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Abstract

Deriving insights from experimentally generated
datasets requires methods that can account for
random and systematic measurement errors and
remove them in order to accurately represent the
underlying effects of the conditions being tested.
Here we present a framework for pretraining
on large-scale microscopy datasets that includes
three steps: (1) curating a set of diverse and self-
consistent training samples, (2) scaling training
of an appropriate foundation model architecture
on this dataset, (3) evaluating intermediate layers
of the trained model to identify the best repre-
sentation for downstream tasks. Using this strat-
egy, we present the largest foundation model for
cell microscopy data to our knowledge, a new
1.9 billion-parameter ViT-G/8 MAE trained on
over 8 billion microscopy image crops. Com-
pared to a previous published ViT-L/8 MAE,
our new model achieves a 60% improvement
in linear separability of genetic perturbations
and obtains the best overall performance on
whole-genome relationship recall, batch correc-
tion replicate consistency, and compound-gene
activity prediction benchmarks.1

1. Introduction
Microscopy images capture detailed information about
a cell’s responses to perturbations: indeed many early
biological discoveries were made by biologists looking
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Figure 1: (A) Overview of performance gain from differ-
ent MAE pretraining and inference strategies. (B) Example
whole-genome results for replicate consistency and bio-
logical relationship recall on StringDB for models trained
with different combinations of strategies, by model name
and dataset (left to right):

through microscopes studying how cells behave (Hooke,
1665). But with the advent of high throughput screening
platforms that capture cells’ responses to tens or hundreds
of thousands of perturbations, we can no longer rely on
people to study these images. Instead, we need representa-
tions of the cell images that capture the biologically mean-
ingful information and capture the similarities and differ-
ences in cells’ response to perturbations.

State-of-the-art (SOTA) deep learning methods for learn-
ing representations of microscopy leverage Vision Trans-
formers (ViT) (Dosovitskiy et al., 2020) trained with self-
supervised learning (SSL) techniques (Balestriero et al.,
2023) from large-scale screens (Doron et al., 2023; Kim
et al., 2023; Bourriez et al., 2024). They have been shown
to be very effective at representing the subtle changes in
cell morphology in response to perturbations, and masked
autoencoders (He et al., 2022) in particular exhibit scaling
laws for recovering known biological relationships (Kraus
et al., 2024). However, given that this data has to be col-
lected experimentally, there is a limit to how far we can
scale these approaches before one runs out of data. To con-
tinue to improve these representations, we need to use ex-
perimental data as efficiently as possible. In this paper, we
show how curated training datasets combined with care-
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ful probing of model representations allows us to scale to
larger models that significantly improve recall and separa-
tion of biological phenotypes.

Careful curation of data has enabled better data efficiency
in language models (Llama3, 2024; Eldan & Li, 2023;
Javaheripi et al., 2023). However, unlike language, we can-
not simply rely on prior knowledge about the data source to
weigh data (e.g. by up-weighting trusted sources like arXiv
or wikipedia). Instead, we curate a training dataset that is
relatively uniform with respect to the observed phenotypes.
Because many perturbations will not induce a morphologi-
cal change, a random sample of images across all perturba-
tions will be dominated by cells that look like unperturbed
cells. We show that one can use weaker models to filter im-
ages to perturbations that induce a distinct morphological
phenotype, thereby reducing the absolute training set size
but increasing the relative diversity. The resulting dataset,
Phenoprints-16M, has 5× fewer images than the dataset
used to train Kraus et al.’s masked autoencoder, but we
find that it leads to better performance when combined with
scaled compute through longer self-supervised training.

Data curation gives one way of improving a model, but we
can also optimize over the layer that we use to construct a
representation. Traditionally, the finally hidden layer has
been used (Doron et al., 2023; Kim et al., 2023; Kraus
et al., 2024), but there is some evidence from mechanis-
tic interpretability (Templeton et al., 2024) that earlier lay-
ers may learn more abstract features, which may provide
more useful features for biological tasks. We show that us-
ing a linear probing proxy task, we are able to cheaply find
the best performing intermediate block for many models.
We find that using intermediate layers leads to better per-
formance on downstream whole-genome relationship recall
and perturbational replicate consistency at a lower compu-
tational inference cost, and that these results are consistent
across a variety SSL ViTs trained on either microscopy or
natural images. Our proxy task involves fitting a set of
biological linear probing tasks to evaluate representations
learned by intermediate ViTs blocks for microscopy data
(§ 4). We find this task correlates extremely well with bio-
logical recall benchmarks which allows us to reliably probe
the model’s representations.

In summary, we present a series of data curation and model
probing techniques that allow us to more effectively use
experimental microscopy data. By combining these in-
sights, we are able to train a new foundation model,
MAE-G/8, a 1.9 billion parameter ViT-G/8 MAE trained
on Phenoprints-16M for 48,000 H100 GPU hours on more
than 8 billion samples drawn from the curated dataset (Fig-
ure 1A, § 3.2) resulting in significant improvements across
a range of challenging biological benchmarks. These re-
sults indicate that the scaling properties first identified by

Figure 2: Samples for subset of groups in Anax 40-class
functional gene group classification task.

Kraus et al. (2023) extend to the multi-billion parameter
model regime across a wide variety of newly examined
biologically-motivated benchmark tasks.

2. Related work
Dataset Curation for Foundation Models. Dataset cu-
ration is crucial for enhancing the efficiency of founda-
tion models, especially in large-scale contexts. Usual ap-
proaches to dataset construction are inspired by the image
retrieval community (Weinzaepfel et al., 2022; Radenović
et al., 2018; Berman et al., 2019). Existing methods often
utilize pre-trained models for filtering and pruning, such as
vision-language models to discard irrelevant pairs (Schuh-
mann et al., 2021), semantic deduplication to remove re-
dundancy (Abbas et al., 2023), and prototypicality-based
approaches to retain representative data (Sorscher et al.,
2022). However, these techniques are less effective for
HCS, where redundancy, variability, and subtle morpho-
logical differences make conventional filtering challenging.
Our work addresses these limitations by building on Celik
et al. (2024)’s perturbation consistency framework to cu-
rate a balanced dataset of images across semantic classes,
which is vital for effective learning under the masked ob-
jectives (Zhang et al., 2022).

Layer-wise Analysis of Deep Neural networks. Recent
work suggests that intermediate layers (or, blocks) in large
ViTs may achieve superior performance on certain linear
probing tasks compared to the final encoder layer (Evci
et al., 2022; Dehghani et al., 2023). Alkin et al. (2024) re-
ported that intermediate layers in large MAE-ViTs (ViT-L,
ViT-H) have superior ImageNet-1K k-NN accuracy, likely
because later encoder layers become more optimized for
the reconstruction task.

