
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING LLM-BASED SOFTWARE VULNERABIL-
ITY IDENTIFICATION THROUGH SYNTHETIC REASON-
ING AND HIERARCHICAL EPISTEMIC ROBUST OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models (LLMs) show promise in software security, they
struggle to comprehend the underlying logic of vulnerabilities and are often con-
founded by the high semantic similarity between flawed and patched code. To
overcome these limitations, we introduce HeroCode, a novel model designed to
transform general-purpose LLMs into specialized vulnerability identification ex-
perts. HeroCode’s advancement stems from its unique training on a synthetically
generated dataset that explicitly details the reasoning behind both vulnerability
exploits and their remediations. This reasoning-rich data is leveraged by our
core Hierarchical Epistemic Robust Optimization (HERO) architecture, a frame-
work that integrates distributional robustness across multiple abstraction levels to
compel a deeper understanding of fundamental security patterns over superficial
semantics. Empirical evaluations demonstrate that HeroCode substantially out-
performs existing methods, setting new state-of-the-art performance records on
the PrimeVul and SVEN benchmarks. When integrated with Qwen2.5-Coder-
7B-Instruct, HeroCode achieves 60.66% accuracy on PrimeVul—surpassing even
GPT-4’s 52.24%—proving its exceptional capability in distinguishing between
vulnerable and patched code implementations.

1 INTRODUCTION

The digital infrastructure underpinning modern society faces an escalating crisis of software vulner-
abilities, with thousands of new security flaws discovered annually Statista (2024), each represent-
ing a potential gateway for system compromise and data breaches Wen et al. (2023; 2024). This
persistent challenge has driven the evolution of automated vulnerability detection from rule-based
systems to sophisticated machine learning approaches, culminating in the recent emergence of Code
Pre-Trained Models (CodePTMs) that leverage vast repositories of source code to learn vulnerability
patterns Zhou et al. (2019); Chakraborty et al. (2020); Cao et al. (2022). Models such as CodeBERT
Feng et al. (2020) and UniXcoder Guo et al. (2022) have demonstrated remarkable success by treat-
ing vulnerability detection as a semantic understanding task, utilizing their pre-trained knowledge to
identify potential security flaws Zheng et al. (2023). The subsequent rise of Large Language Mod-
els (LLMs) has further elevated this capability, as these models possess an unprecedented ability
to comprehend both natural language descriptions and complex programming constructs Hou et al.
(2023), seemingly offering the perfect foundation for sophisticated vulnerability analysis.

Yet beneath this promise lies a fundamental disconnect between what current LLM-based ap-
proaches achieve and what vulnerability detection truly demands. Our investigation reveals that
even state-of-the-art models struggle with a deceptively simple challenge: distinguishing between
vulnerable code and its patched counterpart. The crux of this limitation stems from how these mod-
els conceptualize vulnerabilities—as semantic anomalies rather than logical flaws with specific ex-
ploitation mechanisms and remediation patterns. When examining real-world vulnerability patches,
we observe that the modifications are often minimal, sometimes involving merely a single validation
check or boundary adjustment Luo et al. (2024). Consider the illustrative case of a divide-by-zero
vulnerability CWE (2024), where the vulnerable code performs a division operation without verifi-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cation, while the patched version introduces a simple macro check. The semantic similarity between
these versions is overwhelming, yet one permits system crash while the other ensures safe execution.
This exemplifies why current approaches, which excel at capturing semantic representations Cheng
et al. (2022), fail to grasp the subtle yet critical distinctions that define vulnerability boundaries.

This realization led us to develop HeroCode, a specialized vulnerability identification system that
fundamentally reimagines how LLMs should approach security analysis. Rather than treating vul-
nerability detection as another code understanding task, HeroCode recognizes it as a problem re-
quiring explicit reasoning about exploitation mechanics and remediation logic Fu et al. (2023); Fu
& Tantithamthavorn (2022). The transformation begins with our novel approach to training data
generation—instead of relying solely on labeled vulnerability datasets that lack explanatory context,
HeroCode employs an epistemic uncertainty-guided approach that synthesizes detailed reasoning
chains explaining both how vulnerabilities can be exploited and why specific patches prevent such
exploitation. This reasoning-rich dataset, comprising 22,400 carefully crafted instances filtered from
30,000 initial candidates, serves as the foundation for teaching LLMs to think like security analysts
rather than merely pattern matchers.

