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ABSTRACT

We present ObSuRF, a method which turns a single image of a scene into a 3D
model represented as a set of Neural Radiance Fields (NeRFs), with each NeRF
corresponding to a different object. A single forward pass of an encoder network
outputs a set of latent vectors describing the objects in the scene. These vectors
are used independently to condition NeRF decoders, defining the geometry and
appearance of each object. We make learning more computationally efficient by
deriving a novel loss, which allows training NeRFs on RGB-D inputs without
explicit ray marching. After confirming that the model performs equal or better
than state of the art on three 2D image segmentation benchmarks, we apply it
to two multi-object 3D datasets: A multiview version of CLEVR, and a novel
dataset in which scenes are populated by ShapeNet models. We find that after
training ObSuRF on RGB-D views of training scenes, it is capable of not only
recovering the 3D geometry of a scene depicted in a single input image, but also
to segment it into objects, despite receiving no supervision in that regard.

1 INTRODUCTION

The ability to recognize and reason about 3D geometry is key to a wide variety of important robotics
and AI tasks, such as dynamics modelling, rapid physical inference, robot grasping, or autonomous
driving (Battaglia et al., 2013; Chen et al., 2016; Mahler et al., 2019; Driess et al., 2020; Li et al.,
2020). While progress has been made on integrating traditional representations of geometry with
machine learning systems (Wang et al., 2018; Qi et al., 2017; Nash et al., 2020), they remain difficult
to work with due to either undesirable scaling behavior (voxels, point clouds) or discrete structures
and an inability to train on observational data (polygonal meshes).

Recent work has revealed coordinate-based neural networks as an alternative. These representations
are continuous, independent of resolution or scene dimensions, and can directly map 3D coordinates
to binary occupancy indicators (Mescheder et al., 2019), signed distances to the shape (Park et al.,
2019), or volume radiances (Mildenhall et al., 2020). When used with an encoder network, such
functions can facilitate learning low-dimensional implicit representations of geometry (Mescheder
et al., 2019; Kosiorek et al., 2021). They can also render high quality images (Martin-Brualla et al.,
2021; Barron et al., 2021), and synthesize novel scenes (Guo et al., 2020; Niemeyer & Geiger, 2020).

In this paper, we investigate a different aspect. We ask whether a latent-variable model built around
implicit representations may be used to infer semantically meaningful information from a given im-
age, without human supervision. Such representations may then be used for downstream reasoning
tasks. In particular, we focus on obtaining object-based representations from multi-object scenes
in an unsupervised way. Representations factored into objects are beneficial for dynamics mod-
elling, visual question answering, and many other tasks (Battaglia et al., 2016; Santoro et al., 2017;
Battaglia et al., 2018). Previous works in unsupervised object-based representation learning have
mostly focused on segmenting 2D images (Eslami et al., 2016; Greff et al., 2020; Locatello et al.,
2020). Such methods have remained limited to visually simple, mostly synthetic data, whereas more
realistic scenes with complex textures and geometries have remained out of reach (Weis et al., 2020).

To move towards more complex scenarios, we present ObSuRF, a model which learns to decompose
scenes consisting of multiple Objects into a Superposition of Radiance Fields. We first encode the
input image with a slot-based encoder similar to (Locatello et al., 2020), but use the resulting set
of latent codes to condition continuous 3D scene functions (Mildenhall et al., 2020; Kosiorek et al.,
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Figure 1: ObSuRF uses a single image (left) to infer a set of NeRFs (slots) representing different
objects. ObSuRF accurately models the geometry and appearance of CLEVR-3D scenes (top), and
decomposes them into objects. It also produces details which are not visible in the input image,
such as the full shape of partially occluded objects, or the shadows on the backsides of objects. This
allows rendering the scene from arbitrary angles (right). The MultiShapeNet dataset (bottom) fea-
tures a much larger variety of more complicated objects, such that ObSuRF cannot capture all of its
details. However, it still learns to segment the scene into volumes corresponding to the objects, and
to reproduce their dimensions, color, and position. For a full demo, please watch the supplementary
videos at https://sites.google.com/view/obsurf/.

2021) instead of directly generating 2D images. For training the model in 3D, we provide three
RGB-D views of each scene, and optimize the model to match the observed depths and colors. To
do so, we reframe NeRF’s volumetric rendering as a Poisson process and derive a novel training ob-
jective, which allows for more efficient training when depth information is available as supervision.
After confirming that the resulting model is capable of segmenting 2D images as well or better as
previous approaches, we test it on two new 3D benchmarks: A 3D version of CLEVR (Johnson et al.,
2017) featuring multiple viewpoints, camera positions, and depth information, and MultiShapeNet,
a novel multiobject dataset in which the objects are shapes from the ShapeNet dataset (Chang et al.,
2015). We will publish both of these benchmarks and the code for our model with this paper.

2 RELATED WORK

Learned Implicit Representations of 3D Shapes. Early work focused on predicting the geometry
of shapes using occupancy fields (Mescheder et al., 2019) or signed distance functions (SDFs) (Park
et al., 2019). These models were trained using ground-truth geometry, for instance by sampling
points from the meshes in the ShapeNet dataset (Chang et al., 2015). Mildenhall et al. (2020)
subsequently introduced Neural Radiance Fields (NeRF), which predict density and color of points
in a scene. This admits rendering via differentiable ray tracing through the scene. The required
supervision is thereby reduced to a small set of posed images. However, ray tracing makes this
approach very computationally expensive. Therefore, in this work we opt for a pragmatic middle
ground: we assume access to views of the training scenes enriched with depth information (RGB-D),
and show how this allows for training NeRFs without expensive raymarching. We note that unlike
ground-truth meshes, such data may be obtained at scale in the real world with reasonable accuracy
using either low-cost camera systems (Horaud et al., 2016) or by estimating depth from stereo vision
or motion, see e.g. (Chang & Chen, 2018; Teed & Deng, 2020).

In its original form, NeRF is fitted to a single scene, which makes it too slow for real-time appli-
cations, and also ill-suited for representation learning, as the scene is encoded in neural network
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weights. Recent work has used encoded representations of input scenes to condition a decoder
shared between scenes (Yu et al., 2021a; Trevithick & Yang, 2020; Kosiorek et al., 2021). We take a
similar approach, but put a greater emphasis on compact and factored representations. Using depth
supervision to improve NeRF training has concurrently been proposed by Deng et al. (2021), without
however avoiding ray marching and the corresponding performance costs.