Evaluating Representations for Drug Discovery. Eval-
uating the quality of biological representation learning
methods for drug discovery remains challenging, as ground
truth data is sparse, noisy, biased to well-studied dis-
eases and pathways, and poorly annotated. Metrics have
been proposed that use mean average precision (Kalinin
et al., 2024) or AUC ROC (Sivanandan et al., 2023) to
assesses how similar related samples are represented, in-
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cluding replicates of the same perturbation or different per-
turbations with similar annotated biological activities. Re-
cently, Celik et al. (2024) introduced terminology for de-
scribing perturbative “maps of biology”, in which repre-
sentations of perturbations in HCS data can be placed in
unified, relatable embedding spaces allowing for the gener-
ation of genome-scale sets of pairwise comparisons. Here
we leverage the biological relationship recall benchmark
proposed by Celik et al. (2024), which assess how well
known relationships between pairs of perturbations are re-
called among the most similar or dissimilar embeddings.
Computing reliable versions of these relationship bench-
marks with HCS data is particularly expensive as they re-
quire genome-wide embeddings to be inferred for hundreds
of millions of image crops from the genome-wide RxRx3
microscopy screen (Fay et al., 2023).

3. Vision Transformers for Microscopy
Images

We train and evaluate various vision transformers (ViTs,
Table 4) as encoders to extract feature embeddings from
256×256×6 (HxWxC) microscopy image crops (Figure 2).

3.1. Training Dataset Curation

Many academic and industry labs have adopted the Cell
Painting imaging protocol (Bray et al., 2016), which mul-
tiplexes fluorescent dyes to reveal eight broadly relevant
cellular components. The datasets used here contain a six-
channel implementation of Cell Painting (Figure 2), as well
as brightfield images, spanning 100,000s of chemical and
genetic perturbations applied to dozens of cell types (Kraus
et al., 2024). In these datasets, cells that look like un-
perturbed cells tend to be very over-represented because
many perturbations do no induce a morphological change.
Some morphological changes are also far more common
(e.g. many perturbations will kill cells, resulting in a rel-
atively high proportion of dead cell morphological pheno-
type). This results in significant imbalance in the morpho-
logical phenotypes that the models learn to reconstruct.

To address this, we constructed an aggressively curated
training dataset (§ A.1). To learn an initial representation,
we began by reproducing the MAE-L/8 model of Kraus
et al. (2024) on a dataset of similar size consisting of 93
million HCS images. Using this representation, we first fil-
tered perturbations that did not induce consistent morpho-
logical changes to cells. To perform this filtering, we uti-
lized Celik et al. (2024)’s non-parametric perturbation con-
sistency test (§ A.3) after correcting for batch effects using
Typical Variation Normalization (Ando et al., 2017; Kraus
et al., 2024). This test was applied within each experiment
for computational efficiency, and we restricted the analysis
to wells containing single perturbations. This consistency

was computed for CRISPR guides, siRNAs, and particular
concentrations of small molecules across replicates of the
same perturbation. P-values were computed for each gene
and each (perturbation, concentration) pair. When multiple
experiments existed for the same condition, we combined
p-values using the Cauchy Combination test (Liu & Xie,
2018).

We repeated this procedure with a weakly supervised learn-
ing (WSL) model trained on RxRx1 (Sypetkowski et al.,
2023) and filtered to perturbations where any condition had
a p-value < 0.01 in either the MAE-L/8 or WSL model.
This process reduced our original dataset of 93M sam-
ples to 16M, which we refer to as Phenoprints-16M. While
some redundancy remains when distinct perturbations have
the same effect, the proportion of samples with that dif-
fer from negative controls increased substantially with little
decrease in overall diversity. We believe that iteratively re-
peating this process with the best models from previous it-
erations to guide data selection for subsequent models may
be a viable strategy.

3.2. Models

Baselines. We compare to several non-finetuned baseline
ViT image encoders: three different Dino-v2 backbones
(Oquab et al., 2024) (with 4 register tokens (Darcet et al.,
2024)) trained on a curated non-biological natural image
dataset; a MAE ViT-L/16 trained on Imagenet-21k (He
et al., 2022); and an untrained ViT-S/16. We found that
channel-wise self-standardization worked best as the im-
age normalization preprocessing for these baselines, and
that the class token was slightly better than the global
pool of the patch tokens (except for MAE). Convolutional
weights in the patch embedding layer were repeated to em-
bed 6 channel images when using models trained on RGB
datasets (Wightman, 2019).

Prior work. Our primary point of comparison is with
respect to the best pretrained foundation model presented
by Kraus et al. (2024), the MAE-ViT-L/8+ trained on
RPI-93M. This MAE-L/8 was trained for approximately 40
epochs, learning from over 3.5 billion image crops, using
the L2 mean squared error loss function plus an additional
Fourier domain reconstruction loss term.

CA-MAE-S/16 trained on RxRx3. We trained a new
channel-agnostic MAE (Kraus et al., 2024) ViT-S/16 on the
RxRx3 dataset (Fay et al., 2023) for 100 epochs. Channel-
agnostic ViTs tokenize each image channel separately with
shared patch embedding weights and leverage the dynamic
sequence length of transformers with repeated positional
encodings to train ViTs that can process images with vary-
ing numbers of channels (Bao et al., 2024; Bourriez et al.,
2024; Kraus et al., 2024). Kraus et al. (2024) demonstrate
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(a) RxRx1 siRNA knockdown classification.

(b) Anax functional gene group classification.

Figure 3: Block-wise validation set linear probe results
comparing ViT models pretrained on cell microscopy im-
ages (left) versus natural images (right); note the differ-
ence in y-axes. (a) 1139-class RxRx1 SiRNA knockdown
classification (Sypetkowski et al., 2023); (b) 40-class Anax
functional gene group classification on HUVEC cell im-
ages from RxRx3 CRISPR knockouts (Fay et al., 2023).

that the large MAEs with 8x8 patch size perform either bet-
ter or the same as the 16x16 channel-agnostic variants for
consistently 6-channel data, so we opted to train standard
MAEs for the following two new models since they require
fewer tokens at inference time.

MAE-L/8 trained on Phenoprints-16M. Holding the
model backbone constant compared to the MAE-ViT-L/8
by (Kraus et al., 2024), we assess the impact of our curated
dataset in contrast to the 93M dataset by training a new
ViT-L/8 MAE for 500 epochs on Phenoprints-16M.