The empirical validation of HeroCode reveals a striking transformation in vulnerability detection
capabilities. When applied to open-source LLMs, HeroCode achieves unprecedented performance
on established benchmarks, with our experiments on PrimeVul Ding et al. (2024) and SVEN He &
Vechev (2023) datasets demonstrating substantial improvements over both specialized CodePTMs
and large-scale models including GPT-4 OpenAI (2023). Particularly remarkable is HeroCode’s
ability to elevate models with minimal initial security awareness—such as StarCoder2 Lozhkov et al.
(2024)—into competitive vulnerability detectors, effectively instilling security expertise through our
reasoning-driven training paradigm.

Our work makes three principal contributions to the field of automated vulnerability detection:

• We pioneer the automatic generation of vulnerability reasoning datasets through epistemic
uncertainty-guided filtering, creating the first framework that explicitly captures the logi-
cal relationships between vulnerabilities, their exploitation mechanisms, and remediation
strategies.

• We introduce the HERO optimization framework that fundamentally shifts vulnerability
detection from semantic similarity matching to robust pattern recognition across hierarchi-
cal abstractions.

• We demonstrate that specialized training can enable relatively compact LLMs to surpass
much larger general-purpose models in vulnerability identification, challenging the prevail-
ing assumption that detection performance scales primarily with model size.

2 RELATED WORK

Software Vulnerability Detection: The landscape of automated vulnerability detection has evolved
from traditional static analysis to sophisticated learning-based approaches, crystallizing around two
dominant paradigms that HeroCode fundamentally transcends. Prompt-driven methodologies have
shown promise in targeting specific vulnerability categories, as exemplified by recent chain-of-
thought approaches Nong et al. (2024); Ding et al. (2024) that leverage LLMs’ reasoning capa-
bilities, and DLAP Yang et al. (2025) combining deep learning models with LLM prompting for
enhanced detection performance. Recent surveys Sheng et al. (2025); Zhang et al. (2025) system-
atically analyze LLM applications in vulnerability detection, highlighting their strengths in pattern
recognition yet struggling with semantic similarity challenges between vulnerable and patched code.
Concurrently, fine-tuning strategies have evolved through successive architectural generations, from
MSIVD Yang et al. (2024) employing multitask self-instructed fine-tuning to BugWhisperer Tarek
et al. (2025) addressing hardware vulnerabilities, extending to comprehensive evaluations of LLMs’
real-world vulnerability repair capabilities Luo et al. (2025).

Preference Optimization for Code: While preference optimization has gained traction in code
generation through frameworks like Direct Preference Optimization (DPO) Rafailov et al. (2024),
filtered DPO Morimura et al. (2024) addressing data quality issues, and beta-DPO Wu et al. (2024)
with dynamic regularization, its application to vulnerability detection has remained unexplored due

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: HeroCode Model Architecture.

to fundamental challenges. Recent advances include Softmax-DPO Chen et al. (2024) for recom-
mendation systems and comprehensive surveys Xu et al. (2024) analyzing DPO variants, yet vulner-
ability management demands objective accuracy rather than subjective preferences common in natu-
ral language tasks. Generating vulnerability-specific training data presents substantial obstacles as it
requires deep security expertise beyond simple test case execution, as highlighted by recent OWASP
guidelines OWASP Foundation (2025) and enterprise security implementations Corgea (2024).

3 METHOD

We introduce Hierarchical Epistemic Robust Optimization (HERO), an architecture integrating
distributional robustness throughout various abstraction hierarchies via nested optimization with
uncertainty.

3.1 MATHEMATICAL FOUNDATION

Consider (X ,F ,P) as a probability space with X representing the sample space, F denoting the
σ-algebra, and P indicating the reference probability measure. Define a parametric policy collection
{πθ : θ ∈ Θ ⊆ Rd} with Θ being compact and convex. Chen et al. (2019); Noyan et al. (2022)
Definition 1 (Hierarchical Ambiguity Set). Given ε > 0 and divergence metric D : P(X) ×
P(X) → [0,∞], we define the hierarchical ambiguity set:

Bε,η(P) = {(Q, {µx}x∈X) : D(Q,P) ≤ ε, D(µx, νx) ≤ η ∀x ∈ X} (1)
with νx representing the conditional reference distribution for x.

HERO’s objective function optimizes the minimum expected value across this hierarchical ambigu-
ity set:

JHERO(θ) = inf
(Q,{µx})∈Bε,η(P)

EQ [Vµx
(x; θ)] (2)

where Vµ : X ×Θ → R denotes the value functional with respect to measure µ.