Unsupervised Image Segmentation. The work in this area can be broadly grouped in two cate-
gories. Patch-based approaches represent scenes as a collection of object bounding boxes (Eslami
et al., 2016; Kosiorek et al., 2018; Stelzner et al., 2019; Crawford & Pineau, 2019). This encourages
spatial consistency in objects, but limits the model’s ability to explain complicated objects. Scene-
mixture models represent scenes as pixelwise mixture models, with each mixture component corre-
sponding to a single object (Greff et al., 2016; 2017; van Steenkiste et al., 2018; Burgess et al., 2019;
Greff et al., 2020; Locatello et al., 2020; Engelcke et al., 2020; 2021). Since spatial consistency is
not enforced, these models sometimes segment images by color rather than by object (Weis et al.,
2020), motivating combinations of the two concepts (Lin et al., 2020). We mitigate these issues by
employing NeRF. Explicitly formulated as an MLP of Fourier-encoded spatial coordinates (instead
of a CNN, similarly to e.g. Kabra et al. (2021)), it is naturally biased toward spatial coherence. We
note that no model in this line of research has been shown to work well on general natural images.
Instead they have targeted synthetic benchmarks or constrained real world environments. Some re-
cent models use viewpoint-dependent decoders (Nanbo et al., 2020; Chen et al., 2021; Kabra et al.,
2021), which allows generating images from novel viewpoints. Since there is nothing to enforce
multi-view consistency, these models are unlikely to generalize to novel viewpoints.

Unsupervised 3D Segmentation. Most work in this area focuses on segmenting single shapes
into parts, and is trained on ground truth geometry. BAE-NET (Chen et al., 2019) reconstructs
voxel inputs as a union of occupancy functions. CvxNet (Deng et al., 2020) and BSP-Net (Chen
et al., 2020) represent shapes as a union of convex polytopes, with the latter capable of segmenting
them into meaningful parts. Similarly, UCSG-Net (Kania et al., 2020) combines SDF primitives via
boolean logic operations, yielding rigid but interpretable shape descriptions.

Only a small number of publications attempt to segment full scenes into objects. Ost et al. (2021)
train a model to segment a complex real-world video into objects, but doing so requires a full scene
graph, including manually annotated tracking information such as object positions. In GIRAFFE
(Niemeyer & Geiger, 2020) object-centric representations emerge when a set of NeRFs conditioned
on latent codes is trained as a GAN. However, the focus lies on image synthesis and not infer-
ence. Consequently, it is not straightforward to obtain representations for a given scene. BlockGAN
(Nguyen-Phuoc et al., 2020) achieves similar results, but uses latent-space perspective projections
and CNNs instead of NeRFs. RELATE (Ehrhardt et al., 2020) builds on this to allow the manipula-
tion of scenes. Elich et al. (2021) present a model which encodes a single input image into a set of
deep SDFs representing the objects in the scene. In contrast to our work, theirs requires pretraining
on ground-truth shapes and operates on simpler scenes without shadows or reflections. Closest to
our work is a system concurrently developed by Yu et al. (2021b), which also learns to segment
scenes into a set of NeRFs using a slot based encoder. However, they train using NeRF rendering
and mitigate its computational cost by adjusting the rendering resolution.

Set Prediction. Objects present in a scene are interchangeable and form a set. Any attempt to
assign a fixed ordering to the objects (such as left-to-right) will introduce discontinuities as they
switch positions (e.g. as they pass behind each other) (Zhang et al., 2020). It is therefore essential to
use permutation equivariant prediction methods in such settings. We build on recent works which
construct permutation equivariant set prediction architectures (Locatello et al., 2020; Goyal et al.,
2021; Kosiorek et al., 2020; Stelzner et al., 2020).

3 METHODS

ObSuRF decomposes 3D scenes into multiple NeRFs, each representing a separate object. We derive
a principled way of composing multiple NeRFs into a single, albeit more expensive (by a factor of
n), scene function. To decrease this cost, we show how to make NeRF integration cheaper when
ground-truth depth is available at training time.
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Figure 2: ObSuRF architecture. The encoder is given an input image with the corresponding camera
pose, and infers an object-based latent representation consisting of slots. These slots are used in-
dependently to condition a shared NeRF decoders. The volumes represented by the resulting scene
functions may be rendered individually by querying them along rays coming from an arbitrary cam-
era. Alternatively, the volumes may be composed in order to render the full scene.

3.1 NEURAL RADIANCE FIELDS (NERFS)

NeRFs (Mildenhall et al., 2020) represent the geometry and appearance of a scene as a neural net-
work f : (x,d) → (c, σ) mapping world coordinates x and viewing direction d to a color value
c and a density value σ. To guarantee coherent geometry, the architecture is chosen such that the
density σ is independent of the viewing direction d. To simplify notation, we refer to the individual
outputs of f(·) as σ(x) and c(x,d). NeRFs allow rendering images using classic ray marching
techniques for volume rendering (Blinn, 1982; Kajiya & von Herzen, 1984). Specifically, the color
Ĉ(r) corresponding to the ray r is given by

Ĉ(r) =

∫ ∞
0

T (t)σ(r(t))c(r(t),d)dt , (1)

with transmittance T (t) = exp (−
∫ t

0
σ(r(t′))dt′). Since this procedure is differentiable, NeRFs are

trained by minimizing the L2 loss between the rendered colors Ĉ(r) and the colors of the training
image C(r), i.e. LNeRF(r) = ‖Ĉ(r)−C(r)‖22. This is expensive, however, as approximating Eq. (1)
requires evaluating f many times per pixel (256 in Mildenhall et al. (2020)). We will show that,
if depth is available, we can instead train NeRFs with just two evaluations per pixel, reducing the
required computation by a factor of 128 per iteration1.

3.2 VOLUME RENDERING AS A POISSON PROCESS

While ray marching in Eq. (1) allows computing the ray color, we are also interested in finding the
distribution of distances that give rise to this color—this will allow using depths in RGB-D data
for supervision. To this end, we show that Eq. (1) derives from an inhomogenous spatial Poisson
process (Blinn, 1982; Møller & Waagepetersen, 2003).

Consider a ray r(t) = x0 + dt traveling through a camera at position x0 along direction d.
The probability that light originating at point r(t) will not scatter and reach the camera unim-
peded (transmittance) is equal to the probability that no events occur in the spatial Poisson process
T (t) = exp (−

∫ t

0
σ(r(t′))dt′). NeRF does not model light sources explicitly, but assumes that

lighting conditions are expressed by the color value of each point. As a result, the light emitted at
the point r(t) in the direction of the camera −d has the color c(r(t),d), and its intensity is propor-
tional to the density of particles σ(r(t)) at that point. Consequently, the amount of light reaching
the camera from r(t) is proportional to

p(t) = σ(r(t))T (t) . (2)

1This reduction affects only the decoder side of out autoencoder model.
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In fact, under mild assumptions, p(t) is exactly equal to the distribution of possible depths t at which
the observed colors originated2. We provide the full derivation in Appendix B.1.

We can now reframe Eq. (1) as the expected color value under the depth distribution p(t):

Ĉ(r) = Et∼p(·)[c(r(t),d)] =

∫ ∞
0

p(t)c(r(t),d)dt . (3)

Typically, one chooses a maximum render distance tfar as the upper bound for the integration interval.
This leaves the probability p(t > tfar) = T (tfar) that light from beyond tfar is missed. To account for
that, Eq. (3) is renormalized by dividing by T (tfar) after approximating it with samples 0 ≤ ti ≤ tfar.