MAE-G/8 trained on Phenoprints-16M. Holding the
dataset constant compared to MAE-L/8 above, we assess
the impact of increased model scale in terms of parameters
by training a new ViT-Gigantic MAE with nearly 1.9 bil-
lion parameters for 500 epochs on Phenoprints-16M. Train-
ing this model required 256 H100 GPUs running in parallel
for over 1 week. See § A.2 for other hyperparameter set-
tings we used for model training.

4. Linear probing representation learning
across ViT blocks

We improve the quality of our learned image representa-
tions by leveraging previous findings that suggest interme-

diate blocks within an encoder can provide better repre-
sentation compared to the final block (Alkin et al., 2024).
Unfortunately, it is infeasible to search for the best block
by simply performing whole-genome evaluation on each
block of a large model because the evaluation is extremely
time-consuming and resource intensive. For example, eval-
uating the final block of MAE-G/8 required 4,000 L4 GPU
hours just for inference (§ 5). We demonstrate that using
block-wise linear probes provides insights into the qual-
ity of biological features extracted by these models in their
intermediate blocks, allowing us to trim the model to an
earlier block to both reduce inference costs and improve
representation quality.

Our block-wise search consists of training a logistic regres-
sion model (linear probe) on the output features of each
transformer block to predict either the gene that was per-
turbed or the functional group that the gene belongs to, and
test performance on held-out experiments (§ A.4). We de-
fine the optimal block b∗ for a probing task as the block
whose output features achieve the highest test balanced
accuracy when trained on the probing task, across all N
blocks of the encoder,

b∗ = argmax
b∈{1,2,...,N}

BalancedAccuracy(z(b)), (1)

where z(b) are output features from block b of a ViT. Per-
formance on our linear probing tasks can be viewed as a
measure of linear separability of a feature space across ex-
perimental batches.

RxRx1 1139-class siRNA genetic perturbation classifi-
cation. We expect high quality representations of cell im-
ages to generate similar embeddings for cells with the same
perturbation, hence a simple linear probe should be able to
predict gene perturbation from these representation reason-
ably well. We train linear probes on the publicly-available
RxRx1 dataset (Sypetkowski et al., 2023) which consists of
125,510 high-resolution fluorescence microscopy images
of human cells under 1,138 siRNA-induced gene knock-
downs (plus unperturbed controls) across four cell types
(HepG2, HUVEC, U2OS, RPE). These gene knockdowns
produce strong phenotypes which makes the prediction task
more feasible.

We found that, for MAE-G/8 , the best features came from
intermediate block b∗ = 38 (out of 48) of the encoder,
achieving a balanced accuracy (0.51) that is 8.5% greater
compared to its final block’s output features (Figure 3a,
left). Additionally, these features achieved 60% greater
accuracy than the typically used final block of MAE-
L/8+ (Kraus et al., 2024). We observed similar trends for
ViT models pretrained on natural images. For example,
DINO-G/14 and ViT-L/16 MAE trained on non-biological
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Figure 4: Correlations between validation set linear probing (Figure 3) on Anax and RxRx1 for best and last blocks (Eq. 1)
compared to downstream whole-genome benchmarks (Table 1) for biological relationship recall on StringDB at 0.05-0.95
gene-gene cosine similarity threshold and replicate consistency KS statistic. Models with bold borders are trimmed, red
are natural image baseline models and blue are trained on microscopy.

natural image data have their best features at blocks that
are positioned within the first half of the encoder. For ViT-
L/16 MAE, the performance of the best block is 27% higher
compared to its final block output features that are typi-
cally used for downstream tasks. The higher performance
observed for intermediate blocks does not appear to be an
intrinsic feature of the ViT architecture as an untrained ViT
did not exhibit such a parabolic trend (Figure 3a, right).

Anax 40-class functional gene group classification. Bi-
ologically meaningful representation of microscopy im-
ages of genetically perturbed cells should capture func-
tional relationships between genes, hence a simple linear
probe should be able to predict functional gene groups
when trained on these representations. We curated a small
subset of 80,000 wells from RxRx3 (Fay et al., 2023)
to evaluate linear probes on functional group prediction.
We also evaluated similar whole genome knockout screens
with ARPE-19 and an additional population of HUVEC
cells with soluble TNFα added to all wells. We manu-
ally curated Anax, a set of 40 functionally-diverse gene
groups containing 348 genes, with details provided in
(§ A.8). Examples of groups include major protein com-
plexes (e.g. proteasome, ribosome-small/large), metabolic
pathways (e.g. Krebs cycle) and signaling pathways (e.g.
calcium signaling) (Figure 2). These groups span broad
biological processes that are conserved across cell types
– linear separability of these groups would likely indicate
that representations are biologically meaningful regardless

of cell type.

As shown in Figure 3b, MAE-G/8 significantly outper-
forms other models in Anax group linear probe classifi-
cation. The best representations once again are obtained
from an intermediate block, achieving a balanced accuracy
(0.32) that is 5% greater compared to its final block. We
observed similar trends for ViT models pretrained on natu-
ral images and representations computed from microscopy
images of other cell types/conditions (§ A.5, Figure 6).

In Figure 4, we observe that performance on this novel
linear probing task correlates strongly with downstream
whole-genome benchmarks across all models (Table 1),
whether they are trained on microscopy data or natural im-
ages, achieving an overall rank correlation ρ = 0.97 with
whole-genome StringDB recall and ρ = 0.91 with whole-
genome replicate consistency. This strong correlation is
crucial as it allows us to trim our model to the block with
the best linear probe performance as a way to improve the
quality of our representations for the whole-genome (Ta-
ble 1).

5. Whole-genome benchmarking
Table 1 presents our benchmarks computed across the
whole-genome. These evaluate the genomic representa-
tions obtained for each model by aggregating millions of
embeddings of cell images spanning >100,000 of genetic
knockout perturbations (17,063 genes × 6 single guide
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Table 1: Multivariate known biological relationship re-
call and univariate replicate consistency benchmarks by
model, encoding block b, aggregated recall over a total of
145,447 possible gene-gene relationships annotations ac-
cumulated across five benchmark databases, and replicate
consistency test statistics. The trimmed models used lin-
ear probes to select an earlier block as the feature encoder
(Fig. 3). Each benchmark is computed over TVN-aligned
gene-aggregated model embeddings, for each one higher
is better, and the best overall result is in bold. We report
the Recall % of biological relationships obtained below
the 5th and above the 95th percentiles (0.05-0.95) of all
gene-gene cosine similarities against the null distribution,
as per (Celik et al., 2024; Kraus et al., 2024), with mean ±
the standard deviation computed over 3 different random
seeds of sampling the null distribution in each benchmark
run. For replicate consistency, we report the Komologorov-
Smirnov (KS) and Cramer-von Mises (CM) test statistics.

