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ABSTRACT

While large language models (LLMs) show promise in software security, they
struggle to comprehend the underlying logic of vulnerabilities and are often con-
founded by the high semantic similarity between flawed and patched code. To
overcome these limitations, we introduce HeroCode, a novel model designed to
transform general-purpose LLMs into specialized vulnerability identification ex-
perts. HeroCode’s advancement stems from its unique training on a synthetically
generated dataset that explicitly details the reasoning behind both vulnerability
exploits and their remediations. This reasoning-rich data is leveraged by our
core Hierarchical Epistemic Robust Optimization (HERO) architecture, a frame-
work that integrates distributional robustness across multiple abstraction levels to
compel a deeper understanding of fundamental security patterns over superficial
semantics. Empirical evaluations demonstrate that HeroCode substantially out-
performs existing methods, setting new state-of-the-art performance records on
the PrimeVul and SVEN benchmarks. When integrated with Qwen2.5-Coder-
7B-Instruct, HeroCode achieves 60.66% accuracy on PrimeVul—surpassing even
GPT-4’s 52.24%—proving its exceptional capability in distinguishing between
vulnerable and patched code implementations.

1 INTRODUCTION

The digital infrastructure underpinning modern society faces an escalating crisis of software vulner-
abilities, with thousands of new security flaws discovered annually Statista (2024), each represent-
ing a potential gateway for system compromise and data breaches Wen et al. (2023; 2024). This
persistent challenge has driven the evolution of automated vulnerability detection from rule-based
systems to sophisticated machine learning approaches, culminating in the recent emergence of Code
Pre-Trained Models (CodePTMs) that leverage vast repositories of source code to learn vulnerability
patterns Zhou et al. (2019); Chakraborty et al. (2020); Cao et al. (2022). Models such as CodeBERT
Feng et al. (2020) and UniXcoder Guo et al. (2022) have demonstrated remarkable success by treat-
ing vulnerability detection as a semantic understanding task, utilizing their pre-trained knowledge to
identify potential security flaws Zheng et al. (2023). The subsequent rise of Large Language Mod-
els (LLMs) has further elevated this capability, as these models possess an unprecedented ability
to comprehend both natural language descriptions and complex programming constructs Hou et al.
(2023), seemingly offering the perfect foundation for sophisticated vulnerability analysis.

Yet beneath this promise lies a fundamental disconnect between what current LLM-based ap-
proaches achieve and what vulnerability detection truly demands. Our investigation reveals that
even state-of-the-art models struggle with a deceptively simple challenge: distinguishing between
vulnerable code and its patched counterpart. The crux of this limitation stems from how these mod-
els conceptualize vulnerabilities—as semantic anomalies rather than logical flaws with specific ex-
ploitation mechanisms and remediation patterns. When examining real-world vulnerability patches,
we observe that the modifications are often minimal, sometimes involving merely a single validation
check or boundary adjustment Luo et al. (2024). Consider the illustrative case of a divide-by-zero
vulnerability CWE (2024), where the vulnerable code performs a division operation without verifi-
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cation, while the patched version introduces a simple macro check. The semantic similarity between
these versions is overwhelming, yet one permits system crash while the other ensures safe execution.
This exemplifies why current approaches, which excel at capturing semantic representations Cheng
et al. (2022), fail to grasp the subtle yet critical distinctions that define vulnerability boundaries.

This realization led us to develop HeroCode, a specialized vulnerability identification system that
fundamentally reimagines how LLMs should approach security analysis. Rather than treating vul-
nerability detection as another code understanding task, HeroCode recognizes it as a problem re-
quiring explicit reasoning about exploitation mechanics and remediation logic Fu et al. (2023); Fu
& Tantithamthavorn (2022). The transformation begins with our novel approach to training data
generation—instead of relying solely on labeled vulnerability datasets that lack explanatory context,
HeroCode employs an epistemic uncertainty-guided approach that synthesizes detailed reasoning
chains explaining both how vulnerabilities can be exploited and why specific patches prevent such
exploitation. This reasoning-rich dataset, comprising 22,400 carefully crafted instances filtered from
30,000 initial candidates, serves as the foundation for teaching LLMs to think like security analysts
rather than merely pattern matchers.