3.3 FAST TRAINING ON DEPTH AND COLORS

We now turn to the optimization objectives we use to train ObSuRF. Even though Mildenhall et al.
(2020) use a hierarchical sampling scheme, training NeRFs requires many function evaluations for
each ray and is therefore extremely expensive. Moreover, as we show in Appendix B.2, this sam-
pling produces a biased estimate for Ĉ(r), and, consequently LNeRF. This is caused by the nested
integration in Eq. (1): If too few samples are collected, there is a significant chance that thin, high-
density volumes are missed entirely, even though they would dominate the color term Ĉ(r) if it were
to be evaluated analytically (see e.g. Rainforth et al. (2018) for a thorough treatment of such issues).

To avoid this computational cost during training, we use depth supervision by training on RGB-D
data, i.e. images for which the distance t between the camera and the visible surfaces is known.
Instead of integrating over t, this allows us to directly maximize the depth log-likelihood log p(t)
in Eq. (2) for the known values of t. While we still need to approximate the inner integral, an
unbiased estimate can be obtained with uniform random samples from q(·) = Uniform(0, tfar) as
log p(t) = log σ(r(t)) − tEt′∼q(·) [σ(r(t

′))] . Since σ(r(t′)) is likely to be large near the surface
t and close to zero for t′ � t, the variance of this estimator can be very large—especially at the
beginning of training. To reduce the variance, we importance sample t′ from a proposal q′(·) with a
higher density near the end of the integration range,

log p(t) = log σ(r(t))− Et′∼q′(·) [σ(r(t
′))/q′(t′)] . (4)

In practice, we set q′(·) to be an even mixture of the uniform distributions from 0 to 0.98t and from
0.98t to t, i.e. , we take 50% of the samples from the last 2% of the ray’s length.

We fit the geometry of the scene by maximizing the depth log-likelihood of Eq. (4). Staying with
our probabilistic view, we frame color fitting as maximizing the log-likelihood under a Gaussian
distribution. Namely, since we know the point r(t) at which the incoming light originated, we can
evaluate the color likelihood as p(C | r(t),d) = N (C | c(r(t),d), σ2

C) with fixed standard devia-
tion σC . Overall, evaluating the joint log-likelihood log p(t, C) requires only two NeRF evaluations:
At the surface r(t) and at a point r(t′) between the camera and the surface. In practice we take the
surface sample at r(t+ε) with ε ∼ Uniform(0, δ). This encourages the model to learn volumes with
at least depth δ instead of extremely thin, hard to render surfaces.

3.4 COMPOSING NERFS

We are interested in segmenting scenes into objects by representing each of them as an independent
NeRF. A scene is then represented by a set of NeRFs f1, . . . , fn, each with densities σi and colors
ci. We now show how to compose these NeRFs into a single scene function. We arrive at the
same equations as (Niemeyer & Geiger, 2020; Guo et al., 2020; Ost et al., 2021), but derive them
by treating the composition of NeRFs as the superposition (Møller & Waagepetersen, 2003) of
independent Poisson point processes, yielding a probabilistic interpretation of the algorithm.

Specifically, we assume that, while we move along the ray r, each of the n Poisson processes has
a chance of triggering an event independently. The total accumulated transmittance T (t) from r(t)

2Note that the transmittance is symmetric, and that both occlusion and radiance depend on the density σ(·).
Therefore, if a light source is present at x0, the distribution of points along r it illuminates is also given by
Eq. (2). It can be convenient to think of ray marching as shooting rays of light from the camera into the scene
instead of the other way around.
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to x0—the probability of encountering no events along the way—should therefore be equal to the
product of the transmittances Ti(t) of each process:

T (t) =

n∏
i=1

Ti(t) = exp

(
−
∫ t

0

n∑
i=1

σi(r(t))dt
′

)
. (5)

This is equivalent to another Poisson process with density σ(x) =
∑

i σi(x).

To compute the color value, we additionally need to determine to what degree each of the component
NeRFs is responsible for the incoming light. Following Eq. (2), the probability that NeRF i is
responsible for the light reaching the camera from depth t is p(t, i) = σi(r(t))T (t). Similarly to
Eq. (3), we compute the pixel color by marginalizing over both depth t and component i, yielding

Ĉ(r) = Et,i∼p(·)[ci(r(t),d)] =

∫ ∞
0

n∑
i=1

p(t, i)ci(r(t),d)dt. (6)

It can also be useful to marginalize only one of the two variables. Marginalizing i yields the
depth distribution p(t) =

∑
i p(t, i) which we use to render scenes via hierarchical sampling as

in (Mildenhall et al., 2020). By marginalizing t, one obtains a categorical distribution over the com-
ponents p(i) =

∫
t
p(t, i), which we use to draw segmentation masks. Finally, in order to compute

the color loss derived above, we use the expected color c(x,d) =
∑

i ci(x,d)σi(x)/σ(x).

3.5 LEARNING TO ENCODE SCENES AS SETS OF NERFS

We now describe the full encoder-decoder architecture of ObSuRF (see Figure 2), which can infer
scene representations from a single view of that scene—for any scene from a large dataset. ObSuRF
then turns that representation into a set of NeRFs, which allows rendering views from arbitrary
viewpoints and provides full volumetric segmentation of the scene.

The encoder network fenc infers a set of latent codes z1, . . . , zn (called slots) from the input image
and the associated camera pose. Each slot represents a separate object, the background, or is left
empty. By using a slot zi to condition an instance of the decoder network fdec, we obtain the
component NeRF fi(·, ·) = fdec(·, ·; zi). In practice, we set the number of slots n to one plus the
maximum number of objects per scene in a given dataset to account for the background.
Encoder. Our encoder combines recent ideas on set prediction (Locatello et al., 2020; Kosiorek
et al., 2020). We concatenate the pixels of the input image with the camera position x0, and a
positional encoding (Mildenhall et al., 2020) of the direction d of the corresponding rays. This is
encoded into a (potentially smaller) feature map y. We initialize the slots zi by sampling from a
Gaussian distribution with learnable parameters. Following Locatello et al. (2020), we apply a few
iterations of cross-attention between the slots and the elements of the feature map, interleaved with
self-attention between the slots (similar to Kosiorek et al. (2020)). These two phases allow the slots
to take responsibility for explaining parts of the input, and facilitate better coordination between
the slots, respectively. The number of iterations is fixed, and all parameters are shared between
iterations. The resulting slots form the latent representation of the scene. We note that it would be
straightforward to use multiple views as input to the encoder, but we have not tried that in this work.
For further details, we refer the reader to Appendix C.1.
Decoder. The decoder largely follows the MLP architecture of Mildenhall et al. (2020): We pass
the Fourier-encoded inputs x through a series of fully-connected layers, eventually outputting the
density σ(x) and a hidden code h. To condition the MLP on a latent code zi, we use the code to shift
and scale the activations at each hidden layer, a technique which resembles AIN of (Dumoulin et al.,
2017; Brock et al., 2019). The color value c(x,d) is predicted using two additional layers from h, d,
and a pixel in the feature map y selected by projecting the query point x onto it. This conditioning
follows (Yu et al., 2021a), except that we only use it to predict color, in order to not compromise
the idea of the slots encoding the segmented geometry. We explored using zi to predict an explicit
linear coordinate transform between the object and the world space as in (Niemeyer & Geiger,
2020; Elich et al., 2021), but have not found this to be beneficial for performance. We also note that
we deliberately choose to decode each slot zi independently. This means we can treat objects as
independent volumes, and in particular we can render one object at a time. Computing interactions
between slots during decoding using e.g. attention (as proposed by Kosiorek et al. (2021)) would
likely improve the model’s ability to output complex visual features such as reflections, but would
give up these benefits. Further details are described in Appendix C.2.
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Model Sprites (bin) Sprites CLEVR

ObSuRF 74.4± 1.8 92.4± 1.3 98.3± 0.8
sel. runs* 74.4± 1.8 93.1± 0.3 99.0± 0.0

SlotAtt. 69.4± 0.9 91.3± 0.3 98.8± 0.3
IODINE 64.8± 17.2 76.7± 5.6 98.8± 0.0
MONet - 90.4± 0.8 96.2± 0.6
R-NEM 68.5± 1.7 - -

Table 1: Average foreground ARI on
2D datasets (in %, mean ± standard
deviation across 5 runs, the higher the
better), compared with values reported
in the literature (Locatello et al., 2020;
Greff et al., 2020; Burgess et al., 2019;
van Steenkiste et al., 2018). Best val-
ues are bold.