Model backbone b Recall % KS CM

Baseline ViTs
ViT-S/16 Untrained 12 34.2 ± .08 .30 4.3
ViT-L/16 ImgNet MAE 24 37.4 ± .06 .34 5.1

trimmed 11 37.8 ± .05 .35 5.8

Baseline Dino ViTs
ViT-S/14 Dino-V2 12 35.6 ± .09 .34 5.6

trimmed 5 37.2 ± .16 .35 6.0
ViT-L/14 Dino-V2 24 35.7 ± .05 .34 5.3

trimmed 12 38.8 ± .04 .36 5.9
ViT-G/14 Dino-V2 40 32.7 ± .10 .29 3.8

trimmed 16 37.5 ± .13 .33 5.2

Microscopy MAEs
CA-MAE-S/16 RxRx3 12 39.6 ± .10 .47 10.4
MAE-L/8 RPI-93M 24 44.4 ± .12 .52 12.3

trimmed 15 44.3 ± .12 .57 15.2
MAE-L/8 PP-16M 24 44.4 ± .12 .59 16.2

trimmed 20 44.7 ± .06 .59 16.2
MAE-G/8 PP-16M 48 45.4 ± .07 .60 16.4

trimmed 38 45.4 ± .15 .63 18.2

RNAs each) on HUVEC cells from RxRx3 (Fay et al.,
2023). Computing these benchmarks for HCS screens typi-
cally requires inferring 140 million crops from the genome-
wide RxRx3 microscopy screen (Kraus et al., 2023) (64
tiled crops per each of the 2.2 million wells), but, to reduce
compute costs, we discard the outer ring of crops, leaving
the 36 center non-edge crops for each well. This requires
80 million forward passes to comprehensively evaluate a
new encoder. After inference, we use typical variation nor-
malization (Ando et al., 2017) and chromosome arm bias
correction (Lazar et al., 2024) to post-process the embed-
dings and aggregate them to the gene-level.

We present the multivariate biological relationship recall
benchmarks proposed by Celik et al. (2024) and origi-
nally evaluated for MAEs by Kraus et al. (2023; 2024).
These metrics evaluate how many annotated pair-wise re-
lationships are recalled from public databases (CORUM,
hu.MAP, Reactome-PPI, Signor, StringDB) in the extrem-
ities of a ranked list of cosine similarities of all pair-wise
post-processed embeddings (details in § A.6).

To ensure embeddings represent technical replicates of
perturbations consistently, we also evaluate model perfor-
mance on replicate consistency based on the experimental
design used in the RxRx3 dataset. Specifically, we compare
the similarity of the embedding for corresponding wells
across different experiments via a non-parametric statisti-
cal test. The test statistic measures the difference between
the perturbation replicates’ similarity distribution and an
empirical null distribution, with larger values indicating
greater consistency (§ A.7). To compare models, we sum-
marize the resulting statistics over all technical replicates
in RxRx3 by taking their median, reported in columns KS
and CM (Kolmogorov–Smirnov and Cramer-von Mises test
statistics) in Table 1.

Not suprisingly, even the smallest CA-MAE-S/16 trained
on microscopy data outperforms the largest baselines ViTs
trained on natural images. Training self-supervised on our
novel carefully curated Phenoprints-16M dataset improves
the performance of the MAEs, as does trimming to an
early layer detected by linear probes, while the most scaled
model MAE-G/8 achieves the best overall performance in
all respects when trimmed. Compared to the best previ-
ously SOTA model at its normally used final block, MAE-
L/8 RPI-93M (Kraus et al., 2023), MAE-G/8 trimmed ob-
tains: (a) the highest statistically significant gain in rela-
tionship recall over the previous SOTA, achieving a z-score
of improvement of 5.21; (b) a 21% improvement in the
KS statistic (.52→.63); and, (c) a 48% improvement in the
replicate consistency CM statistic (12.3→18.2).

Linear probing to select optimal ViT blocks leads to sig-
nificant improvements even when applied to Dino-V2 and
MAE models pretrained on natural images. Dino-V2
ViT-G is dramatically better in terms of recall and consis-
tency with the early block embeddings at b∗ = 16 rather
than the final embedding from b = 40 (which performs
worse than a random untrained ViT-S). Dino-V2 ViT-S also
observes improvements by using b∗ = 5 rather than b = 12
and outperforms Dino-V2 ViT-G in replicate consistency,
while the trimmed Dino-V2 ViT-L obtains the best recall
among the baselines. This finding is important for the sci-
entific community to consider when applying ML foun-
dation models to experimental data, as it is common to
take embeddings from the final layer as a default strategy
even when processing potentially out-of-distribution im-
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Table 2: Comparing MAEs to manually extracted CellProfiler (McQuin et al., 2018) features on biological relationship
recall. Reported at 0.05-0.95 cosine threshold on the public JUMP-CP image dataset (Chandrasekaran et al., 2023), which
is generated by completely different labs and assay protocols compared to the images used for pretraining. Each result has
a standard deviation ≤ ±.0023, spanning gene-gene relationships across nearly 8,000 gene-knockouts.

Model backbone b Pretraining data CORUM hu.MAP Reactome StringDB

CellProfiler - N/A .219 .184 .131 .191
CA-MAE-S/16 12 RxRx3 .233 .199 .154 .214
MAE-L/8 24 RPI-93M .248 .208 .160 .226
MAE-G/8 trimmed 38 Phenoprints-16M .264 .215 .165 .235

ages (Lastufka et al., 2024), which, as we have shown, can
significantly hinder results.

5.1. Performance on external data (JUMP-CP)

In order to validate that the MAEs generalize to entirely
novel data, we evaluated a subset of models on completely
external public data generated by different assays and from
a variety of different labs as produced by the JUMP-CP
consortium (Chandrasekaran et al., 2023). Table 2 presents
these results using the relationship recall benchmarks of
(Celik et al., 2024), noting that only a subset of 7,976 gene-
knockouts are covered by this dataset. For post-processing
embeddings, we use PCA with center-scaling for standard
batch correction alignment. We observe that the MAEs per-
form better than the CellProfiler manual feature extraction
baseline (§ A.11) (Carpenter et al., 2006; Kamentsky et al.,
2011), and that the general trend is maintained with the
trimmed MAE-G/8 obtaining the best recall overall. No-
tably, recall on JUMP-CP is considerably lower than on
RxRx3 (Table 1) likely due to different assay protocols and
more variance in the data.

6. RxRx3-core benchmarking
RxRx3-core2 (Kraus et al., 2025) is a publicly available
benchmarking dataset for assessing biological capabilities
of computer vision models. RxRx3-core includes labeled
images (compressed to JPEG-2000) of 735 genetic knock-
outs and 1,674 small-molecule perturbations across eight
concentrations drawn from 222,601 wells (512 × 512 × 6
pixel center-crops) drawn from the larger RxRx3 dataset.