The empirical validation of HeroCode reveals a striking transformation in vulnerability detection
capabilities. When applied to open-source LLMs, HeroCode achieves unprecedented performance
on established benchmarks, with our experiments on PrimeVul Ding et al. (2024) and SVEN He &
Vechev (2023) datasets demonstrating substantial improvements over both specialized CodePTMs
and large-scale models including GPT-4 OpenAI (2023). Particularly remarkable is HeroCode’s
ability to elevate models with minimal initial security awareness—such as StarCoder2 Lozhkov et al.
(2024)—into competitive vulnerability detectors, effectively instilling security expertise through our
reasoning-driven training paradigm.

Our work makes three principal contributions to the field of automated vulnerability detection:

• We pioneer the automatic generation of vulnerability reasoning datasets through epistemic
uncertainty-guided filtering, creating the first framework that explicitly captures the logi-
cal relationships between vulnerabilities, their exploitation mechanisms, and remediation
strategies.

• We introduce the HERO optimization framework that fundamentally shifts vulnerability
detection from semantic similarity matching to robust pattern recognition across hierarchi-
cal abstractions.

• We demonstrate that specialized training can enable relatively compact LLMs to surpass
much larger general-purpose models in vulnerability identification, challenging the prevail-
ing assumption that detection performance scales primarily with model size.

2 RELATED WORK

Software Vulnerability Detection: The landscape of automated vulnerability detection has evolved
from traditional static analysis to sophisticated learning-based approaches, crystallizing around two
dominant paradigms that HeroCode fundamentally transcends. Prompt-driven methodologies have
shown promise in targeting specific vulnerability categories, as exemplified by recent chain-of-
thought approaches Nong et al. (2024); Ding et al. (2024) that leverage LLMs’ reasoning capa-
bilities, and DLAP Yang et al. (2025) combining deep learning models with LLM prompting for
enhanced detection performance. Recent surveys Sheng et al. (2025); Zhang et al. (2025) system-
atically analyze LLM applications in vulnerability detection, highlighting their strengths in pattern
recognition yet struggling with semantic similarity challenges between vulnerable and patched code.
Concurrently, fine-tuning strategies have evolved through successive architectural generations, from
MSIVD Yang et al. (2024) employing multitask self-instructed fine-tuning to BugWhisperer Tarek
et al. (2025) addressing hardware vulnerabilities, extending to comprehensive evaluations of LLMs’
real-world vulnerability repair capabilities Luo et al. (2025).

Preference Optimization for Code: While preference optimization has gained traction in code
generation through frameworks like Direct Preference Optimization (DPO) Rafailov et al. (2024),
filtered DPO Morimura et al. (2024) addressing data quality issues, and beta-DPO Wu et al. (2024)
with dynamic regularization, its application to vulnerability detection has remained unexplored due
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Figure 1: HeroCode Model Architecture.

to fundamental challenges. Recent advances include Softmax-DPO Chen et al. (2024) for recom-
mendation systems and comprehensive surveys Xu et al. (2024) analyzing DPO variants, yet vulner-
ability management demands objective accuracy rather than subjective preferences common in natu-
ral language tasks. Generating vulnerability-specific training data presents substantial obstacles as it
requires deep security expertise beyond simple test case execution, as highlighted by recent OWASP
guidelines OWASP Foundation (2025) and enterprise security implementations Corgea (2024).

3 METHOD

We introduce Hierarchical Epistemic Robust Optimization (HERO), an architecture integrating
distributional robustness throughout various abstraction hierarchies via nested optimization with
uncertainty.

3.1 MATHEMATICAL FOUNDATION

Consider (X ,F ,P) as a probability space with X representing the sample space, F denoting the
σ-algebra, and P indicating the reference probability measure. Define a parametric policy collection
{πθ : θ ∈ Θ ⊆ Rd} with Θ being compact and convex. Chen et al. (2019); Noyan et al. (2022)
Definition 1 (Hierarchical Ambiguity Set). Given ε > 0 and divergence metric D : P(X ) ×
P(X ) → [0,∞], we define the hierarchical ambiguity set:

Bε,η(P) = {(Q, {µx}x∈X ) : D(Q,P) ≤ ε, D(µx, νx) ≤ η ∀x ∈ X} (1)
with νx representing the conditional reference distribution for x.

HERO’s objective function optimizes the minimum expected value across this hierarchical ambigu-
ity set:

JHERO(θ) = inf
(Q,{µx})∈Bε,η(P)

EQ [Vµx
(x; θ)] (2)

where Vµ : X ×Θ → R denotes the value functional with respect to measure µ.

