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ABSTRACT
When making recommendations, there is an apparent trade-off

between the goals of accuracy (to recommend items a user is most

likely to want) and diversity (to recommend items representing a

range of categories). As such, real-world recommender systems

often explicitly incorporate diversity into recommendations, at the

cost of accuracy.

We study the accuracy-diversity trade-off by bringing in a third

concept: user utility. We argue that accuracy is misaligned with

user utility because it fails to incorporate a user’s consumption

constraints; at any given time, users can typically only use at most

a few recommended items (e.g., dine at one restaurant, or watch

a couple of movies). In a theoretical model, we show that utility-

maximizing recommendations—when accounting for consumption

constraints—are naturally diverse due to diminishing returns of

recommending similar items. Therefore, while increasing diversity

may come at the cost of accuracy, it can also help align accuracy-

based recommendations towards the more fundamental objective

of user utility. Our theoretical results yield practical guidance into

how recommendations should incorporate diversity to serve user

ends.

CCS CONCEPTS
• Information systems → Information retrieval diversity;
Recommender systems.

KEYWORDS
Accuracy-diversity trade-off, recommender systems, theoretical

modeling
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1 INTRODUCTION
Recommender systems are often built to maximize accuracy, the
percentage of recommended items that a user likes. This objective is

well-suited for the machine-learning-based algorithms in common

use. Recommender systems also seek to heuristically incorporate

diversity, since users empirically prefer to be shown items from

a range of categories [6, 34, 39, 48]. In practice, however, these

goals are in tension. To counter accuracy-maximization’s tendency
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toward homogeneity, real-world recommender systems inject di-

versity into recommendations using a range of heuristics [21, 37]. A

wide literature proposes methods to address the apparent “accuracy-

diversity trade-off” (e.g., [1, 2, 4, 5, 7, 12, 16, 17, 20, 22, 23, 25, 26,

28, 31, 33, 35, 36, 41, 43, 49, 52, 54, 55]).

Despite the practical importance of navigating the trade-off, a

deeper understanding of the underlying tension is missing. Without

a principled understanding of the trade-off, attempts to diversify

recommendations have difficulty moving beyond intuition—and

difficulty articulating what they are accomplishing at a deeper level.

Reconciling the trade-off. In this paper, we conceptualize and

analyze the relationship between accuracy and diversity by observ-

ing that there are in fact three fundamentally distinct quantities

of interest in these problems: accuracy, diversity, and user utility.

None of these quantities serves as a proxy for any other, and a

true understanding of the trade-offs requires understanding how

all three of them interact. Moreover, the heart of the problem is

really about maximizing one of these three—namely user utility,

since this is what users actually experience. In particular, we ar-

gue that accuracy, in general, misrepresents user utility, and that

by considering a better-conceived measure of utility, the trade-off

with diversity dissipates. In turn, our results inform how diversity

supports utility-maximizing recommendations.

Accuracy does correspond directly to a model of user utility in

a very specific situation: when users obtain value from all recom-

mended items—that is, with binary utility, value 1 for each item

liked and 0 for each disliked. We argue that under more reasonable

and general assumptions, however, accuracy is misaligned with

user utility because it does not consider consumption constraints—
limits on the number of recommended items a user can use. At a

given time, a user can only watch one movie, dine at one restaurant,

or purchase one new TV; a job recruiter can only extend interviews

to a handful of recommended candidates.

A more precise measure of user utility accounts for consumption

constraints and therefore focuses on the value the user obtains from

the best items they are recommended. Given a “unit consumption

constraint” and binary value for each item, this reduces to the

probability that the user is shown at least one item they like. Once

accounting for consumption constraints, we show that user utility

is in fact aligned with and supported by diversity; a preference

for diversity arises endogenously in our model. As a consequence,

efforts to navigate the accuracy-diversity trade-off can be viewed

not as balancing two genuinely competing desiderata, but rather

as using diversity to steer accuracy-maximizing recommendations

towards utility-maximizing recommendations.

To see why consumption constraints induce diversity, consider

a thought experiment by Steck [50] in the design of recommen-

dations. A user on a movie-streaming service is in the mood for

comedy 80 percent of the time, and action 20 percent of the time.

How many movies of each genre should we recommend? The items

the user will like with the highest probability are mostly comedy,

meaning that the accuracy-maximizing set of recommendations is

1
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likely to be fairly homogeneous. But now suppose that we aim to

maximize the probability the user likes at least one recommended

movie—accounting for a “unit consumption constraint.” Now, rec-

ommending only comedy movies is suboptimal. If the user is in the

mood for action, they will be left without any options; meanwhile,

it is not beneficial to recommend many additional comedy movies,

since the user only cares that they have a single good movie to

watch. In this way, accounting for consumption constraints intu-

itively induces diverse recommendations.

A model of recommendations. To make this intuition precise—

that user utility is aligned with diversity—and to understand when

and to what extent it holds, we need to analyze the diversity of

accuracy- and utility-maximizing recommendations. (From here on,

utility refers to a measure that accounts for capacity constraints.)

A primary contribution of our work is a stylized-but-rich model of

recommendations that is analytically tractable in this respect.

In our model, items of varying quality belong to discrete types,

and each user has a probability distribution over types. In a given

session, the user is in the mood for one of these types, where the

type is drawn from the distribution. (Uncertainty of a user’s mood

can arise either due to genuine stochasticity, or limitations in the

recommender’s inferential abilities.) This model lends itself to an

interpretable measure of diversity, where a set of recommendations

is diverse if it represents items from many types roughly equally.

We derive results in an asymptotic regime where the number of

recommendations grows large, obtaining precise characterizations

of accuracy- and utility-maximizing recommendations as a func-

tion of model parameters that control the quality of items within

and across types. We show in computational experiments that our

theoretical findings hold more generally.

Diminishing returns drive our results and proof technique. Our
results connect the composition of recommendation sets with the

rate of diminishing returns when recommending more items of a

given type (with respect to accuracy or utility). With large dimin-

ishing returns in one type, after recommending a few items of that

type, a recommender becomes incentivized to recommend from

other types. Roughly speaking, utility induces sharper diminishing

returns than accuracy, and thus more diversity. The key steps in our

proofs are to (1) precisely characterize the asymptotic behavior of

these diminishing returns under different parameterizations of our

model, and (2) to show how this behavior determines the asymptotic

representation of item types in optimal recommendations.

Overview of results. In a basic setting (Theorem 1), the model

confirms our intuition in a striking way. In this setting, accuracy-

maximizing recommendations are completely homogeneous (rep-

resenting only items from one type); yet, by accounting for con-

sumption constraints, utility-maximizing recommendations are

completely diverse (representing each type with equal proportion)

in the limit. This uncovers a surprising fact—that even if the user

prefers one type with higher probability than another, the optimal

set of recommendations may contain an equal proportion of each.

In a more general setting (Theorems 2a and 2b), we consider

differences in item quality within and across types, accounting for

the idiosyncratic properties of recommendation settings.

Theorem 2a shows that accuracy-maximizing recommendations

become more diverse when item quality decays at a faster rate (i.e.,

the recommender quickly begins to run out of “good options”). This

accords with our conceptual understanding that larger diminishing

returns induces more diversity. However, when this rate of decay

is “reasonable” (in a sense made precise in Section 3.2), accuracy-

maximizing recommendations remain relatively homogeneous—

roughly speaking, they represent types “less than proportionally.”

Theorem 2b shows that utility-maximizing recommendations are

generally diverse. More specifically, however, we show that when

there is no decay in item quality, representation of a type varies

inversely with the quality of items within that type. This holds

empirically whenever the rate of decay is small. While perhaps

counterintuitive, this is explained by the need to recommend more

items from such a type to ensure that the user likes at least one.

We isolate this case in Corollary 3, which we call the “milk and ice

cream theorem,” since it helps explains the paradoxical empirical

fact that while consumers are more likely to buy milk, grocery

stores devote much more aisle space to ice cream.

When the rate of decay is “severe,” Theorems 2a and 2b collec-

tively show that accuracy- and utility-maximizing recommenda-

tions coincide, and are diverse.

Implications. Our results lay out the specific ways in which di-

versity supports user utility, and thus inform how diversity should

be incorporated into recommender systems. In particular:

• Maximizing user utility—properly conceived as incorporating

consumption constraints—is often aligned with showing users a

diverse set of items. Thus, to the extent that real-world systems

do not show diverse recommendation sets, our results suggest

that they are also failing to optimize user utility. Notably, this

is true even before considering other ways in which diversity

factors into utility (e.g., an intrinsic preference for diversity).

• Our results suggest principled approaches to diversify recom-

mendations in a way that also optimizes utility. In particular,

our results show that when users have consumption constraints,

the relative likelihood a user prefers a specific type of item does

not asymptotically affect the optimal representation of that item.

Therefore, systems should recommend items relatively equally

from a user’s possible set of interests—even the niche interests.

• When the platform can estimate quality within a type (how often

consumers like a specific ice cream flavor, conditional on wanting

ice cream), the platform should recommend more items from

types in which individual items are less likely to be satisfactory.

Paper Outline. In Section 2, we introduce our model. In Section 3,

we introduce our theoretical results, first in a basic setting (Section

3.1) and then in a general setting (Section 3.2). In Section 4, we

give an overview of our proof technique, sketching how we are

able to derive our asymptotic results. In Section 5, we test our

theoretical predictions in a range of computational experiments. In

particular, we conduct a semi-synthetic experiment in which items

and user preferences lie in a continuous space as estimated via

matrix factorization, relaxing the assumption that there are a finite

number of item and preference types. In Section 6, we conclude.

Full proofs and an extended related work are left to the appendix.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Reconciling the accuracy-diversity trade-off in recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 MODEL
2.1 Specifying a recommendation setting
A recommender is tasked with recommending a fixed number of

items to a user. There are𝑚 types of items, and each item belongs

to exactly one type. At recommendation time, a user prefers exactly

one of these𝑚 types of items. In our exposition, we will treat𝑚 as

fixed and omit notation that depends on𝑚.

Types are indexed by [𝑚] = {1, 2, · · · ,𝑚} and we let a user’s

type preference be given by a random variable 𝑇 , such that Pr[𝑇 =

𝑡] = 𝑝𝑡 (so that

∑𝑚
𝑡=1 𝑝𝑡 = 1). When a user prefers type 𝑡 (i.e.,

𝑇 = 𝑡 ), they only like items of type 𝑡 . We assume that there are an

arbitrarily large number items of each type, and that conditional

on 𝑇 = 𝑡 , a user likes the 𝑖-th item of type 𝑡 independently with

probability 𝑞𝑡,𝑖 . Without loss of generality, we let 𝑞𝑡,1 ≥ 𝑞𝑡,2 ≥ · · · .
Formally, we let the random variable𝑉𝑡,𝑖 indicate if the user likes

the 𝑖-th item of type 𝑡 , so that

Pr[𝑉𝑡,𝑖 = 1] = Pr[𝑇 = 𝑡] Pr[𝑉𝑡,𝑖 |𝑇 = 𝑡] (1)

= 𝑝𝑡𝑞𝑡,𝑖 . (2)

Note that the random variables𝑉𝑡,𝑖 are independent conditional on

𝑇 . A recommendation setting is thus characterized by:

(1) type probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑡 ;
(2) conditional item probabilities 𝑞𝑡,1, 𝑞𝑡,2, · · · for 𝑡 ∈ [𝑚] .

In what follows, we assume that a recommendation setting is spec-

ified, and will omit dependencies of certain quantities on the rec-

ommendation setting.

(Remark: Under standard measures of accuracy, like we consider

here, items have binary value. However, it is possible to consider

a setup in which values can be distributed according to arbitrary

distributions. We provide such a setup in Appendix C, and give the

analog of Theorem 1 in this setting.)

2.2 Choosing a set of recommendations
We now focus on the task of selecting 𝑛 items to recommend. In this

case, a set of recommendations can be identified by an ordered tuple

𝑆 = (𝑛1, 𝑛2, · · · , 𝑛𝑚), where the recommender recommends the 𝑖-th

item of type 𝑡 for all 𝑡 ∈ [𝑚] and 𝑖 ∈ [𝑛𝑡 ]. In other words, 𝑆 repre-

sents the set of recommendations with the top 𝑛𝑡 items from each

type.
1
We will let S𝑛 :=

{
(𝑛1, 𝑛2, · · · , 𝑛𝑚) ∈ Z𝑚≥0 :

∑𝑚
𝑡=1 𝑛𝑡 = 𝑛

}
denote the set of recommendation sets of size 𝑛.

We consider two objectives by which to optimize a set of recom-

mendations 𝑆 = (𝑛1, 𝑛2, · · · , 𝑛𝑚) ∈ S𝑛 :
• Accuracy: The expected proportion of items in 𝑆 that the user

likes, given by

acc(𝑆) :=E
[
1

𝑛

𝑚∑︁
𝑡=1

𝑛𝑡∑︁
𝑖=1

𝑉𝑡,𝑖

]
(3)

=
1

𝑛

𝑚∑︁
𝑡=1

𝑝𝑡

𝑛𝑡∑︁
𝑖=1

𝑞𝑡,𝑖 . (4)

acc is the standard notion of accuracy commonly used to evalu-

ate machine learning models. By the linearity of expectation, it

1
In what follows, it will be clear that the recommender should only recommend the

top items from each type. For example, the recommender would never recommend

the first, second, and fourth item of a type, but not the third.

is maximized by selecting the items with the highest E[𝑉𝑡,𝑖 ] =
𝑝𝑡𝑞𝑡,𝑖—i.e., the individual items the user is most likely to like.

• Utility (w/ unit consumption constraint): The probability that a

user likes at least one item in 𝑆 , given by

util1 (𝑆) := Pr

[
𝑉𝑡,𝑖 = 1 for some 𝑡 ∈ [𝑚], 𝑖 ∈ [𝑛𝑡 ]

]
(5)

= 1 −
𝑚∑︁
𝑡=1

𝑝𝑡

𝑛𝑡∏
𝑖=1

(1 − 𝑞𝑡,𝑖 ). (6)

util1 aligns with a user’s satisfaction when they only intend

to use one of the recommended items, as is common. In this

case—e.g., when the goal is to find one restaurant to dine at, one

movie to watch, or one website to visit—what matters is if the

user likes at least one recommended item.