(*) For one run on Sprites and 2 runs on CLEVR, ObSuRF learns to segment background from
foreground. While desirable, this slightly reduces the foreground ARI scores as extracting exact
object outlines is more difficult. To quantify this, we also report results with these runs excluded.

Training. The model uses a minibatch of scenes at every training iteration. For every scene, we
use one image (and its associated camera pose, but without depth) as input to the encoder. This
yields the latent state {zi}ni=1. We then average the loss on a random subset of rays sampled from
the available RGB-D views of that scene. Finally, we average across the minibatch.

One advantage of 3D representations is that they allow us to explicitly express the prior knowl-
edge that objects should not overlap. This is not possible in 2D, where one cannot distinguish
between occluding and intersecting objects. We enforce this prior by adding the overlap loss
LO(r) =

∑
i σi(r(t))−maxi σi(r(t)), optimizing the overall loss L = − log p(t, C) + kOLO(r).

Experimentally, we find that LO can prevent the model from learning object geometry at all when
present from the beginning. We therefore start with kO = 0 and slowly increase its value in the
initial phases of training. In turn, we find that we do not need the learning rate warm-up of Locatello
et al. (2020). We describe all hyperparameters used in Appendix E.

4 EXPERIMENTAL EVALUATION

ObSuRF is designed for unsupervised volumetric segmentation of multi-object 3D scenes. As there
are no published baselines for this setting, we start by evaluating it on 2D images instead of 3D
scenes. This allows us to gauge how inductive biases present in a NeRF-based decoder affect un-
supervised segmentation. We also check how a slotted representation affects reconstruction quality
(compared to a monolithic baseline). We then move on to the 3D setting, where we showcase our
model on our novel 3D segmentation benchmarks; we also compare the reconstruction quality to the
closest available baseline, NeRF-VAE (Kosiorek et al., 2021).
Metrics. We evaluate segmentation quality in 2D image space by comparing produced segmenta-
tions to ground-truth using the Adjusted Rand Index (ARI, Rand (1971); Hubert & Arabie (1985)).
The ARI measures clustering similarity and is normalized such that random segmentations result in
a score of 0, while perfect segmentations in a score of 1. In line with Locatello et al. (2020), we not
only evaluate the full ARI, but also the ARI computed on the foreground pixels (Fg-ARI; according
to the ground-truth). Note that achieving high Fg-ARI scores is much easier when the model is not
attempting to segment the background, i.e. , to also get a high ARI score: This is because ignor-
ing the background allows the model to segment the objects using rough outlines instead of sharp
masks. To measure the visual quality of our models’ reconstructions, we report the mean squared
error (MSE) between the rendered images and the corresponding test images. To test the quality of
learned geometry in the 3D setting we also measure the MSE between the depths obtained via NeRF
rendering and the ground-truth depths in the foreground (Fg-Depth-MSE). We exclude the back-
ground as a concession to the NeRF-VAE baseline, as estimating the distance of the background in
the kind of data we use can be difficult from visual cues alone.

4.1 UNSUPERVISED 2D OBJECT SEGMENTATION

We evaluate our model on three unsupervised image segmentation benchmarks from the multi-object
datasets repository (Kabra et al., 2019): CLEVR, Multi-dSprites, and binarized Multi-dSprites. We
compare against four recent models as state-of-the-art baselines: SlotAttention (Locatello et al.,
2020), IODINE (Greff et al., 2020), MONet (Burgess et al., 2019), and R-NEM (van Steenkiste

7



Under review as a conference paper at ICLR 2022

et al., 2018). We match the experimental protocol established by Locatello et al. (2020): On dSprites,
we train on the first 60k samples, on CLEVR, we select the first 70k scenes for training, and filter
out all scenes with more than 6 objects. Following prior work, we test on the first 320 scenes of
each validation set (Locatello et al., 2020; Greff et al., 2020) and process CLEVR images by center-
cropping and resizing to 64× 64.

To adapt our encoder to the 2D case, we apply the positional encoding introduced by Locatello
et al. (2020), instead of providing camera position and ray directions. To reconstruct 2D images, we
query the decoder on a fixed grid of 2D points, and again drop the conditioning on viewing direction.
During training, we add a small amount of Gaussian noise to this grid to avoid overfitting to its exact
position. Similar to previous methods (Locatello et al., 2020; Greff et al., 2020), we combine the 2D
images which the decoder produces for each slot by interpreting its density outputs σi as the weights
of a mixture, i.e. , we use the formula Ĉ(r) =

∑
i ci(r)σi/σ. As we show in Appendix B.3, this

is equivalent to shooting a ray through a superposition of volumes with constant densities σi and
infinite depth. We train the model by optimizing the color reconstruction loss.

In Table 1, we compare the foreground ARI scores achieved by our model with those from the
literature. Visualizations are given in Appendix A.1. We find that our model performs significantly
better on the Sprites data, especially the challenging binary variant, indicating that our decoder
architecture imparts useful spatial priors. On CLEVR, our model largely matches the already nearly
perfect results obtained by prior models. We note that like (Locatello et al., 2020), our model
occasionally learns to segment the background in a separate slot, which is generally desirable but
slightly reduces the Fg-ARI score as discussed above. Additionally, as we report in A.2, we have
found ObSuRF to produce better reconstructions than an ablation with a monolithic latent code
instead of a slot based representation, confirming that the latter is also helpful for prediction quality.

Training ObSuRF on these 2D datasets takes about 34 hours on a single V100 GPU. This is roughly
4 times faster than SlotAttention (133 hours on one V100 (Locatello et al., 2020)) and almost 40
times more efficient than IODINE (One week on 8 V100s (Greff et al., 2020)). We attribute the
efficiency gains compared to SlotAttention to our decoder architecture, which processes each pixel
individually via a small MLP instead of using convolutional layers.

