents are
deemed to have reached sufficient consensus.

Formally, the system halts further rounds if Smin ≥ γ, where γ is the consensus parameter con-
trolling strictness of agreement. For example, γ = 0.9 requires that all pairs of responses have at
least 90% cosine similarity. When satisfied, the system outputs the centroid-based final response
(Equation 6) without additional rounds.

This mechanism directly builds upon the communication graph formation step (Section 2.4). Since
embeddings and similarities are already computed, evaluating Smin incurs negligible overhead. By
stopping once consensus is achieved, SELFORG avoids redundant propagation and aggregation,
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Figure 8: Visualization of performance and completion token consumption across benchmarks
(AQUA-RAT, MATH, MMLU, and overall average). Each point corresponds to a method, with
bubble size proportional to token usage. Methods include original SELFORG and efficient SELFORG
with early stopping at γ = {0.9, 0.95}. Early stopping variants show improved efficiency (fewer
tokens) while maintaining comparable accuracy.

yielding substantial token efficiency. In scenarios where weak agents initially diverge, multiple
rounds remain valuable; however, when natural agreement arises early, Efficient SELFORG prevents
unnecessary computation.
Experimental Results. Figure 8 compares the baseline SELFORG with its early-stopping variants
under consensus thresholds γ ∈ {0.9, 0.95} on AQUA-RAT, MATH, and MMLU. All experiments
were run with N = 4 agents, each selecting its top-2 neighbors, and 3 rounds. We report both
accuracy and completion token consumption. Bubble sizes reflect token usage, with smaller bubbles
denoting higher efficiency.

Baseline SELFORG achieves accuracies of 58.27% (AQUA-RAT), 52.40% (MATH), and 53.80%
(MMLU). Under γ = 0.95, accuracy slightly drops on AQUA-RAT (57.87%), MMLU (51.60%),
and MATH (52.2%). With a looser threshold γ = 0.9, performance closely matches or even ex-
ceeds the baseline on AQUA-RAT (59.06%), while remaining comparable on MATH (52.00%) and
MMLU (51.20%). This indicates that early stopping preserves task quality and, in some cases,
improves it by preventing over-refinement.

The key advantage lies in efficiency. Both early-stopping settings consistently reduce token usage
compared to the baseline. The stricter γ = 0.95 yields moderate savings, while the looser γ = 0.9
achieves the largest reductions. In relative terms, token usage decreases substantially while accuracy
remains stable, with savings on the order of 10− 15% across benchmarks.

Summary. Efficient SELFORG demonstrates that natural peer consensus can serve as a reliable
early-stopping signal. By halting once strong agreement is reached, the system avoids redundant
message-passing rounds, improving token efficiency while preserving accuracy. Unlike prior MAS
approaches such as DyLAN, which require explicit answer extraction from responses to measure
consensus (and may fail if the LLM deviates from formatting instructions), our method operates
purely in the embedding space and thus avoids brittle dependencies on response parsing. Similarly,
works that rely on external LLM judges to check consensus introduce additional computational and
monetary overhead. In contrast, Efficient SELFORG is lightweight, model-agnostic, and robust: no
answer extraction is needed, no external judge is invoked, and consensus is measured semantically
rather than syntactically. This makes it especially suitable for scaling to large agent pools and diverse
task domains.

For completeness, we provide Figures 9 and 10, which include efficient SELFORG along with the
other baseline methods and depict the performance and completion/prompt token consumption.
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Figure 9: Visualization of performance and completion token consumption across benchmarks
(AQUA-RAT, MATH, MMLU, and overall average). Each point corresponds to a method, with
bubble size proportional to token usage. Methods include DyLAN, MacNet, SELFORG and efficient
SELFORG with early stopping at γ = {0.9, 0.95}.
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Figure 10: Visualization of performance and prompt token consumption across benchmarks
(AQUA-RAT, MATH, MMLU, and overall average). Each point corresponds to a method, with
bubble size proportional to token usage. Methods include DyLAN, MacNet, SELFORG and efficient
SELFORG with early stopping at γ = {0.9, 0.95}.

