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ABSTRACT

Recently, vision transformers have become very popular. However, deploying
them in many applications is computationally expensive partly due to the Softmax
layer in the attention block. We introduce a simple yet effective, Softmax-free
attention block, SimA, which normalizes query and key matrices with simple
ℓ1-norm instead of using Softmax layer. Then, the attention block in SimA is
a simple multiplication of three matrices, so SimA can dynamically change the
ordering of the computation at the test time to achieve linear computation on the
number of tokens or the number of channels. We empirically show that SimA
applied to three SOTA variations of transformers, DeiT, XCiT, and CvT, results
in on-par accuracy compared to the SOTA models, without any need for Softmax
layer. Interestingly, changing SimA from multi-head to single-head has only a
small effect on the accuracy, which further simplifies the attention block.

1 INTRODUCTION

Recently, vision transformers have become very popular. Compared to CNNs, they achieve better
accuracy, however, deploying transformers in devices with smaller computational resources is
challenging. One reason is that a transformer model calls the Softmax layer several times which calls
exp(.) operation consequently. We know that the exp(.) operation is costly particularly in smaller
devices with limited computational resources. For instance, implementing exp(.) on FGPA is much
more costly compared to implementing simple multiplication or addition operations.

As an example observation, Table A1 of Ivanov et al. (2021) measures the run-time of each component
for a BERT encoder on V100 GPUs. Softmax consumes more time compared to any other components
including query (Q), key (K), value (V ) operation (Softmax: 453 µs , QKV projections: 333 µs,
QKT : 189 µs). This is remarkable since the FLOPS of Softmax is much lower than those other
components (Softmax: 0.2 GFLOPS, QKV projections: 25.7 GFLOPS, QKT : 4.3 GFPLOS).
Similar observation are made in Stevens et al. (2021); Vasyltsov & Chang (2021).

We are interested in simplifying the attention mechanism by removing the Softmax layer. We believe
one role of the Softmax layer is to normalize the attention values so that tokens can compete with
each other. Our main idea is to enable this competition by normalizing the query and key matrices
with their ℓ1-norm before multiplying them. Then, removing the Softmax layer results in the whole
attention mechanism to boil down to simply multiplying three matrices “query”, “key”, and “value”.

As a bi-product, due to the associative property of multiplication, there are two possible orderings of
multiplying these three matrices at the test time. Depending on the ordering, the computation can be
quadratic on the number of tokens, N , or that of channels, D. Hence, we can reduce the computation
further by dynamically deciding on the ordering at the test time by comparing N and D without
affecting the training process. Moreover, since we normalize the vectors before multiplying, our
method is numerically more stable so we use half-precision floating point without overflowing. Note
that this is not our main novelty and the same trick can be used on few other linear attention models.

The attention mechanism deals with the tokens without considering their ordering. This is an
interesting property that opens the door to many applications. For instance, the distribution of the
tokens is relatively robust compared to CNNs when we mask (drop) 75% of the tokens in masking
auto-encoder (MAE He et al. (2021)). Moreover, the tokens can be seen as a non-ordered set that can
come from various sources (e.g., multiple cameras or non-camera sensors). Note that this permutation
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Figure 1: Effect of Softmax on inference time: We evaluate performance of each model on a single
RTX 8000 GPU with batch size of 8. When comparing the baseline to our method (SimA), we fix
the order of (QKTV ) to have the same dot product complexity as the baseline. For example, when
comparing with DeiT, if N > D, then it is more efficient to do Q̂(K̂TV ) for our method, but we do
(Q̂K̂T )V to have same complexity as DeiT(O(N2D)). We do this to solely evaluate the effect of
Softmax on the computation time. Left: We fix the token dimension to 384 and increase the image
resolution. At 1536 × 1536 resolution, DeiT is 58% slower than our method due to the overhead
of exp(.) function in Softmax. Right: We fix the resolution and increase the capacity of the model
(dimensions of Q and K). With 8192 dimensions, XCiT is 22% slower due to Softmax overhead.

equivariance property does not exist in some other models like MLP-Mixer Tolstikhin et al. (2021).
Hence, instead of using MLP-Mixer that does not have Softmax by default, we are interested in
removing Softmax from the original transformers to keep this permutation equivariance property.

We perform experiments with our simple attention block, denoted SimA, by using it in standard vision
transformers, DeiT, CvT, and XCiT. Our method achieves on-par results with SOTA on ImageNet
classification, MS-COCO object detection and segmentation, and also self-supervised learning.

In summary, our SimA attention block does not use Softmax, which makes it computationally efficient
generally (see Fig. 1), and on the edge devices specifically. SimA can dynamically choose to be linear
on N or D at the test time depending on the image resolution or the number of tokens. Changing
Multi-head attention to Single-head one or changing GELU activation function to ReLU, has a very
small effect on the accuracy of SimA. This makes SimA simple and effective for various applications.