In our analysis, we characterize the accuracy- and utility-maximizing

recommendation sets, given by the following notation.

Definition 1 (𝑆𝑛 and 𝑆𝑛,1). Given a specified recommendation

setting, we let 𝑆𝑛 and 𝑆𝑛,1 denote the recommendation sets of size

𝑛 that maximize acc and util1, respectively:
2

𝑆𝑛 := argmax

𝑆∈S𝑛
acc(𝑆) (7)

𝑆𝑛,1 := argmax

𝑆∈S𝑛
util1 (𝑆) . (8)

To understand the diversity of 𝑆𝑛 and 𝑆𝑛,1, we consider how

well-represented items of each type are.

Definition 2 (Representation). For 𝑆 = (𝑛1, 𝑛2, · · · , 𝑛𝑚), define

𝑟𝑡 (𝑆) =
𝑛𝑡∑𝑚

𝑢=1 𝑛𝑢
, (9)

the representation of type 𝑡 in 𝑆 .

Intuitively, sets with relatively equal representation across types

are more diverse. In the following section, we will characterize—in

terms of the type probabilities and conditional item probabilities—

𝑟𝑡 (𝑆𝑛) and 𝑟𝑡 (𝑆𝑛,1) across several regimes.

3 RESULTS
We now introduce our theoretical results, which characterize the

composition of the accuracy- and utility-maximizing sets 𝑆𝑛 and

𝑆𝑛,1. We begin in Section 3.1 by considering a basic setting that

starkly contrasts the objectives acc and util1; the first has a strong
trade-off with diversity, while the second is entirely aligned with

diversity. In Section 3.2, we characterize the representation of item

types, 𝑟𝑡 (𝑆𝑛) and 𝑟𝑡 (𝑆𝑛,1), in a significantly more general setting,

where we focus on the effects of different properties of the recom-

mendation setting (i.e., providing comparative statics).

3.1 A Basic Setting
We start with a simple case of our model where we let the type

probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑚 vary but hold the conditional item prob-

abilities 𝑞𝑡,𝑖 = 𝑞 fixed for some 𝑞 ∈ (0, 1) . This setting provides a

clear illustration of the drastic effect incorporating a consumption

constraint can have.

2
It is sometimes possible for multiple sets of recommendations to maximize these

objectives. In this case, our results hold when selecting any of these sets.

3
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Details: A recommendation setting with (𝑝1, 𝑝2 ) = (0.8, 0.2) , 𝑞𝑡,𝑖 = 0.5 for all
𝑡, 𝑖. We plot empirical results (dots) and asymptotic theoretical results (solid
lines) from Theorem 1.

Figure 1: An illustration of Theorem 1. Even while a user
prefers type 1 much more often than type 2, as the num-
ber of recommendations increases, utility-maximizing rec-
ommendations (red) represent both types roughly equally.
Meanwhile, accuracy-maximizing recommendations (blue)
remain fully homogeneous throughout.

To provide a concrete backdrop, suppose that there are𝑚 types

of movie genres. Then the probability a user is in the mood for genre

𝑡 is 𝑝𝑡 . These type probabilities 𝑝𝑡 can vary, so that a user is more

likely to be in the mood for some genres than others. Conditional

on a user being in the mood for any genre 𝑡 , any movie in that

genre is liked by the user independently with probability 𝑞.

Theorem 1. Given type probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑚 and condi-
tional item probabilities 𝑞𝑡,𝑖 = 𝑞,

𝑟𝑡 (𝑆𝑛) = 1{𝑡=argmax𝑡 𝑝𝑡 } (10)

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛,1) =

1

𝑚
. (11)

This result conveys a strong dichotomy. (10) says that recom-

mendations maximizing acc contains exclusively items from the

genre the user is most likely to prefer, argmax𝑡 𝑝𝑡 . This reflects the

empirical existence of an accuracy-diversity trade-off: the accuracy-

maximizing set of recommendations is fully homogeneous.

Meanwhile, (11) says that the set of recommendations that max-

imizes utility with a unit consumption constraint is fully diverse.

Specifically, as the number of recommended items 𝑛 grows large,

the recommender should recommend an equal proportion of items

from each genre.
3
In this way, accounting for a user’s consump-

tion constraint dissolves the apparent accuracy-diversity trade-off;

maximizing the probability a user likes at least one recommended

movie is fully aligned with recommending a diverse set of movies.

3
In fact, one can show that 𝑟𝑡 (𝑆𝑛,1 ) = 1

𝑚
+𝑂

(
1

𝑛

)
, giving a relatively fast rate of

convergence.

We now take a moment to convey the intuition behind Theorem 1.

𝑆𝑛 maximizes acc, which is equivalent to maximizing the expected

number of recommended items the user likes. By linearity of expec-

tation, this is achievedwhen recommending the individual items the

user likes with the highest probability. The probability a user likes

any item in genre 𝑡 is equal to 𝑝𝑡𝑞. Therefore, the recommender

should only recommend items from genre argmax𝑡 𝑝𝑡 .

When the objective is to instead maximize util1, the probability
a user likes at least one item, recommending items from only one

type is suboptimal. After recommending, say, many action movies,

the probability the user is in the mood for action but does not like

any of the recommended action movies is small (𝑝𝑡 (1−𝑞)𝑛𝑡 ), where
𝑛𝑡 is the number of recommended action movies). At this point,

recommending more action movies has diminishing returns, and

one should hedge for the possibility that the user is in the mood

for a different genre.

A surprising insight of Theorem 1 is that the type probabilities

𝑝𝑡 do not play any role asymptotically for 𝑆𝑛,1; even when a user

watches more action than romance, the optimal set of recommen-

dations represents the genres equally. To give some intuition, let

𝑋 be the event that a user does not like any recommended item.

For an optimal set of recommendations 𝑆 , Pr[𝑋 |𝑇 = 𝑡] = 𝑝𝑡𝑞
𝑛𝑡

should equalized across 𝑡 ; otherwise, there would be an incentive

to recommend more items from a type where this probability is

higher. If 𝑝1 > 𝑝2, Pr[𝑋 |𝑇 = 1] = Pr[𝑋 |𝑇 = 2] when recommend-

ing only a constant number log𝑞
𝑝1
𝑝2

more items from type 1 than

type 2. So asymptotically, the proportion of items recommended

from each type is equal. Representation thus quickly converges to

this asymptotic value as 𝑛 increases; this is illustrated in one case

in Figure 1.

3.2 A General Setting
We turn to a more general case where we consider heterogeneous

conditional item probabilities and analyze comparative statics. Again,

we consider arbitrary type probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑚 . Now, we

parameterize conditional item probabilities in the following way:

𝑞𝑡,𝑖 := 𝑞𝑡 (𝑖 + 𝛽)−𝛼 , (12)

for 𝛼, 𝛽 ≥ 0. This parameterization models heterogeneity of condi-

tional item probabilities both within and across types. Some com-

ments on the parameters 𝛼, 𝛽, and (𝑞1, 𝑞2, · · · , 𝑞𝑡 ):
• 𝛼 is the rate of decay of item quality within a type. When 𝛼 > 1,

this rate is extreme in the following sense: even if a user were

recommended an infinite number of items in their preferred

type, they (1) would only like a constant number of the items in

expectation, and (2) with positive probability, would not like any
of the recommended items.

4
Therefore, when the recommender

has a reasonable “supply” of items, 𝛼 ≤ 1 is realistic.

• 𝛽 parameterizes the initial steepness, with higher 𝛽 correspond-

ing to lower initial steepness. 𝛽 does not end up appearing in

our estimates.

• 𝑞1, 𝑞2, · · · , 𝑞𝑚 are the relative type qualities. If 𝑞𝑡 > 𝑞𝑡 ′ , then

𝑞𝑡,𝑖 > 𝑞𝑡 ′,𝑖 for all 𝑖 . Users can be less likely to like items of a

certain type, even conditioned on preferring that type. This has

4
Both facts boil down to the convergence of

∑∞
𝑖=1 𝑖

−𝛼
when 𝛼 > 1.

4
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Table 1: Key notation in our model

𝑝𝑡 a type probability; a user prefers type 𝑡 with probability 𝑝𝑡

𝑞𝑡,𝑖

a conditional item probability; conditional on preferring type 𝑡 ,

a user likes the 𝑖-th item of type 𝑡 with probability 𝑞𝑡,𝑖 ; in our

general setting, we parameterize 𝑞𝑡,𝑖 as 𝑞𝑡,𝑖 = 𝑞𝑡 (𝑖 + 𝛽 )−𝛼

𝛼 the rate of decay of item quality within a type

𝑞𝑡
a relative type quality; 𝑞𝑡 determines the relative quality of

items in 𝑡 compared to other types

𝑆𝑛
the set of 𝑛 recommendations that maximizes acc, the
expected proportion of items a user likes

𝑆𝑛,1
the set of 𝑛 recommendations that maximizes util1, the
probability a user likes at least one item

𝑟𝑡 (𝑆 ) the proportion of items in 𝑆 of type 𝑡

two equivalent interpretations: the user is more picky when they

prefer type 𝑡 ′, or the recommender has lower quality or more

niche items in type 𝑡 ′.

We now give two main results, Theorem 2.A and Theorem 2.B

which characterize 𝑟𝑡 (𝑆𝑛) and 𝑟𝑡 (𝑆𝑛,1) in terms of these parameters.

Theorem 2.A (Accuracy-maximizing recommendations). Given
type probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑚 and conditional item probabilities
𝑞𝑡,𝑖 := 𝑞𝑡 (𝑖 + 𝛽)−𝛼 ,

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) =

(𝑝𝑡𝑞𝑡 )1/𝛼∑𝑚
𝑢=1 (𝑝𝑢𝑞𝑢 )1/𝛼

(13)

The key takeaway fromTheorem 2.A is that accuracy-maximizing

recommendations are more diverse when 𝛼 is larger, i.e., when the

quality of items in a type decays faster. Intuitively, this means that

a recommender quickly runs out of high-quality items in a type,

and thus benefits more from recommending items from other types.

On the other hand, with small 𝛼 , the recommender has access to

many high-quality items within each type.

Let us consider three cases of Theorem 1 to understand the

functional form in (24):

• As 𝛼 → 0, and if argmax𝑡 𝑝𝑡𝑞𝑡 is unique,
5

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) → 1{𝑡=argmax𝑡 𝑝𝑡𝑞𝑡 } , (14)

meaning that only the type with highest type probability is

recommended.

• For 𝛼 = 1,

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) ∝ 𝑝𝑡𝑞𝑡 , (15)

meaning that a type is recommended in proportion to the

probability a user likes items in that type.

• For 𝛼 →∞,

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) →

1

𝑚
, (16)

meaning that an equal proportion of items from each type

are recommended.

5
If there are multiple types with the maximum type probability, one may check that

in the limit, an equal proportion of items are recommended from these types, and a

zero proportion from other types.

Details: A recommendation setting with (𝑝1, 𝑝2 ) = (0.6, 0.4) , (𝑞1, 𝑞2 ) =

(0.7, 0.3) , 𝛽 = 2, and 𝛼 varying. Empirical results (dots) are for 𝑛 = 500 and
theoretical estimates (solid lines) are from Theorem 2.A and 2.B. For 𝛼 ∈ [0, 1],
the plotted theoretical estimate for 𝑆𝑛,1 are based on the theoretical result for
𝛼 = 0

Figure 2: An illustration of Theorem 2.A and 2.B in a setting
with two item types. When 𝛼 < 1, utility-maximizing recom-
mendations (red) represent type 1 less than type 2 because 2
has lower relative conditional item probability, even though
a user prefers 1more often than 2. Behavior changes at 𝛼 = 1,
after which accuracy- and utility-maximizing recommenda-
tions coincide.

As 𝛼 ranges from 0 to∞, the amount of diversity in 𝑆𝑛 smoothly

interpolates from maximal homogeneity to proportional represen-

tation to maximal diversity. Notably, when 𝛼 ≤ 1, diversity is in

the range between homogeneity and proportional representation.

This suggests that in practice, the accuracy-diversity trade-off is

particularly severe when the recommender has access to many high

quality items of a type.

We next turn to utility-maximizing recommendations 𝑆𝑛,1, which

account for a unit consumption constraint.

Theorem 2.B (Utility-maximizing recommendations). Given
type probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑚 and conditional item probabilities
𝑞𝑡,𝑖 := 𝑞𝑡 (𝑖 + 𝛽)−𝛼 ,

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛,1) =



(
log

1

1−𝑞𝑡

)−1
∑𝑚
𝑢=1

(
log

1

1−𝑞𝑢

)−1 𝛼 = 0

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛,1) =

(𝑝𝑡𝑞𝑡 )1/𝛼∑𝑚
𝑢=1 (𝑝𝑢𝑞𝑢 )1/𝛼

𝛼 > 1 .

(17)

The representation exhibits phase change at 𝛼 = 1. As mentioned

in our discussion of the parameters, we expect 𝛼 > 1 represents

an “extreme setting.” We thus focus on the case 𝛼 = 0, which we

5
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Details: Recommendation settings in which (𝑝1, 𝑝2, 𝑝3 ) = (0.5, 0.3, 0.2) and 𝑞𝑡,𝑖 = 0.2(𝑖 + 1)−𝛼 for 𝛼 ∈ {0, 0.5, 1.5} .

Figure 3: In three settings with varying 𝛼 , we plot how accuracy and utility trade off with diversity. We consider sets 𝑆 with
𝑛 = 100 items ranging from complete homogeneity (only type 1 recommended), to proportional representation (𝑟𝑡 (𝑆) = 𝑝𝑡 ) to
complete diversity (𝑟𝑡 (𝑆) = 1

𝑚 ), and plot acc(𝑆) and util1 (𝑆). Notice that in all of the plots, util1 is aligned with diversity, while
acc(𝑆) exhibits a strong trade-off with diversity when 𝛼 = 0, which becomes less severe for larger 𝛼 . These results agree with
the predictions of Theorem 2.A and Theorem 2.B.

pull out as its own result. (Note also that Theorem 1 is obtained by

taking 𝑞1 = 𝑞2 = · · · = 𝑞𝑚 and 𝛼 = 0.)