3.2 DUAL REPRESENTATION THEORY

Theorem 1 (Nested Duality). Given appropriate regularity constraints, HERO’s objective permits
the dual formulation:

JHERO(θ) = sup
λ≥0

inf
β≥0

{
EP

[
1

β
logEνx

[
eβV (x,ξ;θ)

]]
− λε− βη

}
(3)
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with ξ denoting the local uncertainty parameter.

Algorithm 1 HERO Framework Implementation in HeroCode
1: Input: Initial parameter θ0 ∈ Θ, ambiguity bounds ε, η > 0
2: Parameters: Learning rates {ηt}, momentum γ ∈ (0, 1), regularizers λ, β > 0
3: Initialize variance estimator σ̂2

0 = 1
4: for t = 0, 1, 2, . . . , T − 1 do
5: Draw batch {xi}ni=1 ∼ P
6: Calculate local robust values: vi = 1

β logEνxi
[exp(βV (xi, ξ; θt))]

7: Determine importance weights: wi = exp(−λ · rank(vi)/n)/Z with Z =
∑

j exp(−λ ·
rank(vj)/n)

8: Calculate weighted gradient: gt =
∑n

i=1 wi∇θvi
9: Refresh variance estimator: σ̂2

t = (1− γ)σ̂2
t−1 + γ∥gt∥2

10: Perform parameter update: θt+1 = ΠΘ

(
θt − ηt · gt/

√
σ̂2
t + ϵ

)
11: end for
12: Output: θ̄T = T−1

∑T
t=1 θt

Proof. Employ Lagrangian duality on the constrained problem (2) Chen et al. (2019). For the
external optimization with KL-divergence bound DKL(Q∥P) ≤ ε, we introduce multiplier λ ≥ 0:

Louter = inf
Q

{EQ[V
∗
x ] + λ (DKL(Q∥P)− ε)} (4)

where V ∗
x = supµx:DKL(µx∥νx)≤η Eµx

[V (x, ·; θ)]. The optimal distribution Q∗ exhibits density:

dQ∗

dP
(x) =

exp(−V ∗
x /λ)

EP[exp(−V ∗
x /λ)]

(5)

For internal optimization, analogous duality with multiplier β ≥ 0 produces:

V ∗
x =

1

β
logEνx

[exp(βV (x, ξ; θ))]− βη (6)

Synthesizing both hierarchies validates the theorem.

3.3 EPISTEMIC UNCERTAINTY-GUIDED DATASET CONSTRUCTION

To align with HERO’s hierarchical robust optimization framework, we introduce a novel Epistemic
Uncertainty-Guided Vulnerability Reasoning Generation (EUG-VRG) approach that fundamen-
tally differs from conventional bidirectional generation methods. Our approach leverages the math-
ematical foundations of HERO to construct a high-quality dataset through principled uncertainty
quantification and hierarchical filtering.

3.3.1 THREE-STAGE HIERARCHICAL FILTERING PIPELINE

Starting from an initial pool of 30,000 vulnerability-patch pairs systematically collected from CVE
databases and high-quality open-source repositories, we apply a sophisticated three-stage filtering
process guided by HERO’s theoretical framework:

Stage 1: Hierarchical Complexity Assessment. Based on the hierarchical ambiguity set Bε,η(P)
defined in our HERO framework, we categorize vulnerabilities into five complexity tiers:

Ci = {v ∈ V : κ(v) ∈ [ci, ci+1)}, i ∈ {1, 2, 3, 4, 5} (7)

where κ(v) represents the complexity metric incorporating control flow depth, data dependency
chains, and semantic abstraction levels. This stage retains 27,000 samples (90% retention rate)
while ensuring balanced representation across complexity tiers.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: HeroCode Algorithm Flowcart.

Stage 2: Epistemic Uncertainty Quantification. Leveraging HERO’s dual representation theory,
we compute the epistemic uncertainty score for each sample:

U (v) = sup
λ≥0

inf
β≥0

{
EP

[
1

β
logEνv

[
eβI (v,ξ)

]]
− λεv − βηv

}
(8)

where I (v, ξ) denotes the information content of vulnerability v under local uncertainty parameter
ξ. Samples with U (v) > τu (where τu is the 90th percentile) are retained, yielding 24,300 high-
information samples.

