

000 001 002 003 004 005 STOCHASTIC SELF-ORGANIZATION IN MULTI-AGENT 006 SYSTEMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Multi-agent systems (MAS) based on Large Language Models (LLMs) have the
032 potential to solve tasks that are beyond the reach of any single LLM. However,
033 this potential can only be realized when the collaboration mechanism between
034 agents is optimized. Specifically, optimizing the communication structure be-
035 tween agents is critical for fruitful collaboration. Most existing approaches rely on
036 fixed topologies, pretrained graph generators, optimization over edges, or employ
037 external LLM judges, thereby adding to the complexity. In this work, we introduce
038 a *response-conditioned framework that adapts communication on-the-fly*. Agents
039 independently generate responses to the user query and assess peer contributions
040 using an approximation of the Shapley value. A directed acyclic graph (DAG) is
041 then constructed to regulate the propagation of the responses among agents, which
042 ensures stable and efficient message transmission from high-contributing agents
043 to others. This graph is dynamically updated based on the agent responses from
044 the previous collaboration round. Since *the proposed framework enables the self-
045 organization of agents without additional supervision or training*, we refer to it
046 as SELFORG. The SELFORG framework goes beyond task- and query-level opti-
047 mization and takes into account the stochastic nature of agent responses. Experi-
048 ments with both strong and weak LLM backends demonstrate robust performance,
049 with significant gains in the weak regime where prior methods collapse. We also
050 theoretically show that multiple agents increase the chance of correctness and that
051 the correct responses naturally dominate the information flow.
052
053

1 INTRODUCTION

031 Large Language Models (LLMs) (OpenAI, 2023; Dubey et al., 2024; Anthropic, 2025; Qwen et al.,
032 2025) have rapidly advanced capabilities across planning, analysis, coding, and dialog, yet a **single**
033 LLM still faces notable limitations: stochastic or unreliable generations, hallucinations, and diffi-
034 culty with long-horizon, multi-step tasks. A natural response has been to move from a solitary model
035 to a **multi-agent system** (MAS) of LLMs, where agents interact, critique, and refine one another’s
036 outputs (Li et al., 2023; Chen et al., 2024; Zhuge et al., 2024; Qian et al., 2024b; Ye et al., 2025a).
037 In principle, this collective can surpass an individual model by pooling complementary reasoning
038 paths; in practice, however, the gains depend critically on **how** the agents are orchestrated: who
039 communicates with whom, when, and how final outputs are aggregated.
040

041 Prior work has explored a spectrum of communication topologies. Fixed structures include chains,
042 trees, complete graphs, and random graphs; scalable studies compare these patterns across task
043 families such as mathematical reasoning, knowledge reasoning, and coding (Qian et al., 2025).
044 Beyond static designs, some approaches treat the topology as **optimizable**: edges are sampled and
045 trained with policy gradients or masks (e.g., GPTSwarm (Zhuge et al., 2024), AgentPrune (Zhang
046 et al., 2025a)). A complementary line delegates topology design to a **separate** model that outputs
047 a task/query-specific communication graph (e.g., G-Designer (Zhang et al., 2025b), MAS-GPT (Ye
048 et al., 2025b)). Others rely on an external LLM “judge” to rank, filter, or make final decisions
049 (Ebrahimi et al., 2025). While effective in certain settings, these strategies introduce substantial
050 overhead: pretraining a graph generator; reinforcement learning over edges; repeated calls to a
051 judge LLM.
052
053

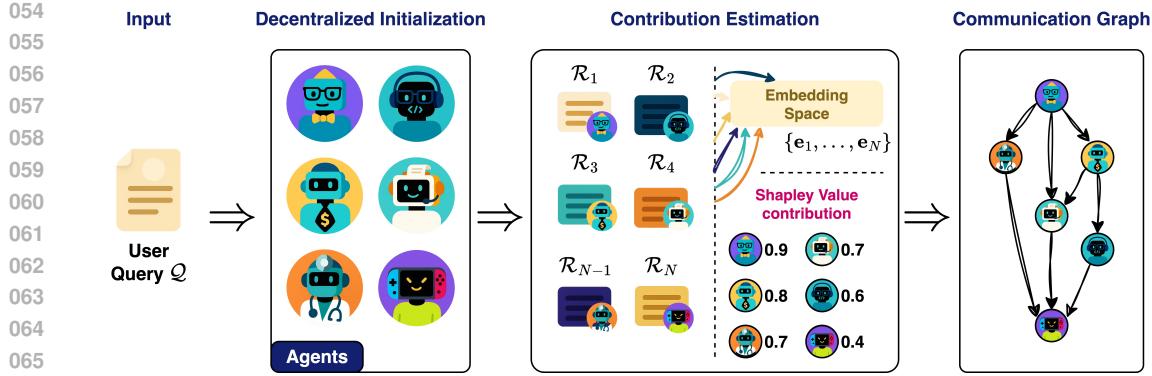


Figure 1: **Overview of SELFORG.** A query Q is distributed to N agents, each producing a response R_n . Responses are embedded, contributions estimated via Shapley-based valuation, and a directed acyclic communication graph is formed where edges reflect contributions and high-contribution agents lead. The figure depicts a single round; the process is iterated for T rounds.

A common hypothesis in this literature is that there exists a “best” topology per **task category** (e.g., math vs. coding). This idea has evolved toward finer granularity, that the **query** should determine the topology (one graph per problem). We argue that both views are ultimately brittle. Because LLM agents are inherently stochastic, the information that matters for coordination is not the static task label nor the problem identity, but the **state** the agents are actually in – their concrete responses at a given time step. Two agents may answer the same query differently across runs; a topology that was ideal yesterday may be suboptimal today. Thus, the communication pattern should be decided **on the fly**, conditioned on the current pool of responses. Searching for a universally superior topology per task or per query is therefore potentially confounded and fragile: it risks overfitting to incidental response patterns or to powerful base models whose single-shot accuracy already masks orchestration weaknesses.

This state-driven perspective is especially revealing in the weak-backend regime, where each agent has a modest chance of being correct. In such settings, the value of orchestration should be to **amplify rare correct responses and suppress noise**, not to lean on an already-competent model. Our approach embraces this principle: we propose a decentralized, response-conditioned framework in which agents (i) independently produce initial answers, (ii) locally assess peers via a Shapley value-inspired contribution valuation, and (iii) construct a directed acyclic communication graph (DAG) that routes information from high-contribution agents to others. This yields a lightweight system with no external judge, no pretrained topology generator, and no edge-level reinforcement learning, yet it adapts its structure per instance.

We make the following contributions:

1. We construct a per-instance DAG directly from agents’ current responses via semantic alignment, avoiding fixed topologies, pretrained graph generators, and edge-level RL.
2. We quantify influence with a Shapley-inspired utility, together with efficient approximation and ranking-stability guarantees, enabling lightweight, model-agnostic credit assignment.
3. We analyze why multi-agent interaction amplifies correct signals and why correct responders dominate contributions, and we validate SELFORG across various reasoning benchmarks and multiple backbones.

2 METHODOLOGY

We propose a multi-agent collaborative framework that adaptively constructs its communication structure without relying on external judges, pretrained graph generators, or reinforcement learning for edge optimization. The key principle is to leverage agents’ own responses to estimate their contributions, estimate these contributions using Shapley values, and enforce a directed acyclic communication graph (DAG) for stable information propagation. In what follows, we describe each component in detail. The overall pipeline of SELFORG is illustrated in Figure 1.

108 2.1 SYSTEM OVERVIEW
109

110 We formalize the collaboration in a multi-agent system as a dynamic directed graph $\mathcal{G}^{(t)} = (\mathcal{V}, \mathcal{E}^{(t)})$,
111 where $\mathcal{V} = \{v_1, \dots, v_N\}$ represents the set of nodes (with $|\mathcal{V}| = N$) and $\mathcal{E}^{(t)}$ denotes the set of
112 edges in collaboration round $t \in [T]$. Each node $v_n \in \mathcal{V}$ represents an agent \mathcal{A}_n , instantiated with a
113 backend LLM. Each agent \mathcal{A}_n receives a prompt $\mathcal{P}_n^{(t)}$ and generates a response $\mathcal{R}_n^{(t)}$:

$$114 \quad 115 \quad \mathcal{R}_n^{(t)} = \mathcal{A}_n(\mathcal{P}_n^{(t)}) = \mathcal{A}_n(\mathcal{P}_{n,\text{sys}}^{(t)}, \mathcal{P}_{n,\text{user}}^{(t)}, \mathcal{P}_{n,\text{coll}}^{(t)}), \quad (1)$$

117 where $\mathcal{P}_{n,\text{sys}}$ represents the system prompt that describes the agent’s role and current state, $\mathcal{P}_{n,\text{user}}$
118 denotes the user prompt, which includes the given tasks, and $\mathcal{P}_{n,\text{coll}}$ includes responses from other
119 agents (if available) and externally retrieved knowledge.

120 A directed edge $e_{m \rightarrow n}^{(t)} \in \mathcal{E}^{(t)}$ indicates that agent \mathcal{A}_n incorporates information from agent \mathcal{A}_m in
121 round t . The presence (or absence) of an edge reflects the usefulness of \mathcal{A}_m ’s response for \mathcal{A}_n .
122 Thus, edges encode the information flow among agents. The graph can be equivalently expressed as
123 an adjacency matrix $\mathbf{A}^{(t)} \in \{0, 1\}^{N \times N}$, where $\mathbf{A}_{n,m}^{(t)} = 1$ if $e_{m \rightarrow n}^{(t)} \in \mathcal{E}^{(t)}$, otherwise 0.
124

125 2.2 DECENTRALIZED INITIALIZATION
126

127 This first stage of SELFORG (referred to as collaboration round $t = 0$) aims to generate a pool
128 of diverse, but potentially noisy responses from N agents. Given the user query \mathcal{Q} , each agent
129 independently generates its own initial response $\mathcal{R}_n^{(0)}$. For this initial round, $\mathcal{P}_{n,\text{coll}}^{(0)} = \emptyset$ because
130 agent \mathcal{A}_n receives no input from other agents. We map each agent response $\mathcal{R}_n^{(0)}$ to an embed-
131 ding $\mathbf{r}_n^{(0)} = f(\mathcal{R}_n^{(0)})$ with a lightweight model f (e.g., all-MiniLM-L6 (Reimers & Gurevych,
132 2019)), which need not be the same LLM used by the agents. These embeddings provide a fixed-
133 dimensional, semantically meaningful representation of the agent responses. Subsequent stages use
134 these response embeddings to infer contributions and construct the communication graph.
135

136 2.3 CONTRIBUTION ESTIMATION
137

138 Given responses $\{\mathbf{r}_1, \dots, \mathbf{r}_N\}$ from the N agents, we wish to estimate the contribution of individual
139 agents towards generating the collective response. We frame the problem of contribution estimation
140 as computing Shapley values (Shapley, 1953), a well-known concept in cooperative game theory.
141 For a cooperative game, the Shapley value of agent n is
142

$$143 \quad 144 \quad \phi_n = \sum_{\mathcal{S} \subseteq [N] \setminus \{n\}} \frac{|\mathcal{S}|!(N - |\mathcal{S}| - 1)!}{N!} [v(\mathcal{S} \cup \{n\}) - v(\mathcal{S})]. \quad (2)$$

146 Here, $v(\mathcal{S})$ is the utility of coalition \mathcal{S} . Computing the true Shapley value using Eq. 2 requires 2^N
147 evaluations, which is intractable for large N . Furthermore, an efficient mechanism is required to
148 evaluate $v(\mathcal{S})$. This challenge is well-known in collaborative learning scenarios, where quantifying
149 each player’s contribution is crucial for tasks such as incentive mechanisms, fairness, and robustness
150 (Lyu et al., 2020; Wang et al., 2020; Xu et al., 2021; Tastan et al., 2024; 2025a;b).