3.2 DUAL REPRESENTATION THEORY

Theorem 1 (Nested Duality). Given appropriate regularity constraints, HERO’s objective permits
the dual formulation:

JHERO(θ) = sup
λ≥0

inf
β≥0

{
EP

[
1

β
logEνx

[
eβV (x,ξ;θ)

]]
− λε− βη

}
(3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with ξ denoting the local uncertainty parameter.

Algorithm 1 HERO Framework Implementation in HeroCode
1: Input: Initial parameter θ0 ∈ Θ, ambiguity bounds ε, η > 0
2: Parameters: Learning rates {ηt}, momentum γ ∈ (0, 1), regularizers λ, β > 0
3: Initialize variance estimator σ̂2

0 = 1
4: for t = 0, 1, 2, . . . , T − 1 do
5: Draw batch {xi}ni=1 ∼ P
6: Calculate local robust values: vi = 1

β logEνxi
[exp(βV (xi, ξ; θt))]

7: Determine importance weights: wi = exp(−λ · rank(vi)/n)/Z with Z =
∑

j exp(−λ ·
rank(vj)/n)

8: Calculate weighted gradient: gt =
∑n

i=1 wi∇θvi
9: Refresh variance estimator: σ̂2

t = (1− γ)σ̂2
t−1 + γ∥gt∥2

10: Perform parameter update: θt+1 = ΠΘ

(
θt − ηt · gt/

√
σ̂2
t + ϵ

)
11: end for
12: Output: θ̄T = T−1

∑T
t=1 θt

Proof. Employ Lagrangian duality on the constrained problem (2) Chen et al. (2019). For the
external optimization with KL-divergence bound DKL(Q∥P) ≤ ε, we introduce multiplier λ ≥ 0:

Louter = inf
Q

{EQ[V
∗
x] + λ (DKL(Q∥P)− ε)} (4)

where V ∗
x = supµx:DKL(µx∥νx)≤η Eµx

[V (x, ·; θ)]. The optimal distribution Q∗ exhibits density:

dQ∗

dP
(x) =

exp(−V ∗
x /λ)

EP[exp(−V ∗
x /λ)]

(5)

For internal optimization, analogous duality with multiplier β ≥ 0 produces:

V ∗
x =

1

β
logEνx

[exp(βV (x, ξ; θ))]− βη (6)

Synthesizing both hierarchies validates the theorem.

3.3 EPISTEMIC UNCERTAINTY-GUIDED DATASET CONSTRUCTION

To align with HERO’s hierarchical robust optimization framework, we introduce a novel Epistemic
Uncertainty-Guided Vulnerability Reasoning Generation (EUG-VRG) approach that fundamen-
tally differs from conventional bidirectional generation methods. Our approach leverages the math-
ematical foundations of HERO to construct a high-quality dataset through principled uncertainty
quantification and hierarchical filtering.

3.3.1 THREE-STAGE HIERARCHICAL FILTERING PIPELINE

Starting from an initial pool of 30,000 vulnerability-patch pairs systematically collected from CVE
databases and high-quality open-source repositories, we apply a sophisticated three-stage filtering
process guided by HERO’s theoretical framework:

Stage 1: Hierarchical Complexity Assessment. Based on the hierarchical ambiguity set Bε,η(P)
defined in our HERO framework, we categorize vulnerabilities into five complexity tiers:

Ci = {v ∈ V : κ(v) ∈ [ci, ci+1)}, i ∈ {1, 2, 3, 4, 5} (7)

where κ(v) represents the complexity metric incorporating control flow depth, data dependency
chains, and semantic abstraction levels. This stage retains 27,000 samples (90% retention rate)
while ensuring balanced representation across complexity tiers.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: HeroCode Algorithm Flowcart.

Stage 2: Epistemic Uncertainty Quantification. Leveraging HERO’s dual representation theory,
we compute the epistemic uncertainty score for each sample:

U (v) = sup
λ≥0

inf
β≥0

{
EP

[
1

β
logEνv

[
eβI (v,ξ)

]]
− λεv − βηv

}
(8)

where I (v, ξ) denotes the information content of vulnerability v under local uncertainty parameter
ξ. Samples with U (v) > τu (where τu is the 90th percentile) are retained, yielding 24,300 high-
information samples.