Stage 3: Robustness-Aware Selection. The final filtering applies variance-stabilized gradient anal-
ysis from our theoretical framework. For each vulnerability-patch pair (vi, pi), we compute the
robustness value:

R(vi, pi) =
wi ⊙∇θℓ(vi, pi, θ)√

σ̂2
i + ϵ

(9)

where wi = exp(−λ · rank(∇θℓ)/n) represents importance weights derived from gradient ranking.
The top 22,400 samples (92.2% of Stage 2 output) with highest R values constitute our final dataset.

3.3.2 REASONING CHAIN SYNTHESIS VIA NESTED OPTIMIZATION

Unlike traditional forward-backward generation, our approach synthesizes reasoning chains through
nested optimization that mirrors HERO’s hierarchical structure:

1. Instance-Level Reasoning: For each vulnerability v, we generate exploitation reasoning
re(v) and remediation reasoning rr(v) through:

(r∗e , r
∗
r) = arg min

re,rr
D(Qre,rr ,Pv) s.t. D(µre , νe) ≤ ηe,D(µrr , νr) ≤ ηr (10)

2. Population-Level Patterns: Aggregate reasoning patterns across vulnerability categories
to capture population-level security insights:

Pc =
1

|Vc|
∑
v∈Vc

ϕ(r∗e(v), r
∗
r(v)) (11)

where Vc represents vulnerabilities of category c and ϕ is a pattern extraction function.
3. Cross-Hierarchy Validation: Ensure consistency between instance and population levels

through:
consistency(v) = min

(
1, exp

(
−∥ϕ(r∗e(v), r∗r(v))− Pc(v)∥2

))
(12)
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3.3.3 DATASET STATISTICS AND DISTRIBUTION

The resulting EUG-VRG dataset comprises 22,400 high-quality vulnerability reasoning in-
stances, representing a 20% reduction from conventional approaches while maintaining superior
quality through principled filtering. The distribution exhibits:

• Complexity Distribution: Tier-1 (15%), Tier-2 (25%), Tier-3 (30%), Tier-4 (20%), Tier-5
(10%)

• Uncertainty Coverage: High epistemic uncertainty (35%), Medium (45%), Low (20%)
• Reasoning Depth: Average 4.7 reasoning steps (compared to 3.2 in conventional datasets)
• Pattern Diversity: 156 unique vulnerability patterns (expanded from 89 in baseline ap-

proaches)

This construction methodology ensures that despite the reduced dataset size, the information density
and pattern coverage remain optimal for training HERO, as evidenced by our experimental results
maintaining or exceeding baseline performance across all metrics.

3.4 VARIANCE-STABILIZED GRADIENT FLOW

Consider the empirical risk measure Ĵn(θ) = n−1
∑n

i=1 ℓ(xi, θ) with ℓ : X ×Θ → R representing
the instantaneous loss.
Theorem 2 (Adaptive Gradient Stabilization). Define gt = ∇θĴn(θt) as the stochastic gradient at
step t. The stabilized gradient becomes:

g̃t =
wt ⊙ gt√
σ̂2
t + ϵ

(13)

with wt = exp(−λ · rank(gt)/n), σ̂2
t = (1 − γ)σ̂2

t−1 + γ∥gt∥2, and ⊙ indicating Hadamard
multiplication. Consequently:

E[∥g̃t −∇JHERO(θt)∥2] ≤
C1

n
+

C2√
t

(14)

with C1, C2 determined by Lipschitz and smoothness properties, independent of t or n.

Proof. Separate the error into bias and variance terms. For bias:

∥E[g̃t]−∇JHERO(θt)∥ ≤ ∥E[wt ⊙ gt]/σ̂t −∇JHERO∥ (15)

≤ L · E[∥wt − w∗∥] +O(1/
√
t) (16)

with w∗ denoting optimal importance weights. Through concentration bounds, E[∥wt − w∗∥] =
O(1/

√
n).

Regarding variance, adaptive normalization guarantees:

Var[g̃t] ≤
Var[wt ⊙ gt]

σ̂2
t

≤ σ2

t1/2
(17)

through exponential moving average convergence σ̂2
t → σ2 at rate O(1/

√
t).