151 In this work, we adopt an approximation strategy inspired by Xu et al. (2021). Firstly, we define
152 the utility of a coalition \mathcal{S} as the cosine similarity between the average response embedding of the
153 agents in \mathcal{S} and the average response embedding of all agents. Moreover, instead of enumerating
154 all coalitions, we compare each agent’s embedding \mathbf{r}_n directly against the average embedding
155 $\mathbf{r}_{\text{avg}} = (1/N) \sum_{n=1}^N \mathbf{r}_n$. In other words, the true Shapley value ϕ_n is approximated by the estimated
156 contribution ψ_n of agent \mathcal{A}_n , which is defined as

$$157 \quad 158 \quad \phi_n \approx \psi_n := \cos(\mathbf{r}_n, \mathbf{r}_{\text{avg}}). \quad (3)$$

159 The above approximation reduces the complexity of Shapley value computation from exponential to
160 linear in N . Intuitively, the contribution is estimated based on how well an agent’s response aligns
161 with the collective (average) response. We now formalize the quality of this approximation.

162 **Theorem 1** (Approximation Bound (Xu et al., 2021)). Suppose $\|\mathbf{r}_n\| = \Gamma$ for all $n \in [N]$ and
 163 $|\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle| \geq 1/I$ for some $I > 0$. Then
 164

$$165 \quad \phi_n - L_n \psi_n \leq I \Gamma^2, \quad (4)$$

166 where L_n is a multiplicative factor that can be normalized away (Xu et al., 2021).
 167

168 **Corollary 1** (Ranking Stability). Let L_n be the multiplicative factor from Theorem 1, and let $\underline{L} =$
 169 $\min_j L_j$. If

$$170 \quad \psi_n - \psi_k > \frac{2I\Gamma^2}{\underline{L}}, \quad (5)$$

172 then the normalized Shapley scores $\tilde{\phi}_n = \phi_n / L_n$ satisfy $\tilde{\phi}_n > \tilde{\phi}_k$.
 173

174 All proofs are deferred to the appendix. Thus, the approximate Shapley value ψ_n not only pro-
 175 vides an efficient approximation but also preserves the relative ordering of contributions when the
 176 separation between agents is sufficiently large.

177 2.4 COMMUNICATION GRAPH FORMATION

179 Given the current responses $\{\mathbf{r}_1^{(t)}, \dots, \mathbf{r}_N^{(t)}\}$
 180 from N agents, our goal is to form a directed
 181 acyclic communication graph $\mathcal{G}^{(t+1)} =$
 182 $(\mathcal{V}, \mathcal{E}^{(t+1)})$ that governs how information
 183 flows among agents in the next round of
 184 collaboration ($t + 1$). To form this graph,
 185 we first estimate the agent contributions as:
 186 $\psi_n^{(t+1)} = \cos(\mathbf{r}_n^{(t)}, \mathbf{r}_{\text{avg}}^{(t)})$. We also com-
 187 pute pairwise similarities between the agent
 188 responses by computing the cosine similar-
 189 ity between their response embeddings, i.e.,
 190 $\mathbf{S}_{n,m}^{(t)} = \cos(\mathbf{r}_n^{(t)}, \mathbf{r}_m^{(t)})$.
 191

192 To avoid a fully connected graph, we retain
 193 only semantically meaningful links: for agent
 194 \mathcal{A}_n , an incoming candidate edge $e_{m \rightarrow n}^{(t+1)} \in$
 195 $\mathcal{E}^{(t+1)}$ is activated (set to 1) if and only if
 196 $\mathbf{S}_{n,m} \geq \tau$, where τ is a similarity thresh-
 197 old and $\psi_m^{(t+1)} > \psi_n^{(t+1)}$. Alternatively, one
 198 may achieve sparsification by restricting ac-
 199 tive edges to k -most similar neighbors of each
 200 agent.

201 The communication graph formed based on the above heuristics may still contain cycles. To avoid
 202 such cycles, we find the agent with the least estimated contribution within the detected cycle and
 203 remove the edge directed from the weaker agent (lower $\psi^{(t+1)}$) towards the stronger agent (higher
 204 $\psi^{(t+1)}$). This approach guarantees that more contributive agents remain upstream in the information
 205 flow. After the removal of the cycle, a topological ordering of the graph is computed, with ties
 206 broken in favor of nodes (agents) with higher $\psi^{(t+1)}$.

207 The resulting graph balances two principles:
 208

- 209 (i) *local alignment*, since each agent selectively listens only to semantically aligned peers, and
- 210 (ii) *global reliability*, since contribution scores govern the final order and ensure correctness
 211 amplification.

213 Since most decisions regarding graph formation (except cycle detection and removal) are made lo-
 214 cally, the resulting graph \mathcal{G} is quite dynamic. Crucially, it is not predetermined by human design, but
 215 emerges from the content of the agent responses, embodying a form of *self-organizing team struc-
 216 ture*. Each agent effectively votes on who should influence it, and the collective result is a network

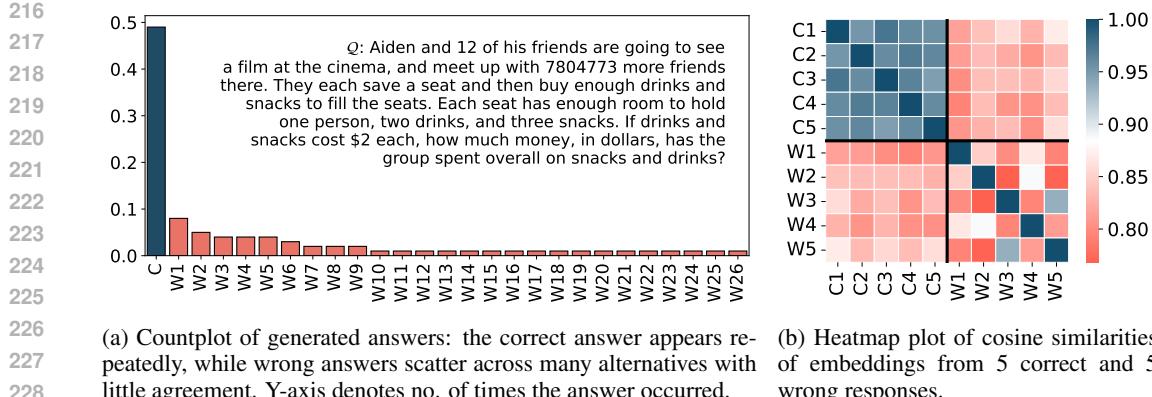


Figure 2: Analysis of Qwen-1.5B over 100 runs on the same math problem (GSM-Hard).

that channels information from the most promising agents to the ones that need help. For example, if one agent produces a particularly strong response and others recognize its value, many edges will point from the stronger agent to others, making it a hub of influence akin to a spontaneously elected leader. Thus, the topology adapts on-the-fly to the query at hand and the stochastic responses of the agents, rather than being fixed in advance. The full procedure is summarized in Algorithm 1.

2.5 RESPONSE PROPAGATION AND AGGREGATION

Once the communication graph $\mathcal{G}^{(t+1)}$ is formed, the next round of collaboration $(t+1)$ is initiated. There could be cases when the leader (root node) receives a message from the previous round (Algorithm 1, line 12) or it could coincide with its own response; in the latter case it is allowed to self-reflect on its previous response, i.e., $\mathcal{P}_{\text{root, coll}}^{(t+1)} \supseteq \mathcal{R}_{\text{root}}^{(t)}$. This ensures that the round begins with the most reliable response so far, while still leaving room for refinement. For the subsequent nodes in the graph, the response from the previous node is included in their collective prompt $\mathcal{P}_{n, \text{coll}}^{(t+1)} \supseteq \mathcal{R}_m^{(t+1)}$, if $e_{m \rightarrow n}^{(t+1)} = 1$. This response propagation procedure continues until all nodes in the current communication graph are processed. At the end of the response propagation, the agent contributions are re-estimated and the communication graph for the next collaboration round is formed. This process is repeated for a fixed number of collaboration rounds T or until some early stopping criterion is met.

Thus, a multi-round procedure naturally emerges: (i) the first round establishes contributions and the influence structure, (ii) the highest-contributor’s response initializes the next round, and (iii) subsequent agents refine or align their responses through the updated communication graph. In practice, two rounds are typically sufficient: the first for exploration, the second for consolidation.

After response propagation over multiple collaboration rounds, the final aggregate response of the multi-agent system is obtained as follows. First, the *contribution-weighted centroid* of the response embeddings after round T is computed as:

$$\mathbf{r}_{\text{centroid}}^{(T)} = \frac{\sum_{n=1}^N \psi_n^{(T)} \mathbf{r}_n^{(T)}}{\sum_{n=1}^N \psi_n^{(T)}}, \quad (6)$$

where $\mathbf{r}_n^{(T)}$ is the response embedding of agent \mathcal{A}_n in the last round and $\psi_n^{(T)}$ is its contribution score. The final aggregate response is not generated anew, but chosen among the existing responses $\{\mathcal{R}_n^{(T)}\}_{n=1}^N$. Specifically, we select the response whose embedding aligns closest to the centroid:

$$\mathcal{R}_{\text{final}} = \mathcal{R}_{n_*}, \quad \text{where } n_* = \arg \max_{n \in [N]} \cos \left(\mathbf{r}_n^{(T)}, \mathbf{r}_{\text{centroid}}^{(T)} \right). \quad (7)$$

2.6 PROBABILISTIC MODELING OF MULTI-AGENT SYSTEM

We now provide a probabilistic perspective to explain why our framework amplifies correct responses, particularly when the underlying LLMs are weak. The following analysis highlights two

complementary mechanisms: (i) with multiple agents, the probability that at least two agents are correct grows rapidly with N ; and (ii) whenever multiple agents agree on the same response, that response is overwhelmingly likely to be correct. Together, these principles explain why correctness not only appears more often in multi-agent settings but also dominates the contribution scores.

We begin with the experiments in Figure 2. Figure 2a shows that while the correct answer consistently appears across 100 runs of Qwen-1.5B, wrong answers are scattered with little overlap. Panel 2b shows a cosine similarity of embeddings from 5 correct and 5 incorrect responses: correct answers form a tight cluster, whereas incorrect ones are scattered. Finally, an intervention study shows that when an agent receives input from the top-contributor, its probability of solving the task rises from 49% to 69%. These findings motivate the need for contribution estimation and leader selection in SELFORG.

If each agent independently answers correctly with probability $p \in (0, 1)$, then the probability that at least two of N agents correct is $1 - (1 - p)^N - Np(1 - p)^{N-1}$. This is an increasing function with N that quickly approaches 1. Therefore, even weak agents collectively increase the chance that agreement on correctness is present in the system. The role of SELFORG is then to identify these consensuses and amplify them. In the following straightforward lemma, we argue that consensus about a correct answer (X_c) is more likely than consensus about an incorrect answer (X_i) using observations from Figure 2.

Lemma 1 (Agreement Concentration). *Let one agent be correct with probability $p \in (0, 1)$ and otherwise choose one of K incorrect answers with probabilities $p_1, \dots, p_K, \sum_{k=1}^K p_k = 1 - p$. For two independent agents,*

$$\Pr[X_c] = p^2 > \sum_{k=1}^K p_k^2 = \Pr[X_i]$$

whenever the errors are sufficiently dispersed (as in Fig. 2a), e.g., $\max_k p_k \leq \frac{p^2}{1-p}$.