Stage 3: Robustness-Aware Selection. The final filtering applies variance-stabilized gradient anal-
ysis from our theoretical framework. For each vulnerability-patch pair (vi, pi), we compute the
robustness value:

R(vi, pi) =
wi ⊙∇θℓ(vi, pi, θ)√

σ̂2
i + ϵ

(9)

where wi = exp(−λ · rank(∇θℓ)/n) represents importance weights derived from gradient ranking.
The top 22,400 samples (92.2% of Stage 2 output) with highest R values constitute our final dataset.

3.3.2 REASONING CHAIN SYNTHESIS VIA NESTED OPTIMIZATION

Unlike traditional forward-backward generation, our approach synthesizes reasoning chains through
nested optimization that mirrors HERO’s hierarchical structure:

1. Instance-Level Reasoning: For each vulnerability v, we generate exploitation reasoning
re(v) and remediation reasoning rr(v) through:

(r∗e , r
∗
r) = arg min

re,rr
D(Qre,rr ,Pv) s.t. D(µre , νe) ≤ ηe,D(µrr , νr) ≤ ηr (10)

2. Population-Level Patterns: Aggregate reasoning patterns across vulnerability categories
to capture population-level security insights:

Pc =
1

|Vc|
∑
v∈Vc

ϕ(r∗e(v), r
∗
r(v)) (11)

where Vc represents vulnerabilities of category c and ϕ is a pattern extraction function.
3. Cross-Hierarchy Validation: Ensure consistency between instance and population levels

through:
consistency(v) = min

(
1, exp

(
−∥ϕ(r∗e(v), r∗r(v))− Pc(v)∥2

))
(12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.3 DATASET STATISTICS AND DISTRIBUTION

The resulting EUG-VRG dataset comprises 22,400 high-quality vulnerability reasoning in-
stances, representing a 20% reduction from conventional approaches while maintaining superior
quality through principled filtering. The distribution exhibits:

• Complexity Distribution: Tier-1 (15%), Tier-2 (25%), Tier-3 (30%), Tier-4 (20%), Tier-5
(10%)

• Uncertainty Coverage: High epistemic uncertainty (35%), Medium (45%), Low (20%)
• Reasoning Depth: Average 4.7 reasoning steps (compared to 3.2 in conventional datasets)
• Pattern Diversity: 156 unique vulnerability patterns (expanded from 89 in baseline ap-

proaches)

This construction methodology ensures that despite the reduced dataset size, the information density
and pattern coverage remain optimal for training HERO, as evidenced by our experimental results
maintaining or exceeding baseline performance across all metrics.

3.4 VARIANCE-STABILIZED GRADIENT FLOW

Consider the empirical risk measure Ĵn(θ) = n−1
∑n

i=1 ℓ(xi, θ) with ℓ : X ×Θ → R representing
the instantaneous loss.
Theorem 2 (Adaptive Gradient Stabilization). Define gt = ∇θĴn(θt) as the stochastic gradient at
step t. The stabilized gradient becomes:

g̃t =
wt ⊙ gt√
σ̂2
t + ϵ

(13)

with wt = exp(−λ · rank(gt)/n), σ̂2
t = (1 − γ)σ̂2

t−1 + γ∥gt∥2, and ⊙ indicating Hadamard
multiplication. Consequently:

E[∥g̃t −∇JHERO(θt)∥2] ≤
C1

n
+

C2√
t

(14)

with C1, C2 determined by Lipschitz and smoothness properties, independent of t or n.

Proof. Separate the error into bias and variance terms. For bias:

∥E[g̃t]−∇JHERO(θt)∥ ≤ ∥E[wt ⊙ gt]/σ̂t −∇JHERO∥ (15)

≤ L · E[∥wt − w∗∥] +O(1/
√
t) (16)

with w∗ denoting optimal importance weights. Through concentration bounds, E[∥wt − w∗∥] =
O(1/

√
n).

Regarding variance, adaptive normalization guarantees:

Var[g̃t] ≤
Var[wt ⊙ gt]

σ̂2
t

≤ σ2

t1/2
(17)

through exponential moving average convergence σ̂2
t → σ2 at rate O(1/

√
t).