2 METHOD

2.1 BACKGROUND ON VISION TRANSFORMERS:

Self-Attention Block: The original vision transformer Dosovitskiy et al. (2020) uses the self-
attention block introduced in Vaswani et al. (2017). Self-attention block gets X ∈ RN×D as the input
where N is the number of tokens and D is the dimensionality of each token. Then Wq ∈ RD×D,
Wk ∈ RD×D and Wv ∈ RD×D projects X into three N × D matrices: query (Q = XWq),
key (K = XWk) and value (V = XWv). We calculate attention matrix A ∈ RN×N defined as
A = Softmax(QKT /

√
D) where Softmax is applied to each row independently, so each row in

A sums to one. Then, we calculate the output O = AV . Each row of O ∈ RN×D corresponds to one
token and since rows of A sum to one, each token in a weighted average of the values of all tokens.

Additionally, Multi-Head Self-Attention (MSA) transformers divide Q, K, and V of each token
into H heads, where each head has its own attention over the corresponding head in all tokens.
For example, Q = [Q1;Q2; ...;QH ] where Qi ∈ RN×D

H is the query matrix for the i’th head.
Then, we calculate H self-attention for all heads in parallel and concatenate the outputs to get
O = [O1;O2; ...;OH ]. Finally, the self-attention block has an additional output projection Wproj ∈
RD×D, thus the final output of the self-attention block is OWproj which is of size RN×D.

Cross-covariance Attention Block (XCA): Vanilla self-attention block has a complexity of O(DN2)
which is quadratic on N . Ali et al. (2021); Shen et al. (2021) introduce an attention mechanism that is
linear on N . In XCA, we calculate the attention matrix with A = KTQ where A is a D ×D matrix.
Next, we apply Softmax on each columns, so that columns sum to one. Then we calculate output
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Figure 2: Our Simple Attention (SimA): First, we normalize each channel in Q and K with ℓ1-norm
across the tokens, to get Q̂ and K̂. Next, we can choose either (Q̂K̂T )V or Q̂(K̂TV ) depending on
the number of input tokens N . Compared to XCA and MSA, our method has following benefits: (1)
It is free of Softmax, hence it is more efficient. (2) At test time we can dynamically switch between
(Q̂K̂T )V and Q̂(K̂TV ) based on the number of input tokens (e.g., different image resolution).

as O = V A. Note that A is an attention of channels on each other rather than tokens. Compared to
vanilla self-attention (MSA), XCA has complexity of O(D2N). Since XCA is linear on N , it is more
efficient when N ≫ D and it is less efficient when N ≪ D.

Vision Transformer Block: Vision transformers architecture contains n consecutive Vision Trans-
former blocks. Each block has MSA block followed by a Feed-Forward Network (FFN) both with
skip connection. FFN is a simple 2-layer MLP which projects tokens from D dimension to 4D and
again back to D dimensions. FFN uses GELU Hendrycks & Gimpel (2016) as the activation function.
Moreover, we use LayerNorm Ba et al. (2016) on each token before forwarding them through MSA
or FFN blocks. The following two updating rules summarize each block of the vision transformer:

(Step1) X ← X +MSA(LayerNorm1(X)) , (Step2) X ← X + FFN(LayerNorm2(X))

2.2 SIMPLE ATTENTION (SIMA):

Our main goal is to reduce the computation by removing the Softmax (exp(.)) layer. We believe one
of the roles of the Softmax layer is to normalize the attention so that each token is a weighted average
of the values of all tokens. This ensures that the attention values are bounded. Hence, we introduce
an alternative normalization method that does not need a Softmax layer.

In the regular attention block, if a channel in Q and/or K has large values, that channel may dominate
the dot product QKT . This results in other channels being ignored in calculating the attention. We
believe this may be one of the reasons leading to superior performance of the multi-head attention
(MSA) compared to the single-head one. Since in MSA, the dominating channel can dominate a
single head only leaving the other heads still operational. We propose a method to take this solution
to the extreme where we can normalize each channel in Q and K across tokens so that different
channels become more comparable. We do this by simply dividing the values of each channel by the
ℓ1 norm of that channel across all tokens:

Q̂i :=
Qi

|Qi|1
and K̂i :=

Ki

|Ki|1
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where Qi is the i’th column of Q (values of the i’th channel for all tokens) and Q̂ and K̂ are the
normalized query and key matrices. Given this simple normalization method, we remove the Softmax
layer, so the attention block can be written as:

O = Q̂K̂TV

where O ∈ RN×D. Similar to standard transformers, we use this block for each head separately,
concatenate the outputs, and finally apply the output projection OWproj .

One can assume Q̂K̂T is the attention matrix that quantifies the effect of a token on another token.
Interestingly, if the query and key vectors have a large angle, the attention values can become negative,
meaning that a token can affect another one negatively. This is in contrast to regular transformers
where the attention is always non-negative. A simple pseudo-code is provided in the appendix.

Due to our normalization, the attention values are bounded between−D and D. The extremes happen
when only a single row of Q and a single row of K are nonzero. In this case, all other tokens will
have zero query and key vectors. One may divide the attention by D to bound it between −1 and 1.
This constant scalar multiplier can be absorbed into Wv , the projection matrix for V .