We now connect the above probabilistic intuition to the contribution estimation of SELFORG. Figure 2b empirically supports the following assumption: embeddings of correct answers cluster together, while embeddings of wrong answers remain scattered.

Assumption 1. Suppose there exist constants $\alpha > \beta$ such that:

- (i) For all $n, m \in \mathcal{S}$ (correct cluster), $\cos(\mathbf{r}_n, \mathbf{r}_m) \geq \alpha$;
- (ii) For all $n \in \mathcal{S}, k \notin \mathcal{S}$, $\cos(\mathbf{r}_n, \mathbf{r}_k) \leq \beta$,
- (iii) For all $k, \ell \notin \mathcal{S}$, $\cos(\mathbf{r}_k, \mathbf{r}_\ell) \leq \beta$,

Lemma 2 (Contribution Dominance). *Under Assumption 1, for every $n \in \mathcal{S}$ and $k \notin \mathcal{S}$ we have $\psi_n > \psi_k$, where $\psi_n = \cos(\mathbf{r}_n, \mathbf{r}_{\text{all}})$ is the contribution score.*

Lemmas 1 and 2 together yield the following guarantee:

Corollary 2 (Correctness Amplification). *If at least two agents output the correct response, then this response is strictly more likely to receive high contribution scores than any incorrect alternative. The communication graph, therefore, routes information preferentially from correct agents, amplifying their signals while suppressing noise.*

Together, these results formalize why SELFORG remains effective under the weak-backend regime.

3 EXPERIMENTS

Our empirical evaluation largely follows the MASLab benchmark protocol (Ye et al., 2025a). We test SELFORG across various LLM backbones: Qwen (Qwen-2.5- $\{1.5, 3, 7, 14, 32, 72\}$ B) (Qwen et al., 2025), LLaMA (LLaMA-3-8B-Instruct, LLaMA-3.3-70B-Instruct) (Dubey et al., 2024), Falcon (Falcon3-7B-Instruct) (TII, 2024; Almazrouei et al., 2023), and Mistral (Mistral-7B-Instruct-v0.3) (Jiang et al., 2023a) on mathematics (MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), GSM-Hard (Gao et al., 2023), AQUA-RAT (Ling et al., 2017), AIME-2024), science (GPQA (Rein et al., 2024)), and knowledge (MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang

324 Table 1: **Main results on Qwen-2.5-1.5B-Instruct.** Comparison of SELFORG with single-agent
 325 prompting and multi-agent baselines across seven reasoning benchmarks. AVG reports mean accu-
 326 racy, while AVG-R reports average rank across methods (lower is better).

Method	MATH	GSM8K	AQUA	GSM-H	MMLU	MMLU-P	AIME	AVG	AVG-R
Qwen-2.5-1.5B-Instruct									
Single	49.20	70.40	51.18	36.20	49.60	28.80	3.33	41.24	2.57
CoT	46.80	69.20	53.54	36.20	50.60	28.60	3.33	41.18	2.71
DyLAN	49.80	67.80	51.18	27.20	50.00	15.40	3.33	37.82	4.00
MacNet	45.40	64.20	49.21	29.40	42.00	26.00	0.00	36.60	4.57
G-Designer	42.20	61.40	44.48	24.20	40.00	22.00	0.00	33.47	5.86
AgentVerse	45.20	69.00	50.39	27.80	38.20	24.00	0.00	36.37	4.86
AutoGen	11.60	69.40	28.74	5.40	12.20	5.20	0.00	18.93	6.06
SELFORG	52.40	74.60	58.27	38.00	53.80	31.60	6.67	45.05	1.00

338 Table 2: **Main results on large models (LLaMA-3.3-70B-Instruct & Qwen-2.5-72B-Instruct).**
 339 Comparison of SELFORG with baselines across reasoning benchmarks. AVG reports mean accuracy
 340 and AVG-R reports average rank across methods (lower is better).

Method	MATH	GSM8K	AQUA	GSM-H	MMLU	MMLU-P	GPQA	AIME	AVG	AVG-R
LLaMA-3.3-70B-Instruct										
Single	74.80	96.20	77.56	54.00	84.40	68.40	55.36	23.33	66.76	3.88
CoT	75.00	95.80	79.92	57.40	85.20	71.00	56.70	26.67	68.46	2.50
DyLAN	77.60	95.20	76.38	53.00	83.60	31.60	58.04	26.67	62.76	4.25
MacNet	74.80	96.00	79.13	55.20	83.00	65.40	58.26	26.67	67.31	3.63
AgentVerse	76.80	94.60	76.38	51.20	83.60	69.20	55.36	26.67	66.73	4.50
AutoGen	70.80	93.00	79.50	51.40	82.60	64.60	52.68	30.00	65.57	5.13
SELFORG	79.80	96.60	81.10	56.80	85.00	72.40	59.82	30.00	70.19	1.25
Qwen-2.5-72B-Instruct										
Single	83.00	95.00	81.10	63.80	82.40	70.60	46.65	20.00	67.82	2.88
CoT	82.80	95.20	80.71	62.00	82.80	71.40	44.20	16.67	66.97	3.50
DyLAN	80.60	95.40	77.95	63.20	84.20	69.20	46.43	13.33	66.29	3.75
MacNet	81.40	95.40	79.13	62.80	83.20	65.60	40.40	16.67	65.58	4.13
AgentVerse	82.80	95.20	77.17	57.80	81.40	71.20	45.98	23.33	66.86	4.13
AutoGen	81.20	95.80	78.35	64.20	82.60	69.40	45.54	13.33	66.30	3.75
SELFORG	84.40	96.20	80.71	64.20	83.80	71.20	47.77	23.33	68.95	1.38

357 et al., 2024)) benchmarks. We set the default max token limit as 2048 and a temperature 0.5. Our
 358 baselines include single call, chain-of-thought (CoT) (Wei et al., 2022), AutoGen Wu et al. (2024),
 359 AgentVerse Chen et al. (2024), G-Designer Zhang et al. (2025b), DyLAN Liu et al. (2024), and
 360 MacNet Qian et al. (2025). SELFORG defaults to use $N = 4$ agents, top-2 neighbors and at most 3
 361 rounds. Additional configurations, baseline methods, and other details are provided in Appendix B.
 362

3.1 MAIN EXPERIMENTAL RESULTS

365 Table 1 highlights the key advantage of SELFORG in scenarios where orchestration is most chal-
 366 lenging. With Qwen-1.5B, all multi-agent baselines cluster around average accuracies of roughly
 367 33 – 37%, showing limited ability to harness collaboration when the underlying agents are weak.
 368 In contrast, SELFORG achieves an average accuracy of 45.05%, a clear margin above all baselines,
 369 while also attaining the best average rank (AVG-R). This represents a gain of nearly **+4 points** over
 370 the strongest non-collaborative baseline (single agent or CoT). These results confirm our central
 371 hypothesis: when responses are noisy and correctness is sparse, a response-conditioned, adaptive
 372 graph provides the necessary amplification mechanism to elevate correct signals and suppress noise.
 373 We include G-Designer at a small scale; see Appendix B for discussion.

374 We also test SELFORG on stronger backbone models (Table 2). For LLaMA-70B, SELFORG
 375 achieves the highest average accuracy (70.19%) and best AVG-R (1.25), outperforming all base-
 376 lines. The same holds for the Qwen-72B model, where SELFORG attains the best average rank
 377 (1.38) with clear gains over prior methods. These results demonstrate that SELFORG remains effec-
 378 tive even with frontier-scale models, providing complementary improvements.

Dataset	AQUA-RAT		MMLU-Pro	
Model	Single	SELFORG	Single	SELFORG
1.5B	51.18	58.27	28.80	31.60
3B	65.35	73.62	42.60	46.20
7B	73.62	78.35	53.20	56.40
14B	75.79	81.50	61.80	65.40
32B	79.53	83.07	67.40	70.20
72B	81.10	80.71	70.60	71.20

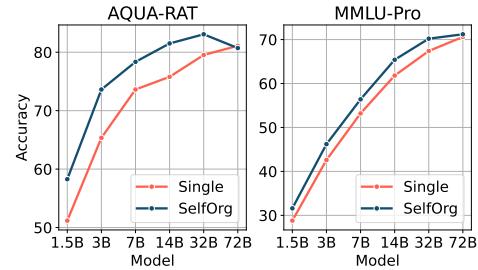


Figure 3: Scaling laws of **Qwen-2.5-X-Instruct** models across two reasoning benchmarks (AQUA-RAT and MMLU-Pro). The table shows exact accuracy values for different model sizes under the Single and SELFORG settings, while plot visualizes performance trends.

Together, these results demonstrate that SELFORG consistently outperforms prior orchestration frameworks. Gains are most pronounced in the low-capacity regime, where amplification of correct signals is crucial, but remain competitive even for frontier-scale models.

3.2 SCALING LAWS

We analyze how SELFORG scales with model size by evaluating Qwen-2.5-X-Instruct models ranging from 1.5B to 72B parameters on AQUA-RAT and MMLU-Pro (Table 3). Across most sizes, SELFORG consistently improves over the single-agent baseline. For example, gains are most pronounced in the weak-to-medium regime, with the 3B model improving from 65.35 to 73.62 on AQUA-RAT and from 42.60 to 46.20 on MMLU-Pro. At larger scales, improvements persist but become smaller, reflecting that strong single agents already achieve high reliability.

Interestingly, at the extreme high end (72B), the benefit nearly vanishes on AQUA-RAT, where accuracy slightly decreases from 81.10 to 80.71. This suggests diminishing returns when base models are sufficiently strong that agreement across agents offers limited additional signal. Nevertheless, SELFORG never underperforms substantially, and its advantages are clearest when individual models are weak or moderately strong, confirming the theoretical expectation that multi-agent collaboration amplifies correctness most in the low-resource regime.

3.3 HETEROGENEOUS AGENTS

We evaluate SELFORG in settings where agents are instantiated with heterogeneous backbones: Qwen2.5-7B, Falcon3-7B, LLaMA, Llama-3-8B, and Mistral-7B. Although similar in parameter count, these models differ substantially in ability (Table 4, top), with Qwen strongest, Mistral weakest, and Falcon serving as the second-best. Since multi-agent success depends on agreement among strong contributors, the system’s performance is effectively bounded by Falcon’s reliability while aiming to approach Qwen’s level.

The lower part of Table 4 compares the Single baseline (where one model is randomly sampled per query) and SELFORG. The Single setting yields 53.94 accuracy on AQUA-RAT and 41.60 on MMLU-Pro, whereas SELFORG improves to 66.14 and 50.40. Thus, SELFORG leverages agreement between strong models while still extracting useful signals from weaker ones, outperforming the stochastic baseline and approaching the best single-agent.

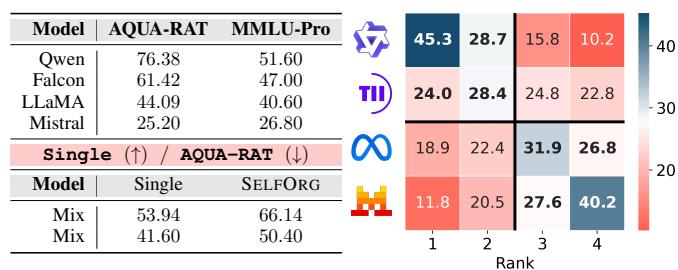


Figure 4: **Heterogeneous Agents**. Left: accuracies on AQUA-RAT and MMLU-Pro for each backbone and for the mixed-pool baseline (Single) vs. SELFORG. Right: percentage of times each agent attains contribution rank r (rank-1 highest).