We evaluate a random choice baseline, CellProfiler, the
CA-MAE-S/16 model, the MAE-L/8 model from previous
work (Kraus et al., 2023), and the MAE-G/8. We eval-
uate both the trimmed and full-length version of the latter
two models to determine the impact of our model-trimming
strategy for the most performant models in this context.

2https://huggingface.co/datasets/
recursionpharma/rxrx3-core

We also evaluate a preliminary version of a SSL ViT-
L/16 we trained with the Dino-V2 algorithm on the RxRx3
microscopy dataset; however, we found that it underper-
formed compared to the CellProfiler 4 baseline (§ A.11)
(Kamentsky et al., 2011) and, unlike the MAEs we trained,
significantly overfit during pretraining (§ A.9). As such,
we did not pursue additional analysis on this model. We
leave further development of Dino-V2 for microscopy data
to future work, as we were unable to determine an effective
recipe for applying Dino SSL pretraining on large-scale mi-
croscopy data.

To evaluate each model, we first inference all 222,601 × 4
crops and then average the 4 embeddings to the well-level.
Then, to perform standard batch correction alignment, we
use the “EMPTY”, unperturbed wells as our control pop-
ulation. We fit PCA on those control embeddings, use it
transform the rest, and then fit a separate standard-scaler
on each batch’s controls to transform the rest. This simpli-
fied alignment strategy empirically performed better than
TVN on this dataset.

We present results for the benchmark measuring zero-shot
prediction of compound-gene activity using cosine simi-
larities between embeddings (Figure 5). This measures,
for each compound, whether the cosine similarities from a
model’s embeddings correctly rank the compound’s known
target genes higher than a randomly sampled set of other
genes from a ground truth dataset. Table 3 provides ex-
act values along the max axis, which captures the strongest
potential interaction regardless of concentration. The rela-
tive ranking of model performance, holds as expected from
the results in § 4 and § 5, and trimming benefits both MAE-
L/8 and MAE-G/8, with MAE-G/8 offering a 42% (3.77 →
5.38) relative improvement over the method from previous
work in predicting compound-gene activity.

7. Discussion and Conclusions
This results in this work demonstrate that: (1) within the
context of biological imaging, trimming many ViTs to an
earlier block leads to stronger biological linearity and im-
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Figure 5: Mean average precision performance on RxRx3-core public benchmark in predicting compound activity against
annotated gene targets, across all compound concentrations with error bars for 100 runs of the benchmark with different
random seeds (Table 3).

Table 3: Performance on public RxRx3-core compound-
gene benchmark, measuring mean (± STD over 100 ran-
dom seeds) average precision in predicting compound ac-
tivity against target genes with its z-score of improvement
over the random baseline.

Model Avg. prec. ↑ Z-score ↑
Random baseline 0.222 ± .007 0.00
CellProfiler 0.274 ± .019 2.55
Dino-V2 ViT-L/16, RxRx3 0.258 ± .015 2.13
CA-MAE-S/16, RxRx3 0.273 ± .016 2.90
MAE-L/8, RPI-93M 0.290 ± .017 3.77

trimmed 0.299 ± .016 4.49
MAE-G/8, PP-16M 0.302 ± .015 4.79

trimmed 0.309 ± .015 5.38

proved performance on downstream tasks in addition to
cheaper inference costs (Figure 3); (2) linear probing per-
formance on a subset of genetic perturbations correlates
strongly with downstream performance on whole-genome
benchmarks and can be used to optimize which block is se-
lected for representing the whole-genome (Figure 4); (3)
the most scaled model, MAE-G/8 trained on the specially
curated dataset Phenoprints-16M for 500 epochs, obtains
the overall best performance across all benchmarks and lin-
ear probes, providing further evidence for the scaling hy-
pothesis in biological image data (Table 1, Table 2, Ta-
ble 3, § A.10). We have found that intentionally scaling
training compute and parameters of MAEs for microscopy
on curated data can benefit a wide variety of biologically

relevant tasks, even in comparison to a model trained on a
5× larger dataset. Indeed, even after training the MAE-G/8
on more than eight billion crops from a 16-million-image
dataset, the validation reconstruction loss continued to im-
prove. This suggests that increasing the model’s parameters
further on this data may continue to yield improvements.

More broadly, this work proposes a reusable recipe for
training and extracting optimal representations from fully
self-supervised models trained on experimental data. The
pattern we use can be applied to other domains that con-
tain data from repeated experiments but without accurate
ground truth labels. Specifically, we recommend: (a) cu-
rating the training set by identifying diverse sets of sam-
ples that are represented consistently, e.g., by using a pre-
existing model to select such samples; (b) training a scaled
transformer-based model using a self-supervised learning
technique, such as masked autoencoding; and, (c) inspect-
ing the performance of the trained transformer, and all
baselines, at every block to identify the optimal layer for
representing the data.

Limitations and reproducibility
In this work, we evaluated publicly available SSL ViTs
as baselines and trained new MAE models trained on a
specially curated microscopy dataset. Our preliminary at-
tempts to train ViTs with Dino on this microscopy data en-
countered suboptimal performance (§ 6). Consequently, we
allocated our time and compute budget to investigate scal-
ing MAE to ViT-G/8 on curated data. We recognize the
potential for other SSL pretraining regimes and fine-tuning
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strategies (Singh et al., 2023; Lehner et al., 2024; Hondru
et al., 2024; Khan & Fang, 2024; Alkin et al., 2024) ori-
ented for microscopy data to lead to future improvements
on these tasks. We publicly release the inference, recon-
struction visualization and benchmarking code3, along with
the full weights for CA-MAE ViT-S/164.

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning in its applications to the sci-
ences. There are many potential societal consequences of
our work, especially relating to the discovery of new bi-
ological relationships between genes, potential drug treat-
ments for diseases, and overall accelerating the process of
drug development. At the same time, the predictions of
these models are not guaranteed to be correct, which is why
utmost care must be taken to validate safety and efficacy in
orthogonal assays and early-stage clinical trials.
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A. Appendix
A.1. Training dataset curation details

In order to produce Phenoprint-16M, we curated 93M us-
ing the following steps:

1. Filtering out data that did not pass data quality fil-
ters related to the focus of the image, quantity of dead
cells, assay conditions, and presence of strong anoma-
lous imaging artifacts.

2. Filtering out data with missing information about the
perturbations applied, data with more than 3 perturba-
tions applied, and data of unusual size (in the image
dimension or number of channels).