The cost of Softmax: Both XCA and MSA use Softmax for normalization. Softmax needs running
exp(.) which is costly. MSA uses Softmax on a matrix of size N ×N while XCA uses Softmax on a
matrix of size D ×D. Hence, the order of exp(.) operations is O(HN2) for MSA and O(HD2) for
XCA. Therefore, Softmax will be bottleneck when increasing the number of tokens (higher image
resolutions) in MSA and number of channels (higher capacity transformers) in XCA. On the other
hand, our attention block does not use exp(.) operation at all. Moreover, in the last row of Table 1,
we show that changing GELU to ReLU in SimA gets comparable accuracy to the main experiment
(79.6% vs 79.8%). This version of SimA does not use any exp(.) operation at the inference time.
The reduction in the computation cost of Softmax is shown in Fig. 1-left for increasing N and in
Fig. 1-right for increasing D. Fig. 1 shows the speed-up due to removing Softmax only and does not
include the speed-up due to changing the order of multiplications. We believe removing the cost of
exp(.) operation can have a large impact particularly in edge devices.

3 RELATED WORK

Vision Transformers: Convolutional Neural Networks (CNNs) have become ubiquitous as the most
commonly used network architecture for computer vision tasks Krizhevsky et al. (2012); He et al.
(2016); Chollet (2017); Howard et al. (2017). Transformers have recently emerged as a promising
alternative to CNNs. Transformers Vaswani et al. (2017) rely entirely on self-attention mechanism
and was originally introduced for NLP tasks. ViT Dosovitskiy et al. (2020) adapts transformers to
obtain convolution-free architecture for computer vision tasks by dividing each image in 16 × 16
patches and considering each patch as a token input. DeiT Touvron et al. (2021b) improves training
efficiency of ViT on smaller dataset. The Scaled Dot-Product Attention module Vaswani et al. (2017)
used by transformers rely on the softmax operation for normalization. Unlike CNNs/MLP Krizhevsky
et al. (2012); Simonyan & Zisserman (2014); Touvron et al. (2021a); Tolstikhin et al. (2021) based
architectures, softmax is an important part of transformer architecture. In this paper, we address
replacing the softmax (exp(.)) operation in the self-attention module of vision transformers.

Efficient Vision Transformers: Transformers have a large memory footprint, so deploying them on
edge devices with limited resources is difficult. LeViT Graham et al. (2021) uses down-sampling in
stages to improve efficiency. Mehta & Rastegari (2021); Wu et al. (2021a) integrate convolution in
transformer. Liu et al. (2021); Ho et al. (2019) improve the self-attention efficiency by limiting the
attention of each token to subset of tokens. Lu et al. (2020) uses distillation to improve the efficiency
of the network. Fayyaz et al. (2021); Rao et al. (2021); Marin et al. (2021) decrease the number of
tokens by token pruning. Although these works limit the computation generally, softmax or exp(.)
function is still required to calculate the attention. Our idea is orthogonal to these methods since we
can replace attention block in any transformer with our exp(.) free attention block.

Linear Attention: Vanilla attention has O(N2D) computation and memory complexity, where N is
number of input tokens and D is dimension of each token. Some works target this issue by replacing
vanilla attention with a linear attention with O(ND2) complexity. XCiT Shen et al. (2021); Ali et al.
(2021) uses attention across feature channels rather than tokens. Some works use similarity kernels
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to approximate softmax, thus it is possible to have linear complexity by doing ϕ(Q)(ϕ(K)Tϕ(V ))
instead of (ϕ(Q)ϕ(K)T )ϕ(V ) where ϕ(x) is the kernel function. Katharopoulos et al. (2020) uses
ϕ(x) = 1+elu(x), whereas Lu et al. (2021); Peng et al. (2021) use Gaussian kernel functions. Xiong
et al. (2021) use SVD decomposition and Choromanski et al. (2020) use positive random features to
approximate softmax. Wang et al. (2020) approximate attention with a low rank matrix. All these
methods either use exponential function. For example, SOFT Lu et al. (2021) removes Softmax
without reducing the number of exp(.) operations. Our ideas are different since we aim to remove the
costly exp(.) operation. Moreover, the focus of those methods is to have linear attention with respect
to number of tokens which is not the main focus of this paper. A recent work in the NLP community,
CosFormer Qin et al. (2022), passes Q and K through a ReLU unit and normalizes their product. It
also adds a re-weighting method that improves the locality of the data using sine(.) and cosine(.)
functions. Our idea is simpler and we apply it to visual recognition rather than NLP. Moreover, cosine
re-weighting in CosFormer requires 4× more FLOPs in K and V dot product compared to ours.

Softmax Approximation: Softmax is an expensive operation on hardware since it requires exp(.)
operation. More specifically, softmax in transformer architecture contributes to major part of compu-
tation when the input is large Stevens et al. (2021). Banerjee et al. (2020) approximates softmax with
Taylor expansions, whereas Gao et al. (2020); Du et al. (2019); Ham et al. (2020); Zhu et al. (2020)
target designing a hardware architecture to approximate softmax. Softermax Stevens et al. (2021)
uses a low-precision implementation of 2x. Zafrir et al. (2019) uses lower precision computation.
Prato et al. (2019); Lin et al. (2020) use quantized softmax. While these works approximate Softmax
at the hardware, we replace Softmax completely with ℓ1 normalization at the model architecture.