432 Contribution rank distributions (Figure 4) further illustrate this effect: Qwen and Falcon dominate
 433 higher ranks, while LLaMA and Mistral are usually relegated lower, though occasionally contributing
 434 at mid-rank when aligned with stronger peers.

435 We further evaluate configurations that mix strong and weak agents, with detailed results presented
 436 in Appendix D.1. Beyond accuracy, we also analyze efficiency in terms of token usage (Ap-
 437 pendix D.2). Additional ablation studies examine the impact of the number of agents, the effect of
 438 reform across rounds, and the role of the embedding model in contribution estimation (Appendix E).

4 RELATED WORK

442 **Multi-Agent Systems.** Early multi-agent systems such as CAMEL (Li et al., 2023) and AutoGen
 443 (Wu et al., 2024) introduced role-based LLM agents that collaborate through dialogue. Debate-style
 444 systems encourage adversarial or diverse reasoning to refine answers (Du et al., 2023; Liang et al.,
 445 2024; Subramaniam et al., 2025), while dynamic orchestration (AgentVerse (Chen et al., 2024),
 446 DyLAN (Liu et al., 2024)) adapts team composition or roles during execution. More recent efforts
 447 aim for automatic workflow generation (Hu et al., 2025; Zhang et al., 2025c;b; Ye et al., 2025b),
 448 though these rely on strong meta-agents or pretrained generators, adding overhead and limiting
 449 autonomy. Multi-agent collaboration has also been applied to diverse domains including software
 450 (Hong et al., 2024; Qian et al., 2024a), recommendation (Zhang et al., 2024), medicine (Tang et al.,
 451 2024), finance (Li et al., 2024), education (Zhang et al., 2025e), and science (Zeng et al., 2024).

452 **Communication Graphs.** Prior work has explored a spectrum of communication topologies. Fixed
 453 structures include chains, trees, complete graphs, and random graphs, with recent studies system-
 454 matically comparing these patterns across task families such as mathematical reasoning, knowledge
 455 reasoning, and coding (Qian et al., 2025). Beyond static designs, some approaches treat the topology
 456 as *optimizable*: edges are sampled and trained with policy gradients or masks (Zhuge et al.,
 457 2024; Zhang et al., 2025a; Qian et al., 2025). A complementary line delegates topology design to a
 458 *separate* model that outputs a task- or query-specific communication graph (Zhang et al., 2025b; Ye
 459 et al., 2025b). Other frameworks rely on an external LLM “judge” to rank, filter, or finalize outputs
 460 (Liu et al., 2024; Zhang et al., 2025c; Zhuge et al., 2025; Ebrahimi et al., 2025). While effective
 461 in constrained settings, these strategies incur substantial overhead: pretraining graph generators,
 462 optimization over edges, or repeated calls to a judge LLM.

463 These approaches assume that an optimal or near-optimal graph exists either per task category or
 464 even per query. However, such assumptions can be misleading: because LLM agents are stochastic,
 465 the same agent may succeed on one query and fail on another. Our method instead constructs the
 466 graph on-the-fly, adapting dynamically to the actual responses produced.

467 **Contribution Assessment in Collaborative Systems.** Numerous systems in LLM-based MAS as-
 468 sess agent quality with additional LLMs. For instance, LLM-Blender (Jiang et al., 2023b) uses an
 469 additional LLM for pairwise comparisons, incurring $\mathcal{O}(N^2)$ operations for N agents, while DyLAN
 470 (Liu et al., 2024) introduces a dedicated LLM agent to score responses; other MAS frameworks
 471 similarly rely on judge models to value and select contributions (Ebrahimi et al., 2025). Outside
 472 multi-agent systems, the broader literature on contribution valuation offers principled tools originating
 473 from cooperative game theory (Shapley, 1953), with concrete instantiations in federated learning
 474 (McMahan et al., 2017; Jia et al., 2019). FL works measure participant contributions via Shapley
 475 values (Jia et al., 2019; Xu et al., 2021; Liu et al., 2022; Tastan et al., 2024), influence functions
 476 (Rokvic et al., 2024), self-reported information (Kang et al., 2019), and utility-game formulations
 477 (Wang et al., 2019). We draw a direct parallel to MAS and instantiate Shapley-style contribution es-
 478 timates over agent responses (Section 2.3), eliminating external judges and additional training while
 479 maintaining principled contribution estimation.

5 CONCLUSION

481 We presented SELFORG, a framework for orchestrating LLM-based multi-agent systems without ex-
 482 ternal pretrained topology generators or reinforcement learning. By leveraging response-conditioned
 483 contribution estimation and adaptive graph formation, SELFORG amplifies correct signals and sup-
 484 presses noise. Our theoretical analysis and empirical results across diverse reasoning benchmarks
 485 confirm that it consistently outperforms prior orchestration baselines.

486 REFERENCES
487

488 Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
489 jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
490 Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series
491 of open language models, 2023. URL <https://arxiv.org/abs/2311.16867>.

492 Anthropic. Claude 4. 2025. URL <https://www.anthropic.com/news/clause-4>.
493

494 Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi Li,
495 Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evalua-
496 tions, 2025. URL <https://arxiv.org/abs/2504.10481>.

497 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
498 Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
499 Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
500 behaviors. In *The Twelfth International Conference on Learning Representations*, 2024. URL
501 <https://openreview.net/forum?id=EHg5GDnyq1>.
502

503 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
504 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
505 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

506 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
507 tuality and reasoning in language models through multiagent debate. In *Forty-first International*
508 *Conference on Machine Learning*, 2023.
509

510 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
511 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
512 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
513 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
514 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
515 Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
516 Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,
517 Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
518 Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan,
519 Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
520 gia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey
521 Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Is-
522 abel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
523 Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny
524 Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
525 Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
526 teng Jia, Kalyan Vasudevan Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield,
527 Kevin Stone, and et al. The llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. URL
528 <https://doi.org/10.48550/arXiv.2407.21783>.
529

530 Sana Ebrahimi, Mohsen Dehghankar, and Abolfazl Asudeh. An adversary-resistant multi-agent llm
531 system via credibility scoring. *arXiv preprint arXiv:2505.24239*, 2025.

532 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
533 and Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma
534 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
535 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Pro-
536 ceedings of Machine Learning Research*, pp. 10764–10799. PMLR, 23–29 Jul 2023. URL
537 <https://proceedings.mlr.press/v202/gao23f.html>.
538

539 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
540 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
541 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
542 *Track (Round 2)*, 2021. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

540 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
 541 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
 542 Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collabora-
 543 tive framework. In *The Twelfth International Conference on Learning Representations*, 2024.
 544 URL <https://openreview.net/forum?id=VtmBAGCN7o>.

545 Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In *The Thirteenth*
 546 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=t9U3LW7JvX>.

547 Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel,
 548 Bo Li, Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based
 549 on the shapley value. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), *Proceedings of the*
 550 *Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89 of
 551 *Proceedings of Machine Learning Research*, pp. 1167–1176. PMLR, 16–18 Apr 2019. URL
 552 <https://proceedings.mlr.press/v89/jia19a.html>.

553 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 554 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 555 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 556 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a. URL <https://arxiv.org/abs/2310.06825>.

557 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
 558 els with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and
 559 Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Com-
 560 putational Linguistics (Volume 1: Long Papers)*, pp. 14165–14178, Toronto, Canada, July
 561 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL
 562 <https://aclanthology.org/2023.acl-long.792/>.

563 Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. Incentive mechanism for
 564 reliable federated learning: A joint optimization approach to combining reputation and contract
 565 theory. *IEEE Internet of Things Journal*, 6(6):10700–10714, 2019.

566 Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem.
 567 CAMEL: Communicative agents for “mind” exploration of large language model society. In
 568 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=3IyL2XWDkG>.

569 Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin Liao. EconAgent: Large language model-
 570 empowered agents for simulating macroeconomic activities. In Lun-Wei Ku, Andre Martins,
 571 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 572 putational Linguistics (Volume 1: Long Papers)*, pp. 15523–15536, Bangkok, Thailand, August
 573 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.829. URL
 574 <https://aclanthology.org/2024.acl-long.829/>.

575 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shum-
 576 ing Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through
 577 multi-agent debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Pro-
 578 ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 579 17889–17904, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 580 tics. doi: 10.18653/v1/2024.emnlp-main.992. URL <https://aclanthology.org/2024.emnlp-main.992/>.

581 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
 582 ation: Learning to solve and explain algebraic word problems. In Regina Barzilay and Min-Yen
 583 Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
 584 guistics (Volume 1: Long Papers)*, pp. 158–167, Vancouver, Canada, July 2017. Association for
 585 Computational Linguistics. doi: 10.18653/v1/P17-1015. URL <https://aclanthology.org/P17-1015/>.

594 Zelei Liu, Yuanyuan Chen, Han Yu, Yang Liu, and Lizhen Cui. Gtg-shapley: Efficient and accurate
 595 participant contribution evaluation in federated learning. *ACM Transactions on intelligent Systems
 596 and Technology (TIST)*, 13(4):1–21, 2022.

597

598 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Difyi Yang. A dynamic LLM-powered agent
 599 network for task-oriented agent collaboration. In *First Conference on Language Modeling*, 2024.
 600 URL <https://openreview.net/forum?id=XII0Wp1XA9>.

601 Lingjuan Lyu, Xinyi Xu, Qian Wang, and Han Yu. Collaborative fairness in federated learning. In
 602 *Federated Learning: Privacy and Incentive*, pp. 189–204. Springer, 2020.

603

604 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 605 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
 606 and statistics*, pp. 1273–1282. PMLR, 2017.

607 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

608

609 Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Zihao Xie, YiFei Wang, Weize Chen, Cheng Yang,
 610 Xin Cong, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. Experiential co-learning of software-
 611 developing agents. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings
 612 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 613 Papers)*, pp. 5628–5640, Bangkok, Thailand, August 2024a. Association for Computational Lin-
 614 guistics. doi: 10.18653/v1/2024.acl-long.305. URL [https://aclanthology.org/2024.acl-long.305/](https://aclanthology.org/2024.acl-long.305).

615

616 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
 617 Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
 618 Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
 619 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 620 putational Linguistics (Volume 1: Long Papers)*, pp. 15174–15186, Bangkok, Thailand, August
 621 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
 622 <https://aclanthology.org/2024.acl-long.810/>.

623

624 Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
 625 Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large language model-based
 626 multi-agent collaboration. In *The Thirteenth International Conference on Learning Representa-
 627 tions*, 2025. URL <https://openreview.net/forum?id=K3n5jPkrU6>.

628

629 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 630 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 631 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 632 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 633 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 634 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 635 URL <https://arxiv.org/abs/2412.15115>.

636

637 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 638 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 639 Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

640

641 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 642 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 643 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

644

645 Ljubomir Rokvic, Panayiotis Danassis, Sai Praneeth Karimireddy, and Boi Faltings. Lia: Privacy-
 646 preserving data quality evaluation in federated learning using a lazy influence approximation. In
 647 *2024 IEEE International Conference on Big Data (BigData)*, pp. 8005–8014. IEEE, 2024.

648

649 Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker (eds.),
 650 *Contributions to the Theory of Games II*, pp. 307–317. Princeton University Press, Princeton,
 651 1953.

648 Vighnesh Subramaniam, Yilun Du, Joshua B. Tenenbaum, Antonio Torralba, Shuang Li, and
 649 Igor Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains. In
 650 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=JtGPIZpOrz>.

651

652 Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Co-
 653 han, and Mark Gerstein. MedAgents: Large language models as collaborators for zero-shot med-
 654 ical reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the As-
 655 sociation for Computational Linguistics: ACL 2024*, pp. 599–621, Bangkok, Thailand, August
 656 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.33. URL
 657 <https://aclanthology.org/2024.findings-acl.33/>.