4 EXPERIMENTAL RESULTS

4.1 MAIN RESULTS AND COMPARATIVE ANALYSIS

We conduct comprehensive experiments to evaluate HERO against nine state-of-the-art vulnera-
bility detection approaches on the PrimeVul Ding et al. (2024) and SVEN He & Vechev (2023)
datasets. Our evaluation encompasses three established detection techniques (CodeBERT Feng et al.
(2020), UniXCoder Guo et al. (2022), and LineVul Fu & Tantithamthavorn (2022)), three large-
scale language models with parameters exceeding 30B (Llama3.1-70B-Instruct Dubey et al. (2024),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Evaluation results of HeroCode compared with vulnerability detection baselines on the
PrimeVul and SVEN datasets. COT = Chain of Thought. SFT = Supervised Fine-Tuning. The
prompt template used in our experiments follows the approach outlined by Ding et al. (2024). The
highest score for each metric in the same dataset are highlighted in bold text. The (↑) / (↓) repre-
sents the performance of the HeroCode compared with the best-performing method on this metric
(relative improvement). HeroCode significantly surpasses all great baselines in the PrimeVul and
SVEN datasets. When integrated with Qwen2.5-Coder-7B-Instruct, HeroCode achieves the highest
performance.

Qwen2.5-32b-Coder-Instruct Hui et al. (2024), and GPT-4 OpenAI (2023)), and three foundation
models deployed with both chain-of-thought prompting and our HERO framework.

Figure 3 presents the comprehensive evaluation results across both datasets. When integrated with
Qwen2.5-Coder-7B-Instruct Hui et al. (2024), HeroCode achieves remarkable performance im-
provements, attaining 60.66% accuracy on PrimeVul, which represents an 8.42 percentage point
improvement over the previous best result of 52.24% achieved by GPT-4 OpenAI (2023). The F1
score demonstrates even more substantial gains, reaching 67.98% compared to GPT-4’s 43.83%, in-
dicating HERO’s superior balance between precision and recall in vulnerability identification. Most
notably, the Vulnerability Pair Score (VP-S), which evaluates the model’s ability to distinguish be-
tween vulnerable and patched code segments, shows exceptional improvement from 3.40 to 16.97,
underscoring HERO’s effectiveness in capturing vulnerability-specific patterns rather than merely
semantic similarities.

The performance gains on the SVEN dataset He & Vechev (2023) are even more pronounced, with
HERO-enhanced Qwen2.5-Coder-7B-Instruct achieving 66.14% accuracy compared to the base-
line’s 51.79%, representing a 14.35 percentage point improvement. The F1 score increases dramati-
cally from 28.18% to 74.49%, while the VP-S metric shows exceptional growth from 4.71 to 29.17.
These substantial improvements on SVEN, which focuses on nine specific vulnerability categories,
suggest that HERO’s hierarchical epistemic robust optimization particularly excels when vulnera-
bility patterns exhibit clearer categorical structures. The consistent improvements across different
foundation models further validate the generalizability of our approach. When applied to Llama-
3.1-8B-Instruct Dubey et al. (2024), HERO elevates accuracy from 48.64% to 59.36% on PrimeVul

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

PV-Acc PV-F1 PV-VP-S SV-Acc SV-F1 SV-VP-S

GPT-4
-

Qwen2.5-7B
w/o Hierarchical Robustness

Qwen2.5-7B
w/o Adaptive Schedule

Qwen2.5-7B
HERO (Full)

Llama-8B
w/o Hierarchical Robustness

Llama-8B
w/o Adaptive Schedule

Llama-8B
HERO (Full)

StarCoder2-7B
w/o Hierarchical Robustness

StarCoder2-7B
w/o Adaptive Schedule

StarCoder2-7B
HERO (Full)

52.24 43.83 3.40 50.85 57.33 2.69

48.48 26.07 2.17 52.50 0.00 0.00

59.63 61.51 10.34 58.13 67.38 7.59

60.66 67.98 16.97 66.14 74.49 29.17

45.00 0.00 0.00 47.50 0.00 0.00

51.40 65.77 11.37 56.40 70.20 23.91

59.36 57.55 13.29 64.42 64.83 25.02

47.50 0.00 0.00 45.00 0.00 0.00

48.09 52.73 5.46 49.79 55.65 9.27

59.08 72.24 12.08 60.72 56.44 15.69

60.66

72.24

16.97 66.14 74.49 29.17

0.0

0.2

0.4

0.6

0.8

1.0

Co
lu

m
n-

wi
se

 n
or

m
al

ize
d

in
te

ns
ity

 (h
ig

he
r =

 b
et

te
r)

Figure 4: Ablation study. The experimental results of HERO and corresponding variants in Prime-
Vul and SVEN datasets. The “w/o Hierarchical Robustness” uses standard supervised fine-tuning
without hierarchical ambiguity sets and distributional robustness. The “w/o Adaptive Schedule” re-
moves the adaptive parameter scheduling for β and λ regularizers, using fixed values instead.

and from 50.50% to 64.42% on SVEN, demonstrating that our framework’s benefits are not confined
to a specific model architecture.