4.2 UNSUPERVISED 3D OBJECT SEGMENTATION

To test ObSuRF’s capability of learning volumetric object segmentations in 3D, we assemble two
novel benchmarks. First, we adapt the CLEVR dataset (Johnson et al., 2017) from (Kabra et al.,
2019) by rendering each scene from three viewpoints, and also collecting depth values. The initial
viewpoint is the same as in the original dataset, the others are obtained by rotating the camera by
120◦/240◦ around the z-axis. As in the 2D case, we restrict ourselves to scenes with at most 6
objects in them. Second, we construct MultiShapeNet, a much more challenging dataset which is
structurally similar to CLEVR. However, instead of simple geometric shapes, each scene is popu-
lated by 2-4 objects from the ShapeNetV2 (Chang et al., 2015) 3D model dataset. The resulting
MultiShapeNet dataset contains 11 733 unique shapes. We describe both datasets in detail in Ap-
pendix D. In contrast to the 2D case, we utilize the full 320× 240 resolution for both datasets. Due
to our decoder architecture, we do not need to explicitly generate full size images during training,
which makes moving to higher resolution more feasible.

When testing our model, we provide a single RGB view of a scene from the validation set to the
encoder. We can then render the scene from arbitrary viewpoints by estimating Ĉ(r) (Eq. (6))
via hierarchical sampling as in (Mildenhall et al., 2020). We set the maximum length tfar of each
ray to 40 or the point at which it intersects z = −0.1, whichever is smaller. This way, we avoid
querying the model underneath the ground plane, where it has not been trained and where we cannot
expect sensible output. We use a rendering obtained from the viewpoint of the input to compute
the reconstruction MSE. In order to obtain depthmaps and compute the depth-MSE, we use the
available samples to estimate the expected value of the depth distribution Ep(t)[t] =

∫ tfar

0
tp(t)dt.

We draw segmentation masks by computing argmaxp(i). Finally, we also render individual slots
by applying the same techniques to the individual NeRFs, following Eqs. (2) and (3). In order to
highlight which space they do and do not occupy, we use the probability p(t ≤ tfar) as an alpha
channel, and draw the slots in front of a checkerboard background.
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Model CLEVR-3D MultiShapeNet
C-MSE D-MSE Fg-ARI ARI C-MSE D-MSE Fg-ARI ARI

ObSuRF 0.31 0.07 96.9 92.0 0.60 1.28 94.7 61.1
without LO 0.60 0.25 94.0 1.4 0.82 3.32 94.9 16.9
w/o px. cond. 0.78 0.10 95.7 94.6 1.81 3.44 81.4 64.1
w/o px. cond., LO 0.80 0.12 85.5 4.83 1.78 3.40 94.4 16.5
w/ NeRF loss 0.69 0.25 97.8 18.0 2.08 4.00 58.75 3.1
w/ D-NeRF loss 1.11 0.15 97.9 15.7 4.7 8.95 12.8 0.2

NeRF-VAE 4.7 1.03 - - 5.5 110.3 - -

Table 2: Quantitative results on the 3D datasets. C-MSE scores are colour MSE ×103; D-MSE are
depth MSE values computed on the foreground only. ARI scores are in percent, best values in bold.
LO is the overlap loss.

We report results for the full ObSuRF model, which uses both the overlap loss LO and pixel condi-
tioning, and a number of ablations. These do not use the overlap loss (w/o LO), or pixel conditioning
(w/o pixel cond.). Additionally, we report results for ObSuRF trained with vanilla NeRF rendering
(w/ NeRF loss) and with NeRF rendering plus depth loss of (Deng et al., 2021) (w/ D-NeRF loss).
Details on these ablations are given in Appendix C.5. The slot sizes are 128 for CLEVR-3D and
256 for MultiShapeNet. As a baseline, we compare to NeRF-VAE which, similarly to our model,
is an autoencoder where the NeRF decoder is conditioned on a latent extracted from a single input
image. However, it is trained without depth information, and does not segment the scene. Instead,
it maximizes the evidence lower-bound (ELBO), comprised of a reconstruction term and a regular-
izing KL-divergence term. It also uses much larger latent representations of size 8 × 8 × 128, and
an attention-based decoder. While the differences in architecture make training times impossible
to directly compare, we estimate that due to our RGB-D based loss, ObSuRF required 24× fewer
evaluations of its scene function than NeRF-VAE over the course of training.

Figure 1 and Table 2 contain qualitative and quantitative results, respectively. We find that ObSuRF
learns to segment the scenes into objects, and to accurately reconstruct their position, dimensions,
and color. On the MultiShapeNet dataset, the large variety among objects causes the model to
sometimes output vague volumes instead of sharp geometry, whereas on CLEVR-3D, it stays close
to the true scene. We observe that similarly to the 2D models, our model does not learn to segment
the background into its own slot without LO. With this additional loss term however, it learns to
also segment the background, leading to much higher ARI scores. As expected, pixel conditioning
increases the accuracy of predicted colors and geometry. On CLEVR3D, both versions of NeRF
training yields similar results to our loss, whereas on MultiShapeNet, they fail to produce accurate
segmentations or geometry, with depth supervision Deng et al. (2021) actually performing worse. In
this more challenging setting, we also find that our training method converges much faster, as shown
by the learning curves in Appendix A.3. Compared to NeRF-VAE, we find that our model achieves
much lower reconstruction errors on both datasets.

5 CONCLUSION

We present ObSuRF, a model that segments 3D scenes into objects represented as NeRFs. We have
shown that it learns to infer object positions, dimensions, and appearance on two challenging and
novel 3D modelling benchmarks. Importantly, it does so using purely observational data, without
requiring supervision on the identity, geometry or position of individual objects.

Since ObSuRF learns to infer compact object representations that have to be well informed of their
geometry (due to the model structure), using these representations may be beneficial for downstream
tasks including robot grasping, dynamics modelling, or visual question answering. A key step in this
direction is to improve inference capabilities and robustness to noisy depth supervision, which will
enable working with real-world data.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In ICCV, 2021. 1

P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simulation as an engine of physical scene
understanding. Proceedings of the National Academy of Sciences (PNAS), 110(45), 2013. 1

Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Inter-
action networks for learning about objects, relations and physics. In NeurIPS, 2016. 1

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks. In arXiv:1806.01261, 2018. 1

James F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces. In SIG-
GRAPH, 1982. 4, 14, 15

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019. 6

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
tation. In arXiv:1901.11390, 2019. 3, 7

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. In arXiv:1512.03012, 2015. 2, 8, 19

Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In CVPR, 2018. 2

Chang Chen, Fei Deng, and Sungjin Ahn. Roots: Object-centric representation and rendering of 3d
scenes. In arXiv:2006.06130, 2021. 3

Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel Urtasun. Monoc-
ular 3d object detection for autonomous driving. In CVPR, 2016. 1

Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang. Bae-net:
Branched autoencoder for shape co-segmentation. In ICCV, 2019. 3

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary
space partitioning. In CVPR, 2020. 3

Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolu-
tional neural networks. In AAAI, 2019. 3

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea
Tagliasacchi. Cvxnet: Learnable convex decomposition. In CVPR, 2020. 3

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer views
and faster training for free. In arXiv:2107.02791, 2021. 3, 9, 19

Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep visual reasoning: Learning to predict action
sequences for task and motion planning from an initial scene image. In RSS, 2020. 1