4 EXPERIMENTS

We evaluate effectiveness of SimA attention block by replacing self-attention in three popular vision
transformer families: DeiT, XCiT and CvT. We evaluate our model on image classification, object
detection, image segmentation, and self-supervised learning.

4.1 IMAGE CLASSIFICATION

Dataset: We train on ImageNet1K Deng et al. (2009) and report Top-1 accuracy on the validation set.

Implementation Details: We use PyTorch Paszke et al. (2019) and Timm Wightman (2019) libraries
to train our models with a setup similar to Ali et al. (2021); Touvron et al. (2021b). We use AdamW
Loshchilov & Hutter (2017) optimizer. We train CvT and DeiT models with 300 epochs and XCiT
models with 400 epochs. We set the batch size to 1024 and weight decay to 0.05. We use cosine
scheduling with an initial learning rate of 5e − 4. We use Stochastic depth drop rate Huang et al.
(2016) of 0.05. Data augmentations are the same as those in Touvron et al. (2021b) including Rand-
Augment Cubuk et al. (2020), CutMix Yun et al. (2019) and Mixup Zhang et al. (2017). Following
Ali et al. (2021); Touvron et al. (2021c), we train our models with images of resolution 224 and
evaluate it using images with a crop ratio of 1.0. Training DeiT-S or XCiT-S12/16 with 8 RTX 6000
GPUs takes approximately 100 hours.

We use SimA along with the following three transformer architectures to show its generalization:

- DeiT: Touvron et al. (2021b) is a well-known transformer architecture based on ViT Dosovitskiy et al.
(2020). We use DeiT-S which has the following settings: patch size= 16, embedding dimensions=
384, number of heads= 6 and layers= 12. Self-attention in DeiT has complexity of O(DN2) which
is quadratic on the number of tokens N .

- XCiT: Ali et al. (2021) is a state-of-the-art vision transformer architecture with a linear attention.
XCiT has 2 major differences compared to DeiT: (1) XCiT has Local Patch Interaction (LPI) in
each block, which consists of one depth-wise 3×3 convolution followed by Batch Normalization,
GELU and another depth-wise 3×3 convolution. (2) XCiT has separate class attention layers similar
to Touvron et al. (2021c). The CLS token is added at the end of the initial self-attention stage and
class attention layers are used to aggregate information from image tokens to the class token. This
modification adds extra parameters and computation to the model.

We replace SimA in three variant of XCiT: XCiT-S12/16, XCiT-T12/8 and XCiT-T24/16. XCiT-
S12/16 has a patch size of 16, embedding dimension of 384, 8 heads, 12 layers, and 2 class attention
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Table 1: ImageNet classification: We denote replacing Softmax attention with SimA by X →
SimA. Softmax column indicates the number of exp(.) operations in the attention block. N is the
number of tokens, D is the token dimension, H is the number of heads, M is the local window size,
and R is the reduction ratio. We also report ResNet50 RA (with RandAug Cubuk et al. (2020)).
Models indicated by * use teacher during training. EfficientNet outperforms our method, but it is
a convolutional network and uses more FLOPs at higher image resolution. SOFT also has exp(.)
function in the backbone which is costly. Purple rows are our method while blue rows are comparable
baselines. Our method is a exp(.) free transformer and has on-par accuracy with SOTA transformers.
To simplify SimA even further, we investigate two more variations in yellow rows: (1) Replacing
GELU with ReLU, (2) Replacing multi-head attention with single head attention. Interestingly, SimA
has comparable performance even with single head attention and ReLU. Note that the ReLU version
does not need any exp(.) operation at the inference time.

Model params FLOPs Resolution Softmax/#exp Top1-Acc

CNN ResNet18 He et al. (2016) 12M 1.8B 224 0 69.8
Transformer XCiT-T24/16 Ali et al. (2021) 12M 2.3B 224 HD2 79.4
Transformer XCiT-T24/16→ SimA 12M 2.3B 224 0 79.8
Transformer XCiT-T12/8 Ali et al. (2021) 7M 4.8B 224 HD2 79.7
Transformer XCiT-T12/8→ SimA 7M 4.8B 224 0 79.4

CNN

ResNet50 RA Cubuk et al. (2020) 25M 3.9B 224 0 77.6
EfficientNet-B5 RA Cubuk et al. (2020) 30M 9.9B 456 0 83.9
RegNetY-4GF Radosavovic et al. (2020) 21M 4.0B 224 0 80.0
ConvNeXt-T Liu et al. (2022) 29M 4.5B 224 0 82.1

MLP
ResMLP-S24 Touvron et al. (2021a) 30M 6.0B 224 0 79.4
MS-MLP-T Zheng et al. (2022) 28M 4.9B 224 0 82.1
Hire-MLP-S Guo et al. (2021) 33M 4.2B 224 0 82.1