658

659 Nurbek Tastan, Samar Fares, Toluwani Aremu, Samuel Horváth, and Karthik Nandakumar. Redefin-
 660 ing contributions: Shapley-driven federated learning. In Kate Larson (ed.), *Proceedings of the*
 661 *Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pp. 5009–5017.
 662 International Joint Conferences on Artificial Intelligence Organization, 8 2024. Main Track.

663

664 Nurbek Tastan, Samuel Horváth, and Karthik Nandakumar. Aequa: Fair model rewards in collab-
 665 orative learning via slimmable networks. In *Forty-second International Conference on Machine*
 666 *Learning*, 2025a. URL <https://openreview.net/forum?id=Tw81RE1Dpe>.

667

668 Nurbek Tastan, Samuel Horváth, and Karthik Nandakumar. CYCLE: Choosing your collabora-
 669 tors wisely to enhance collaborative fairness in decentralized learning. *Transactions on Machine*
 670 *Learning Research*, 2025b. ISSN 2835-8856. URL <https://openreview.net/forum?id=yggqNilQqfH>.

671

672 Team TII. The falcon 3 family of open models, December 2024.

673

674 Guan Wang, Charlie Xiaoqian Dang, and Ziye Zhou. Measure contribution of participants in fed-
 675 erated learning. In *2019 IEEE international conference on big data (Big Data)*, pp. 2597–2604.
 676 IEEE, 2019.

677

678 Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. A principled approach to
 679 data valuation for federated learning. *Federated Learning: Privacy and Incentive*, pp. 153–167,
 680 2020.

681

682 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weim-
 683 ing Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang,
 684 Rongqi Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-
 685 task language understanding benchmark. In *The Thirty-eight Conference on Neural Information*
 686 *Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=y10DM6R2r3>.

687

688 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 689 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 690 *neural information processing systems*, 35:24824–24837, 2022.

691

692 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 693 Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
 694 Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In *First*
 695 *Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=BAakY1hNKS>.

696

697 Xinyi Xu, Lingjuan Lyu, Xingjun Ma, Chenglin Miao, Chuan Sheng Foo, and Bryan Kian Hsiang
 698 Low. Gradient driven rewards to guarantee fairness in collaborative machine learning. In
 699 M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Ad-
 700 vances in Neural Information Processing Systems*, volume 34, pp. 16104–16117. Curran
 701 Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8682cc30db9c025ecd3fee433f8ab54c-Paper.pdf.

702

703 Rui Ye, Keduan Huang, Qimin Wu, Yuzhu Cai, Tian Jin, Xianghe Pang, Xiangrui Liu, Jiaqi Su,
 704 Chen Qian, Bohan Tang, et al. Maslab: A unified and comprehensive codebase for llm-based
 705 multi-agent systems. *arXiv preprint arXiv:2505.16988*, 2025a.

702 Rui Ye, Shuo Tang, Rui Ge, Yixin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. MAS-GPT: Train-
 703 ing LLMs to build LLM-based multi-agent systems. In *Forty-second International Conference on*
 704 *Machine Learning*, 2025b. URL <https://openreview.net/forum?id=3CiSpY3QdZ>.

705 Zheni Zeng, Bangchen Yin, Shipeng Wang, Jiarui Liu, Cheng Yang, Haishen Yao, Xingzhi Sun,
 706 Maosong Sun, Guotong Xie, and Zhiyuan Liu. ChatMol: Interactive Molecular Discovery
 707 with Natural Language. In *Bioinformatics*, 2024. URL <https://doi.org/10.1093/bioinformatics/btae534>.

708 710 An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, and Tat-Seng Chua. On generative agents in
 711 recommendation. In *Proceedings of the 47th international ACM SIGIR conference on research*
 712 *and development in Information Retrieval*, pp. 1807–1817, 2024.

713 714 Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
 715 Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
 716 LLM-based multi-agent systems. In *The Thirteenth International Conference on Learning Rep-*
 717 *resentations*, 2025a. URL <https://openreview.net/forum?id=LkzuPorQ5L>.

718 719 Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
 720 Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topolo-
 721 gies via graph neural networks. In *Forty-second International Conference on Machine Learning*,
 722 2025b. URL <https://openreview.net/forum?id=LpE54NUnmO>.

723 724 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
 725 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
 726 Wu. AFlow: Automating agentic workflow generation. In *The Thirteenth International Confer-*
 727 *ence on Learning Representations*, 2025c. URL <https://openreview.net/forum?id=z5uVAKwmjf>.

728 729 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun
 730 Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embed-
 731 ding: Advancing text embedding and reranking through foundation models, 2025d. URL
 732 <https://arxiv.org/abs/2506.05176>.

733 734 Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianx-
 735 iao Jiang, Jie Cao, Huiqin Liu, Zhiyuan Liu, Lei Hou, and Juanzi Li. Simulating classroom
 736 education with LLM-empowered agents. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
 737 *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Associa-*
 738 *tion for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-*
 739 *pers)*, pp. 10364–10379, Albuquerque, New Mexico, April 2025e. Association for Computa-
 740 tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.520. URL
 741 <https://aclanthology.org/2025.nacl-long.520/>.

742 743 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
 744 Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Ruslan Salakhutdinov,
 745 Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
 746 Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, vol-
 747 ume 235 of *Proceedings of Machine Learning Research*, pp. 62743–62767. PMLR, 21–27 Jul
 748 2024. URL <https://proceedings.mlr.press/v235/zhuge24a.html>.

749 750 Mingchen Zhuge, Changsheng Zhao, Dylan R. Ashley, Wenyi Wang, Dmitrii Khizbulin, Yun-
 751 yang Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang
 752 Shi, Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents.
 753 In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=Nn9POI9Ekt>.

754 755

756	Contents	
757		
758	1 Introduction	1
759		
760	2 Methodology	2
761	2.1 System Overview	3
762	2.2 Decentralized Initialization	3
763	2.3 Contribution Estimation	3
764	2.4 Communication Graph Formation	4
765	2.5 Response Propagation and Aggregation	5
766	2.6 Probabilistic Modeling of Multi-Agent System	5
767	3 Experiments	6
768	3.1 Main Experimental Results	7
769	3.2 Scaling Laws	8
770	3.3 Heterogeneous Agents	8
771	4 Related Work	9
772		
773	5 Conclusion	9
774		
775	A Mathematical Proofs	16
776	A.1 Proof of Theorem 1	16
777	A.2 Proof of Corollary 1	17
778	A.3 Proof of Lemma 1	17
779	A.4 Proof of Lemma 2	17
780	B Implementation Details	18
781		
782	C Graph Formation Function	20
783		
784	D Additional Experiments	20
785	D.1 Weak Agent in a Pool	20
786	D.2 Token Consumption	21
787	D.3 Efficient SELFORG	22
788	D.4 Embedding Model	24
789	E Ablation Study	25
790	E.1 Number of Agents	25
791	E.2 To Reform or Not To Reform	26
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

A MATHEMATICAL PROOFS

A.1 PROOF OF THEOREM 1

Proof. We adapt the argument of (Xu et al., 2021) to our setting.

By definition,

$$\phi_n = \sum_{S \subseteq [N] \setminus \{n\}} w_S \Delta_n(S), \quad \Delta_n(S) = v(S \cup \{n\}) - v(S), \quad w_S = \frac{|S|!(N - |S| - 1)!}{N!}. \quad (8)$$

Let $\mathbf{x} = \sum_{j \in S} \mathbf{r}_m$ and recall $\mathbf{r}_{\text{avg}} = \frac{1}{N} \sum_{j=1}^N \mathbf{r}_m$.

Exact decomposition. Expanding the marginal contribution (difference in the utilities) $\Delta_n(S)$ and regrouping gives

$$\Delta_n(S) = v(S \cup \{n\}) - v(S) \quad (9)$$

$$= \frac{\langle \mathbf{x} + \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x} + \mathbf{r}_n\| \|\mathbf{r}_{\text{avg}}\|} - \frac{\langle \mathbf{x}, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x}\| \|\mathbf{r}_{\text{avg}}\|} \quad (10)$$

$$= \frac{1}{\|\mathbf{r}_{\text{avg}}\|} \left(\frac{\langle \mathbf{x}, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x} + \mathbf{r}_n\|} - \frac{\langle \mathbf{x}, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x}\|} + \frac{\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x} + \mathbf{r}_n\|} \right) \quad (11)$$

$$= \frac{1}{\|\mathbf{r}_{\text{avg}}\|} \left(\frac{\|\mathbf{x}\| - \|\mathbf{x} + \mathbf{r}_n\|}{\|\mathbf{x} + \mathbf{r}_n\|} \cdot \frac{\langle \mathbf{x}, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x}\|} + \frac{\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x} + \mathbf{r}_n\|} \right) \quad (12)$$

$$= \frac{\|\mathbf{x}\| - \|\mathbf{x} + \mathbf{r}_n\|}{\|\mathbf{x} + \mathbf{r}_n\|} \frac{\langle \mathbf{x}, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{x}\| \|\mathbf{r}_{\text{avg}}\|} + \frac{1}{\|\mathbf{x} + \mathbf{r}_n\|} \frac{\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle}{\|\mathbf{r}_{\text{avg}}\|} \quad (13)$$

$$= \underbrace{\frac{\|\mathbf{x}\| - \|\mathbf{x} + \mathbf{r}_n\|}{\|\mathbf{x} + \mathbf{r}_n\|}}_{A_S} \cdot v(S) + \underbrace{\frac{\|\mathbf{r}_n\|}{\|\mathbf{x} + \mathbf{r}_n\|}}_{B_S} \cdot \psi_n \quad (14)$$

where $v(S) = \cos(\mathbf{x}, \mathbf{r}_{\text{avg}})$ and $\psi_n = \cos(\mathbf{r}_n, \mathbf{r}_{\text{avg}})$. $A_S = \frac{\|\mathbf{x}\| - \|\mathbf{x} + \mathbf{r}_n\|}{\|\mathbf{x} + \mathbf{r}_n\|}$ and $B_S = \frac{\|\mathbf{r}_n\|}{\|\mathbf{x} + \mathbf{r}_n\|}$.

Plugging this back into the original equation of Shapley value gives the exact split

$$\phi_n = \sum_S w_S A_S v(S) + \left[\sum_S w_S B_S \right] \psi_n = L_n \psi_n + \sum_S w_S A_S v(S). \quad (15)$$

Bounding the error. Consider the ratio

$$\frac{|A_S| |v(S)|}{B_S \psi_n} = \frac{\|\mathbf{x}\| - \|\mathbf{x} + \mathbf{r}_n\|}{\Gamma} \cdot \frac{|\cos(\mathbf{x}, \mathbf{r}_{\text{avg}})|}{\cos(\mathbf{r}_n, \mathbf{r}_{\text{avg}})}. \quad (16)$$

Using (i) the reverse triangle inequality $\|\mathbf{x}\| - \|\mathbf{x} + \mathbf{r}_n\| \leq \|\mathbf{r}_n\| = \Gamma$, (ii) $|\cos(\mathbf{x}, \mathbf{r}_{\text{avg}})| \leq 1$, and (iii) the alignment assumption ($|\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle| \geq \frac{1}{I}$), we obtain

$$\frac{|A_S| |v(S)|}{B_S \psi_n} \leq I \Gamma \|\mathbf{r}_{\text{avg}}\| \leq I \Gamma^2, \quad (17)$$

using $\|\mathbf{r}_{\text{avg}}\| \leq \Gamma$ (average of Γ -norm vectors). Averaging with weights w_S (linear interpolation in our case) preserves this bound, yielding

$$\phi_n - L_n \psi_n \leq I \Gamma^2. \quad (18)$$

This concludes the proof. \square

864 A.2 PROOF OF COROLLARY 1
865866 *Proof.* From Theorem 1, we can write

867
$$\tilde{\phi}_\ell = \psi_\ell + \frac{R_\ell}{L_\ell}, \quad |R_\ell| \leq I\Gamma^2. \quad (19)$$

868
869

870 Then,

871
$$\tilde{\phi}_n - \tilde{\phi}_k \geq (\psi_n - \psi_k) - \frac{|R_n|}{L_n} - \frac{|R_k|}{L_k} \geq (\psi_n - \psi_k) - \frac{2I\Gamma^2}{L}. \quad (20)$$

872
873

874 Hence, if $\psi_n - \psi_k > 2I\Gamma^2/L$, then $\tilde{\phi}_n > \tilde{\phi}_k$.

□

877 A.3 PROOF OF LEMMA 1
878879 *Proof.* By independence, $\Pr[X_c] = p^2$ and $\Pr[X_i] = \sum_k p_k^2$. Using dispersion,

880
881
$$\sum_{k=1}^K p_k^2 \leq (\max_k p_k) \sum_{k=1}^K p_k = (1-p) \max_k p_k \leq (1-p) \frac{p^2}{1-p} = p^2. \quad (21)$$

882
883

884 Strict inequality holds unless all mass concentrates on a single incorrect option at exactly $\max_k p_k =$
885 $\frac{p^2}{1-p}$. Hence, agreement is more likely on the correct answer.