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. In ICLR, 2017. 6

Sébastien Ehrhardt, Oliver Groth, Aron Monszpart, Martin Engelcke, Ingmar Posner, Niloy J. Mitra,
and Andrea Vedaldi. Relate: Physically plausible multi-object scene synthesis using structured
latent spaces. In NeurIPS, 2020. 3

10



Under review as a conference paper at ICLR 2022

Cathrin Elich, Martin R. Oswald, Marc Pollefeys, and Joerg Stueckler. Semi-supervised learning of
multi-object 3d scene representations. In arXiv:2010.04030, 2021. 3, 6

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative
scene inference and sampling with object-centric latent representations. In ICLR, 2020. 3

Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. GENESIS-V2: Inferring Unordered Object
Representations without Iterative Refinement. arXiv preprint arXiv:2104.09958, 2021. 3

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray
Kavukcuoglu, and Geoffrey E Hinton. Attend, infer, repeat: Fast scene understanding with gen-
erative models. In NeurIPS, 2016. 1, 3

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Schölkopf. Recurrent independent mechanisms. In ICLR, 2021. 3

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Jürgen Schmidhuber.
Tagger: Deep unsupervised perceptual grouping. In NeurIPS, 2016. 3

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
NeurIPS, 2017. 3

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning
with iterative variational inference. In ICML, 2020. 1, 3, 7, 8

Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas Funkhouser. Object-centric neural scene
rendering. In arXiv:2012.08503, 2020. 1, 5

Radu Horaud, Miles Hansard, Georgios Evangelidis, and Menier Clément. An overview of depth
cameras and range scanners based on time-of-flight technologies. Machine Vision and Applica-
tions, 27, 2016. 2

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 1985. 7

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In CVPR, 2017. 2, 8

Rishabh Kabra, Chris Burgess, Loic Matthey, Raphael Lopez Kaufman, Klaus Greff, Mal-
colm Reynolds, and Alexander Lerchner. Multi-object datasets. https://github.com/
deepmind/multi_object_datasets/, 2019. 7, 8, 19

Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matthew Botvinick,
Alexander Lerchner, and Christopher P Burgess. SIMONe: View-invariant, temporally-abstracted
object representations via unsupervised video decomposition. In Neural Information Processing
Systems, 2021. 3

James Kajiya and Brian von Herzen. Ray tracing volume densities. In SIGGRAPH, 1984. 4, 15
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Model Sprites (bin) Sprites CLEVR

ObSuRF 1.34± 0.15 0.64± 0.11 0.41± 0.06
NeRF-AE 4.82 2.60 1.75

Table 3: Testset reconstruction MSEs
×103 of our model compared to the
NeRF-AE ablation, which uses only a
single latent vector.
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A ADDITIONAL RESULTS

A.1 2D VISUALIZATIONS

In Fig. 3, we provide visualizations of ObSuRF’s 2D results.

A.2 2D ABLATION

To quantify the impact of learning representations which are segmented into slots, we construct a
baseline which uses only a single slot, called NeRF-AE. To keep the total computational capacity
comparable to our model, we set the size of this single latent vector to be equal to the total size of
the slots ObSuRF is using. We also double the size of the hidden layers in encoder and decoder.
Still, as we show in Table 3, our model consistently achieves much lower reconstruction errors. This
confirms previous results indicating that representing multi-object scenes using a set of permutation
equivariant elements is not just helpful for segmentation, but also for prediction quality (Kosiorek
et al., 2021; Locatello et al., 2020).

A.3 RUNTIME COMPARISON

We show learning curves of ObSuRF (without LO) and the NeRF based ablations in Figure 4.
While the models behave comparably on CLEVR3D, ObSuRF converges much faster and to a much
better segmentation result on Shapenet. Training time on the x-axis is measured in scene function
evaluations, as these make up at least 99% of the computational cost of training each model.

B PROOFS AND DERIVATIONS

We start by providing detailed derivations for the results referenced in the main text.
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Figure 3: Visualisations of ObSuRF’s output given samples from the validation set of Sprites (top)
and CLEVR2D (bottom).

B.1 DERIVATION OF THE NERF DEPTH DISTRIBUTION

In Section 3.1, we noted that the distribution p(t) shown in Eq. (2) arises both as the distribution of
points along r who contribute to the color observed at x0 = r(0), and as the distribution of points
illuminated by a light source located at x0. Here, we start by showing the latter.

B.1.1 DISTRIBUTION OF LIGHT ORIGINATING AT x0

Following the low albedo approximation due to Blinn (1982), we ignore indirect lighting. In order
for light originating at x0 to illuminate r(t) directly, it must travel along the ray without any scatter-
ing events. The rate of scattering events is given by the inhomogenous spatial Poisson process with
finite, non-negative density σ(x) (Møller & Waagepetersen, 2003). We are therefore looking for
the distribution over the position of the first event encountered while traveling along r, also called
the arrival distribution of the process (Møller & Waagepetersen, 2003). In a Poisson process, the
probability of encountering no events along a given trajectory r(t) with t ≥ 0 (transmittance) is

T (t) = exp

(∫ t

0

−σ(r(t′))dt′
)
. (7)

The probability that light scatters before moving past some point t0 is therefore p(t ≤ t0) = 1 −
T (t0). Let us now assume that limt0→∞ T (t0) = 0, i.e. , each ray of light encounters a scattering
event eventually. This is for instance guaranteed if the scene has solid background. In that case,
1− T (t) is the cumulative distribution function for p(t), since it is non-decreasing, continuous, and
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Figure 4: Learning curves of ObSuRF and its ablations measuring Fg-ARI (top) and C-MSE (bot-
tom) when training on CLEVR3D (left) and Multishapenet (right). For better comparability with
NeRF-based training, all ObSuRF models are trained without the overlap loss LO.

fulfills T (0) = 0, T (∞) = 1. We can therefore recover the density function p(t) by differentiating:

p(t) =
d

dt
(1− T (t)) (8)

= −T (t) d
dt

∫ t

0

−σ(r(t′))dt′ (9)

= σ(r(t))T (t). (10)

B.1.2 DISTRIBUTION OF COLORS OBSERVED AT x0

As discussed in Section 3.1, NeRF does not model light sources explicitly, but assumes that lighting
conditions are expressed by each point’s RGB color value. The observed color Ĉ(r) at point x0

along ray r is then a blend of the color values along r(t) (Blinn, 1982; Kajiya & von Herzen, 1984).
The intensity with which we can observe the color emitted from point r(t) in direction −d of the
camera is proportional to the density σ(r(t)). Let k denote the constant of proportionality. Since
T (t) is the probability that light reaches x0 from r(t), the we can observe the color c(r(t),d) at x0

with intensity kσ(r(t))T (t).

In order to obtain the distribution p(t) over the points from which the colors we observe at x0

originate, we must normalize this term by dividing by the total intensity along ray r: p(t) =

kσ(r(t))T (t)∫∞
0
kσ(r(t′))T (t′)dt′

=
σ(r(t))T (t)∫∞

0
σ(r(t′))T (t′)dt′

. (11)

As we have shown in Eq. (10), the antiderivative of σ(r(t))T (t) is−T (t). The value of the improper
integral is therefore

lim
t→∞

∫ t

0

σ(r(t′))T (t′)dt′ = lim
t→∞

T (0)− T (t) = 1. (12)
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Consequently, p(t) = σ(r(t))T (t). This procedure may be viewed as a continuous version of alpha
compositing (Porter & Duff, 1984).