Corollary 3 (The “milk and ice cream theorem”). Given
type probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑚 and conditional item probabilities
𝑞𝑡,𝑖 = 𝑞𝑡 (𝑖 + 𝛽)−𝛼 , when 𝛼 = 1,

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛,1) =

(
log

1

1−𝑞𝑡

)−1
∑𝑚
𝑢=1

(
log

1

1−𝑞𝑢

)−1 , (18)

meaning that 𝑟𝑡 (𝑆𝑛,1) is larger for types 𝑡 with lower 𝑞𝑡 .

The corollary’s name references a paradoxical fact of grocery

stores: that even while a customer is much more likely to buy milk

than ice cream, significantly more aisle space is devoted to ice cream.

The paradox can be resolved by the corollary in the following way.

Let milk be type 1 and ice cream be type 2. A customer is more

likely to purchase milk than ice cream, so 𝑝1 > 𝑝2. However, the

probability a given carton of ice cream will satisfy a customer

trying to purchase milk is lower than the probability that a given

bottle of milk will satisfy a customer trying to purchase milk.
6
This

means that 𝑞1 > 𝑞2 . Corollary 3 reveals that more items should be

recommended from the type with lower 𝑞𝑡—and, in fact, that 𝑝𝑡 is

asymptotically irrelevant.

Corollary 3 demonstrates a broader insight into recommenda-

tions when the user has consumption constraints. Rather than

focusing on type probabilities, it is more important to consider the

conditional item values within a type—in particular, to recommend

more items from types with low conditional item values. A good set

of recommendations covers its bases across all possible preferences

6
We note that this fact is complicated by customers’ increasingly diversified tastes

for—and the increased availability of—different types of plant-based milks [42].

of the user, and “covering” a type requires more items when items

in that type have low conditional item probabilities.

Computational experiments suggest that behavior remains sim-

ilar when 𝛼 is small but larger than 0 (see Figure 2). However,

Theorem 2.B shows that the behavior of 𝑆𝑛,1 changes when 𝛼 > 1.

In fact, referring back to Theorem 2.A, we have that in this regime,

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) = lim

𝑛→∞
𝑟𝑡 (𝑆𝑛,1) =

(𝑝𝑡𝑞𝑡 )1/𝛼∑𝑚
𝑢=1 (𝑝𝑢𝑞𝑢 )1/𝛼

. (19)

So when𝛼 > 1, both 𝑆𝑛 and 𝑆𝑛,1 becomemore diverse as𝛼 increases.

To provide rough intuition for this equality, note that for large 𝛼 ,

it is unlikely that a user will like more than one item in each type.

Therefore, maximizing the likelihood a user likes at least one item

(util1) is roughly equivalent to maximizing the total number of

recommended items a user likes (acc).

3.3 Summary of results
To summarize our theoretical results, while accuracy can exhibit a

strong trade-off with diversity (especially when the rate of decay

𝛼 is relatively small), our measure of utility that accounts for the

capacity constraints of users does not exhibit a trade-off with di-

versity in the settings we study. This is exhibited in computational

results shown in Figure 3, which shows how accuracy and utility

vary as the level of diversity increases.

4 PROOF TECHNIQUE
We now provide an overview of our proof technique. We begin

with some high-level intuition, from which our formal approach

will deviate somewhat. The basic idea is that maximizing functions

6
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of the form

𝑚∑︁
𝑡=1

𝜆𝑡ℎ(𝑧𝑡 ), (20)

subject to the constraint (𝑧1, · · · , 𝑧𝑚) ∈ S𝑛 is tractable when 𝑓 is

simple (a monomial, for instance). For example, rough speaking, it

is possible to solve

𝜆1ℎ
′ (𝑥1) = 𝜆2ℎ

′ (𝑥2) = · · · = 𝜆𝑚ℎ′ (𝑥𝑚), (21)

and show that the integer-valued optimum must be near the real-

valued optimum. While the objectives acc and util1 do not take
the exact form as above, we show that there are choices of 𝜆𝑡 such

that the objectives evaluate to

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧𝑡 ), (22)

where even while ℎ𝑡 (𝑧𝑡 ) may be complicated,

lim

𝑧→∞
ℎ𝑡 (𝑧)
ℎ(𝑧) = 1 (23)

for a simple function ℎ. We can then show that, under some reason-

able assumptions on ℎ, the solution to (23) is approximated by that

of (20) in the limit as 𝑛 →∞.

We now outline how this method can be used to prove Theorem 2.A

when 𝛼 < 1 (the result is the same for 𝛼 = 1 and 𝛼 > 1, but

these cases require separate analysis). Consider type probabilities

𝑝1, 𝑝2, · · · , 𝑝𝑚 and conditional item probabilities 𝑞𝑡,𝑖 := 𝑞𝑡 (𝑖+𝛽)−𝛼 .
Then we would like to show that

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) =

(𝑝𝑡𝑞𝑡 )1/𝛼∑𝑚
𝑢=1 (𝑝𝑢𝑞𝑢 )1/𝛼

(24)

Then 𝑆𝑛 = (𝑧 (𝑛)
1

, 𝑧
(𝑛)
2

, · · · , 𝑧 (𝑛)𝑚 ) ∈ S𝑛 maximizes

𝑚∑︁
𝑡=1

𝑝𝑡

𝑧𝑡∑︁
𝑖=1

𝑞𝑡,𝑖 =

𝑚∑︁
𝑡=1

𝑝𝑡

𝑧𝑡∑︁
𝑖=1

𝑞𝑡 (𝑖 + 𝛽)−𝛼 =

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧𝑡 ) (25)

over (𝑧1, 𝑧2, · · · , 𝑧𝑚) ∈ S𝑛 , where

𝜆𝑡 :=
𝑝𝑡𝑞𝑡

1 − 𝛼 , ℎ𝑡 (𝑧) := (1 − 𝛼)
𝑧∑︁
𝑖=1

(𝑖 + 𝛽)−𝛼 . (26)

We then show that

lim

𝑧→∞
ℎ𝑡 (𝑧)
ℎ(𝑧) = 1 (27)

where ℎ(𝑧) = 𝑧1−𝛼 . The result follows by using the following

lemma, which is a subcase of Lemma A.1 in the appendix.

Lemma 1. Let ℎ(𝑧) = 𝑧𝜎 for 𝜎 ∈ (0, 1). For 𝑡 ∈ [𝑚], suppose
ℎ𝑡 : Z≥0 → R is monotonically increasing and strictly concave, and
that

lim

𝑧→∞
ℎ𝑡 (𝑧)
ℎ(𝑧) = 1. (28)

Let

𝑆 (𝑛) = (𝑧 (𝑛)
1

, 𝑧
(𝑛)
2

, · · · , 𝑧 (𝑛)𝑚 ) ∈ argmax

(𝑧1,· · · ,𝑧𝑚 ) ∈S𝑛

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧𝑡 ) . (29)

Then

lim

𝑛→∞
𝑟𝑡 (𝑆 (𝑛) ) =

𝜆
1

1−𝜎
𝑡∑𝑚

𝑢=1 𝜆
1

1−𝜎
𝑢

. (30)

Taking 𝜎 = 1 − 𝛼 , we can apply the lemma to show that

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) =

(
𝑝𝑡𝑞𝑡
1−𝛼

)
1/𝛼

∑𝑚
𝑢=1

(
𝑝𝑢𝑞𝑢
1−𝛼

)
1/𝛼 =

(𝑝𝑡𝑞𝑡 )1/𝛼∑𝑚
𝑢=1 (𝑝𝑢𝑞𝑢 )1/𝛼

. (31)

5 COMPUTATIONAL EXPERIMENTS
We present results from a range of computational experiments,

showing that our theoretical results generalize to practical settings.

5.1 Finite number of recommendations and
beyond unit consumption constraints

We first focus on experiments in which 𝑛 is finite, ranging from

small to moderate. We also relax the assumption that users have

unit consumption constraints and consider varying rates of de-

cay 𝛼 < 1. Consider the following more general version of utility

corresponding to a consumption constraint of 𝑘 :

util𝑘 (𝑆) := E
max


∑︁

𝑡 ∈[𝑚],𝑖∈[𝑛𝑡 ]
𝑉𝑡,𝑖 , 𝑘


 , (32)

the value of the top 𝑘 items that a user likes. Accordingly, let

𝑆𝑛,𝑘 := argmax

𝑆∈S𝑛
util𝑘 (𝑆), (33)

where we recall that S𝑛 is the set of all possible recommendation

sets with 𝑛 items. Notice that our previous definitions of util1 and
𝑆𝑛,1 agree with this more general definition. (Indeed, when 𝑘 = 1,

(32) reduces to the probability 𝑉𝑡,𝑖 = 1 for at least one item.)

Also notice that 𝑆𝑛,𝑛 maximizes the total number of items the

user likes, and thus coincides with the accuracy-maximizing set 𝑆𝑛 .

We would expect our theoretical results about lim𝑛→∞ 𝑟𝑡 (𝑆𝑛,1) to
be more accurate when 𝑘 is small, and to diverge from empirics

when 𝑘 grows closer to 𝑛.

Here, we focus on a recommendation setting where there are

two item types with 𝑝1 = 0.7 and 𝑝2 = 0.3. We let 𝑞𝑡,𝑖 = 𝑞𝑡 (𝑖 + 𝛽)−𝛼
where we fix 𝑞𝑡 = 0.5 and 𝛽 = 1, and only consider 𝛼 < 1. We

focus on the case 𝛼 < 1 since it constitutes a reasonable rate of

decay. We compare our empirical results to the estimate given by

Theorem 2.B, which tells us that when 𝛼 = 0,

lim

𝑛→∞
𝑟1 (𝑆𝑛,1) =

1

2

, (34)

meaning that both types are equally represented. We evaluate how

far empirical estimates of 𝑟1 (𝑆𝑛,𝑘 ) deviate from this predictionwhen

𝛼 ∈ {0, 0.2, 0.5, 0.9} and 𝑛 and 𝑘 vary. Results are shown in Table 2.

We observe that 𝑟1 (𝑆𝑛,𝑘 ) is near 0.5 whenever 𝑘
𝑛 is relatively small

and 𝛼 is smaller. This suggests that our findings are robust when the

consumption constraint 𝑘 is small in terms of 𝑛 (i.e., users only use a

relatively small proportion of recommended items at a given time),

and when the quality of items in a type does not decay significantly,

i.e., there are many high-quality items per type.

Empirically, our results suggest that the theoretical estimate

for 𝛼 = 0 is accurate for small 𝛼 , but begins to deteriorate as

𝛼 approaches 1. (This is also corroborated by Figure 2, in which

representation begins to change before reaching 𝛼 = 1.)
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𝑟1 (𝑆𝑛,𝑘 ) when (𝑝1, 𝑝2) = (0.7, 0.3) and 𝑞𝑡,𝑖 = 0.5(𝑖 + 1)−𝛼 .

𝛼 = 0 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 0.9

𝑛 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10

10 0.6 0.6 1.0 1.0 0.6 0.6 1.0 1.0 0.6 0.7 0.9 0.9 0.7 0.7 0.8 0.8

20 0.55 0.55 0.6 1.0 0.55 0.6 0.7 1.0 0.6 0.65 0.8 0.95 0.65 0.7 0.75 0.8

50 0.52 0.48 0.52 0.54 0.52 0.56 0.54 0.66 0.56 0.58 0.64 0.86 0.64 0.62 0.78 0.76

100 0.5 0.49 0.49 0.49 0.52 0.49 0.49 0.53 0.55 0.56 0.57 0.76 0.63 0.62 0.7 0.78

Table 2: Empirical estimates of 𝑟1 (𝑆𝑛,𝑘 ) based on 5000 iterations for each setting (i.e., entry in table) for each possible set of
recommendations. These can be compared with our theoretical result showing that lim𝑛→∞ 𝑟1 (𝑆𝑛,1) = 0.5 for 𝛼 = 0. Blue indicates
especially close to the result for 𝑟1 (𝑆𝑛,𝑘 ), and red indicates cases that deviate from the theoretical result. The result is most
applicable when 𝑘 is small compared to 𝑛 and when 𝛼 is smaller. Note also that 𝑆𝑛,𝑘 is relatively diverse in all cases when 𝑛 is
large compared to 𝑘 , and with small 𝛼 (i.e., there are many high-quality items per type).

We provide additional computational experiments in different

settings in the appendix, as well as details for how we determine

the empirically objective-maximizing recommendations.

5.2 Continuous Items and User Preferences
Wenow depart from our assumption that user preferences and items

fall into discrete types, and instead represent both by embeddings

on the unit𝑑-dimensional sphere 𝑆𝑑 . Given a user preference 𝑡 ∈ 𝑆𝑑
and an item 𝑣 ∈ 𝑆𝑑 , we let the value of item 𝑣 be equal to the dot

product max(𝑡 · 𝑣, 0). Thus, items that are closer to a user’s true

preference have higher value and items cannot have negative value.

For a set of 𝑛 recommendations, we again let accuracy measure

the average value of recommended items and utility measure the

value of the best-recommended item (that of the highest value). We

then compare the performance of an accuracy-maximizing set of

recommendations with a heuristically constructed set of diverse

recommendations. Our results are plotted in Figure 4. In align-

ment with our general findings, the accuracy-maximizing set of

recommendations is homogeneous, while a diverse set of recom-

mendations improves user utility.

Specifically, we use 10-dimensional embeddings trained using

interaction data fromGoodReads between 1000 users and 200 books.

Embeddings are normalized to lie on 𝑆10. We assume user prefer-

ences are drawn uniformly from the set of books they have inter-

acted with (since these represent the range of interests the user

has). We limit our experiments to the 206 users with at least 20

total interactions. For each user, we consider a “train set” of 10 of

the user’s past interactions. We then select 𝑛 of the 190 remaining

books to recommend. The accuracy-maximizing set is chosen to

maximize accuracy when user preferences are assumed to be drawn

from the train set. The diverse set is chosen by choosing the closest

items to each of the books in the train set (thus, covering the full

range of user interests). We evaluate recommendations by randomly

drawing a user preference from the books they have interacted with

that were not already included in the train set. Additional details

for our experiment are given in the appendix.

Figure 4: Book recommendations that maximize accuracy on
a train set are more accurate in evaluation, but also achieve
less utility and diversity as compared to a heuristically-
chosen diverse set. Here, accuracy is the average value of
recommended items, utility is the maximum value of recom-
mended items, and diversity is the average cosine distance
between recommendations. The numbers plotted are aver-
ages over 100 trials for each of the 206 users we evaluated.