4 EXPERIMENTAL RESULTS

4.1 MAIN RESULTS AND COMPARATIVE ANALYSIS

We conduct comprehensive experiments to evaluate HERO against nine state-of-the-art vulnera-
bility detection approaches on the PrimeVul Ding et al. (2024) and SVEN He & Vechev (2023)
datasets. Our evaluation encompasses three established detection techniques (CodeBERT Feng et al.
(2020), UniXCoder Guo et al. (2022), and LineVul Fu & Tantithamthavorn (2022)), three large-
scale language models with parameters exceeding 30B (Llama3.1-70B-Instruct Dubey et al. (2024),
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Figure 3: Evaluation results of HeroCode compared with vulnerability detection baselines on the
PrimeVul and SVEN datasets. COT = Chain of Thought. SFT = Supervised Fine-Tuning. The
prompt template used in our experiments follows the approach outlined by Ding et al. (2024). The
highest score for each metric in the same dataset are highlighted in bold text. The (↑) / (↓) repre-
sents the performance of the HeroCode compared with the best-performing method on this metric
(relative improvement). HeroCode significantly surpasses all great baselines in the PrimeVul and
SVEN datasets. When integrated with Qwen2.5-Coder-7B-Instruct, HeroCode achieves the highest
performance.

Qwen2.5-32b-Coder-Instruct Hui et al. (2024), and GPT-4 OpenAI (2023)), and three foundation
models deployed with both chain-of-thought prompting and our HERO framework.

Figure 3 presents the comprehensive evaluation results across both datasets. When integrated with
Qwen2.5-Coder-7B-Instruct Hui et al. (2024), HeroCode achieves remarkable performance im-
provements, attaining 60.66% accuracy on PrimeVul, which represents an 8.42 percentage point
improvement over the previous best result of 52.24% achieved by GPT-4 OpenAI (2023). The F1
score demonstrates even more substantial gains, reaching 67.98% compared to GPT-4’s 43.83%, in-
dicating HERO’s superior balance between precision and recall in vulnerability identification. Most
notably, the Vulnerability Pair Score (VP-S), which evaluates the model’s ability to distinguish be-
tween vulnerable and patched code segments, shows exceptional improvement from 3.40 to 16.97,
underscoring HERO’s effectiveness in capturing vulnerability-specific patterns rather than merely
semantic similarities.

The performance gains on the SVEN dataset He & Vechev (2023) are even more pronounced, with
HERO-enhanced Qwen2.5-Coder-7B-Instruct achieving 66.14% accuracy compared to the base-
line’s 51.79%, representing a 14.35 percentage point improvement. The F1 score increases dramati-
cally from 28.18% to 74.49%, while the VP-S metric shows exceptional growth from 4.71 to 29.17.
These substantial improvements on SVEN, which focuses on nine specific vulnerability categories,
suggest that HERO’s hierarchical epistemic robust optimization particularly excels when vulnera-
bility patterns exhibit clearer categorical structures. The consistent improvements across different
foundation models further validate the generalizability of our approach. When applied to Llama-
3.1-8B-Instruct Dubey et al. (2024), HERO elevates accuracy from 48.64% to 59.36% on PrimeVul

7
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StarCoder2-7B
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Figure 4: Ablation study. The experimental results of HERO and corresponding variants in Prime-
Vul and SVEN datasets. The “w/o Hierarchical Robustness” uses standard supervised fine-tuning
without hierarchical ambiguity sets and distributional robustness. The “w/o Adaptive Schedule” re-
moves the adaptive parameter scheduling for β and λ regularizers, using fixed values instead.

and from 50.50% to 64.42% on SVEN, demonstrating that our framework’s benefits are not confined
to a specific model architecture.

Particularly noteworthy is HERO’s transformation of StarCoder2-7B Lozhkov et al. (2024), which
initially shows minimal capability in vulnerability detection with near-zero F1 scores using chain-
of-thought prompting. Through HERO’s hierarchical optimization and synthetic reasoning data,
StarCoder2-7B achieves competitive performance levels with 59.08% accuracy and 72.24% F1 score
on PrimeVul, effectively converting a general-purpose code model into a capable vulnerability de-
tector. This dramatic improvement from a baseline F1 score of 0.92% to 72.24% illustrates HERO’s
ability to instill vulnerability-specific knowledge into models that lack inherent security awareness.
The VP-S metric improvement from 0.22 to 12.08 further confirms that HERO enables the model
to distinguish between vulnerable and patched code segments, a capability essentially absent in the
baseline configuration.