B.2 ESTIMATING LNERF IS BIASED

As a counterexample, consider the following situation in which a ray r passes through a thin but
dense white volume, before hitting black background. For simplicity, we use grayscale color values.

σ(r(t)) =


100 if 50 ≤ t ≤ 51

10 if t > 80

0 otherwise,
(13)

c(r(t),d) =

{
1 if 50 ≤ t ≤ 51

0 otherwise.
(14)

We then have T (50) = 1, but T (51) = T (80) = exp(−100). Since T (·) is the CDF of t (Eq. (10)),
this means almost all of the incoming light is coming from the thin volume at t ∈ [50, 51]:

p(50 ≤ t ≤ 51) = 1− exp(−100) (15)
p(t > 80) = exp(−100). (16)

Using Eq. (3), we find that the color value is almost exactly one:

Ĉ(r) = 1− exp(−100) ≈ 1. (17)

Let us now consider the result of estimating Ĉ(r) using k = 50 stratified samples t1, . . . , tk, with
tfar = 100. In this case, one sample ti is drawn uniformly from each of k evenly sized bins:

ti ∼ Uniform
(
i− 1

k
tfar,

i

k
tfar

)
. (18)

Only one of the bins, the one for t26 ∼ Uniform(50, 52), covers the volume at [50, 51]. However,
since this volume only makes up half the range of this bin, we have p(50 ≤ t26 ≤ 51) = 1/2.
Therefore, 50% of the time, sampling in this way will result in samples which miss the volume at
[50, 51] entirely. In those cases, we have c(r(ti),d) = 0 for all i. As a result, the estimated color
value is Ĉ |ti(r) = 0. Even if the estimated color is 1 in all other cases, this sampling scheme will
be a biased estimator for the true color values:

Eti

[
Ĉ |ti(r)

]
≤ 1

2
< Ĉ(r). (19)

Collecting a second round of samples based on the estimated densities as proposed by Mildenhall
et al. (2020) does not change the result. In the 50% of cases where the thin volume was missed
entirely during by the first set of samples, we have σ(r(ti)) = 0 for all ti ≤ 80. As a result, the
piecewise-constant PDF used for sampling the second round of samples will equal 0 for 50 ≤ t ≤
51, and none of the newly collected samples will cover the relevant range. Therefore, Eq. (19) also
holds when the samples ti were collected using hierarchical sampling.

We note that this effect may be somewhat mitigated by the fact that NeRF models typically use
different scene functions for coarse and fine grained sampling (Mildenhall et al., 2020; Kosiorek
et al., 2021). The coarse scene function may then learn to model wider volumes which are easier to
discover while sampling, instead of the exact scene geometry. However, it seems clear that this will
not allow decreasing the number of samples arbitrarily, e.g. to 2 as we did in this paper.

B.3 SUPERPOSITION OF CONSTANT DENSITIES YIELDS A MIXTURE MODEL

Here, we illustrate how a mixture model, like the one we use in Section 4.1, naturally arises when a
superposition of volumes with constant densities σi and colors ci is rendered. Following Eq. (5) and
writing σ =

∑
i σi, the transmittance along a ray r is

T (t) = exp

(
−
∫ t

0

σdt′
)

= exp(−σt). (20)
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As in Section 3.4, we can then write

p(t, i) = σi(r(t))T (t) = σi exp(−σt). (21)

Integrating over t to obtain the distribution over the volumes i yields

p(i) =

∫ ∞
0

p(t, i)dt =

[
σi
−σ

exp(−σt)
]∞
0

=
σi
σ
. (22)

Using ci(x) = ci, and following Eq. (6), we find that the observed color will then be

Ei∼p(·) [ci] =

n∑
i=1

ci
σi
σ
, (23)

which is the desired mixture model.

C ARCHITECTURES

We now present the architectures used in our experiments. When we refer to some of the dimensions
in terms of a variable, we specify the concrete values used in Appendix E. ObSuRF uses exclusively
ReLU activations.

C.1 ENCODER ARCHITECTURE

Due to the differences in resolution and complexity, we used different feature extractor architectures
for the 2D and 3D experiments. The slot attention module was identical in both cases.
Feature Extractor for 2D Datasets. Following Locatello et al. (2020), we use a convolutional
network with 4 layers to encode the input image for the 2D datasets. Each layer has a kernel size
of 5× 5, and padding of 2, keeping the spatial dimensions of the feature maps constant at 64× 64.
Each layer outputs a feature map with dh channels. After the last layer, we apply the spatial encoding
introduced by Locatello et al. (2020). Again following Locatello et al. (2020), we process each pixel
in the resulting feature map individually using a layer normalization step, followed by two fully
connected (FC) layers with output sizes [dh, dz].
Feature Extractor for 3D Datasets. For the 3D experiments, we adapt the ResNet-18 architecture
to achieve a higher model capacity. We start by appending the camera position and a positional
encoding (Mildenhall et al., 2020) of the viewing direction to each pixel of the input image, and
increase the input size of the ResNet accordingly. We remove all downsampling steps from the
ResNet except for the first and the third, and keep the number of output channels of each layer
constant at dh. Given an input image of size 240 × 320, the extracted feature map therefore has
spatial dimensions 60 × 80, and dh channels. We apply the same pixelwise steps described for the
2D case (layer normalization followed by two FC layers) to obtain the final feature map with dz
channels.
Slot Attention. We apply slot attention as described by Locatello et al. (2020) with n slots for m
iterations, except for the following change. At each iteration, after the GRU layer, we insert a multi-
head self attention step with 4 heads to facilitate better coordination between the slots. Specifically,
we update the current value of the slots via

z := z+ MultiHead(z, z, z). (24)

After m iterations, the values of the slots form our latent representation z1, . . . zn. We apply the
same number of iterations m during both training and testing.

C.2 DECODER ARCHITECTURE

Here, we describe how density and colors are predicted from the spatial coordinates x and a condi-
tioning vector z. If pixel conditioning is not used, then z is simply equal to one of the latent codes
zi. Otherwise, we concatenate zi with the feature map pixel dr,cz , where r, c are the image space
coordinates of the query point x projected onto the feature map dz , following Yu et al. (2021a).

To then predict color and density, we first encode the x via positional encoding (Mildenhall et al.,
2020), using nf frequencies, with the lowest one equal to 2kfπ. We process the encoded positions
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Parameter Description 2D Data CLEVR-3D MultiShapeNet

dz Dimensionality of slots 64 128 256
dh Dimensionality of hidden layers 64 128 256
m Number of Slot Attention iterations 3 5 5
nf Number of frequencies for pos. enc. 8 16 16
kf Exponent for lowest frequency 0 -5 -5
σmax Maximum density - 10 10
σc Standard deviation of color dist. 1 0.2 0.2
δ Noise added to depths t - 0.07 0.07
k̂O Maximum overlap loss coefficient - 0.05 0.03

Start of LO ramp up - 20000 20000
End of LO ramp up - 40000 40000
Batch Size 128 64 64
Rays per instance - 4096 2048

Table 4: Hyperparameters used for the experiments with ObSuRF.

using a 5 layer MLP with hidden size dh. After each hidden layer, we scale and shift the current
hidden vector h elementwise based on z. Specifically, at each layer, we use a learned linear map to
predict scale and shift parameters α, β (each of size dh) from z, and update h via h := (h+ β) · α.