6 CONCLUSION
We introduced and analyzed a model of recommendations that rec-

onciles the apparent accuracy-diversity trade-off. In particular, we

showed that accuracy is misaligned with user utility, because it does

not consider the consumption constraints of users. By accounting

for these consumption constraints, we found that user utility is in

fact aligned with and supported by diversity. As a consequence,

navigating the accuracy-diversity trade-off can be viewed as a way

of incorporating diversity to help align accuracy with the more

fundamental goal of user utility. Our results provide insight into

how diversity can be incorporated in this manner.
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A EXTENDED RELATEDWORK
Our work sits at the intersection of two broad sets of work. On the one hand are arguments that diversity is key to achieving efficiency. On

the other are those that cast diversity as in conflict with efficiency or accuracy, but perhaps that diversity should nevertheless be pursued as

an axiomatic good.

Broadly, our work seeks to understand this tension by sharply characterizing the amount of diversity in efficient solutions, as a function

of key setting characteristics: user utilities and consumption constraints, and uncertainty in the item quality distribution. In particular, our

results characterize in what settings the intuition regarding diversity being efficient holds, and in what settings they may be in conflict.

The (efficiency) benefits of diversity. The importance of diversity for efficiency is an old idea present across many fields; Page [38] synthesizes

the conceptual and empirical arguments in support of this principle. Hong and Page [24] develop a model in which a randomly selected

team of problem solvers outperforms a team of the individually best-performing agents, due to diversity in problem solving perspective

(Kleinberg and Raghu [30] show that, in some settings, there exist tests under which selecting the best-performing agents again becomes

optimal). Kleinberg and Raghavan [29] show that constraints promoting diversity can improve efficiency when they work to counteract a

decision-maker’s biases. Agrawal et al. [3] develop an algorithm to diversify search results, to minimize the risk of user dissatisfaction. We

are particularly influenced by the work of Steck [50], who presents the intuition that recommendations should be calibrated: “When a user

has watched, say, 70 romance movies and 30 action movies, then it is reasonable to expect the personalized list of recommended movies to

be comprised of about 70% romance and 30% action movies as well.” Guo et al. [22] show that collaborative filtering-based recommendations

may not be able to effectively show users such a diverse set of content, harming efficiency.

More broadly, researchers studying various combinatorial optimization problems may find it obvious that homogeneous solutions can be

sub-optimal; indeed, in classical problems like maximum coverage, redundancy is undesirable.

Our work particularly is intimately connected to the large literature on assortment optimization [8, 11, 13–15, 18, 27, 32, 46, 47]. That

literature also considers consumption-constrained consumer item selections based on an intermediary’s recommendations (e.g., that

customers picks one item according to a multinomial choice model). The literature primarily devises approximation algorithms to find the

optimal recommendation (“assortment”) as a function of the consumer’s choice model, platform objective, and the item distribution. In other

words, an implicit premise of this literature is that the naive approach of presenting the items with highest individual expected values is

sub-optimal, i.e., that optimal assortments are not completely ‘homogeneous.’ On the other hand, optimal assortments are not necessarily

diverse; roughly speaking, the results of El Housni and Topaloglu [15] imply that a standard assortment approach (Mixed MNL) might

produce solutions that are not “diverse” enough to satisfy multiple customer types, and so there is benefit to personalize to each type.
78

Our

work contributes to this literature by (a) examining the implicit premise that optimal assortments are not homogeneous (i.e., when is the

naive
9
approach sufficient?); and (b) showing the characteristics under which optimal assortments are not diverse.

Diversity and fairness as a contrast to efficiency and accuracy. On the other hand, many works start with the premise that—although

diversity may conflict with efficiency or accuracy—it is an axiomatic good that should be pursued. For example, diversity is often considered

to be inherently desirable from a fairness perspective and user satisfaction perspective. As a result, there is a wide body of work devoted

to optimizing for various metrics of diversity. A common approach (taken, for example, in Carbonell and Goldstein [10] and Gimpel et al.

[19]) is to consider an objective function that balances a weighted measure of “accuracy” or “relevance” with a measure of diversity. More

recently, Brown and Agarwal [9] consider set recommendation for an agent with adaptive preferences, to ensure that consumption over time

is diverse. Numerous metrics for diversity have been proposed—we refer the reader to Kunaver and Požrl [33] for a survey. Similarly, the fair

ranking and recommendation literature (see Patro et al. [40] and Zehlike et al. [53] for recent surveys) considers metrics and methods for

fairness in such problems. On the other hand, empirical work has demonstrated that such tradeoffs may be small in practice [45]. Such

formulations imply that there is a tension between diversity and measures of accuracy.

B DETAILS ON COMPUTATIONAL EXPERIMENTS / ADDITIONAL EXPERIMENTS
We provide additional details about the experiments we conduct in Section 5.

B.1 Finite number of recommendations and beyond unit consumption constraints
We explain how we computed empirically optimal sets in 5.1. For each recommendation setting, we determine the set that maximizes util𝑘
by manually computing

max


∑︁

𝑡 ∈[2],𝑖∈[𝑛𝑡 ]
𝑉𝑡,𝑖 , 𝑘

 (35)

for sets with all possible combinations of item type representations. Specifically, in computing 𝑆𝑛,𝑘 , we consider the sets of the form (𝑖, 𝑛 − 𝑖)
for 𝑖 ∈ {0, 1, · · · , 𝑛}. For each of these sets 𝑆 , we compute util𝑘 (𝑆) directly, and take the average over 5000 iterations. We then choose the

7
We thank the authors for highlighting this connection to us.

8
Furthermore, as Chen et al. [11] recently characterize, standard assortment optimization approaches may be “unfair” to items in other ways.

9
Note that naive is much simpler than the greedy approach studied in the literature, which picks items iteratively potentially as a function of previous items picked.

11
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set with the maximum empirical expected utility, and display 𝑟1 (𝑆) in the Table 2. We consider additional settings, focusing on settings with

varying 𝑞𝑡 and 𝛼 > 1, in Table 3 and Table 4 respectively.

𝑟1 (𝑆𝑛,𝑘 ) when (𝑝1, 𝑝2) = (0.6, 0.4), (𝑞1, 𝑞2) = (0.7, 0.3), and 𝑞𝑡,𝑖 = 𝑞𝑡 (𝑖 + 1)−𝛼 .

𝛼 = 0 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 0.9

𝑛 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10

10 0.3 0.4 0.8 1.0 0.4 0.5 1.0 1.0 0.5 0.6 1.0 1.0 0.6 0.8 0.9 0.9

20 0.3 0.3 0.4 0.8 0.3 0.4 0.55 1.0 0.4 0.5 0.8 1.0 0.55 0.7 0.8 0.8

50 0.26 0.18 0.28 0.34 0.26 0.3 0.32 0.5 0.3 0.38 0.56 0.88 0.44 0.58 0.72 0.8

100 0.24 0.11 0.16 0.26 0.25 0.19 0.25 0.34 0.26 0.29 0.39 0.68 0.39 0.43 0.73 0.85

Table 3: Empirical estimates of 𝑟1 (𝑆𝑛,𝑘 ) based on 5000 iterations for each setting (i.e., entry in table) for each possible set of
recommendations. The table illustrates the effect of the varying relative type qualities 𝑞1 and 𝑞2. Because 𝑞2 is lower than 𝑞1, we
would expect type 1 to be represented less than type 2 according to our theoretical prediction from Corollary 3, which applies
directly to the case 𝛼 = 0, 𝑘 = 1, and 𝑛 →∞. We highlight when this is the case in blue.

𝑟1 (𝑆𝑛,𝑘 ) when (𝑝1, 𝑝2) = (0.7, 0.3), 𝑞𝑡,𝑖 = 0.5(𝑖 + 1)−𝛼 .

𝛼 = 1 𝛼 = 1.5 𝛼 = 2.0 𝛼 = 2.5

𝑛 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10

10 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.6 0.5 0.6 0.6

20 0.65 0.7 0.75 0.65 0.65 0.75 0.65 0.6 0.6 0.65 0.45 0.4 0.6 0.5 0.75 0.6

50 0.64 0.66 0.76 0.72 0.64 0.62 0.68 0.74 0.6 0.68 0.64 0.6 0.58 0.6 0.32 0.42

100 0.64 0.57 0.75 0.72 0.64 0.63 0.64 0.72 0.61 0.58 0.46 0.62 0.59 0.39 0.44 0.54

Table 4: Empirical estimates of 𝑟1 (𝑆𝑛,𝑘 ) based on 5000 iterations for each setting (i.e., entry in table) for each possible set of
recommendations. This table illustrates the regime in which 𝛼 ≥ 1. In this regime, Theorem 2.A, which applies directly to
the case 𝑘 = 1, 𝛼 > 1, and 𝑛 →∞, suggests that representation should be proportional to 𝑝𝑡 when 𝛼 = 1 representation should
approach equal as 𝛼 increases. Our empirical results appear to roughly reflect this trend for all pairs (𝑛, 𝑘) .

B.2 Continuous Items and User Preferences
We provide details for our experiment in Section 5.2 on GoodReads data [51]. We used a subset of interaction data from 1000 users and 200

books, which we used to compute embeddings.
10

We considered the 206 users that had at least 20 book interactions.

Let 𝑉 be the set of all 200 book embeddings and 𝑉𝑖 be the set of books the user 𝑖 has interacted with. Suppose that 𝑉train is the train set of

10 book embeddings randomly drawn from 𝑉𝑖 . Suppose that 𝑉
′
𝑖
= 𝑉𝑖 \𝑉train is the remaining set of embeddings.

Recall that a user’s value of an embedding 𝑣 given their current preference 𝑣
pref

is given by

max{0, 𝑣 · 𝑣
pref
}. (36)

Given a set of 𝑛 recommendations 𝑆 ⊂ 𝑆𝑑 , we evaluate it by drawing a random embedding 𝑣test from𝑉 ′
𝑖
∩𝑉𝑖 as the user’s current preference

and considering the objectives

acc(𝑆) = 1

𝑛

∑︁
𝑣∈𝑆

𝑢 (𝑣, 𝑣test) (37)

and

util1 (𝑆) = max

𝑣∈𝑆
𝑢 (𝑣, 𝑣test), (38)

the naturally analogs of acc and util1 we considered in our theoretical results.

10
The main dataset can be found at https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/shelves. Embeddings were trained using the matrix factorization library libFM [44], which

can be found at http://libfm.org/.

12

https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/shelves
http://libfm.org/
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We constructed two sets of recommendations for each user given the training set 𝑉train: the accuracy-maximizing set 𝑆𝑛 and a diverse set

𝑆
diverse

. We construct these sets as follows.

𝑆𝑛 is the set that maximizes average accuracy when user preferences are drawn from the train set:

1

10

∑︁
𝑣pref∈𝑉train

1

𝑛

∑︁
𝑣∈𝑆𝑛

𝑢 (𝑣, 𝑣
pref
). (39)

Computationally, we can determine this set 𝑆 by choosing the 𝑛 individual embeddings 𝑣 in 𝑉 ′ that maximize

1

10

∑︁
𝑣pref∈𝑉train

𝑢 (𝑣, 𝑣
pref
). (40)

We choose 𝑆
diverse

using a heuristic method. We iterate over items in the train set, and select the closest item to the train set in terms of

cosine distance that has not yet been selected. At iteration 𝑖 ∈ [𝑛], we let 𝑣
pref

be the 𝑖 (mod 10)-th item in𝑉train and 𝑆
diverse,𝑖−1 be the set of

𝑖 − 1 items selected so far. Then we construct 𝑆
diverse,𝑖 by adding the item in 𝑉 ′ that maximizes

𝑣 · 𝑣
pref

(41)

to the set 𝑆
diverse,𝑖−1, where 𝑆diverse,0 = ∅. We then choose 𝑆

diverse
= 𝑆

diverse,𝑛 .

To evaluate the diversity of a set 𝑆 of 𝑛 recommendations, we use the average cosine distance between embeddings:

1(𝑛
2

) ∑︁
𝑣,𝑣′∈𝑆

1 − 𝑣 · 𝑣 ′ . (42)

The results we report are averages over all users and over 100 independently drawn training sets for each user.

C A SETUPWITH ITEM VALUES FROM GENERAL DISTRIBUTIONS
In this section, we consider a model in which items can have values distributed arbitrarily over R. In such a model, there are once again

𝑚 types of items indexed by [𝑚] = {1, 2, · · · ,𝑚}. A user prefers exactly one type of item, preferring type 𝑡 ∈ [𝑚] with probability 𝑝𝑡 . As

before, 𝑝𝑡 give type probabilities.
Now, the value of the 𝑖-th item of type 𝑡 is a random variable 𝑋

(𝑡 )
𝑖

if the user prefers type 𝑡 and 0 otherwise (so its expected value

is 𝑝𝑡E[𝑋 (𝑡 )𝑖
]). We refer to 𝑋

(𝑡 )
𝑖

as a conditional item value (the value of an item conditional on the user preferring the item’s type).

Conditional item values are independent conditional on the user’s preference. The case when 𝑋
(𝑡 )
𝑖

is Bernoulli corresponds to our main

setup.

Once specifying the type probabilities and conditional item values, we again define 𝑆𝑛 as the accuracy-maximizing set of recommendations,

that which maximizes the expected total value of recommended items. We let 𝑆𝑛,𝑘 be the set of recommendations that maximizes the

expected value of the top 𝑘 recommended items, thus corresponding to a consumption constraint of 𝑘 .

Recall that 𝑟𝑡 (𝑆) gives the proportion of items in 𝑆 that are of type 𝑡 . To succintly introduce our main result in this setting—an analog to

Theorem 1—we introduce the following way to measure diversity.

Definition 3 (𝛾-homogeneity). A set 𝑆 is 𝜸-homogeneous if for all 𝑡 ∈ [𝑚],

𝑟𝑡 (𝑆) =
𝑝
𝛾
𝑡∑𝑚

𝑖=1 𝑝
𝛾

𝑖

. (43)

𝛾-homogeneity captures several intuitive notions of diversity, using 𝑝1, · · · , 𝑝𝑚 as a benchmark:

• When 𝛾 = 0, 𝑟𝑡 (𝑆) = 1

𝑚 . There is “equal representation.”