4.2 ABLATION STUDY AND COMPONENT ANALYSIS

To rigorously evaluate the contributions of HERO’s core mathematical components, we conduct
comprehensive ablation studies examining the impact of hierarchical robustness optimization and
adaptive scheduling mechanisms. Figure 4 presents detailed results across multiple model archi-
tectures and datasets, revealing the critical importance of each component in achieving superior
vulnerability detection performance.

The removal of hierarchical robustness optimization severely degrades performance across all eval-
uated models, with Qwen2.5-Coder-7B-Instruct’s accuracy dropping from 60.66% to 48.48% on
PrimeVul, even falling below GPT-4’s baseline of 52.24%. This 12.18 percentage point decrease
underscores the fundamental importance of our nested optimization framework with uncertainty
quantification in capturing vulnerability patterns across different abstraction levels. The impact is
particularly severe for the F1 score and VP-S metrics, with the latter decreasing from 16.97 to 2.17
on PrimeVul, indicating that without hierarchical robustness, the model struggles to maintain the
delicate balance between identifying true vulnerabilities and avoiding false positives. On the SVEN
dataset, the absence of hierarchical robustness results in complete failure for certain metrics, with
F1 scores dropping to 0.00% for all three base models when this component is removed, suggesting
that the hierarchical structure is essential for learning categorical vulnerability patterns present in
SVEN’s nine vulnerability types.
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4.3 ANALYSIS OF TRAINING DYNAMICS AND GENERALIZATION

The experimental results demonstrate HERO’s robust generalization across diverse model archi-
tectures, from specialized code models like StarCoder2-7B to general-purpose models like Llama-
3.1-8B-Instruct Dubey et al. (2024). Notably, HERO enables the 7B-parameter Qwen2.5-Coder-
7B-Instruct to achieve 60.66% accuracy on PrimeVul, surpassing GPT-4’s OpenAI (2023) 52.24%
despite the substantial parameter count difference. This challenges the conventional assumption that
vulnerability detection performance scales primarily with model size, highlighting the importance
of specialized optimization techniques over raw computational scale.

The differential performance between datasets reveals HERO’s adaptability to varying vulnerability
distributions. The generally stronger improvements on SVEN He & Vechev (2023), particularly in
VP-S metrics exceeding 20-point gains, can be attributed to its structured taxonomy of nine vulnera-
bility categories aligning well with HERO’s hierarchical optimization. Meanwhile, PrimeVul’s Ding
et al. (2024) broader vulnerability spectrum presents greater generalization challenges, yet HERO
maintains substantial improvements. The variance in F1 score improvements—from 17.38 points
for Llama-3.1-8B to 71.32 points for StarCoder2-7B—indicates that HERO’s impact is most pro-
nounced for models with limited initial vulnerability detection capabilities, effectively bootstrapping
their performance through synthetic reasoning data and robust optimization. These results validate
HERO’s effectiveness as a principled approach to enhancing LLM-based vulnerability detection
across diverse models and vulnerability types.

5 CONCLUSION

HeroCode demonstrates that effective vulnerability detection requires not larger models but deeper
reasoning about security logic. By pioneering automated vulnerability reasoning dataset genera-
tion through epistemic uncertainty-guided filtering and introducing the HERO optimization frame-
work, HeroCode transforms open-source LLMs into specialized security analyzers that surpass even
GPT-4 in distinguishing vulnerable from patched code. The striking empirical results—where 7B-
parameter models equipped with HeroCode outperform models ten times their size—reveal that
security expertise can be systematically instilled through principled training rather than emerging
from massive-scale pre-training.

6 THE USE OF LARGE LANGUAGE MODELS

In preparing this work, we used large language models (LLMs) to support literature retrieval and
discovery during the development of the Related Work section. Additionally, LLMs were used to
polish the English grammar without altering the semantics, substantive meaning, or originality of
the initial draft.

7 REPRODUCIBILITY STATEMENT

We will release all assets required to reproduce our results upon publication: (i) training/evaluation
code for HeroCode and the HERO optimizer; (ii) the Epistemic Uncertainty-Guided Vulnerability
Reasoning Generation (EUG-VRG) pipeline, including prompts, filtering scripts, and selection logs
for the final 22,400-instance reasoning dataset (with hashes for integrity);

8 ETHICS STATEMENT

This work targets defensive software security: HeroCode is a vulnerability identification framework
that reasons about why code is vulnerable or safely patched. All data were collected from publicly
disclosed CVE records and high-quality open-source repositories.
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