In the 2D case, we output 4 values at the last layer, namely the log density log σ and the RGB-coded
colors c. In the 3D case, we output one value for the density, and dh values to condition the colors.
We append the view direction d to the latter, and predict the actual color output using two additional
FC layers of size [dh, 3], followed by a sigmoid activation. In the 3D case, we find that it is necessary
to set a maximum density value, as the model can otherwise arbitrarily inflate the depth likelihood
p(t) by increasing the density in regions which are known to always be opaque, such as the ground
plane. We do this by applying a sigmoid activation to the decoder’s density output, and multiplying
the result by σmax, obtaining values in the range [0, σmax].

C.3 NERF-AE BASELINE DETAILS

For the NeRF-AE baseline (Table 3), we adapt our encoder architecture to output a single vector
instead of a feature map. To this end, we first append a positional encoding (Mildenhall et al.,
2020) of each pixel’s coordinates to the input image. This replaces the spatial encoding described
above, since the method described by Locatello et al. (2020) requires a full-sized feature map to be
applicable. We double the number of channels to 2dh, but set the convolutional layers to use stride
2, obtaining an output with spatial dimensions 4 × 4. As above, each of these vectors is processed
via layer normalization and two fully connected layers, this time with output sizes [2dh, 2dh]. We
flatten the result to obtain a vector of size 32 · dh, and obtain the final vector using an MLP of
sizes [4d′z, 2d

′
z, d
′
z]. This replaces the slot attention component described below. To keep the total

dimensionality of the latent space identical, we set d′z = ndz .

C.4 NERF-VAE BASELINE DETAILS

We compare ObSuRF to NeRF-VAE on the quality of image reconstruction and depth estimation.
We use NeRF-VAE with the attentive scene function and without iterative inference as reported by
Kosiorek et al. (2021), with the majority of parameters the same. The only differences stem from
different image resolution used in the current work (240× 320 as opposed to 64× 64 in (Kosiorek
et al., 2021)). To accommodate bigger images, we use larger encoder with more downsampling
steps. Specifically, we use [(3, 2), (3, 2), (3, 2), (3, 2) (4, 1)] block groups as opposed to [(3, 2), 3,
2), (4, 1)], which results in an additional 4× downsampling and 6 additional residual blocks. We
used the same parameters to train the NeRF-VAE on both datasets: Models were trained for 2.5×105
iterations with batch size 192, learning rate of 5× 10−4 and Adam optimizer. The training objective
is to maximize the ELBO, which involves reconstructing an image with volumetric rendering. We
sample 32 points from the coarse scene net, and we reuse those points plus sample additional 64
points for evaluating the fine scene net. Kosiorek et al. (2021) were able to set the integration cutoff
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tfar = 15, but for the data generated for this paper, this value was too small and we used tfar = 40.
This effectively reduces the number of points sampled per unit interval, which might explain higher
reconstruction and depth-estimation errors.

C.5 NERF TRAINING ABLATION DETAILS

The ablations involving training via NeRF-style ray marching largely use the same architecture as
ObSuRF, except for the following changes:

• No pixel conditioning is used, as we have found that this causes the model to fail to seg-
ment, likely because it allows the model to achieve good loss scores without relying on the
slots.

• No type of overlap loss is used.

• The maximum density is not limited to a maximum value, instead it is predicted using a
simple ReLU activation.

• Following Mildenhall et al. (2020), we learn two instances of the decoder for the coarse
and fine rendering passes, respectively.

• For training on CLEVR3D, we collect 48 samples each for the coarse and fine rendering
pass. For shapenet, we use 64 samples each. To account for the increased memory cost, we
reduce the batch size to 16, and the number of rays per instance to 256 and 192, respectively.

• For depth supervision, an MSE loss was placed on the estimated depths. Following Deng
et al. (2021), this loss was weighted with the factor λ = 0.1 for CLEVR3D. For Mul-
tiShapeNet, we tried 0.1 and 0.04, but found that neither causes the model to properly
segment the scene. The results above were obtained using λ = 0.04.

D DATASETS

Here, we describe both of the 3D datasets used.

D.1 CLEVR-3D

To allow for maximum interoperability with the 2D version of CLEVR, we use the scene metadata
for the CLEVR dataset provided by Kabra et al. (2019). While this data does not specify the original
(randomized) camera positions, we were able to recover them based on the provided object coordi-
nates in camera space via numerical root finding. We were therefore able to exactly reconstruct the
scenes in Blender, except for the light positions, which were rerandomized. To ensure a coherent
background in all directions, we added a copy of the backdrop used by CLEVR, facing in the oppo-
site direction. We rendered RGB-D views of the scene from the original camera positions and two
additional positions obtained by rotating the camera by 120◦/240◦ around the z axis. We test on the
first 500 scenes of the validation set, using RGB images from the original view points as input.

D.2 MULTISHAPENET

For the MultiShapeNet dataset, we start with the same camera, lighting, and background setup
which was used for CLEVR-3D. For each scene, we first choose the number of objects uniformly
between 2 and 4. We then insert objects one by one. For each one, we first uniformly select one
of the chair, table, or cabinet categories. We then uniformly choose a shape out of the training set
of shapes provided for that category in the ShapeNetV2 dataset (Chang et al., 2015), leaving the
possibility for future evaluations with unseen shapes. We insert the object at a random x, y position
in [−2.9, 2.9]2, scale its size by a factor of 2.9, and choose its z position such that the bottom of the
object is aligned with z = 0. To prevent intersecting objects and reduce the probability of major
occlusions, we compute the radius r of the newly inserted object’s bounding circle in the xy-plane.
If a previously inserted object has radius r′, and their xy-distance d < 1.1(r + r′), we consider the
objects to be too close, remove the last inserted object, and sample a new one. If the desired number
of objects has not been reached after 20 iterations, we remove all objects and start over.
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E MODEL PARAMETERS

We report the hyperparameters used for ObSuRF in Table 4. In addition to the architectural param-
eters introduced above, we note the importance of the standard deviation of the color distribution
σC for tuning the relative importance of color compared to depth. We also report how we ramp up
the overlap loss LO: From the beginning of training to the iteration at which we start the ramp up,
we set kO = 0. During the ramp up period, we linearly increase kO until it reaches the maximum
value k̂O. We train using the Adam optimizer with default parameters, and an initial learning rate of
4e− 4. We reduce the learning rate by a factor of 0.5 every 100k iterations. Finally, we note that for
the 3D models, we used gradient norm clipping during training, i.e. , at each iteration, we determine
the L2 norm of the gradients of our model as if they would form a single vector. If this norm exceeds
1, we divide all gradients by that norm. When training on MultiShapeNet, we find that very rare,
extremely strong gradients can derail training. After the first 5000 iterations, we therefore skip all
training steps with norm greater than 200 entirely.
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