Twin-SVT-S Chu et al. (2021) 24M 3.7B 224 HM2N 81.7
CvT-13 Wu et al. (2021b) 20M 4.5B 224 HN2 81.6Hybrid
CvT-13→ SimA 20M 4.5B 224 0 81.4

Transformer

Swin-T Liu et al. (2021) 29M 4.5B 224 HM2N 81.3
PVT-S Wang et al. (2021) 24M 4.0B 224 HN2/R 79.8
T2T-ViT-14 Yuan et al. (2021) 21M 5.2B 224 HN2 80.7
CaiT-XS24* Touvron et al. (2021c) 26M 19.3B 384 HN2 84.1
SOFT-S Lu et al. (2021) 24M 3.3B 224 HN2 82.2
DeiT-S* Touvron et al. (2021b) 22M 4.6B 224 HN2 81.2
XCiT-S12/16*Ali et al. (2021) 26M 4.8B 224 HD2 83.3
DeiT-S Touvron et al. (2021b) 22M 4.6B 224 HN2 79.8
XCiT-S12/16Ali et al. (2021) 26M 4.8B 224 HD2 82.0
DeiT-S→ SimA 22M 4.6B 224 0 79.8
XCiT-S12/16→ SimA 26M 4.8B 224 0 82.1

Multi-Head/GELU DeiT-S→ SimA 22M 4.6B 224 0 79.8
Multi-Head → Single-Head DeiT-S→ SimA 22M 4.6B 224 0 79.4
GELU → ReLU DeiT-S→ SimA 22M 4.6B 224 0 79.6

layers. XCiT-T12/8 is similar to XCiT-S12/16 with a patch size of 8, embedding dimension of 192,
and 4 heads. XCiT-T24/16 is similar to XCiT-T12/8 with patch size of 16.

- CvT: We apply SimA to CvT Wu et al. (2021b), which is a SOTA hybrid convolution/transformer
architecture. CvT has 3 stages. Each stage has a Convolution Token Embedding layer followed by
transformer blocks. We use CvT-13 in our experiments which 13 blocks in total.

Results on ImageNet: We replace MSA and XCA blocks with our SimA block in DeiT, CvT and
XCiT respectively, and train our models on ImageNet. Note that we train our models from scratch
without distillation from a teacher. Results are in Table 1. In XCiT models, we get comparable results
when replacing XCA block with SimA block. Compared to DeiT-S, our attention block performs
on-par with DeiT-S. Moreover, our method with no Softmax layer, achieves comparable accuracy
(0.2 point lower) compared to CvT-13. This suggests that one can replace attention block with SimA
in these standard SOTA transformers without degrading their performance. Since SimA is exp(.)
free, it has the advantage over regular attention architectures in terms of efficiency and simplicity.

Comparison to Linear Attention: We compare SimA with other Linear Attention methods in NLP
literature in Table 2. We train all methods with ImageNet-1K training set and report Top-1 accuracy
on ImageNet-1K validation set. SimA has better or on-par accuracy compared to other methods.
Additionally, SimA is exp(.) free which is the main goal of this work.
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Table 2: Linear Attention Comparison: We compare SimA with previous linear attention methods
introduced in NLP. We report ImageNet Top-1 validation accuracy. Note that the focus of these
methods is to have linear attention with respect to the number of tokens while the main focus of
SimA is to remove exp(.) operation. * CosFormer is originally in NLP. We ran multiple versions of
CosFormer with cosine re-weighting (multiple learning rates and weight decays) for the vision task,
however, none of them converged. Moreover, CosFormer with cosine re-weighting requires 4× more
FLOPs compared to SimA in multiplying Q, K, and V matrices. More details are in the appendix.

Model params FLOPs Softmax/#exp Top1-Acc

Transformer Vaswani et al. (2017) 13M 3.9B HN2 79.1
Linformer Wang et al. (2020) 13M 1.9B HN 78.2
Performer Choromanski et al. (2020) 13M 2.2B ND 76.1
Nyströmformer Xiong et al. (2021) 13M 2.0B HN 78.6
SOFT Lu et al. (2021) 13M 1.9B HN2 79.3
XCiT-T20/16→ SimA 12M 1.9B 0 79.2

XCiT w/ Efficient Attention Shen et al. (2021) 22M 4.8B ND 80.9
CosFormer w/o re-weighting * Qin et al. (2022) 22M 4.8B 0 76.1
XCiT-S12/16→ SimA 22M 4.8B 0 82.1

Table 3: Transfer to MS-COCO dataset: Models with * are pretrained with a teacher on ImageNet.
Swin-T has more parameters and Softmax overhead. XCiT-S12/8 has 4× more tokens. Our method
is exp(.) free, thus it is more efficient for high resolution images and high capacity models (Fig. 1).