D.4 EMBEDDING MODEL

In our main experiments, we employ the all-MiniLM-L6-v2 (Reimers & Gurevych, 2019)
model, a lightweight embedding model with only 22.7M parameters, to estimate similarity between
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Figure 11: Embedding model comparison in the weak-agent-in-a-pool scenario. Heatmaps show
the percentage of times of each agent (rows) being assigned to contribution ranks (columns) when
using different embedding models for similarity estimation: All-MiniLM (22.7M parameters),
All-MPNet (109M), and Qwen-0.6B (600M). All models are able to correctly identify the weak-
est agent (A4), with MPNet and Qwen-0.6B providing sharper separation between strong and weak
agents.
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agent responses. This choice is intentional: we aim to keep the method efficient and avoid reliance
on large embedding models, even if this introduces some additional noise into similarity estimates.

To validate this design choice, we conduct an ablation study in the weak-agent-in-a-pool scenario us-
ing different embedding models. In addition to all-MiniLM, we evaluate all-MPNet-base-v2 (109M
parameters) (Reimers & Gurevych, 2019) and Qwen3-0.6B-Embedding (600M parameters) (Zhang
et al., 2025d). Across all cases, the embedding models are able to correctly identify the weakest
agent: the weak participant is consistently ranked lowest in the majority of runs. Moreover, both
MPNet and Qwen-0.6B provide sharper separation between strong and weak agents compared to
MiniLM, reflecting their stronger representational capacity.

Nevertheless, our goal is to design a coordination mechanism that remains effective with lightweight
embeddings. Despite the noisier similarity signals from all-MiniLM, SELFORG still succeeds in
differentiating weak and strong contributors and delivers strong overall performance. This confirms
that our approach does not require powerful encoders and can operate effectively under a minimal
embedding budget, making it broadly applicable in resource-constrained settings.

E ABLATION STUDY

E.1 NUMBER OF AGENTS

We conduct an ablation study to analyze the effect of the number of agents on both accuracy and
efficiency. Figure 12 reports results for Qwen-2.5-1.5B-Instruct on the AQUA-RAT benchmark. The
left y-axis shows accuracy, while the right y-axis shows token consumption; latency (in seconds) is
annotated above each bar.

We observe that increasing the number of agents improves accuracy, from 53.54% with N = 3
agents to 59.84% with N = 10. However, this gain comes at the cost of both higher token usage
(scaling from 1.07M to 3.53M tokens) and longer latency (from 145s to 581s). Interestingly, accu-
racy improvements are not strictly monotonic with N : performance plateaus at 58.27% for N = 5
and N = 7, before rising again at N = 10. This suggests diminishing returns when adding ad-
ditional weak agents, with benefits re-emerging only when coordination capacity (via K) increases
sufficiently.

Overall, the ablation highlights the trade-off between accuracy and efficiency: more agents improve
reliability but induce significant computational overhead, pointing to the importance of balancing
scale against efficiency in multi-agent design.
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Figure 12: Ablation on the number of agents. Results for Qwen-2.5-1.5B-Instruct on AQUA-RAT.
The blue line (left axis) shows accuracy as the number of agents N increases, while orange bars
(right axis) show token consumption. Latency (s) is annotated above each bar. Accuracy improves
with more agents, but at the cost of higher latency and token usage, illustrating the trade-off between
performance and efficiency in multi-agent coordination.
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E.2 TO REFORM OR NOT TO REFORM

An important design choice in SELFORG is whether to reform the communication graph between
rounds of interaction. Reforming allows agents to dynamically update their information flow struc-
ture based on the latest responses, while a static graph keeps the initial topology fixed throughout.
We conduct an ablation on two benchmarks, GSM8K and MMLU, usingN = 5 agents and neighbor
budget K = 3, to evaluate the impact of graph reform.

Table 5: Ablation on reforming the communication graph across rounds.

Dataset Reform N K Accuracy

GSM8K True 5 3 73.8
False 5 3 73.2

MMLU True 5 3 52.8
False 5 3 51.4

As shown in Table 5, reforming the graph consistently improves performance, though the absolute
gains are modest. This suggests that while the initial communication structure already captures
useful alignment among agents, dynamically restructuring the graph allows the system to consolidate
correct signals more effectively, especially on more challenging knowledge-intensive tasks. The
relatively small gap also indicates that SELFORG is robust to whether reform is applied, but benefits
from it most in settings where agent responses are more diverse and noisy.
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