• When 𝛾 = 1, 𝑟𝑡 (𝑆) = 𝑝𝑡 . There is “proportional representation,” where an item type is represented in proportion to its likelihood.

• When 𝛾 = ∞, 𝑟𝑡 (𝑆) = 1 for 𝑡 = argmax𝑖∈[𝑚] 𝑝𝑖 and 𝑟𝑡 (𝑆) = 0 otherwise. There is “complete homogeneity,” where only the highest-

likelihood item type is represented.

A smaller 𝛾 corresponds to more diversity, with 𝛾 ≤ 1 indicating at least proportional representation. In practice, it is challenging to show that

individual sets are 𝛾-homogeneous; for one, since sets have an integer number of items from each type, it is typically impossible to obtain

the exact ratios in (43). Instead, we will give primarily asymptotic results, showing that as 𝑛 grows large, the optimal set 𝑆𝑛,𝑘 approaches

𝛾-homogeneity. Formally, we define 𝛾-homogeneity over sequences of sets:

Definition 4 (𝛾-homogeneity for set sequences). A sequence of sets {𝑆𝑛}∞𝑛=1 is 𝜸-homogeneous if for all 𝑡 ∈ [𝑚],

lim

𝑛→∞
𝑟𝑡 (𝑆𝑛) =

𝑝
𝛾
𝑡∑𝑚

𝑖=1 𝑝
𝛾

𝑖

. (44)

We can then state our result as follows.

Theorem 4. Suppose 𝑋 (𝑡 )
𝑖

iid∼ D where D has finite mean. Then the following statements hold.
13
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Table 5: A summary of Theorem 4. For 𝑋 (𝑡 )
𝑖

iid∼ D, distributions D with heavier tails induce less diversity.

bounded exp. tail heavy tail
Thm. 1(ii) Thm. 1(iii) Thm. 1(iv)

example D Beta(·, 𝛽) Exp(𝜆) Pareto(𝛼)
0 < 𝛽 < 1 𝛽 = 1 𝛽 > 1 𝜆 > 0 𝛼 > 1

𝑀

graph of pdf

𝑀 𝑀 𝑀 𝑀 𝑀

{𝑆𝑛,𝑘 }∞𝑛=1
𝛾-homog.

for 𝛾 ∈ (0, 1/2) 1/2 (1/2, 1) 1 (1,∞)
(i.e., proportional)

←− more diverse less diverse −→

(i) [Finite Discrete] If D is a finite discrete distribution, {𝑆𝑛,𝑘 }∞𝑛=1 is 0-homogeneous.
(ii) [Bounded] If D has support bounded from above by𝑀 with pdf 𝑓D satisfying

lim

𝑥→𝑀

𝑓D (𝑥)
(𝑀 − 𝑥)𝛽−1

= 𝑐 (45)

for some 𝛽, 𝑐 > 0, then {𝑆𝑛,𝑘 }∞𝑛=1 is
𝛽

𝛽+1 -homogeneous.
(This pdf class contains beta distributions, including the uniform distribution.)

(iii) [Exponential tail] If D = Exp(𝜆) for 𝜆 > 0, then {𝑆𝑛,𝑘 }∞𝑛=1 is 1-homogeneous.
(iv) [Heavy tail] If D = Pareto(𝛼) for 𝛼 > 1, then {𝑆𝑛,𝑘 }∞𝑛=1 is

𝛼
𝛼−1 -homogeneous.

Additionally,

(v) 𝑆𝑛 contains only items of type 𝑡 = argmax𝑡 ∈[𝑚] 𝑝𝑡 .

As Table 5 illustrates, the theorem shows how for fixed 𝑘 , the diversity of optimal solutions depends on the tail behavior of D. In fact, we

can obtain 𝛾-homogeneity for any 𝛾 :

Corollary 5. For any 𝛾 ≥ 0, there exists D such that when 𝑋 (𝑡 )
𝑖

iid∼ D and 𝑘 is fixed, {𝑆𝑛,𝑘 }∞𝑛=1 is 𝛾-homogeneous.

Intuitively, heavy-tailed distributions (part (iv)) induce less diverse recommendations since the marginal returns of recommending more

items from the same type remains high: drawing more samples from a heavy-tailed distribution produces ever-increasing item values. This

contrasts with bounded distributions like the uniform distribution (part (ii)), where once an item has close to the maximum value, additional

draws of that type will not further improve the utility significantly.

Part (i) of the theorem includes Theorem 1 as a subcase when D is Bernoulli. We prove Theorem 4 in appendix E.

D MAIN PROOFS
D.1 A central lemma: connecting diminishing returns to diversity
Let Z≥0 denote the set of non-negative integers and 𝑧𝑛 ⊂ Z𝑚≥0 denote the set of𝑚-tuples whose elements sum to 𝑛. We will say that a

function ℎ : Z≥0 → R is strictly concave if ℎ𝑡 (𝑧 + 1) − ℎ𝑡 (𝑧) < ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧 − 1) for all 𝑎.

14
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Lemma D.1. Consider an integer𝑚 and 𝑝1, 𝑝2, · · · , 𝑝𝑚 ≥ 0. Let ℎ : Z≥0 → R be monotonically increasing. For each positive integer 𝑛, choose
(𝑧 (𝑛)
1

, · · · , 𝑧 (𝑛)𝑚 ) such that

(𝑧 (𝑛)
1

, · · · , 𝑧 (𝑛)𝑚 ) ∈ argmax

(𝑧1,· · · ,𝑧𝑚 ) ∈𝑧𝑛

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧𝑡 ), (46)

and define

𝑟
(𝑛)
𝑡 :=

𝑧
(𝑛)
𝑡

𝑛
. (47)

Then the following statements hold.
(i) Suppose there exist constants 𝐴, 𝐵 > 0 and 𝜎 < 0 such that

lim

𝑎→∞
log(𝐴 − ℎ𝑡 (𝑧))

𝐵𝑧𝜎
= 1. (48)

Then
lim

𝑛→∞
𝑟
(𝑛)
𝑡 =

1

𝑚
. (49)

(ii) Suppose there exist constants 𝐴1, 𝐴2, · · · , 𝐴𝑚, 𝐵 > 0 and 𝜎 < 0 such that

lim

𝑎→∞
𝐴𝑡 − ℎ𝑡 (𝑧)

𝐵𝑧𝜎
= 1. (50)

Then

lim

𝑛→∞
𝑟
(𝑛)
𝑡 =

𝜆
1

1−𝜎
𝑡∑𝑚

𝑖=1 𝜆
1

1−𝜎
𝑖

. (51)

(iii) Suppose ℎ is strictly concave, and that there exist constants 𝐵,𝐶 > 0 such that

lim

𝑎→∞
ℎ𝑡 (𝑧) − 𝐵 log𝑎 −𝐶 = 0. (52)

Then
lim

𝑛→∞
𝑟
(𝑛)
𝑡 = 𝜆𝑡 . (53)

(iv) Suppose ℎ is strictly concave, and that there exist constants 𝐵 > 0 and 0 < 𝜎 < 1 such that

lim

𝑎→∞
ℎ𝑡 (𝑧)
𝐵𝑧𝜎

= 1. (54)

Then

lim

𝑛→∞
𝑟
(𝑛)
𝑡 =

𝜆
1

1−𝜎
𝑡∑𝑚

𝑖=1 𝜆
1

1−𝜎
𝑖

. (55)

We spend the remainder of the section proving Lemma D.1. A useful first step is to show that in each of parts (i)-(iv), we have that

lim

𝑛→∞
𝑧
(𝑛)
𝑡 = ∞ (56)

for each 𝑡 ∈ [𝑚], allowing us to use the asymptotic assumptions in the lemma’s statement.

Assume for the sake of contradiction that there exists 𝑡 ∈ [𝑚] and an integer 𝑑 such that for any integer 𝑁 there exists 𝑛 > 𝑁 for which

𝑧
(𝑛)
𝑡 < 𝑑. Since ℎ is strictly increasing and 𝑑 is finite, there exists 𝛿 > 0 such that

ℎ𝑡 (𝑧 + 1) − ℎ𝑡 (𝑧) > 𝛿 (57)

for all 𝑎 < 𝑑. Also, there exists an integer 𝑁 ′ such that for all 𝑎 > 𝑁 ′,

ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧 − 1) < 𝛿 · min

𝑖∈[𝑚]
𝜆𝑡

𝜆𝑖
. (58)

(58) holds in parts (i)-(ii) because ℎ is monotonically increasing and is upper bounded by 𝐴, and in parts (iii)-(iv) because ℎ is strictly concave.

Now consider 𝑁 = 𝑁 ′𝑚. Then there exists 𝑛 > 𝑁 such that 𝑧
(𝑛)
𝑡 < 𝑑. Since

∑𝑚
𝑡=1 𝑧

(𝑛)
𝑡 = 𝑛 > 𝑁 ′𝑚, there exists 𝑡 ′ ∈ [𝑚] such that

𝑧
(𝑛)
𝑡 ′ > 𝑁 ′ . Thus,

𝑝𝑡 ′ℎ𝑡 (𝑧 (𝑛)𝑡 ′ ) − 𝑝𝑡 ′ℎ𝑡 (𝑧
(𝑛)
𝑡 ′ − 1) < 𝜆𝑡𝛿 < 𝜆𝑡ℎ𝑡 (𝑧 (𝑛)𝑡 + 1) − 𝜆𝑡ℎ𝑡 (𝑧 (𝑛)𝑡 ), (59)

which implies that the switch 𝑧
(𝑛)
𝑡 → 𝑧

(𝑛)
𝑡 + 1, 𝑧 (𝑛)

𝑡 ′ → 𝑧
(𝑛)
𝑡 ′ − 1 increases

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧 (𝑛)𝑡 ), (60)
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contradicting the optimality of (𝑧 (𝑛)
1

, · · · , 𝑧 (𝑛)𝑚 ).
With (56) in hand, we turn to the bulk of the proof. In each part, we would like to show that

lim

𝑛→∞
(𝑟 (𝑛)
1

, · · · , 𝑟 (𝑛)𝑚 ) = (𝑟̂1, · · · , 𝑟̂𝑚) (61)

for some specified (𝑟̂1, · · · , 𝑟̂𝑚) depending on the part. We assume for the sake of contradiction that {(𝑟 (𝑛)
1

, · · · , 𝑟 (𝑛)𝑚 )}∞𝑛=1 does not converge
to (𝑟̂1, · · · , 𝑟̂𝑚). If this is the case, then by the Bolzano-Weierstrass theorem, since [0, 1]𝑚 is compact, there is a subsequence

{(𝑟 (𝑠𝑖 )
1

, · · · , 𝑟 (𝑠𝑖 )𝑚 )}∞𝑖=1 (62)

such that lim𝑖→∞ (𝑟 (𝑠𝑖 )
1

, · · · , 𝑟 (𝑠𝑖 )𝑚 ) = (𝑟1, · · · , 𝑟𝑚) for some (𝑟1, · · · , 𝑟𝑚) ≠ (𝑟̂1, · · · , 𝑟̂𝑚) . For notational ease, we will simply assume that

lim

𝑛→∞
(𝑟 (𝑛)
1

, · · · , 𝑟 (𝑛)𝑚 ) = (𝑟1, · · · , 𝑟𝑚) (63)

for some (𝑟1, · · · , 𝑟𝑚) ≠ (𝑟̂1, · · · , 𝑟̂𝑚). The proof holds analogouslywhen the subsequence {(𝑟 (𝑠𝑖 )
1

, · · · , 𝑟 (𝑠𝑖 )𝑚 )}∞
𝑖=1

differs from {(𝑟 (𝑛)
1

, · · · , 𝑟 (𝑛)𝑚 )}∞𝑛=1.
Then consider any sequence {(𝑧̂ (𝑛)

1
, · · · , 𝑧̂ (𝑛)𝑚 )}∞𝑛=1 such that

lim

𝑛→∞

(
𝑧̂
(𝑛)
1

𝑛
, · · · , 𝑧̂

(𝑛)
𝑚

𝑛

)
= (𝑟̂1, · · · , 𝑟̂𝑚) . (64)

(Clearly, such a sequence exists.) In each part, we will show that for sufficiently large 𝑛,

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧 (𝑛)𝑡 ) <
𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧̂ (𝑛)𝑡 ), (65)

contradicting the optimality of (𝑧 (𝑛)
1

, · · · , 𝑧 (𝑛)𝑚 ). To complete the proof, we analyze each part separately:

(i) In this part, there exist constants 𝐴, 𝐵 > 0 and 𝜎 < 0 such that

lim

𝑎→∞
log(𝐴 − ℎ𝑡 (𝑧))

𝐵𝑧𝜎
= 1. (66)

We set 𝑟̂𝑡 :=
1

𝑚 for each 𝑡 ∈ [𝑚] . Observe that

lim

𝑎→∞
log(𝐴 − ℎ𝑡 (𝑧))

𝐵𝑧𝜎
= 1 (67)

implies that for all 𝜖 > 0, there exists 𝑐 such that for all 𝑎 > 𝑐,

𝑒 (1−𝜖 )𝐵𝑧
𝜎

≤ 𝐴 − ℎ𝑡 (𝑧) ≤ 𝑒 (1+𝜖 )𝐵𝑧
𝜎

. (68)

Then observe that by taking sufficiently small 𝜖, we have

lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡 (𝐴 − ℎ𝑡 (𝑧

(𝑛)
𝑡 ))∑𝑚

𝑡=1 𝜆𝑡 (𝐴 − ℎ𝑡 (𝑧̂
(𝑛)
𝑡 ))

≥ lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡 exp[(1 − 𝜖)𝐵(𝑧

(𝑛)
𝑡 )𝜎 )]∑𝑚

𝑡=1 𝜆𝑡 exp[(1 + 𝜖)𝐵(𝑧̂
(𝑛)
𝑡 )𝜎 )]

(69)

= lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡 exp[(1 − 𝜖)𝐵(𝑛𝑟𝑡 )𝜎 ]
exp[(1 + 𝜖)𝐵(𝑛/𝑚)𝜎 ] (70)

= lim

𝑛→∞

𝑚∑︁
𝑡=1

𝜆𝑡 exp[𝐵𝑛𝜎 ((1 − 𝜖)𝑟𝜎𝑡 − (1 + 𝜖) (1/𝑚)𝜎 )] (71)

= ∞ (72)

where the last limit holds for 𝜖 sufficiently small because 𝑟𝑡 − 1

𝑚 > 0 for some 𝑡 .