Detection Segmentation

Backbone params exp(.) APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

ResNet50 He et al. (2016) 44.2M ✗ 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small Wang et al. (2021) 44.1M ✓ 43.0 65.3 46.9 39.9 62.5 42.8
ViL-Small Zhang et al. (2021) 45.0M ✓ 43.4 64.9 47.0 39.6 62.1 42.4
Swin-T Liu et al. (2021) 47.8M ✓ 46.0 68.1 50.3 41.6 65.1 44.9
XCiT-S12/16* 44.3M ✓ 45.3 67.0 49.5 40.8 64.0 43.8
XCiT-S12/8* 43.1M ✓ 47.0 68.9 51.7 42.3 66.0 45.4
XCiT-S12/16 44.3M ✓ 45.0 66.7 48.9 40.5 63.6 43.2
XCiT-S12/16→ SimA 44.3M ✗ 44.8 66.5 48.8 40.3 63.2 43.3

4.2 TRANSFER TO OBJECT DETECTION AND SEMANTIC SEGMENTATION

As shown in Fig. 1 and Stevens et al. (2021), softmax operation represents a large fraction of
runtime in vision transformers, especially when the image resolution is high. In object detection and
segmentation tasks we usually forward high resolution images. We demonstrate the transferability of
SimA to these dense prediction tasks by fine-tuning our ImageNet pretrained model on them.

Dataset: We use MS-COCO Lin et al. (2014) dataset for these tasks. MS-COCO has 118K training
images and 5K validation images with 80 categories. Images are annotated with bounding boxes and
semantic segmentation masks.

Implementation Details: We follow Ali et al. (2021); Liu et al. (2021); Chen et al. (2019) for the
setup and implementation. We use our pretrained model as the backbone of Mask RCNN He et al.
(2017). Similar to Ali et al. (2021), we use FPN Lin et al. (2017) to extract features from layers 4, 6,
8 and 12 of the transformer. We use AdamW Loshchilov & Hutter (2017) optimizer with a learning
rate of 1e− 4 and weight decay 0.05. We train our model for 36 epochs with batch size of 16 on 8
RTX2080Ti GPUs. Training takes 36 hours.

Results on MS-COCO: We compare our XCiT-S12/16→ SimA model with other vision transformers
and ResNet in Table 3. We report the performance on the minival set. For a fair comparison, we
limit the comparison to all models which are initialized with ImageNet1K pretrained backbones and
trained with the same training time budget (3x schedule) on MS-COCO dataset. In comparison to
other transformers, our method gets on-par performance while it is free of Softmax overhead on high
resolution images or high capacity models (refer to Fig. 1).

4.3 SELF-SUPERVISED LEARNING

To show the generalizability of SimA, we train our SimA model on a pretext task for self-supervised
learning (SSL). We use the non-contrastive task called DINO Caron et al. (2021) for SSL pre-training.
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Table 4: Self-Supervised Learning: We train SimA attention block with DINO (SSL). Our method
achieves performance comparable to transformer models with Softmax and trained for 100 epochs.
Note that methods with different SSL task and higher number of epochs are not directly comparable.

SSL Method Model params epochs exp(.) FLOPs Linear k-NN
ISD Tejankar et al. (2021) ResNet50 25M 200 ✗ 3.9B 69.8 62.0
MoCo v2 He et al. (2020) ResNet50 25M 200 ✗ 3.9B 69.9 -
MSF Koohpayegani et al. (2021) ResNet50 25M 200 ✗ 3.9B 72.4 64.9
BYOL Grill et al. (2020) ResNet50 25M 1000 ✗ 3.9B 74.3 66.9
MoBY Xie et al. (2021) Swin-T 29M 300 ✓ 4.5B 75.0 –

DINO Caron et al. (2021) ResNet-50 23M 300 ✗ 4.1B 74.5 65.6
DINO Caron et al. (2021) ResMLP-S24 30M 300 ✗ 6.0B 72.8 69.4
DINO Caron et al. (2021) ViT-S/16 22M 300 ✓ 4.6B 76.1 72.8
DINO Caron et al. (2021) XCiT-S12/16 26M 300 ✓ 4.9B 77.8 76.0

DINO Caron et al. (2021) ViT-S/16 22M 100 ✓ 4.6B 74.0 69.3
DINO Caron et al. (2021) XCiT-S12/16 26M 100 ✓ 4.9B 75.8 71.6
DINO Caron et al. (2021) XCiT-S12/16→ SimA 26M 100 ✗ 4.9B 75.5 71.2

We train our model on ImageNet train set (1.2M ) without the use of ground-truth labels. DINO
training is relatively expensive since it requires forwarding multi-crop augmentation through two
models. Due to limited resources, we train our model and the baselines for 100 epochs. To train our
XCiT-S12/16→ SimA model with DINO, we follow the training configuration of XCiT-S12/16 from
the official repository of DINO Caron et al.. Similar to DINO, we use AdamW optimizer in PyTorch
library with initial learning rate of 0.00025 with cosine scheduling. We use initial weight decay of
0.04 and increase it to 0.4 with cosine scheduling. We train for 100 epochs with minibatches of size
256. The training takes approximately 100 hours on four RTX-3090 GPUs. We use similar settings
for training our method and the baseline (XCiT-S12/16).