3. Filtering out perturbation conditions that had been in
less than 3 distinct experiments or 20 distinct wells
so as to capture a variety of batch effects and have a
broad sample of positives per class.

4. Under-sampling perturbation conditions that were
clearly over-represented in the dataset. Our experi-
ment designs contain positive controls, negative con-
trols, and wells without perturbation within each ex-
periment. At this step, we keep 10% of positive con-
trols and wells without any perturbation, 30% of neg-
ative controls, and all other perturbation conditions.

5. Filtering out wells where none of the perturbation con-
ditions had a phenoprint (§A.3) (across different map
types) in any experiment it had been run in.

A.2. Training hyperparameters

Table 5 provides the hyperparameters used for training
the new vision transformers presented in this work. Each
model was trained using a 75% mask ratio and the stan-
dard decoder architecture for MAEs (He et al., 2022). Each
model was trained with the standard L2 MAE loss and the
Fourier-space loss function implemented by (Kraus et al.,
2024) with a weight of α = 0.01. We note, however,
that the details presented by (Kraus et al., 2024) do not
precisely correspond with the implementation provided in
their Github repository; when reshaping the tokens to a
shape compatible with the 2D Fourier transform, the per-
mute operation resulted in adjacent pixels being from dif-
ferent channels of the input, resulting in the high frequency
components of the loss being a function of the relationships
between input channels. An initial investigation with a ViT-
L/8 showed that changing the implementation to the one
described in the paper did not dramatically change prob-
ing results. As such, we used the implementation as-is and
leave additional analysis of loss function design for MAEs
to future work.

A.3. Perturbation Consistency

In order to assess the consistency of the induced mor-
phology on the cells by the perturbations, we used a non-
parametric perturbation consistency test similar to the one
introduced in (Celik et al., 2024). Let xg,1, xg,2, · · · , xg,n

be the embeddings for replicates of perturbation xg on ex-
periment (batch) e. As the test statistic for perturbation
consistency, s̄eg is defined as the mean of the cosine simi-
larities across all pairs of replicates of xg .

s̄eg =
1

n2

n∑
i=1

n∑
j=1

⟨xg,i, xg,j⟩
||xg,i||||xg,j ||

. (2)

where ⟨.⟩ and ||.|| denote dot product and L2 norm.

Statistical significance of s̄eg is assessed using a permuta-
tion test comparing it against an empirical null distribution
generated using the same statistic for a set of randomly se-
lected perturbations in experiment e, {s̄′1, · · · , s̄′K}. The
p-value for s̄eg is computed as follows

pg =

max

{
#{s̄′k ≥ s̄eg}, 1

}
K

. (3)

When multiple experiments existed for the same perturba-
tion, we combined p-values using the Cauchy Combination
test (Liu & Xie, 2018).

A.4. Training linear probes

In this section, we provide details about the training pro-
cess and preprocessing steps used in our logistic regression
models. These models were trained on output features de-
rived from various Vision Transformer (ViT) blocks.

The data was split by experiments, ensuring that the test
data originated from experiments distinct from those used
for training. This approach helps to validate the general-
ization performance of our models across different experi-
mental conditions.

For both RxRx1 gene prediction and Anax group predic-
tion, we apply StandardScaler from the scikit-learn
library as the only preprocessing step to standardize the fea-
tures prior to training linear probes. StandardScaler
transformation was fitted on data from the train split. We
trained the logistic regression models using scikit-learn’s
LogisticRegression class. The following parame-
ters and settings were used during model optimization:

• Solver: lbfgs

• Maximum Iterations: 2000

• Class Weight: balanced
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Table 4: Overview of vision transformer (ViT) encoders used and evaluated in this work.

Model Name Parameters Blocks Model Dim Pretraining Data

Baselines
Untrained ViT-S/16 25M 12 384 N/A
Dino-V2 ViT-S/14 25M 12 384 Natural images
Dino-V2 ViT-L/14 307M 24 1024 Natural images
Dino-V2 ViT-G/14 1,100M 40 1536 Natural images
ViT-L/16 MAE 307M 24 1024 Imagenet-21k

MAEs for microscopy
CA-MAE-S/16 25M 12 384 RxRx3
MAE-L/8 307M 24 1024 RPI-93M
MAE-L/8 307M 24 1024 Phenoprints-16M
MAE-G/8 1,860M 48 1664 Phenoprints-16M

Table 5: Training hyperparameters for the new models presented in this work. Each used a one-cycle cosine learning
rate decay schedule with 10% warm-up using the Lion optimizer from (Chen et al., 2023) with betas (0.9, 0.95) and
weight decay of 0.05, with additional ViT settings such as LayerScale as proposed by (Dehghani et al., 2023). ∗Note that
MAE-G/8 had multiple restarts during training due to challenges associated with massive model training on large-scale
shared distributed compute clusters.

Hyperparameter CA-MAE-S/16 MAE-L/8 MAE-G/8

Vision transformer backbone ViT-S ViT-L ViT-G (Zhai et al., 2022)
Pretraining Data RxRx3 Phenoprints-16M Phenoprints-16M
Training epochs 100 500 500∗

Learning rate 1e-4 3e-5 3e-5
Global batch size 2048 16384 8192
Stochastic depth 0.1 0.3 0.6
# GPUs 16 A100s 128 H100s 256 H100s
# GPU-hours 400 15,360 48,000

For RxRx1 gene prediction, we trained logistic regression
models to predict one of 1139 possible perturbation la-
bels (1138 genetic perturbation and non-perturbed control).
For Anax group prediction, we trained logistic regression
models to predict one of 40 possible function group labels
(§ A.8). We report the balanced test accuracy as the main
evaluation metric for all linear probing experiments.

A.5. Anax classification for other cell lines/treatment
conditions: ARPE19 and HUVEC with TNFα
background

We performed linear probing on imaging data obtained
for a retinal pigment epithelia (RPE) cell line, ARPE19,
and HUVEC cells treated with an inflammatory cytokine,
TNFα. We similarly observed that intermediate blocks of-
ten have the most linearly separate features compared to the
final block.
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Figure 6: Layerwise validation set linear probe perfor-
mance on Anax functional gene group classification be-
yond RxRx3: CRISPR knockouts in the ARPE-19 immor-
talized epithelial cell-line (left), and in HUVEC cells with
a TNFα background (right).