It follows that for 𝑛 sufficiently large,

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧

(𝑛)
𝑡 ) <

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧̂

(𝑛)
𝑡 ), as desired.

(ii) In this part, there exist constants 𝐴1, · · · , 𝐴𝑚, 𝐵 > 0 and 𝜎 < 0 such that

lim

𝑎→∞
𝐴𝑡 − ℎ𝑡 (𝑧)

𝐵𝑧𝜎
= 1. (73)

We set

𝑟̂𝑡 :=
𝜆

1

1−𝜎
𝑡∑𝑚

𝑖=1 𝜆
1

1−𝜎
𝑖

(74)
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for each 𝑡 ∈ [𝑚] . Then observe that

lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧 (𝑛)𝑡 ))∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧̂ (𝑛)𝑡 ))

= lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧 (𝑛)𝑡 ))∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧̂ (𝑛)𝑡 ))

· lim
𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡𝐵(𝑧

(𝑛)
𝑡 )𝜎∑𝑚

𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧 (𝑛)𝑡 ))
· lim
𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧̂ (𝑛)𝑡 ))∑𝑚

𝑡=1 𝜆𝑡𝐵(𝑧̂
(𝑛)
𝑡 )𝜎

(75)

= lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧 (𝑛)𝑡 ))∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧̂ (𝑛)𝑡 ))

·
∑𝑚
𝑡=1 𝜆𝑡𝐵(𝑧

(𝑛)
𝑡 )𝜎∑𝑚

𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧 (𝑛)𝑡 ))
·
∑𝑚
𝑡=1 𝜆𝑡 (𝐴𝑡 − ℎ𝑡 (𝑧̂ (𝑛)𝑡 ))∑𝑚

𝑡=1 𝜆𝑡𝐵(𝑧̂
(𝑛)
𝑡 )𝜎

(76)

= lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡𝐵(𝑧

(𝑛)
𝑡 )𝜎∑𝑚

𝑡=1 𝜆𝑡𝐵(𝑧̂
(𝑛)
𝑡 )𝜎

(77)

=

∑𝑚
𝑡=1 𝜆𝑡𝑟

𝜎
𝑡∑𝑚

𝑡=1 𝜆𝑡 𝑟̂
𝜎
𝑡

> 1, (78)

where (75) follows from the latter two limits being equal to 1, (76) follows from the product rule for limits, and (78) follows from the

observation that for 𝜎 < 0

𝑚∑︁
𝑡=1

𝜆𝑡𝑥
𝜎
𝑡 , (79)

subject to the constraint

∑𝑚
𝑡=1 𝑥𝑡 = 1 for 𝑥𝑡 ≥ 0 has a unique minimum at (𝑥1, · · · , 𝑥𝑚) = (𝑟̂1, · · · , 𝑟̂𝑚) . This is direct, for example, by

using Lagrange multipliers. (78) implies that

lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧

(𝑛)
𝑡 )∑𝑚

𝑡=1 𝜆𝑡ℎ𝑡 (𝑧̂
(𝑛)
𝑡 )

< 1. (80)

It follows that for 𝑛 sufficiently large,

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧

(𝑛)
𝑡 ) <

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧̂

(𝑛)
𝑡 ), as desired.

(iii) In this part, ℎ is strictly concave, and there exist constants 𝐵,𝐶 > 0 such that

lim

𝑎→∞
ℎ𝑡 (𝑧) − 𝐵 log𝑎 −𝐶 = 0. (81)

We set 𝑟̂𝑡 := 𝜆𝑡 for each 𝑡 ∈ [𝑚] . Then observe that

lim

𝑛→∞

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧 (𝑛)𝑡 ) −
𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧̂ (𝑛)𝑡 ) (82)

= lim

𝑛→∞

𝑚∑︁
𝑡=1

𝜆𝑡𝐵 log 𝑧
(𝑛)
𝑡 −

𝑚∑︁
𝑡=1

𝜆𝑡𝐵 log 𝑧̂
(𝑛)
𝑡 (83)

= 𝐵 log𝑛 + 𝐵
𝑚∑︁
𝑡=1

𝜆𝑡 log 𝑟𝑡 − 𝐵 log𝑛 − 𝐵
𝑚∑︁
𝑡=1

𝜆𝑡 log 𝑟̂𝑡 (84)

< 0. (85)

The final inequality here follows from the observation that

𝑚∑︁
𝑡=1

𝜆𝑡 log𝑥𝑡 , (86)

subject to the constraint

∑𝑚
𝑡=1 𝑥𝑡 = 1 for 𝑥𝑡 > 0 has a unique minimum at (𝑥1, · · · , 𝑥𝑚) = (𝑟̂1, · · · , 𝑟̂𝑚) . This is direct, for example, by

using Lagrange multipliers.

It follows that for 𝑛 sufficiently large,

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧

(𝑛)
𝑡 ) <

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧̂

(𝑛)
𝑡 ), as desired.

(iv) In this part, ℎ is strictly concave, and there exist constants 𝐵 > 0 and 0 < 𝜎 < 1 such that

lim

𝑎→∞
ℎ𝑡 (𝑧)
𝐵𝑧𝜎

= 1. (87)

We set

𝑟̂𝑡 :=
𝜆

1

1−𝜎
𝑡∑𝑚

𝑖=1 𝜆
1

1−𝜎
𝑖

(88)

for each 𝑡 ∈ [𝑚] . Then observe that

lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧

(𝑛)
𝑡 )∑𝑚

𝑡=1 𝜆𝑡ℎ𝑡 (𝑧̂
(𝑛)
𝑡 )

= lim

𝑛→∞

∑𝑚
𝑡=1 𝜆𝑡𝐵(𝑧

(𝑛)
𝑡 )𝜎∑𝑚

𝑡=1 𝜆𝑡𝐵(𝑧̂
(𝑛)
𝑡 )𝜎

=

∑𝑚
𝑡=1 𝜆𝑡𝑟

𝜎
𝑡∑𝑚

𝑡=1 𝜆𝑡 𝑟̂
𝜎
𝑡

< 1. (89)
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The first equality is a consequence of the asymptotic assumption on ℎ and the product rule for limits (as in part (ii). The final

inequality here follows from the observation that for 𝜎 > 0,

𝑚∑︁
𝑡=1

𝜆𝑡𝑥
𝜎
𝑡 , (90)

subject to the constraint

∑𝑚
𝑡=1 𝑥𝑡 = 1 for 𝑥𝑡 > 0 has a unique maximum at (𝑥1, · · · , 𝑥𝑚) = (𝑟̂1, · · · , 𝑟̂𝑚). This is direct, for example,

by using Lagrange multipliers.

It follows that for 𝑛 sufficiently large,

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧

(𝑛)
𝑡 ) <

∑𝑚
𝑡=1 𝜆𝑡ℎ𝑡 (𝑧̂

(𝑛)
𝑡 ), as desired.

D.2 Proof of Theorem 2.A
Weprove Theorem 2.A, wherewe are interested in the accuracy-maximizing set of recommendations. For recommendations 𝑆 = (𝑧1, 𝑧2, · · · , 𝑧𝑚),
we have that

𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧𝑡 ), (91)

where

𝜆𝑡 = 𝑝𝑡𝑞𝑡 (92)

ℎ𝑡 (𝑧) =
𝑎∑︁
𝑖=1

(𝑖 + 𝛽)−𝛼 . (93)

We consider three cases: 0 < 𝛼 < 1, 𝛼 = 1, and 𝛼 > 1.

Case 1: 0 < 𝛼 < 1. For 0 < 𝛼 < 1, observe that

𝑎∑︁
𝑖=1

(𝑖 + 𝛽)−𝛼 <

∫ 𝑧+𝛽

𝑑

𝑥−𝛼 𝑑𝑥 =

[
1

1 − 𝛼 𝑥
1−𝛼

]𝑧+𝛽
𝑑

(94)

=
1

1 − 𝛼 (𝑧 + 𝛽)
1−𝛼 − 1

1 − 𝛼 𝑑
1−𝛼

(95)

and

𝑎∑︁
𝑖=1

(𝑖 + 𝛽)−𝛼 >

∫ 𝑧+𝛽+1

𝛽+1
𝑥−𝛼 𝑑𝑥 =

[
1

1 − 𝛼 𝑥
1−𝛼

]𝑧+𝛽+1
𝛽+1

(96)

=
1

1 − 𝛼 (𝑧 + 𝛽 + 1)
1−𝛼 − 1

1 − 𝛼 (𝛽 + 1)
1−𝛼 . (97)

It follows that

lim

𝑎→∞
ℎ𝑡 (𝑧)
𝑧1−𝛼

=
1

1 − 𝛼 , (98)

and the result in this case follows by applying Lemma D.1(iv).

Case 2: 𝛼 = 1. Now for 𝛼 = 1, we have that

𝑎∑︁
𝑖=1

(𝑖 + 𝛽)−𝛼 = 𝑐

𝑧+𝛽∑︁
𝑖=𝛽+1

1

𝑖
. (99)

lim

𝑎→∞
ℎ𝑡 (𝑧) − 𝑐 log𝑎 + 𝑐𝛾 − 𝑐

𝑑∑︁
𝑖=1

1

𝑖
= 0, (100)

where 𝛾 is the Euler-Mascheroni constant The result in this case follows by applying Lemma D.1(iii).

Case 3: 𝛼 > 1. Finally, for 𝛼 > 1, we have that
∞∑︁
𝑖=1

(𝑖 + 𝛽)−𝛼 = 𝑆 (101)

for some finite 𝑆 . Then note that

𝑎∑︁
𝑖=1

(𝑖 + 𝛽)−𝛼 = 𝑆 −
∞∑︁

𝑖=𝑧+1
(𝑖 + 𝛽)−𝛼 . (102)
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Then we have

∞∑︁
𝑖=𝑧+1

(𝑖 + 𝛽)−𝛼 <

∫ ∞

𝑎

𝑥−𝛼 𝑑𝑥 =

[
1

1 − 𝛼 𝑥
1−𝛼

]∞
𝑎

= − 1

1 − 𝛼 𝑧
1−𝛼

(103)

and

∞∑︁
𝑖=𝑧+1

(𝑖 + 𝛽)−𝛼 >

∫ ∞

𝑧+1
𝑥−𝛼 𝑑𝑥 =

[
1

1 − 𝛼 𝑥
1−𝛼

]∞
𝑧+1

= − 1

1 − 𝛼 (𝑧 + 1)
1−𝛼

(104)

It follows that

lim

𝑎→∞
ℎ𝑡 (𝑧)

𝑆 − 1

𝛼−1𝑧
1−𝛼 = 1. (105)

The result in this case follows again by applying Lemma D.1(ii).

D.3 Proof of Theorem 2.B
We are now considered in utility-maximizing recommendations, which maximize the probability that a user is satisfied with at least one
recommendation.

D.3.1 Case when 𝛼 = 0. The following lemma is useful for showing that—for the class of problems we consider here—optimal integer

solutions are well-approximated by optimal real solutions.

Lemma D.2. Let 𝑔1, 𝑔2, · · · , 𝑔𝑚 : [0,∞)𝑚 → R be strictly convex functions over the non-negative reals. Then define

𝑔(𝑥1, · · · , 𝑥𝑚) :=
𝑚∑︁
𝑡=1

𝑔𝑡 (𝑥𝑡 ) . (106)

Then, under the constraint that
∑𝑚
𝑡=1 𝑥𝑡 = 𝑛, if (𝑥∗

1
, · · · , 𝑥∗𝑚) is the maximum of 𝑔 over the non-negative reals and (𝑧∗

1
, · · · , 𝑧∗𝑚) is the maximum

of 𝑔 over the non-negative integers, then
⌊𝑥∗𝑡 ⌋ −𝑚 < 𝑧∗𝑡 < ⌊𝑥∗𝑡 ⌋ +𝑚 (107)

for all 𝑡 .

Proof. The key idea is to show that there cannot be 𝑖, 𝑗 such that 𝑧∗
𝑖
≥ ⌈𝑥𝑖 ⌉ + 1 and 𝑧∗𝑗 ≤ ⌈𝑥 𝑗 ⌉ − 1. If such a pair does exist, we show that

𝑔(· · · , 𝑧∗𝑖 − 1, · · · , 𝑧
∗
𝑗 + 1, · · · ) ≥ 𝑔(· · · , 𝑧∗𝑖 , · · · , 𝑧

∗
𝑗 , · · · ), (108)

contradicting the optimality of 𝑧∗
1
, · · · , 𝑧∗𝑚 . It suffices to show that

𝑔𝑖 (𝑧∗𝑖 − 1) + 𝑔 𝑗 (𝑧
∗
𝑗 + 1) ≥ 𝑔𝑖 (𝑧∗𝑖 ) + 𝑔 𝑗 (𝑧

∗
𝑗 ), (109)

or equivalently,

𝑔 𝑗 (𝑧∗𝑗 + 1) − 𝑔 𝑗 (𝑧
∗
𝑗 ) ≥ 𝑔𝑖 (𝑧∗𝑖 ) − 𝑔𝑖 (𝑧

∗
𝑖 − 1) . (110)

This holds, as

𝑔 𝑗 (𝑧∗𝑗 + 1) − 𝑔 𝑗 (𝑧
∗
𝑗 ) ≥

𝜕𝑔 𝑗

𝜕𝑥 𝑗
=

𝜕𝑔𝑖

𝜕𝑥𝑖
≥ 𝑔𝑖 (𝑧∗𝑖 ) − 𝑔𝑖 (𝑧

∗
𝑖 − 1) . (111)

□

We now prove Theorem 2.B when 𝛼 = 0.