886 This completes the proof.

□

889 A.4 PROOF OF LEMMA 2
890891 *Proof.* Fix $n \in \mathcal{S}$. Decompose

892
$$\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle = \langle \mathbf{r}_n, \mathbf{r}_n \rangle + \sum_{\substack{j \in \mathcal{S} \\ j \neq n}} \langle \mathbf{r}_n, \mathbf{r}_m \rangle + \sum_{u \notin \mathcal{S}} \langle \mathbf{r}_n, \mathbf{r}_u \rangle. \quad (22)$$

893
894

895 By assumptions (i)-(ii),

896
$$\langle \mathbf{r}_n, \mathbf{r}_n \rangle = \Gamma^2, \quad \langle \mathbf{r}_n, \mathbf{r}_m \rangle \geq \Gamma^2 \alpha \quad (j \in \mathcal{S} \setminus \{i\}), \quad \langle \mathbf{r}_n, \mathbf{r}_u \rangle \leq \Gamma^2 \beta \quad (u \notin \mathcal{S}). \quad (23)$$

897

898 Hence

899
$$\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle \geq \Gamma^2 + (m-1)\Gamma^2 \alpha + (N-m)\Gamma^2 \beta. \quad (24)$$

900

901 Now fix $k \notin \mathcal{S}$. Similarly,

902
$$\langle \mathbf{r}_k, \mathbf{r}_{\text{avg}} \rangle = \langle \mathbf{r}_k, \mathbf{r}_k \rangle + \sum_{v \in \mathcal{S}} \langle \mathbf{r}_k, \mathbf{r}_v \rangle + \sum_{\substack{w \notin \mathcal{S} \\ w \neq k}} \langle \mathbf{r}_k, \mathbf{r}_w \rangle. \quad (25)$$

903
904

905 By assumptions (ii)-(iii),

906
$$\langle \mathbf{r}_k, \mathbf{r}_{\text{avg}} \rangle \leq \Gamma^2 + m\Gamma^2 \beta + (N-m-1)\Gamma^2 \beta = \Gamma^2 + (N-1)\Gamma^2 \beta. \quad (26)$$

907

908 Subtracting yields

909
$$\langle \mathbf{r}_n, \mathbf{r}_{\text{avg}} \rangle - \langle \mathbf{r}_k, \mathbf{r}_{\text{avg}} \rangle \geq (m-1)(\alpha - \beta)\Gamma^2 > 0. \quad (27)$$

910

911 Since $\text{avg } \psi_r = \cos(\mathbf{r}_r, \mathbf{r}_{\text{avg}})$ share the same denominator $\|\mathbf{r}_r\| \|\mathbf{r}_{\text{avg}}\| = \Gamma \|\mathbf{r}_{\text{avg}}\|$, the inequality
912 implies $\psi_n > \psi_k$.

913 This completes the proof.

□

918 B IMPLEMENTATION DETAILS

920 **Baselines.** We use the benchmark authors’ implementations where available (Ye et al., 2025a).

921

- 922 • **MacNet** (Qian et al., 2025) is run with 5 agents and the random topology, following the
923 paper’s strongest reported configuration.
- 924 • **DyLAN** (Liu et al., 2024) uses 4 agents and 3 rounds.
- 925 • **AgentVerse** (Chen et al., 2024) and **AutoGen** (Wu et al., 2024) are run with their public
926 defaults adapted to the benchmark.
- 927 • **G-Designer** (Zhang et al., 2025b) is evaluated on Qwen-2.5-1.5B-Instruct; we omit larger
928 models because it requires training a separate graph generator, and thus latency-inefficient
929 (see Sections 1 and 4 for discussion).

930

931 We include G-Designer (Zhang et al., 2025b) in our Qwen-1.5B experiments, as it is
932 among the most closely related graph-optimizing methods. However, its design differs
933 fundamentally from SELFORG. G-Designer trains a separate graph generator that outputs
934 a communication topology conditioned on the query and predefined agent roles. While this
935 is effective with stronger backbones, it does not adapt to the *responses* actually produced
936 by weak agents, which are often noisy. As a result, its learned graphs fail to amplify correct
937 signals in the low-capacity regime, leading to poor empirical performance (see Table 1).

938 For larger models, we do not run G-Designer, since it requires training a dedicated
939 graph generator. This introduces substantial overhead and deviates from our goal of ef-
940 ficient, judge-free orchestration. Our design philosophy emphasizes lightweight, response-
941 conditioned self-organization without external generators or meta-agents, as discussed in
942 Sections 1 and 4.

943

- 944 • To compare with **single agent execution methods**, we incorporate evaluations against sin-
945 gle execution and chain-of-thought (CoT) prompting (Wei et al., 2022).

946

947 **SELFORG configuration.** SELFORG is configured as:

948

- 949 • **Agent pool:** {Assistant, Programmer, Mathematician, Economist,
950 Psychologist, Historian, Lawyer, Doctor}.
- 951 • **Number of agents:** for math-based tasks: 4 agents with fixed roles (from the pool), and
952 for science and knowledge: 5 agents up to psychologist.
- 953 • **Neighbor selection:** top-2 neighbors per agent (by pairwise cosine similarity S); similarity
954 threshold $\tau = 0.5$ for edge formation.
- 955 • **Rounds and structure:** maximum of 3 rounds (including decentralized initialization);
956 with DAG enforcement.
- 957 • **Contribution estimation:** we use all-MiniLM-L6-v2 embedding model with embed-
958 ding dimension of 384 (lightweight sentence embedding model).
- 959 • **Aggregation:** contribution-weighted centroid (Equation 6); final answer is the nearest re-
960 sponse to the centroid.
- 961 • **Reform policy:** we reform the DAG in each round from updated responses.

962

963 **Agent Profiling.** We adopt a standard community template for defining agent roles, widely used
964 in prior multi-agent system benchmarks. In our experiments, a subset of four/five agents is instan-
965 tiated per run (default), selected in fixed order unless otherwise specified. Each role is assigned a
966 default prompt template (system instruction) from the benchmark community, without additional
967 fine-tuning or hand-engineering. This ensures that performance differences arise from orchestration
968 rather than custom role design.

969 The role descriptions are provided below.

970 **Evaluation.** We use a direct scoring approach using a task-specific evaluator (xVerify (Chen et al.,
971 2025)), which is fine-tuned to assess correctness across various domains (Ye et al., 2025a).

972

Assistant

973

You are a super-intelligent AI assistant capable of performing tasks more effectively than humans.

974

975

976

977

Mathematician

978

You are a mathematician.

979

You are good at math games, arithmetic calculation, and long-term planning.

980

981

982

983

Economist

984

You are an economist.

985

You are good at economics, finance, and business. You have experience on understanding charts while interpreting the macroeconomic environment prevailing across world economies.

986

987

988

989

990

Psychologist

991

You are a psychologist.

992

You are good at psychology, sociology, and philosophy. You give people scientific suggestions that will make them feel better.

993

994

995

996

Programmer

997

You are a programmer.

998

You are good at computer science, engineering, and physics. You have experience in designing and developing computer software and hardware.

999

1000

1001

1002

1003

Historian

1004

You are a historian.

1005

You research and analyze cultural, economic, political, and social events in the past, collect data from primary sources and use it to develop theories about what happened during various periods of history.

1006

1007

1008

1009

1010

1011

Lawyer

1012

You are a lawyer.

1013

You are good at law, politics, and history.

1014

1015

1016

Doctor

1017

You are a doctor and come up with creative treatments for illnesses or diseases. You are able to recommend conventional medicines, herbal remedies and other natural alternatives. You also consider the patient's age, lifestyle and medical history when providing your recommendations.

1018

1019

1020

1021

1022

1023

1024

1025

1026 **C GRAPH FORMATION FUNCTION**
10271028 **Algorithm 2** Graph Formation

1030 **Require:** Responses $\{\mathcal{R}_n\}_{n=1}^N$, similarity threshold τ , optional neighbor budget k
 1031 **Ensure:** Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, topological order π , contribution scores $\{\psi_n\}_{n=1}^N$

1: Compute embeddings $\mathbf{r}_n \leftarrow f(\mathcal{R}_n)$, $\forall n \in [N]$
 2: Form similarity matrix \mathbf{S}
 3: Get contribution scores $\{\psi_n\}_{n=1}^N$ (Eq. 3)
 4: Initialize edge set $\mathcal{E} \leftarrow \{\}$
 5: **for** $n = 1$ to N **do**
 6: $\mathcal{N} \leftarrow \{m \neq n : \mathbf{S}_{n,m} \geq \tau\}$
 7: **if** k specified **then**
 8: keep top- k in \mathcal{N}
 9: **end if**
 10: **for** $m \in \mathcal{N}$ **do**
 11: add edge $e_{m \rightarrow n}$ to \mathcal{E}
 12: **end for**
 13: **end for**
 14: **while** \mathcal{E} contains a cycle **do**
 15: Identify cycle \mathcal{C}
 16: Remove edge from lower- ψ to higher- ψ node in \mathcal{C}
 17: **end while**
 18: Obtain topological order π of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 19: **return** $(\mathcal{G}, \pi, \{\psi_n\})$

1050
1051 **D ADDITIONAL EXPERIMENTS**
10521053 **D.1 WEAK AGENT IN A POOL**
1054

1055 To test the robustness of SELFORG in a setting with a weak agent present, we evaluate configurations
 1056 where weaker agents are introduced alongside stronger peers. Figure 5 reports the distribution of
 1057 contribution ranks assigned across two scenarios: (i) three powerful agents backed by the Qwen-
 1058 2.5-7B-Instruct model paired with one Qwen-2.5-1.5B-Instruct agent, and (ii) two agents of each
 1059 type.

1060 Table 3 summarizes AQUA-RAT performance under these settings. In case (i), where three strong
 1061 and one weak agent are present, the single-agent performance is 71.65, while SELFORG raises it to
 1062 75.98, approaching the 76.77 level achieved when all four agents are strong. In case (ii), with two
 1063 strong and two weak agents, SELFORG again yields large gains, improving accuracy from 66.54 in
 1064 the single baseline to 74.80. These results demonstrate that SELFORG is able to reliably mitigate
 1065 the drag introduced by weaker models, often recovering performance close to the all-strong setting.