A.6. Biological Relationship Recall

A valuable use of large-scale HCS experiments is to per-
form large-scale inference of biological relationships be-
tween genetic perturbations. We evaluate each model’s
ability to recall known relationships by using the biolog-
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ical relationship recall benchmark described in Celik et al.
(2024). First, we correct for batch effects using Typical
Variation Normalization (TVN) (Ando et al., 2017), and
also correct for possible chromosome arm biases known
to exist in CRISPR-Cas9 HCS data (Lazar et al., 2024).
To infer biological relationships, we compute the aggre-
gate embedding of each perturbation by taking the spheri-
cal mean over its replicate embeddings across experiments.
We use the cosine similarity of a pair of perturbation rep-
resentations as the relationship metric, setting the origin of
the space to the mean of negative controls. We compare
these similarities with the relationships found in the fol-
lowing public databases: CORUM (Giurgiu et al., 2019),
hu.MAP (Drew et al., 2017), Reactome (Gillespie et al.,
2021), and StringDB (Szklarczyk et al., 2020) (with >95%
combined score). Table 1 reports the recall of known re-
lationships amongst the top and bottom 5% of all cosine
similarities between CRISPR knockout representations in
RxRx3 (Fay et al., 2023).

A.7. Replicate Consistency

In order to assess the reproducibility of the perturbations
across their technical replicates, we compare the distribu-
tions of the similarities for same perturbations across repli-
cates against an empirical null distribution. Specifically,
for technical replicate experiments eia and eib, we calculate
the cosine similarity between the embeddings of perturba-
tion xj in them, denoted as sxj .The query distribution qei is
constructed by computing the cosine similarities for all per-
turbations that have a matching well on experiments eia and
eib. An empirical null distribution of identical cardinality
is created by computing cosine similarity, rxk,xl , between
random pairs from eia and eib such that no pair corresponds
to the same perturbation, pei0 . Using non-parametric statis-
tical tests, namely Kolmogorov-Smirnov (KS) and Cramer
Von-Mises (CVM), we can evaluate the hypothesis that qei
and pei0 are drawn from the same distribution. Formally,
let Qei(x) and P ei

0 (x) be the cumulative distribution func-
tions for qei and pei0 respectively, then the KS statistic for
the two-sample case of technical replicate experiments eia
and eib is defined as:

KSei = supx|Qei(x)− P ei
0 (x)|. (4)

The Cramér–von Mises test statistic (CVM) for experi-
ments eia and eib is computed as:

CVMei =
1

2N2

N∑
m=1

[
(rm−m)2+(sm−m)2

]
−4N2 − 1

12N
.

(5)
where N is the cardinality of qei and pei0 and sm and rm
are ranks of similarities sxj and rxk,xl in the combined dis-
tribution of qei and pei0 when ordered. In order compare
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Figure 7: Loss curve when training Dino-v2 ViT-L/16 on
RxRx3.

models, we use the median of CVMei and KSei over all
technical replicate experiment pairs ei.

Since the pairs are randomly selected for pei0 , the embed-
dings would be mostly orthogonal thus the distribution
would be centered around 0.Given that not all CRISPR
knockouts would induce a morphological change in the
cells, it’s plausible for distribution qei to exhibit a peak
around 0. As the model approaches the precision of an
oracle, we would anticipate the mass situated around this
peak to shift towards higher cosine similarity values.

A.8. Anax Group Prediction Details

The Anax probing task introduced in this paper is intended
to balance capturing a diverse range of biology that is
broadly conserved between cell types with a reduced cost
of execution. The name “Anax” is a reference to Anax-
imander, the 6th century B.C. philosopher credited with
making the first world map.

In curating these genes, we analyzed the sources listed
in § A.6 as well as internal gene expression data to pro-
duce “functional” groups corresponding to biological pro-
cesses, cellular components, and molecular functions. Not
all genes within each group are expected to have the same
knockout phenotype, but are classified by humans as hav-
ing related function – linear separability of these genes
would indicate that a model has learned similar concepts
to those deemed significant by biologists.

The gene groups we use for the 40-class Anax group clas-
sification task (§ A.4) are listed in Table 7.

A.9. Dino-V2 pretraining on microscopy data

We attempted to train two Dino-v2 models on microscopy
data. One ViT-L/16 from scratch on RxRx3, and another
attempt of fine-tuning the MAE-L/8 on RPI-93M with the
Dino-v2 losses. They had the following hyperparameter
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Table 6: RxRx3-core benchmarks for our initial attempts to
train Dino-V2 models on microscopy data. The latter was
finetuned from the MAE-L/8 trained on RPI-93M. Results
compare to Table 3.

DinoV2 model Avg. Prec. Z-score

ViT-L/16 RxRx3 0.258 ± .015 2.13
ViT-L/8 (ft.) RPI-93M 0.255 ± .018 1.76

settings which were tuned on another dataset: output-dim
65536, 2 global crops, 4 local crops, dino loss weight 1.0,
koleo loss weight 0.1, ibot loss weight 1.0, Lion optimizer
with max learning rate 1e-5, weight decay 0.05, betas 0.9
0.95, and cosine annealing. In both cases, we observed
significant over-fitting of the loss from the start (Figure 7).

In Table 6 we show that both models fail to improve on
the RxRx3-core benchmark metrics (i.e., z-scores over the
random baseline) versus the CA-MAE-S/16 RxRx3 model
which had Z-score of 2.90 on average precision for pre-
dicting compound activity. We have not found an effec-
tive recipe for training Dino on microscopy data. However,
we note that theoretical evidence exists arguing that MAE
learning is in some ways equivalent to contrastive learning
(Hondru et al., 2024), so even if an appropriate Dino recipe
is found it would remain to be seen if it differs substantially
from MAEs for microscopy given the same training com-
pute. As described in the Limitations section, we expect
that future work would have to dedicate significant train-
ing ablations and creativity to determine the best possible
training recipe for training Dino on microscopy data.

A.10. Correlation between model scale and benchmark
results

In Figure 8 we show the correlations between training
FLOps (floating point operations) and downstream results.
Over all benchmarks we observe a very strong consistent
linear trend where scaling training FLOps improves over-
all pwerformance. This work provides the next log step in
scale as we enter into the billion-parameter model regime
with MAE-G/8. These results therefore provide additional
evidence that the trend initially discovered by (Kraus et al.,
2023) between FLOps and relationship recall actually ex-
tends both to billion-parameter models and even moreso
for other biologically meaningful benchmarks pertaining to
linear probes on small experiments and to replicate consis-
tency on the whole-genome.