Proof. Given recommendations 𝑆 = (𝑧1, 𝑧2, · · · , 𝑧𝑚) we have that,
We would like to find 𝑧1, · · · , 𝑧𝑚 that maximizes

𝑚∑︁
𝑡=1

𝑝𝑡
(
1 − (1 − 𝑞𝑡 )𝑧𝑡

)
= 1 −

𝑚∑︁
𝑡=1

𝑝𝑡 (1 − 𝑞𝑡 )𝑧𝑡 . (112)

subject to the constraint

∑𝑚
𝑡=1 𝑝𝑡 = 𝑛. This is equivalent to minimizing

𝑚∑︁
𝑡=1

𝑝𝑡 (1 − 𝑞𝑡 )𝑧𝑡 . (113)

Now define a function

𝑔 : [0,∞)𝑚 → R, (𝑥1, · · · , 𝑥𝑚) ↦→
𝑚∑︁
𝑡=1

𝑝𝑡 (1 − 𝑞𝑡 )𝑥𝑡 . (114)
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Subject to the constraint

∑𝑚
𝑡=1 𝑥𝑡 = 𝑛, 𝑔(𝑥1, · · · , 𝑥𝑚) is maximized exactly when

𝜕𝑔

𝜕𝑥1
=

𝜕𝑔

𝜕𝑥2
= · · · = 𝜕𝑔

𝜕𝑥𝑚
. (115)

We have

𝜕𝑔

𝜕𝑥𝑡
= −𝑝𝑡 (1 − 𝑞𝑡 )𝑥𝑡 log(1 − 𝑞𝑡 ). (116)

Solving 𝜕𝑔/𝜕𝑥𝑖 = 𝜕𝑔/𝜕𝑥 𝑗 gives

𝑝𝑖 (1 − 𝑞𝑖 )𝑥𝑖 log(1 − 𝑞𝑖 ) = 𝑝 𝑗 (1 − 𝑞 𝑗 )𝑥 𝑗
log(1 − 𝑞 𝑗 ) (117)

=⇒ log𝑝𝑖 + 𝑥𝑖 log(1 − 𝑞𝑖 ) + log log(1 − 𝑞𝑖 ) = log 𝑝 𝑗 + 𝑥 𝑗 log(1 − 𝑞 𝑗 ) + log log(1 − 𝑞 𝑗 ) (118)

It follows that 𝑧𝑡 ∝ 1

log(1−𝑞𝑡 ) for all 𝑡 , where we have applied Lemma D.2. □

D.3.2 Case when 𝛼 > 1. We now consider the case 𝛼 > 1. Given recommendations 𝑆 = (𝑧1, 𝑧2, · · · , 𝑧𝑚) we have that

util1 (𝑆) =
𝑚∑︁
𝑡=1

𝜆𝑡ℎ𝑡 (𝑧𝑡 ), (119)

where we set

𝜆𝑡 = 𝑝𝑡𝑞𝑡 (120)

ℎ𝑡 (𝑧) =
1 −∏𝑧

𝑖=1 (1 − 𝑞𝑡 (𝑖 + 𝛽)
−𝛼 )

𝑞𝑡
. (121)

It suffices now to show the desired asymptotic properties for ℎ depending on 𝛼 , and applying Lemma D.1.

Note that

∞∏
𝑖=𝛽+1

(1 − 𝑞𝑡 𝑖−𝛼 ) = 𝑆𝑡 (122)

for a finite constant 𝑆𝑡 .

We note the following fact, which will be helpful in our analysis:

1 − 𝑥 > 𝑒−𝑥−𝑥
2

for 0 < 𝑥 <
1

2

. (123)

We have that

∞∏
𝑖=𝑧+𝛽+1

(1 − 𝑞𝑡 𝑖−𝛼 ) <
∞∏

𝑖=𝑧+𝛽+1
𝑒−𝑞𝑡 𝑖

−𝛼
(124)

= exp


∞∑︁

𝑖=𝑧+𝛽+1
−𝑞𝑡 𝑖−𝛼

 (125)

< exp

[∫ ∞

𝑧+𝛽+1
−𝑞𝑡𝑥−𝛼 𝑑𝑥

]
(126)

= exp

[
−

[
𝑞𝑡𝑥

1−𝛼

1 − 𝛼

]∞
𝑧+𝛽+1

]
(127)

= exp

[
− 𝑞𝑡

1 − 𝛼 (𝑧 + 𝛽 + 1)
1−𝛼

]
(128)

Therefore,

𝑧+𝛽∏
𝑖=1

(1 − 𝑞𝑡 𝑖−𝛼 ) =
𝑆𝑡∏∞

𝑖=𝑧+𝛽+1
(1 − 𝑞𝑡 𝑖−𝛼 ) > 𝑆𝑡/exp

[
− 𝑞𝑡

1 − 𝛼 (𝑧 + 𝛽 + 1)
1−𝛼

]
. (129)
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Also,

∞∏
𝑖=𝑧+𝛽+1

(1 − 𝑞𝑡 𝑖−𝛼 ) >
∞∏

𝑖=𝑧+𝛽+1
𝑒−𝑞𝑡 𝑖

−𝛼−𝑞2𝑡 𝑖−2𝛼 (130)

= exp


∞∑︁

𝑖=𝑧+𝛽+1
−𝑞𝑡 𝑖−𝛼 − 𝑞2𝑡 𝑖−2𝛼

 (131)

< exp

[∫ ∞

𝑧+𝛽
−𝑞𝑡𝑥−𝛼 − 𝑞2𝑡 𝑥−2𝛼 𝑑𝑥

]
(132)

= exp

−
[
𝑞𝑡𝑥

1−𝛼

1 − 𝛼 +
𝑞2𝑡 𝑥

2−𝛼

2 − 𝛼

]∞
𝑧+𝛽

 (133)

= exp

[
− 𝑞𝑡

1 − 𝛼 (𝑧 + 𝛽)
1−𝛼 −

𝑞2𝑡

1 − 2𝛼 (𝑧 + 𝛽)
2−𝛼

]
, (134)

where the first inequality holds for 𝑎 sufficiently large due to (123).

Therefore,

𝑧+𝛽∏
𝑖=1

(1 − 𝑞𝑡 𝑖−𝛼 ) =
𝑆𝑡∏∞

𝑖=𝑧+𝛽+1
(1 − 𝑞𝑡 𝑖−𝛼 ) < 𝑆𝑡/exp

[
− 𝑞𝑡

1 − 𝛼 (𝑧 + 𝛽 − 1)
1−𝛼 −

𝑞2𝑡

1 − 2𝛼 (𝑧 + 𝛽)
2−𝛼

]
. (135)

Now observe that

lim

𝑎→∞
− 𝑞𝑡

1 − 𝛼 (𝑧 + 𝛽 + 1)
1−𝛼 = 0 (136)

and

lim

𝑎→∞
− 𝑞𝑡

1 − 𝛼 (𝑧 + 𝛽 − 1)
1−𝛼 −

𝑞2𝑡

1 − 2𝛼 (𝑧 + 𝛽)
2−𝛼 = 0. (137)

Therefore,

lim

𝑎→∞

∏𝑧+𝛽
𝑖=1
(1 − 𝑞𝑡 𝑖−𝛼 )
𝑆𝑡

1− 𝑞𝑡
1−𝛼 (𝑧+𝛽+1)1−𝛼

= 1. (138)

Also note that

𝑆𝑡

1 − 𝑞𝑡
1−𝛼 (𝑧 + 𝛽 + 1)1−𝛼

= 𝑆𝑡 −
𝑆𝑡

𝑞𝑡
1−𝛼

(𝑧 + 𝛽 + 1)𝛼−1 + 𝑞𝑡
1−𝛼

(139)

Also,

lim

𝑎→∞

∏𝑧+𝛽
𝑖=1
(1 − 𝑞𝑡 𝑖−𝛼 )
𝑆𝑡

1− 𝑞𝑡
1−𝛼 (𝑧+𝛽−1)1−𝛼−

𝑞2𝑡
1−2𝛼 (𝑧+𝛽 )2−𝛼

= 1 (140)

and

lim

𝑎→∞
1 − 𝑞𝑡

1−𝛼 (𝑧 + 𝛽)
1−𝛼 − 𝑞2𝑡

1−2𝛼 (𝑧 + 𝛽)
2−𝛼

1 − 𝑞𝑡
1−𝛼 (𝑧 + 𝛽)1−𝛼

= 1. (141)

It follows that

lim

𝑎→∞

1−𝑆𝑡
𝑞𝑡
− ℎ𝑡 (𝑧)

− 𝑆𝑡
1−𝛼 𝑧

1−𝛼
= 1 (142)

as desired.

Taking 𝐴𝑡 =
1−𝑆𝑡
𝑞𝑡

and 𝐵 = − 𝑆𝑡
1−𝛼 , we have that

lim

𝑎→∞
𝐴𝑡 − ℎ𝑡 (𝑧)
𝐵𝑧1−𝛼

= 1, (143)

and the result follows from Lemma D.1(ii).
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E PROOF OF THEOREM 4 (GENERAL DISTRIBUTIONS)
We now turn to the proofs of Theorem 4(i)-(iv). (Part (v) is clear.) In each of these parts, we consider a set of recommendations with 𝑎𝑡 items

of type 𝑡 for each 𝑡 ∈ [𝑚] . Then observe that the expected total value of the 𝑘 highest value recommended items is equal to

𝑚∑︁
𝑡=1

𝑝𝑡ℎ𝑡 (𝑎𝑡 ), (144)

for

ℎ : Z≥0 → R, ℎ : 𝑎 ↦→ E
[
top𝑘 {𝑋1, · · · , 𝑋𝑎

iid∼ D}
]
, (145)

where top𝑘 evaluates the sum of the 𝑘 highest values in a set. Intuitively, conditional on a user preferring type 𝑡 , the top 𝑘 items are just the

top 𝑘 items recommended of type 𝑡 . The sum of their values, conditioned on the user preferring type 𝑡 , is simply the sum of the 𝑘 highest

values among 𝑎 random draws from D. Clearly, ℎ here is monotonically increasing.

Then, with Lemma D.1 in hand, parts (i)-(iv) reduces to showing the following:

(i) If D is a finite discrete distribution, there exist constants 𝐴, 𝐵 > 0 and 𝜎 > 0 such that

lim

𝑎→∞
log(𝐴 − ℎ(𝑎))

𝐵𝑎𝜎
= 1. (146)

(ii) If D has support bounded from above by𝑀 with pdf 𝑓D satisfying

lim

𝑥→𝑀

𝑓D (𝑥)
(𝑀 − 𝑥)𝛽−1

= 𝑐 (147)

for some 𝛽, 𝑐 > 0, then there exist constants 𝐴, 𝐵 > 0 such that

lim

𝑎→∞
𝐴 − ℎ(𝑎)

𝐵𝑎
− 1

𝛽

= 1. (148)

(iii) If D = Exp(𝜆) for 𝜆 > 0, then ℎ is strictly concave and there exists a constant 𝐵 > 0 such that

lim

𝑎→∞
ℎ(𝑎)
𝐵 log𝑎

= 1. (149)

(iv) If D = Pareto(𝛼) for 𝛼 > 1, then ℎ is strictly concave and there exists a constant 𝐵 > 0 such that

lim

𝑎→∞
ℎ(𝑎)
𝐵𝑎

1

𝛼

= 1. (150)

The following identity, mentioned in ??, will be useful for parts (ii)-(iv).

Proposition 6. For 𝑋 (𝑡 )
𝑖

iid∼ D,

ℎ(𝑎) =
min{𝑘,𝑎}∑︁

𝑖=1

𝜇D (𝑎 − 𝑖 + 1, 𝑎). (151)

Recall that 𝜇D (𝑖, 𝑎) is the expected value of the 𝑖-th order statistic of 𝑎 random variables drawn i.i.d. from D.

Proof. Let 𝑌𝑘,𝑛 be the 𝑘-th order statistic of 𝑛 random variables distributed i.i.d. from D. Then

top𝑘 {𝑋
(𝑡 )
1

, · · · , 𝑋 (𝑡 )𝑎 } =
min{𝑘,𝑎}∑︁

𝑖=1

𝑌𝑎−𝑖+1,𝑎 . (152)

So, as desired,

E
[
top𝑘 {𝑋

(𝑡 )
1

, · · · , 𝑋 (𝑡 )𝑎 }
]
=

min{𝑘,𝑎}∑︁
𝑖=1

E
[
𝑌𝑎−𝑖+1,𝑎

]
=

min{𝑘,𝑎}∑︁
𝑖=1

𝜇D (𝑎 − 𝑖 + 1, 𝑎), (153)

where the first equality follows from (152) and the linearity of expectation. □
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Proof of Theorem 4(i). Suppose D has support {𝑥1, · · · , 𝑥𝑟 } with 𝑥1 > · · · > 𝑥𝑟 such that for 𝑋 ∼ D, Pr[𝑋 = 𝑥1] = 𝑞. Now consider a set

of recommendations with 𝑎𝑡 items of type 𝑡 for each 𝑡 ∈ [𝑚] . Then consider 𝑋1, · · · , 𝑋𝑎
iid∼ D. Let 𝐸 be the event that at least 𝑘 of 𝑋1, · · · , 𝑋𝑎

equal 𝑥1. Then,

ℎ(𝑎) ≥ E[top𝑘 {𝑋1, · · · , 𝑋𝑎}|𝐸] · Pr[𝐸] (154)

= 𝑥1𝑘 · ©­«1 −
𝑘−1∑︁
𝑗=0

(
𝑎

𝑗

)
(1 − 𝑞)𝑎− 𝑗𝑞 𝑗 ª®¬ (155)

≥ 𝑥1𝑘 (1 − 𝑎𝑘 (1 − 𝑞)𝑎−𝑘+1) (156)

for all 𝑎 > 2. Now let 𝐸′ be the event that at least one of 𝑋1, · · · , 𝑋𝑎 equals 𝑥1. Then,

ℎ(𝑎) = E[top𝑘 {𝑋1, · · · , 𝑋𝑎}|𝐸′] · Pr[𝐸′] + E[top𝑘 {𝑋1, · · · , 𝑋𝑎}|𝐸′] · (1 − Pr[𝐸′]) (157)

≤ 𝑥1𝑘 (1 − (1 − 𝑞)𝑎) + 𝑥2𝑘 (1 − 𝑞)𝑎 (158)

= 𝑥1𝑘 (1 − (1 −
𝑥2

𝑥1
) (1 − 𝑞)𝑎) . (159)

Now note that for 𝐴 = 𝑥1𝑘, we have that

𝑥1𝑘 (1 −
𝑥2

𝑥1
) (1 − 𝑞)𝑎 ≤ 𝐴 − ℎ(𝑎) ≤ 𝑥1𝑘𝑎

𝑘 (1 − 𝑞)𝑎−𝑘+1 (160)

log(𝑥1𝑘 (1 −
𝑥2

𝑥1
) (1 − 𝑞)𝑎) ≤ log(𝐴 − ℎ(𝑎)) ≤ log(𝑥1𝑘𝑎𝑘 (1 − 𝑞)𝑎−𝑘+1) (161)

log(𝑥1𝑘) + log(1 −
𝑥2

𝑥1
) + 𝑎 log(1 − 𝑞) ≤ log(𝐴 − ℎ(𝑎)) ≤ log(𝑥1𝑘) + 𝑘 log(𝑎) + (𝑎 − 𝑘 + 1) log(1 − 𝑞) . (162)

It follows that for 𝐵 = log(1 − 𝑞),

lim

𝑎→∞
log(𝐴 − ℎ(𝑎))

𝐵𝑎
= 1, (163)

as desired. The result follows from Lemma D.1(i).