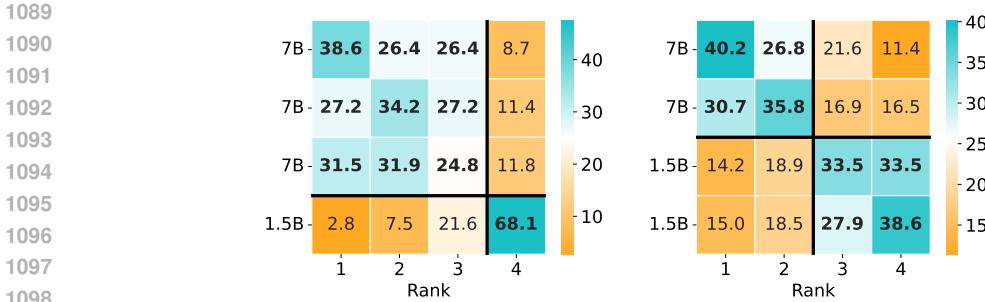
1066 **Table 3: Performance with weak agents in the pool (AQUA-RAT).** Comparison of SELFORG
 1067 against single-agent baselines in the (3 strong vs 1 weak) and (2 strong vs 2 weak) settings.
 1068

Method	\mathcal{A}_1	\mathcal{A}_2	\mathcal{A}_3	\mathcal{A}_4	AQUA-RAT	Note
Single		1.5B			51.18	Single agent; Qwen-1.5B backbone (single weak)
Single		7B			76.77	Single agent; Qwen-7B backbones (single strong)
Single	7B	7B	7B	1.5B	71.65	Backbone assignment is random per query (7B prob. 0.75)
SELFORG	7B	7B	7B	1.5B	75.98	Each agent uses its fixed backbone
Single	7B	7B	1.5B	1.5B	66.54	Backbone assignment is random per query (7B prob. 0.5)
SELFORG	7B	7B	1.5B	1.5B	74.80	Each agent uses its fixed backbone

1076 In setting (i), the weak agent is consistently identified as the least contributive, being placed in
 1077 rank-4 in the majority of runs (68.1%). The stronger 7B models distribute across the higher ranks,
 1078 demonstrating that the contribution estimation mechanism sharply separates weak from strong par-
 1079 ticipants. The observation supports the theoretical guarantee in Section 2.6, namely that agreement

1080 among correct agents amplifies their contribution scores, relegating weaker outliers downstream in
 1081 the communication graph.

1082 The case (ii) exhibits a more competitive dynamic. While the .15B agents remain overrepresented
 1083 in the lower ranks, they also occasionally occupy intermediate positions (ranks 2 and 3), and the
 1084 separation between strong and weak agents becomes less pronounced (due to the fact that the weak
 1085 agents occasionally produce correct answers, thus leading to increased variability in contribution
 1086 signals). Nevertheless, the stronger agents still dominate the top positions, ensuring that information
 1087 flow in the communication graph is largely governed by higher-quality responses.

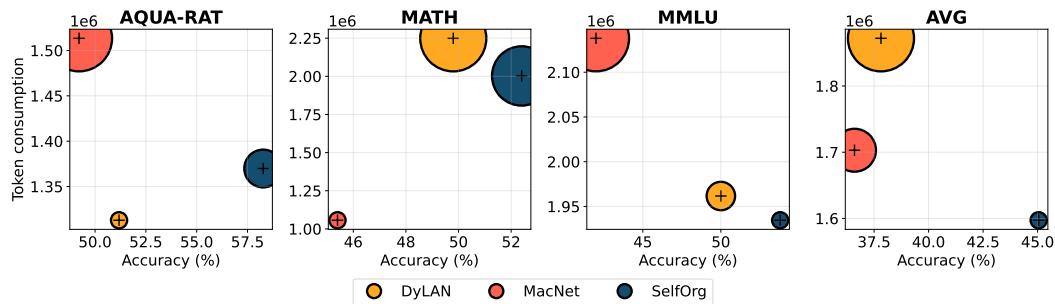


1099 Figure 5: Heatmaps of ranking outcomes with a weak agent in the pool. Each heatmap depicts the
 1100 percentage (%) of times agents were assigned to contribution ranks (rank 1 = highest contribution,
 1101 rank 4 = weakest). The y-axis denotes the model type (Qwen-2.5- $\{7,1.5\}$ B-Instruct) assigned to
 1102 each agent.

1105 D.2 TOKEN CONSUMPTION

1107 We compare SELFORG to prior coordination frameworks with respect to both accuracy and token
 1108 efficiency. Figures 6 and 7 visualize this trade-off, where bubble area corresponds to total token
 1109 usage. For clarity, only DyLAN and MacNet are included among the baselines in the plots. Although
 1110 AgentVerse and AutoGen achieve lower token usage than all other methods, their performance is
 1111 substantially weaker (Table 1), with AutoGen in particular failing across nearly all benchmarks.
 1112 Since our objective is to highlight the efficiency of coordination methods that remain competitive in
 1113 accuracy, we restrict the visualization to DyLAN and MacNet.

1114 By contrast, DyLAN and MacNet represent stronger baselines that consume a similar number of
 1115 tokens as SELFORG. DyLAN exhibits relatively competitive performance on some reasoning tasks,
 1116 but its overall average lags behind, especially on challenging datasets such as MMLU-Pro. MacNet
 1117 shows modest efficiency advantages in prompt token usage but suffers from accuracy degradation
 1118 across nearly all tasks. In both cases, SELFORG outperforms these baselines in accuracy while
 1119 maintaining a comparable token budget, indicating a more favorable accuracy-efficiency trade-off.



1131 Figure 6: **Visualization of performance and completion token consumption.** Each bubble corre-
 1132 sponds to a coordination method, with bubble area proportional to token consumption. Correspond-
 1133 ing table: Table 1.

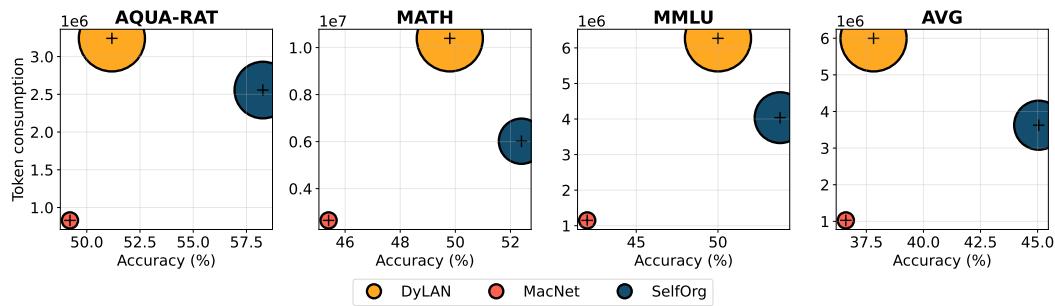


Figure 7: **Visualization of performance and prompt token consumption.** Each bubble corresponds to a coordination method, with bubble area proportional to token consumption. Corresponding table: Table 1.

Table 4: **Token consumption across coordination methods.** Completion tokens (top) and prompt tokens (bottom) consumed on each dataset on Qwen-2.5-1.5B-Instruct model. Corresponding table: Table 1.

Method	MATH	GSM8K	AQUA-RAT	GSM-Hard	MMLU	MMLU-P	AIME
completion tokens							
DyLAN	2249026	2086972	1312830	2468878	1961663	2786528	238078
MacNet	1056599	1806092	1513390	2238769	2137874	2925015	243205
AgentVerse	1077488	609241	530435	711561	338957	703302	74665
AutoGen	487744	282592	202713	371429	271488	390695	53990
SELFORG	2002530	1858577	1369879	2214019	1934568	1587246	213939
prompt tokens							
DyLAN	10391904	4706386	3241463	5719811	6267944	10847226	797505
MacNet	2647651	536500	829202	486320	1149266	1471736	61122
AgentVerse	3309868	2048995	1793383	2283561	1338962	2723973	240881
AutoGen	2026745	1292144	874703	1564267	1442236	2050001	176709
SELFORG	6016239	3836070	2556599	4351062	4038531	4251306	325588

D.3 EFFICIENT SELFORG

While the main pipeline of SELFORG proceeds through multiple rounds, not all rounds are equally necessary. In practice, if the agents already achieve strong agreement, further refinement may waste tokens without improving accuracy. To address this, we introduce an **early-stopping mechanism** based on natural consensus among peers.

Consensus Criterion. Let the similarity matrix $\mathbf{S} \in [-1, 1]$ be defined as in Section 2.4, where $\mathbf{S}_{i,j} = \cos(\mathbf{r}_n, \mathbf{r}_m)$ encodes the pairwise agreement between agents i and j . We define the *minimum consensus* across all pairs as $\mathbf{S}_{\min} = \min_{i \neq j} \mathbf{S}_{i,j}$. Intuitively, \mathbf{S}_{\min} captures the weakest agreement within the system. If this minimum exceeds a predefined threshold $\gamma \in [0, 1]$, then the agents are deemed to have reached sufficient consensus.

Formally, the system halts further rounds if $\mathbf{S}_{\min} \geq \gamma$, where γ is the *consensus parameter* controlling strictness of agreement. For example, $\gamma = 0.9$ requires that all pairs of responses have at least 90% cosine similarity. When satisfied, the system outputs the centroid-based final response (Equation 6) without additional rounds.

This mechanism directly builds upon the communication graph formation step (Section 2.4). Since embeddings and similarities are already computed, evaluating \mathbf{S}_{\min} incurs negligible overhead. By stopping once consensus is achieved, SELFORG avoids redundant propagation and aggregation,

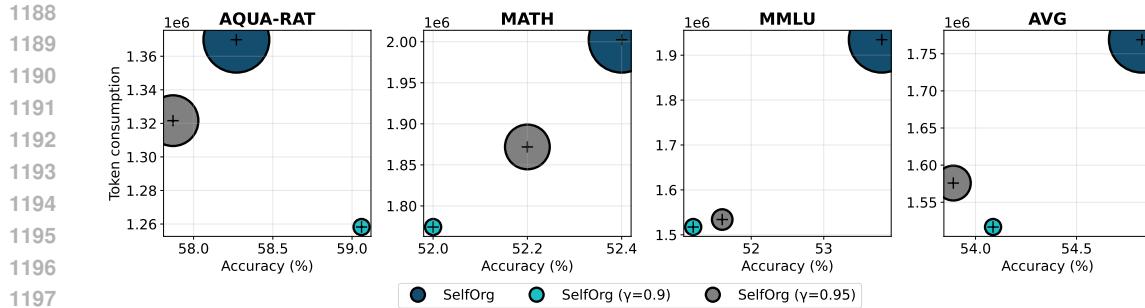


Figure 8: **Visualization of performance and completion token consumption** across benchmarks (AQUA-RAT, MATH, MMLU, and overall average). Each point corresponds to a method, with bubble size proportional to token usage. Methods include original SELFORG and efficient SELFORG with early stopping at $\gamma = \{0.9, 0.95\}$. Early stopping variants show improved efficiency (fewer tokens) while maintaining comparable accuracy.

yielding substantial *token efficiency*. In scenarios where weak agents initially diverge, multiple rounds remain valuable; however, when natural agreement arises early, Efficient SELFORG prevents unnecessary computation.

Experimental Results. Figure 8 compares the baseline SELFORG with its early-stopping variants under consensus thresholds $\gamma \in \{0.9, 0.95\}$ on AQUA-RAT, MATH, and MMLU. All experiments were run with $N = 4$ agents, each selecting its top-2 neighbors, and 3 rounds. We report both accuracy and completion token consumption. Bubble sizes reflect token usage, with smaller bubbles denoting higher efficiency.