A.11. CellProfiler features

CellProfiler bioimage analysis software (Carpenter
et al., 2006; McQuin et al., 2018) was used to com-
pute features using classical segmentation and feature

extraction algorithms. Benchmarking results us-
ing CellProfiler features are reported for JUMP-CP
(§ 5.1) and RxRx3-core (§ 6). JUMP-CP CellProfiler
features were downloaded from https://cellpainting-
gallery.s3.amazonaws.com/index.html#cpg0016-jump.
CellProfiler features for RxRx3-core were computed
using version 2.2.0 (Kamentsky et al., 2011). Single cells
were segmented after applying illumination correction
and shape, intensity, and texture features were extracted
from each cell, resulting in 952 dimensional profiles. For
RxRx3-core, we kept only cells in the center 512x512 crop
of original 2048x2048 images and then mean aggregated
them. 4,749 wells of the 222,601 RxRx3-core wells were
missing CellProfiler features, so these were held out of the
benchmark computations for all models on RxRx3-core.
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Table 7: Anax groups and their associated genes. This table presents a comprehensive list of gene groups and their
corresponding genes.

Anax Group Genes
Acyl Coa Biosynthesis ELOVL2, ELOVL5, ELOVL6, HACD1, HACD2, HSD17B12, SCD, SCD5, TECR

Adherens Junctions ACTB, ACTG1, AFDN, CDH1, CTNNA1, CTNNB1, CTNND1, NECTIN1, NECTIN3, NECTIN4

Amino Acid Metabolism ALDH4A1, ARG2, CKB, CKMT2, CPS1, DAO, OTC, PYCR2, PYCR3, SAT1

Apoptosis CFLAR, DFFB, CASP6, CASP3, FASLG, BCL2, DFFA, XIAP, TNFSF10, AKT3

Autophagy ATG12, ATG3, ATG4B, ATG4C, ATG7, GABARAP, PIK3C3, PIK3R4, PRKAA1, ULK1

Beta Oxidation Of Fatty Acids ACAA2, ACADL, ACADM, ACADS, ACADVL, ECHS1, ECI1, HADH, HADHA, HADHB

Calcium Signaling ADCY1, ADCY2, ADCY3, CALM1, CAMK2B, CAMK2D, PDE1B, PDE1C, PRKACG, PRKX

Clathrin Coated Vesicles AP2A1, AP2A2, AP2B1, AP2M1, AP2S1

COPI ARCN1, COPA, COPB1, COPB2, COPE, COPG1, COPZ1

COPII Vesicles SEC13, SEC23A, SEC24B, SEC24D, SEC31A

DNA Damage Repair BLM, BRCA2, EME1, NBN, POLD2, RAD51B, RAD51C, RAD51D, RPA1, XRCC2

Dynein DYNC1H1, DYNC1I2, DYNC1LI1, DYNC1LI2, DYNLT1

ER Protein Translocation SPCS3, SEC61A1, SRP14, SRP72, SPCS1, SRPRA, SEC11A, SRP68, SRPRB, SRP54

Exosome DIS3, EXOSC10, EXOSC3, EXOSC4, EXOSC5, EXOSC6, EXOSC7, EXOSC8, EXOSC9, MPHOSPH6

Gap Junctions ADCY8, DRD2, HTR2C, ITPR2, LPAR1, PDGFD, PDGFRB, PLCB3, TUBA1C, TUBB1

Golgi ACTR10, ACTR1A, CAPZA3, COG4, CTSZ, PPP6C, RAB1B, SEC22C, SEC24C, TMED9

MAPK DUSP4, EGF, FGF18, FGF20, HSPB1, MAP2K2, MAPKAPK5, RAC1, RAP1A, RASGRP3

Mitochondria Structure APOOL, APOO, TMEM11, CHCHD6, ATP5ME, MICOS13, ATP5F1C, DNAJC11, DMAC2L, ATP5MF

Mitochondrial Transport ATP5F1A, COA4, COA6, COX17, HSPA9, IDH3G, PITRM1, PMPCA, PMPCB, SLC25A4

mTOR Pathway CAB39, CAB39L, EIF4EBP1, MLST8, PRKAA2, RPS6KB1, RPTOR, STK11, STRADA, TSC1

Nonsense Mediated Decay CASC3, EIF4A3, MAGOH, MAGOHB, RBM8A

Nuclear Pore NUP107, NUP133, NUP153, NUP188, NUP205, NUP37, NUP85, NUP93

Nucleolus Structure FBL, NAT10, NOLC1, NOP58, UTP20

Nucleotide Metabolism ADSL, ADSS1, ADSS2, ATIC, GMPS, IMPDH1, IMPDH2, PAICS, PFAS, PPAT

P53 Stress Signaling ATM, ATR, CCNG1, CDK1, CHEK1, CHEK2, MDM2, MDM4, TP53, TP73

Pentose Phosphate Pathway G6PD, TALDO1, DERA, RPE, PGM2, RBKS, PGD, PGLS, RPEL1, PRPS2

Peroxisome Biology ACOT8, AGPS, BAAT, HMGCL, HSD17B4, MLYCD, PAOX, PEX12, PEX6, PIPOX

Prespliceosome Complex ALYREF, AQR, CRNKL1, DDX5, HNRNPK, LSM2, PLRG1, PRPF4, SMNDC1, SRSF4

Proteasome PSMA1, PSMA4, PSMB1, PSMB2, PSMB7, PSMA6, PSMA3, PSMB4, PSMA5, PSMB3

Ribosome Large RPL13A, RPL11, RPL10, RPL23A, RPL30, RPL7A, RPLP2, RPL28, RPL5, RPL27A

Ribosome Small RPS2, RPS6, RPS8, RPS16, RPS11, RPS3A, RPS19, RPS15, RPS4X, RPS9

RNA Polymerase II POLR2A, POLR2B, POLR2C, POLR2G, POLR2I, POLR2L

TCA Cycle ACO2, DLST, FH, IDH2, IDH3B, MDH2, OGDH, SDHB, SUCLA2, SUCLG2

Tight Junctions CLDN14, CLDN17, CLDN18, CLDN19, CLDN4, CLDN8, CLDN9, MPP5, PARD6B, PRKCI

Translation Initiation Complex EIF3G, EIF3A, EIF3D, EIF3I, EIF3K, EIF3M, EIF3B, EIF3H, EIF3E, EIF3L

Transport Of Fatty Acids APOD, LCN12, LCN15, LCN9, SLC27A1, SLC27A4, SLC27A6

Tubulin TUBA3C, TBCC, TBCD, TUBA4B, TUBA8, TUBAL3, TUBA1A, TUBB4B, ARL2, TUBA1B

Unfolded Protein Response CXXC1, DNAJB11, EIF2S3, KHSRP, MBTPS1, SHC1, TATDN2, TLN1, TSPYL2, YIF1A

V-ATPase ATP6V1A, ATP6V, ATP6V1D, ATP6V1E1, ATP6V1F, ATP6V1H
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Figure 8: Relationship between FLOPs and benchmark evaluation results for the six whole-genome tasks (Table 1) and the
two linear probing tasks (Figure 3).
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