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Abstract

A number of applications, such as mobile robots or automated vehicles, use LiDAR
sensors to obtain detailed information about their three-dimensional surroundings.
Many methods use image-like projections to efficiently process these LiDAR
measurements and use deep convolutional neural networks to predict semantic
classes for each point in the scan. The spatial stationary assumption enables
the usage of convolutions. However, LiDAR scans exhibit large differences in
appearance over the vertical axis. Therefore, we propose semi local convolution
(SLC), a convolution layer with reduced amount of weight-sharing along the
vertical dimension. We are first to investigate the usage of such a layer independent
of any other model changes. Our experiments did not show any improvement over
traditional convolution layers in terms of segmentation IoU or accuracy.

1 Introduction

For a wide variety of applications it is important to understand the semantic meaning of the three
dimensional world. LiDAR sensors provide a precise sampling of the environment and are often
used for object detection and semantic segmentation. Many state-of-the-art semantic segmentation
approaches make use of traditional two-dimensional convolutional neural networks (CNNs) by
projecting the point clouds into an image-like structure [9, 15].

In this paper we provide deeper insights into one of the methods developed in our previous work [14].
We investigate whether the spatial stationary assumption of convolutions is still applicable to inputs
with varying statistical properties over parts of the data, such as projected LiDAR scans. These data
structures exhibit similar features as aligned images for which locally connected layers have been
introduced [13]. Fig. 1 shows an example of such a projected LiDAR scan, which has a high variance
in depth over the vertical axis, but not the horizontal axis. Further, the reflecivity measurements show
inconsistencies over the vertical axis. To address this effect, we introduce SLC, a layer with reduced
weight-sharing along the vertical spatial dimension.

2 Related Work

Convolution layers apply a filter bank on their input. The filter weights are shared over all spatial
dimensions, meaning that for every location in the feature map the same set of filters are learned. The
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Figure 1: LiDAR Scan: A projected LiDAR scan has a high variance in distance over the vertical
axis of the scan (top) and some sensors have calibration issues of the reflectivity module that varies
for each layer (bottom).

re-usability of weights causes a significant reduction in the number of parameters compared to fully
connected layers. This allows deep convolutional neural networks to be trained successfully, in turn
leading to a substantial performance boost in many computer vision applications. The underlying
premise of convolutional methods is that of translational symmetry, i.e. that features that have been
learned in one region of the image are useful in other regions as well.

For applications such as face recognition which deal with aligned data, locally connected layers have
proved to be advantageous [7, 8, 13]. These layers also apply a filter bank. Contrary to convolutional
layers, weights are not shared among the different locations in the feature map, allowing different
sets of filters to be learned for every location in the input.

The spatial stationary assumption of convolutions does not hold for aligned images due to different
local statistics in distant regions of the image. In a projected LiDAR scan, the argument holds true
for sensors that are mounted horizontally. Each horizontal layer is fixed at a certain vertical angle. As
the environment of the sensor is not invariant against rotations around this axis, this leads to different
distance statistics in each vertical layer.

There exists some other works that exploit variability in depth along the vertical axis [2, 3, 5, 6, 11].
Though their work is conceptually similar to ours, they report improvements in contrast to this work.
However, these works do not include an ablation study on this particular architectural modification
independent of the other modifications proposed in their work. This makes the evaluation not
transparent about the actual influence of the adapted convolutions. Therefore, this work presents the
results of an independent ablation and shows that explicit modelling of varying statistical properties
in CNNs is not necessary for LiDAR-base semantic segmentation.

3 Method

We consider an input feature map x of shape [Hx,Wx, Cx], representing a cylindrical projection
with height Hx, width Wx, and channels Cx. It is passed through a convolution layer which outputs
another feature map y of shape [Hy,Wy, Cy].

A conventional 2D convolution layer computes the output y with a cross-correlation of the input x
and a filter kernel k such that

yh,w,cy =

Cx−1∑
cx=0

I−1∑
i=0

J−1∑
j=0

ki,j,cx,cy · xh+i−I,w+j−J,cx (1)

where k has the shape [2I + 1, 2J + 1, Cx, Cy].

In a SLC layer, the filter kernel has the shape [2I + 1, 2J + 1, Cx, Cy, α] where α is the number of
components with {α ∈ N : 1 ≤ α ≤ Hx}. Each component is responsible for different parts along
the vertical axis of the input (note that this concept can also be applied to the horizontal direction).
The output of the SLC is then given by

yh,w,cy =

Cx−1∑
cx=0

I−1∑
i=0

J−1∑
j=0

ki,j,cx,cy,αh
· xh−iI ,w−j−J,cx (2)

2



Table 1: Overall Results: Shown is the semantic segmentation performance over 19 object classes
for two different base networks on the validation split of the SemanticKITTI dataset. Each base
network is augmented with our SLC layer and tested for different values of α, i.e. the number of
vertical filters within the convolution. All convolution layers, except input and output layer, are
replaced within the network.