Proof of Theorem 4(ii). First recall from Proposition 6 that

ℎ(𝑎) =
min{𝑘,𝑎}∑︁

𝑖=1

𝜇D (𝑎 − 𝑖 + 1, 𝑎). (164)

We will show that

lim

𝑎→∞
𝑀𝑘 − ℎ(𝑎)

𝐵𝑎
− 1

𝛽

= 1 (165)

for a constant 𝐵 > 0. Theorem 4(ii) then follows immediately by applying Lemma D.1(ii) with 𝜎 = − 1

𝛽
.

Consider a probability distribution D′ with pdf 𝑔𝑋 (𝑥) = 𝑓𝑋 (𝑀 − 𝑥) and cdf 𝐺𝑋 (𝑥) . Then

𝜇D (𝑎 − 𝑖 + 1, 𝑎) = 𝑀 − 𝜇D′ (𝑖, 𝑎), (166)

which implies that

𝑀𝑘 −
𝑘∑︁
𝑖=1

𝜇D (𝑎 − 𝑖 + 1, 𝑎) =
𝑘∑︁
𝑖=1

𝜇D′ (𝑖, 𝑎) (167)

Since

𝜇D′ (𝑖, 𝑎) =
𝑖−1∑︁
𝑗=0

∫ ∞

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥, (168)

it remains to show that for all fixed 𝑗 ,

lim

𝑎→∞

∫ ∞
0

(𝑎
𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥

𝑎
− 1

𝛽

= 𝐵 (169)

for some constant 𝐵 (that can vary depending on 𝑗 ). Verifying (169) comprises the bulk of the technical work of the proof, and we isolate it

in the following lemma.

Lemma E.1. For 𝛽 > 0, ∫ ∞

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 ∝ 𝑎

− 1

𝛽 . (170)
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Proof. We have that

lim

𝑥→0
+

𝑔𝑋 (𝑥)
𝑐𝑥𝛽−1

= lim

𝑥→𝑀−

𝑓𝑋 (𝑥)
𝑐 (𝑀 − 𝑥)𝛽−1

= 1 (171)

for a positive constant 𝑐 . So for all 𝜖 > 0 there exists 𝛿 > 0 such that

(1 − 𝜖)𝑐𝑥𝛽−1 ≤ 𝑔𝑋 (𝑥) ≤ (1 + 𝜖)𝑐𝑥𝛽−1 (172)

for all 𝑥 < 𝛿. Now note that 𝑔𝑋 (𝑥) ≤ (1 + 𝜖)𝑐𝑥𝛽−1 implies that

𝐺𝑋 (𝑥) =
∫ 𝑥

0

𝑔𝑋 (𝑢) 𝑑𝑢 ≤ (1 + 𝜖)
∫ 𝑥

0

𝑐𝑢𝛽−1 𝑑𝑢 = (1 + 𝜖) 𝑐
𝛽
𝑥𝛽 . (173)

Likewise, 𝑔𝑋 (𝑥) ≥ (1 − 𝜖)𝑐𝑥𝛽−1 implies that

𝐺𝑋 (𝑥) =
∫ 𝑥

0

𝑔𝑋 (𝑢) 𝑑𝑢 ≥ (1 − 𝜖)
∫ 𝑥

0

𝑐𝑢𝛽−1 𝑑𝑢 = (1 − 𝜖) 𝑐
𝛽
𝑥𝛽 . (174)

Now write

𝑎
1

𝛽

∫ ∞

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 (175)

= 𝑎
1

𝛽

∫ 𝛿

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 + 𝑎

1

𝛽

∫ ∞

𝛿

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥. (176)

We will analyze these two integral separately. It will turn out that the second integral vanishes as 𝑎 grows. □

The first integral. We have that

𝑎
1

𝛽

∫ 𝛿

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 (177)

≤ 𝑎
1

𝛽

∫ 𝛿

0

(
𝑎

𝑗

)
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗 (1 − (1 − 𝜖) 𝑐

𝛽
𝑥𝛽 )𝑎− 𝑗 𝑑𝑥 (178)

=

∫ 𝛿𝑎
1

𝛽

0

(
𝑎

𝑗

)
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗 (
𝑥

𝑎
1

𝛽

)𝛽 𝑗 ©­«1 − (1 − 𝜖) 𝑐𝛽
(
𝑥

𝑎
1

𝛽

)𝛽ª®¬
𝑎− 𝑗

𝑑𝑥 (179)

=

∫ 𝛿𝑎
1

𝛽

0

(
𝑎

𝑗

)
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗

𝑎 𝑗

(
1 − (1 − 𝜖) 𝑐

𝛽

𝑥

𝑎

)𝑎− 𝑗
𝑑𝑥 . (180)

Then ∫ 𝛿𝑎
1

𝛽

0

(
𝑎

𝑗

)
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗

𝑎 𝑗

(
1 − (1 − 𝜖) 𝑐

𝛽

𝑥

𝑎

)𝑎− 𝑗
𝑑𝑥 =

∫ ∞

0

𝜙𝑎 (𝑥) 𝑑𝑥, (181)

where

𝜙𝑎 (𝑥) :=

(𝑎
𝑗

)
(1 + 𝜖) 𝑗

(
𝑐
𝛽

) 𝑗 𝑥𝛽 𝑗

𝑎 𝑗

(
1 − (1 − 𝜖) 𝑐

𝛽
𝑥
𝑎

)𝑎− 𝑗
𝑑𝑥 for 0 ≤ 𝑥 ≤ 𝛿𝑎

1

𝛽

0 for 𝑥 > 𝛿𝑎
1

𝛽 .

(182)

We have that

lim

𝑎→∞
𝜙𝑎 (𝑥) =

1

𝑗 !
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

−(1−𝜖 ) 𝑐
𝛽
𝑥𝛽

(183)

and

𝜙𝑎 (𝑥) ≤
1

𝑗 !
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

−(1−𝜖 ) 𝑐
𝛽
𝑥𝛽

(1 − (1 − 𝜖) 𝑐
𝛽
𝜖𝛽 ))− 𝑗 = 𝐶 ( 𝑗, 𝜖)𝑥𝛽 𝑗𝑒−(1−𝜖 )

𝑐
𝛽
𝑥𝛽

(184)

for a constant 𝐶 ( 𝑗, 𝜖) independent of 𝑎. Now note that

∫ ∞
0

𝑥𝛽 𝑗𝑒
−(1−𝜖 ) 𝑐

𝛽
𝑥𝛽

< ∞. It follows from the dominated convergence theorem that

lim

𝑎→∞

∫ ∞

0

𝜙𝑎 (𝑥) 𝑑𝑥 =

∫ ∞

0

lim

𝑎→∞
𝜙𝑎 (𝑥) 𝑑𝑥 =

∫ ∞

0

1

𝑗 !
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

−(1−𝜖 ) 𝑐
𝛽
𝑥𝛽

𝑑𝑥 < ∞. (185)

Therefore, for 𝑎 sufficiently large,∫ 𝛿

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 ≤ 𝑎

− 1

𝛽 (1 + 𝜖)
∫ ∞

0

1

𝑗 !
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

−(1−𝜖 ) 𝑐
𝛽
𝑥𝛽

𝑑𝑥 . (186)
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2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842
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2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

Analogously, we can show that for 𝑎 sufficiently large,∫ 𝛿

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 ≥ 𝑎

− 1

𝛽 (1 − 𝜖)
∫ ∞

0

1

𝑗 !
(1 − 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

−(1+𝜖 ) 𝑐
𝛽
𝑥𝛽

𝑑𝑥. (187)

Now observe that

lim

𝜖→0
+
(1 + 𝜖)

∫ ∞

0

1

𝑗 !
(1 + 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

−(1−𝜖 ) 𝑐
𝛽
𝑥𝛽

𝑑𝑥 (188)

=

∫ ∞

0

1

𝑗 !

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

− 𝑐
𝛽
𝑥𝛽

𝑑𝑥 (189)

= lim

𝜖→0
+
(1 − 𝜖)

∫ ∞

0

1

𝑗 !
(1 − 𝜖) 𝑗

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

−(1+𝜖 ) 𝑐
𝛽
𝑥𝛽

𝑑𝑥, (190)

where we once again apply the dominated convergence theorem. It follows that

lim

𝑎→∞

∫ 𝛿

0

(𝑎
𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥

𝑎
− 1

𝛽

=

∫ ∞

0

1

𝑗 !

(
𝑐

𝛽

) 𝑗
𝑥𝛽 𝑗𝑒

− 𝑐
𝛽
𝑥𝛽

𝑑𝑥. (191)

The second integral. We now analyze

𝑎
1

𝛽

∫ ∞

𝛿

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 . (192)

Observe that

𝑎
1

𝛽

∫ ∞

𝛿

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 < 𝑎

1

𝛽

(
𝑎

𝑗

) ∫ ∞

𝛿

(1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 (193)

< 𝑎
1

𝛽

(
𝑎

𝑗

)
(1 −𝐺𝑋 (𝛿))𝑎− 𝑗

∫ ∞

𝛿

1 −𝐺𝑋 (𝑥) 𝑑𝑥 (194)

< 𝑎
1

𝛽

(
𝑎

𝑗

)
(1 −𝐺𝑋 (𝛿))𝑎− 𝑗E[𝑋 ] . (195)

Thus,

lim

𝑎→∞

∫ ∞
𝛿

(𝑎
𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥

𝑎
1

𝛽

= 0. (196)

Combining (191) and (196) gives us that ∫ ∞

0

(
𝑎

𝑗

)
𝐺𝑋 (𝑥) 𝑗 (1 −𝐺𝑋 (𝑥))𝑎− 𝑗 𝑑𝑥 ∝ 𝑎

− 1

𝛽 , (197)

as desired.

Proof of Theorem 4(iii). Recall again that

ℎ(𝑎) :=
min{𝑘,𝑎}∑︁

𝑖=1

𝜇D (𝑎 − 𝑖 + 1, 𝑎). (198)

We show that ℎ is strictly concave and

lim

𝑎→∞
ℎ(𝑎) − 𝐵 log𝑎 −𝐶 = 0 (199)

for constants 𝐵,𝐶 > 0. Both of these facts follow directly from the lemma below. Theorem 4(iii) then follows immediately by applying

Lemma D.1(iii).

Lemma E.2. For D an exponential distribution with rate parameter 𝜆, so that 𝑓𝑋 (𝑥) = 𝜆𝑒−𝜆𝑥 for 𝜆 > 0,

lim

𝑎→∞
𝜇D (𝑎 − 𝑖, 𝑎) − log𝑎 − 𝐵( 𝑗) = 0 (200)

for a constant 𝐵( 𝑗) > 0. Moreover, 𝜇D (𝑎 − 𝑖, 𝑎) is strictly concave.

Proof. For an exponential distribution with rate parameter 𝜆, it is well known that

𝜇D (𝑎 − 𝑖, 𝑎) =
𝑎∑︁

𝑗=𝑖+1

1

𝜆𝑛
. (201)
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2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958
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2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

It is clear, then, that 𝜇D (𝑎 − 𝑖, 𝑎) is strictly concave. (201) is equal to

1

𝜆

©­«log𝑛 + 𝛾 + 𝜖 (𝑎) −
𝑖∑︁
𝑗=1

1

𝑗

ª®¬ , (202)

where 𝛾 is the Euler-Mascheroni constant and lim𝑎→∞ 𝜖 (𝑎) = 0, from which (200) follows. □

Proof of Theorem 4(iv). Recall again that

ℎ(𝑎) :=
min{𝑘,𝑎}∑︁

𝑖=1

𝜇D (𝑎 − 𝑖 + 1, 𝑎). (203)

Then it suffices to show that ℎ is strictly concave and

lim

𝑎→∞
ℎ(𝑎)
𝐵𝑎

1

𝛼

= 1 (204)

for a constant 𝐵 > 0. Both of these facts follow directly from the lemma below. Theorem 4(iv) then follows immediately by applying

Lemma D.1(iv).

Lemma E.3. For D a Pareto distribution with pdf 𝑓𝑋 (𝑥) = 𝑥−𝛼−1 for 𝛼 > 1,

lim

𝑎𝑡→∞
𝜇D (𝑎 − 𝑖, 𝑎)

𝑎
1

𝛼

= 𝐶 (205)

for a constant 𝐶 > 0. Moreover, 𝜇D (𝑎 − 𝑖, 𝑎) is strictly concave.

Proof. The result follows directly from Lemmas D.10 and D.11 in [29], where it is shown (in our notation) that

lim

𝑎→∞
𝜇D (𝑎, 𝑎)

𝑎
1

𝛼

= Γ

(
𝛼 − 1
𝛼

)
(206)

and

𝜇D (𝑎 − 𝑖, 𝑎) =
𝑖∏
𝑗=1

(
1 − 1

𝑗𝛼

)
𝜇D (𝑎, 𝑎). (207)

□

Thus,

lim

𝑎→∞

∑𝑘
𝑖=1 𝜇D (𝑎 − 𝑖 + 1, 𝑎)

𝐵 log𝑎
= 1 (208)

for a constant 𝐵. Also, note that 𝜇D (𝑎 − 𝑖, 𝑎) is a constant multiple of 𝜇D (𝑎, 𝑎), and that 𝜇D (𝑎, 𝑎) is strictly concave, since the mean of the

largest order statistic of a distribution is strictly concave in sample size. Thus, 𝜇D (𝑎 − 𝑖, 𝑎) is strictly concave.
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