Results of SSL training: Following Caron et al. (2021); Abbasi Koohpayegani et al. (2020), we
report k-NN and Linear evaluation metrics for evaluating the SSL models. For k-NN evaluation, we
forward images of training and validation set through the frozen backbone and extract features. We
report 20-NN on the validation set. For Linear evaluation, we freeze the backbone and train a linear
layer on extracted features from the frozen backbone and report Top-1 accuracy on the ImageNet
validation set. We adopt a similar approach to DINO Caron et al. (2021) for extracting features from
XCiT architecture. We extract the classification tokens of the last two class attention layers and
global average pooling of the last two regular attention layers. Each of those 4 vectors is of size 384.
We concatenate them and train a linear layer of size 4 × 384 to 1000 classes of ImageNet1K. We
use similar training settings as DINO to train a linear layer for both our method and the baseline
(XCiT-S12/16). We train for 100 epochs with SGD optimizer and the following settings: learning
rate: 0.001 with cosine scheduling, batch size: 1024, and weight decay: 0. Results are shown in
Table 4. Our exp(.) free method performs comparably with the baselines with 100 epochs of training.

4.4 SINGLE-HEAD VS MULTI-HEAD ATTENTION

In the regular attention block, if a channel in Q and/or K has large values, that channel may dominate
the dot product QKT . We believe multi-head attention (MSA) mitigates this issue to some degree by
containing the dominant channel in one head only so that the other heads can have reasonable effect
in the final attention. In SimA, by doing ℓ1 normalization of each channel in Q and K across tokens,
different channels become more comparable in the dot product QKT , so multi-head attention may
not have a large effect anymore. To evaluate our hypothesis empirically, we train both DeiT-S→
SimA and DeiT-S with single head attention only. Results are in Table. 5. Interestingly, we show that
with single-head attention, our method gets comparable results (0.4 point lower) while the accuracy of
DeiT-S drops by 2.8 points. This suggests that unlike the vanilla attention block, multi-head attention
is not critically important in SimA, which leads to simplicity SimA even further.

Table 5: Effect of Removing Multi-Head Attention: In single head variation, our method degrades
much less compared to DeiT probably due to normalization of Q and K.

Model DeiT-S→ SimA DeiT-S
Attention Heads 6 (Multi-Head) 1 (Single) 6 (Multi-Head) 1 (Single)

ImageNet Top-1 acc. 79.8 79.4 (-0.4) 79.8 77.0 (-2.8)
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Figure 3: Our method (SimA): We extract Q̂ and K̂ from layer 12 of transformer. We get ℓ2-norm
of each token for Q̂ and K̂, normalize it to range [0,1] and overlay it as a heatmap on the image.
Interestingly, magnitude of tokens represent the significance of tokens in our method. We provide
more examples in the appendix.

4.5 REPLACING GELU WITH RELU

Similar to Softmax function, GELU activation function also uses exp(.) operation, which is costly.
We replace all GELU activation functions in DeiT-S→ SimA with ReLU. We observe that DeiT-S
→ SimA with ReLU gets accuracy of 79.6 which is only 0.2 points lower than DeiT-S → SimA
with GELU activation function. Note that SimA with ReLU does not use any exp(.) operation at the
inference time, leading to further efficiency of the model. Results are in Table 1 (yellow rows).

4.6 EFFECT OF ℓ1 NORMALIZATION

To see the effect of ℓ1 normalization, we train our model without normalizing Q and K. We use
XCiT-S12/16→ SimA with the same hyperparameters as our main experiment in Section 4.1. Note
that without normalization, the range of QKT can be from −∞ to +∞. None of our several trials
converged as the training becomes unstable and results in a frequent NaN loss. Moreover, we replace
ℓ1 with ℓ2 normalization, results in 2.9 points drop in accuracy (82.1% vs 79.2%).

4.7 VISUALIZATION

The dot product Q̂K̂T is correlated with the magnitude of Q̂ and K̂ vectors. Hence, we believe
this magnitude can highlight the important tokens or image regions. This can be seen as a form of
explanation or saliency map. First, we extract Q̂ and K̂ in the last layer of transformer (layer 12).
Then, we calculate the ℓ2-norm of Q̂ along the channel dimension to get a single non-negative scalar
for each token. We reshape this N × 1 vector to the image shape, up-sample it to original image size,
normalize it to range [0, 1], and overlay it on the image as a heatmap. We repeat the same for K̂.
As shown qualitatively in Fig. 3, such a visualization highlights the important regions of the image.
Moreover, we study the same visualization on standard DeiT with the ℓ2-norm of both Q and Q̂ and
get a relatively flat heatmap. Note that we report these results for qualitative understanding of the
model and do not evaluate it quantitatively or compare it with other network explanation methods.
Also, note that the comparison with DeiT is not fair since in DeiT, Q and K are not necessarily
comparable as the normalization happens in the Softmax operation after multiplying them.