Network Metric # vertical filters α
1 2 4 8 16 32 64

DarkNet21 [9] Accuracy 0.83 0.82 0.81 0.79 0.75 0.73 -
mIoU 0.36 0.34 0.32 0.30 0.27 0.26 -

SqueezeSegV2 [15] Accuracy 0.84 0.82 0.81 0.80 0.76 0.75 0.71
mIoU 0.36 0.35 0.31 0.30 0.27 0.26 0.25

where αh = bα · h/Hxc selects the respective filter-component depending on the vertical position h.

For α = Hx, there is no weight sharing along the vertical axis, a new filter is used for every single
data row. For α = 1, we obtain a regular convolution as defined in Eq. (1). For values in between,
the degree of weight sharing can be adapted to the desired application. All equations omit padding,
bias, and activation function for better readability.

4 Experiments

In this section, we investigate the introduction of SLC layers in various experiments. We use the
implementation of Milioto et al. [9]2 for our experiments. All results are reported on the validation
split of the SemanticKITTI dataset [1]. The input to the network is a two-channel image with the
projected depth measurements and the respective reflecivity values.

Table 1 shows the overall results for two different base networks. First, it shows that SLCs do not
outperform normal convolutions. Second, the performance decreases with increasing α. Third, the
above two points apply to both base networks, even though DarkNet21 has approximately 24.7M
trainable parameters, whereas SqueezeSegV2 only has approximately 928.5k parameters.

When α increases with a factor of 2, then also the number of trainable parameters increases by a
factor of 2 (approximately).3 Therefore, we conduct a second row of experiments, where we reduce
the number of trainable parameters in the base network by decreasing the number of filters in each
layer. Naturally, we expect a network with lower capacity to perform worse. Table 2 shows the
semantic segmentation accuracy and mIoU performance for the DarkNet21 model. The entries with
the gray background mark those networks that have approximately the same number of trainable
variables as the base network, since the modification in α and output filter size cancel each other out.
Here again, an increase in α leads to decreased performance. One has to note, that even if the number
of parameters is the same for the gray cells, the increase in α only leads to more capacity over the
spatial dimension of the feature maps, whereas larger output filters in general lead to more capacity
over the depth of the network for the entire spatial extent.

5 Discussion

The experiments show that SLCs are not able to outperform normal convolutions and performance
usually decreases with increasing α. This effect is stronger for networks with a large number of
parameters. Therefore, we assume that normal convolution layers of adequate capacity can already
handle the different statistical properties across the vertical spatial dimension. This claim is supported
by the findings of Kayhan et al. [10] who show that convolutional layers exploit absolute spatial
location. Therefore CNNs are in fact not translation invariant which means a network with sufficient
capacity is able to learn even differing statistics over the vertical dimension of such a LiDAR scan.

2Code: https://github.com/PRBonn/lidar-bonnetal
3DarkNet21 with α = 64 is too large for a single GPU, therefore no results are reported
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Table 2: Scaled Network Performance: This table shows the semantic segmentation performance
of the DarkNet21 [9] model (Accuracy / mIoU). Over the columns, we increase the number of vertical
filters within each SLC layer. Over the rows, we decrease the number of overall output filters for each
layer, i.e. 2 means multiplying the number of filters by a factor of 1

2 which results in 1
4 of the original

trainable variables. The gray cells mark those that contain configurations where the increase in α is
neutralized with the decrease of filter sizes and thus results in approximately the same number of
trainable parameters.

1 2 4 8 16 32 64

1 0.83 / 0.36 0.82 / 0.34 0.81 / 0.32 0.79 / 0.30 0.75 / 0.27 0.73 / 0.26 -
2 0.83 / 0.35 0.81 / 0.32 0.83 / 0.33 - / - - / - - / - 0.70 / 0.24
4 0.82 / 0.34 - / - 0.77 / 0.30 0.76 / 0.28 0.74 / 0.25 - / - 0.72 / 0.24
8 0.77 / 0.31 - / - - / - 0.74 / 0.27 0.72 / 0.25 0.71 / 0.24 0.71 / 0.23

6 Limitations and Future Work

In contrast to other works, we present an independent ablation on our proposed SLC layer. However,
we still see the need for more extensive evaluations to obtain comprehensive evidence of the effects
of SLCs. First, is must be clarified whether the results are data dependent. This can be achieved by
using other datasets, such as nuScenes [4] and Waymo Open [12], or dense depth representations
instead of range images. Second, the reported results could be task-dependent and therefore SLC
might yield different results for tasks, such as object detection or motion estimation.

Future work may include a soft version of the proposed SLC, where the α strips of data are not
processed completely independently. The output is then computed via a linear combination of
multiple kernel operations, weighted with the vertical position of the respective filter.

7 Conclusion

This paper presented semi local convolutions (SLCs), a network layer that only has limited weight
sharing along the vertical spatial dimension of the input. Our experiments showed that using SLCs
instead of normal convolutions decreases segmentation performance, especially when decreasing
the amount of weight sharing. Since normal convolution layers can already exploit spatial location
information within the network, it is not necessary to explicitly address the large difference in
appearance along the vertical axis of a LiDAR scan in a special layer.
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