Baseline SELFORG achieves accuracies of 58.27% (AQUA-RAT), 52.40% (MATH), and 53.80% (MMLU). Under $\gamma = 0.95$, accuracy slightly drops on AQUA-RAT (57.87%), MMLU (51.60%), and MATH (52.2%). With a looser threshold $\gamma = 0.9$, performance closely matches or even exceeds the baseline on AQUA-RAT (59.06%), while remaining comparable on MATH (52.00%) and MMLU (51.20%). This indicates that early stopping preserves task quality and, in some cases, improves it by preventing over-refinement.

The key advantage lies in efficiency. Both early-stopping settings consistently reduce token usage compared to the baseline. The stricter $\gamma = 0.95$ yields moderate savings, while the looser $\gamma = 0.9$ achieves the largest reductions. In relative terms, token usage decreases substantially while accuracy remains stable, with savings on the order of 10 – 15% across benchmarks.

Summary. Efficient SELFORG demonstrates that natural peer consensus can serve as a reliable early-stopping signal. By halting once strong agreement is reached, the system avoids redundant message-passing rounds, improving token efficiency while preserving accuracy. Unlike prior MAS approaches such as DyLAN, which require *explicit answer extraction* from responses to measure consensus (and may fail if the LLM deviates from formatting instructions), our method operates purely in the embedding space and thus avoids brittle dependencies on response parsing. Similarly, works that rely on external LLM judges to check consensus introduce additional computational and monetary overhead. In contrast, Efficient SELFORG is lightweight, model-agnostic, and robust: no answer extraction is needed, no external judge is invoked, and consensus is measured semantically rather than syntactically. This makes it especially suitable for scaling to large agent pools and diverse task domains.

For completeness, we provide Figures 9 and 10, which include efficient SELFORG along with the other baseline methods and depict the performance and completion/prompt token consumption.

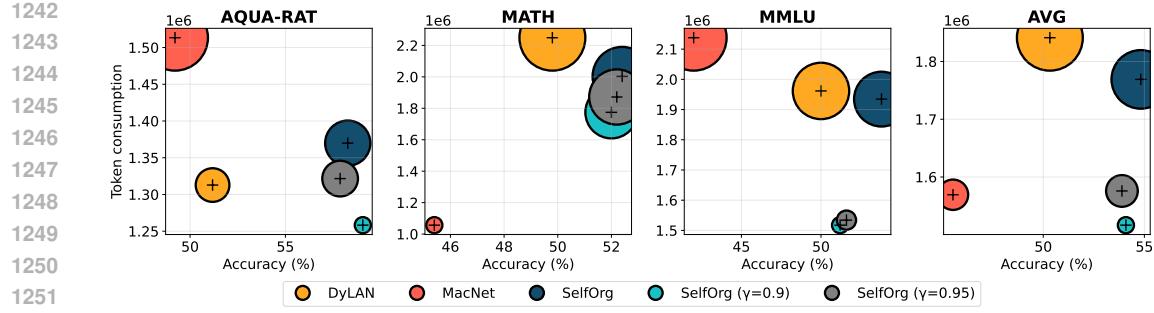


Figure 9: **Visualization of performance and completion token consumption** across benchmarks (AQUA-RAT, MATH, MMLU, and overall average). Each point corresponds to a method, with bubble size proportional to token usage. Methods include DyLAN, MacNet, SELFORG and efficient SELFORG with early stopping at $\gamma = \{0.9, 0.95\}$.

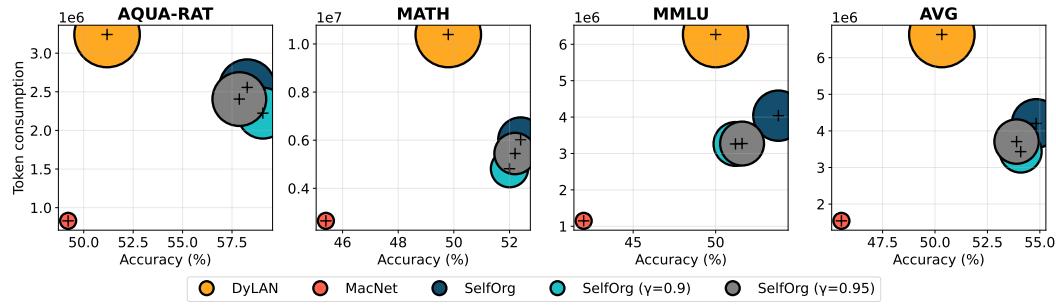


Figure 10: **Visualization of performance and prompt token consumption** across benchmarks (AQUA-RAT, MATH, MMLU, and overall average). Each point corresponds to a method, with bubble size proportional to token usage. Methods include DyLAN, MacNet, SELFORG and efficient SELFORG with early stopping at $\gamma = \{0.9, 0.95\}$.

D.4 EMBEDDING MODEL

In our main experiments, we employ the `all-MiniLM-L6-v2` (Reimers & Gurevych, 2019) model, a lightweight embedding model with only 22.7M parameters, to estimate similarity between

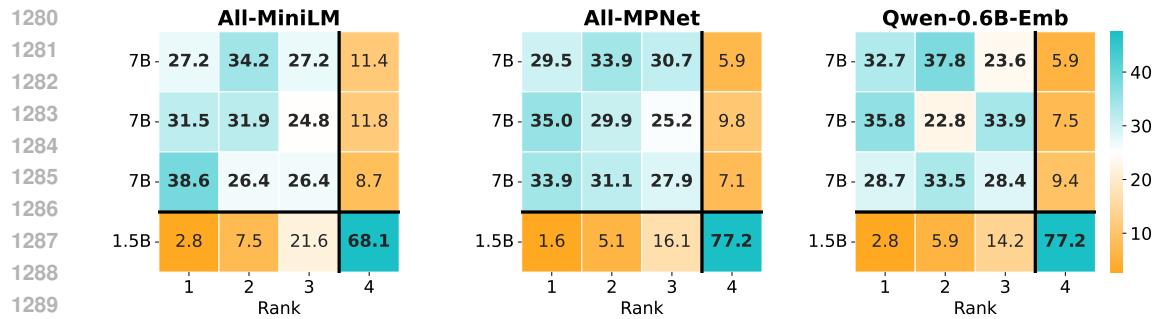


Figure 11: **Embedding model comparison in the weak-agent-in-a-pool scenario.** Heatmaps show the percentage of times of each agent (rows) being assigned to contribution ranks (columns) when using different embedding models for similarity estimation: All-MiniLM (22.7M parameters), All-MPNet (109M), and Qwen-0.6B (600M). All models are able to correctly identify the weakest agent (A4), with MPNet and Qwen-0.6B providing sharper separation between strong and weak agents.

1296 agent responses. This choice is intentional: we aim to keep the method efficient and avoid reliance
 1297 on large embedding models, even if this introduces some additional noise into similarity estimates.
 1298

1299 To validate this design choice, we conduct an ablation study in the *weak-agent-in-a-pool* scenario using
 1300 different embedding models. In addition to all-MiniLM, we evaluate all-MPNet-base-v2 (109M
 1301 parameters) (Reimers & Gurevych, 2019) and Qwen3-0.6B-Embedding (600M parameters) (Zhang
 1302 et al., 2025d). Across all cases, the embedding models are able to correctly identify the weakest
 1303 agent: the weak participant is consistently ranked lowest in the majority of runs. Moreover, both
 1304 MPNet and Qwen-0.6B provide sharper separation between strong and weak agents compared to
 1305 MiniLM, reflecting their stronger representational capacity.
 1306

1307 Nevertheless, our goal is to design a coordination mechanism that remains effective with lightweight
 1308 embeddings. Despite the noisier similarity signals from all-MiniLM, SELFORG still succeeds in
 1309 differentiating weak and strong contributors and delivers strong overall performance. This confirms
 1310 that our approach does not require powerful encoders and can operate effectively under a minimal
 1311 embedding budget, making it broadly applicable in resource-constrained settings.
 1312

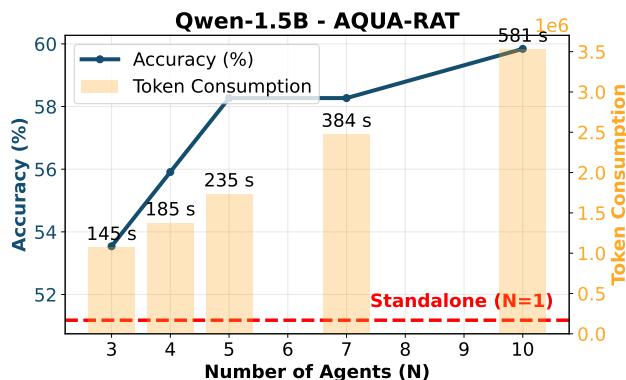
1313 E ABLATION STUDY

1314 E.1 NUMBER OF AGENTS

1315 We conduct an ablation study to analyze the effect of the number of agents on both accuracy and
 1316 efficiency. Figure 12 reports results for Qwen-2.5-1.5B-Instruct on the AQUA-RAT benchmark. The
 1317 left y -axis shows accuracy, while the right y -axis shows token consumption; latency (in seconds) is
 1318 annotated above each bar.
 1319

1320 We observe that increasing the number of agents improves accuracy, from 53.54% with $N = 3$
 1321 agents to 59.84% with $N = 10$. However, this gain comes at the cost of both higher token usage
 1322 (scaling from 1.07M to 3.53M tokens) and longer latency (from 145s to 581s). Interestingly, accu-
 1323 racy improvements are not strictly monotonic with N : performance plateaus at 58.27% for $N = 5$
 1324 and $N = 7$, before rising again at $N = 10$. This suggests diminishing returns when adding ad-
 1325 ditional weak agents, with benefits re-emerging only when coordination capacity (via K) increases
 1326 sufficiently.
 1327

1328 Overall, the ablation highlights the trade-off between accuracy and efficiency: more agents improve
 1329 reliability but induce significant computational overhead, pointing to the importance of balancing
 1330 scale against efficiency in multi-agent design.
 1331



1345 Figure 12: **Ablation on the number of agents.** Results for Qwen-2.5-1.5B-Instruct on AQUA-RAT.
 1346 The blue line (left axis) shows accuracy as the number of agents N increases, while orange bars
 1347 (right axis) show token consumption. Latency (s) is annotated above each bar. Accuracy improves
 1348 with more agents, but at the cost of higher latency and token usage, illustrating the trade-off between
 1349 performance and efficiency in multi-agent coordination.
 1350

1350
1351

E.2 TO REFORM OR NOT TO REFORM

1352
1353
1354
1355
1356

An important design choice in SELFORG is whether to *reform* the communication graph between rounds of interaction. Reforming allows agents to dynamically update their information flow structure based on the latest responses, while a static graph keeps the initial topology fixed throughout. We conduct an ablation on two benchmarks, GSM8K and MMLU, using $N = 5$ agents and neighbor budget $K = 3$, to evaluate the impact of graph reform.

1357
1358

Table 5: Ablation on reforming the communication graph across rounds.

1359
1360
1361
1362
1363
1364
1365

Dataset	Reform	N	K	Accuracy
GSM8K	True	5	3	73.8
	False	5	3	73.2
MMLU	True	5	3	52.8
	False	5	3	51.4

1366
1367
1368
1369
1370
1371

As shown in Table 5, reforming the graph consistently improves performance, though the absolute gains are modest. This suggests that while the initial communication structure already captures useful alignment among agents, dynamically restructuring the graph allows the system to consolidate correct signals more effectively, especially on more challenging knowledge-intensive tasks. The relatively small gap also indicates that SELFORG is robust to whether reform is applied, but benefits from it most in settings where agent responses are more diverse and noisy.

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403