5 CONCLUSION

We introduced SimA, a simple attention block that does not involve exp(.) operation, to reduce the
computational cost of transformers particularly at edge devices. SimA performs normalization on key
and query matrices before multiplying them, enabling dynamically switching between O(DN2) or
O(D2N) depending on the number of tokens (e.g., image resolution). Our extensive experiments
show that while reducing the cost of inference, SimA achieves on-par results compared to SOTA
methods on various benchmarks including ImageNet classification, MS-COCO object detection and
segmentation, and self-supervised learning. Moreover, a single-head variation of SimA, which is
even simpler, achieves on-par accuracy compared to SOTA multi-head attention models. We believe
SimA can encourage research in this direction leading to easier adoption of transformers on edge
devices with limited resources.
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6 ETHICS STATEMENT:

Our core motivation is to reduce the computation at the inference, which has positive societal impacts
including democratizing AI by reducing the need for computational resources and reducing the carbon
footprint of the models at the inference time. However, similar to most AI methods, it can be harmful
at the hands of the adversary. It can enable running transformers on the low-cost cameras that may be
used in military or surveillance applications.

7 REPRODUCIBILITY STATEMENT:

To make our work reproducible, we report details of the implementation for each section. For all
of our experiments, we report details of the training in Implementation Details. We include all
hyperparameters we used for training our method. Moreover, we include details about the resources
we used for training. We include the source code in the supplementary as well.
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A APPENDIX

A.1 SIMPLE PSEUDOCODE OF SIMA:

Since our method is simple, we include the pseudocode of SimA:

Algorithm 1 Pseudocode of SimA (Single Head) in a PyTorch-like style.

# self.qkv: nn.Linear(dim, dim * 3, bias=qkv_bias) ; query, key, value projection
# self.proj: nn.Linear(dim, dim, bias=output_proj_bias) ; output projection

def forward(self, x):
B, N, D = x.shape # B: batch size, N: number of Tokens, D: Dimension of Tokens
qkv = self.qkv(x).reshape(B, N, 3, D).permute(2, 0, 1, 3) # (3 x B x N x D)
q, k, v = qkv[0], qkv[1], qkv[2] # split into query (B x N x D), key (B x N x D) and

value (B x N x D)

k = torch.nn.functional.normalize(k, p=1.0, dim=-2) # Normalized query (B x N x D)
q = torch.nn.functional.normalize(q, p=1.0, dim=-2) # Normalized key (B x N x D)

if (N/D) < 1:
x = (q @ k.transpose(-2, -1)) @ v # (B x N x D)

else:
x = q @ (k.transpose(-2, -1) @ v) # (B x N x D)

x = self.proj(x) # Output (B x N x D)
return x

Visualization: Figure 4 provides more results similar to Figure 3. Please see Section 4.7 for details.
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Figure 4: Our method (SimA): We extract Q̂ and K̂ from layer 12 of transformer. We get ℓ2-norm
of each token for Q̂ and K̂, normalize it to range [0,1] and overlay it as a heatmap on the image.
Interestingly, magnitude of tokens represent the significance of tokens in our method. Note that
all images are randomly selected from MS-COCO test set without any visual inspection or cherry
picking.

A.2 SIMA WITHOUT LPI:

Although XCiT Ali et al. (2021) shows that LPI layer can improve the accuracy by 1.2 point, it limits
the application of vanilla transformer (e.g., running masked auto encoder models like MAE He et al.
(2021) is not straightforward). To show that our method is not dependent on LPI, we train our model
without LPI. We observe that the accuracy drops by 1.2 point (82.1% vs 80.9%). Hence, although
LPI boosts the accuracy, our method has comparable performance without LPI.
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A.3 DETAILS OF LINEAR ATTENTION COMPARISON:

CosFormer with cosine re-weighting requires 4× more FLOPs compared to SimA in multiplying K
and V matrices. Since CosFormer is developed for NLP, it assumes one dimensional indexing for the
tokens. However, applying it to vision, we need to index the tokens with two indices to take advantage
of the induced locality. To do so, one may introduce two cosine weights to Eq 10 of CosFormer Qin
et al. (2022): one in x direction and the other one in y direction to come up with:

Qi,mKT
j,ncos(i− j)cos(m− n)

which can be expanded to:

Qi,mKT
j,n

(
cos(i)cos(j) + sin(i)sin(j)

)(
cos(m)cos(n) + sin(m)sin(n)

)
which can be regrouped to:

=
(
Qi,mcos(i)cos(m)

)(
KT

j,ncos(j)cos(n)
)
+

(
Qi,mcos(i)sin(m)

)(
KT

j,ncos(j)sin(n)
)

+
(
Qi,msin(i)cos(m)

)(
KT

j,nsin(j)cos(n)
)
+

(
Qi,msin(i)sin(m)

)(
KT

j,nsin(j)sin(n)
)

Hence, for every attention value, CosFormer needs 4 dot products between Q and K vectors while our
method needs only one dot product. Hence, following Eq. 12 of the CosFormer paper, CosFormer
needs 4 times more FLOPS compared to our method in calculating the attention values (multiplying
Q, K, and V matrices).
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