Particularly noteworthy is HERO’s transformation of StarCoder2-7B Lozhkov et al. (2024), which
initially shows minimal capability in vulnerability detection with near-zero F1 scores using chain-
of-thought prompting. Through HERO’s hierarchical optimization and synthetic reasoning data,
StarCoder2-7B achieves competitive performance levels with 59.08% accuracy and 72.24% F1 score
on PrimeVul, effectively converting a general-purpose code model into a capable vulnerability de-
tector. This dramatic improvement from a baseline F1 score of 0.92% to 72.24% illustrates HERO’s
ability to instill vulnerability-specific knowledge into models that lack inherent security awareness.
The VP-S metric improvement from 0.22 to 12.08 further confirms that HERO enables the model
to distinguish between vulnerable and patched code segments, a capability essentially absent in the
baseline configuration.

4.2 ABLATION STUDY AND COMPONENT ANALYSIS

To rigorously evaluate the contributions of HERO’s core mathematical components, we conduct
comprehensive ablation studies examining the impact of hierarchical robustness optimization and
adaptive scheduling mechanisms. Figure 4 presents detailed results across multiple model archi-
tectures and datasets, revealing the critical importance of each component in achieving superior
vulnerability detection performance.

The removal of hierarchical robustness optimization severely degrades performance across all eval-
uated models, with Qwen2.5-Coder-7B-Instruct’s accuracy dropping from 60.66% to 48.48% on
PrimeVul, even falling below GPT-4’s baseline of 52.24%. This 12.18 percentage point decrease
underscores the fundamental importance of our nested optimization framework with uncertainty
quantification in capturing vulnerability patterns across different abstraction levels. The impact is
particularly severe for the F1 score and VP-S metrics, with the latter decreasing from 16.97 to 2.17
on PrimeVul, indicating that without hierarchical robustness, the model struggles to maintain the
delicate balance between identifying true vulnerabilities and avoiding false positives. On the SVEN
dataset, the absence of hierarchical robustness results in complete failure for certain metrics, with
F1 scores dropping to 0.00% for all three base models when this component is removed, suggesting
that the hierarchical structure is essential for learning categorical vulnerability patterns present in
SVEN’s nine vulnerability types.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 ANALYSIS OF TRAINING DYNAMICS AND GENERALIZATION

The experimental results demonstrate HERO’s robust generalization across diverse model archi-
tectures, from specialized code models like StarCoder2-7B to general-purpose models like Llama-
3.1-8B-Instruct Dubey et al. (2024). Notably, HERO enables the 7B-parameter Qwen2.5-Coder-
7B-Instruct to achieve 60.66% accuracy on PrimeVul, surpassing GPT-4’s OpenAI (2023) 52.24%
despite the substantial parameter count difference. This challenges the conventional assumption that
vulnerability detection performance scales primarily with model size, highlighting the importance
of specialized optimization techniques over raw computational scale.

The differential performance between datasets reveals HERO’s adaptability to varying vulnerability
distributions. The generally stronger improvements on SVEN He & Vechev (2023), particularly in
VP-S metrics exceeding 20-point gains, can be attributed to its structured taxonomy of nine vulnera-
bility categories aligning well with HERO’s hierarchical optimization. Meanwhile, PrimeVul’s Ding
et al. (2024) broader vulnerability spectrum presents greater generalization challenges, yet HERO
maintains substantial improvements. The variance in F1 score improvements—from 17.38 points
for Llama-3.1-8B to 71.32 points for StarCoder2-7B—indicates that HERO’s impact is most pro-
nounced for models with limited initial vulnerability detection capabilities, effectively bootstrapping
their performance through synthetic reasoning data and robust optimization. These results validate
HERO’s effectiveness as a principled approach to enhancing LLM-based vulnerability detection
across diverse models and vulnerability types.

5 CONCLUSION

HeroCode demonstrates that effective vulnerability detection requires not larger models but deeper
reasoning about security logic. By pioneering automated vulnerability reasoning dataset genera-
tion through epistemic uncertainty-guided filtering and introducing the HERO optimization frame-
work, HeroCode transforms open-source LLMs into specialized security analyzers that surpass even
GPT-4 in distinguishing vulnerable from patched code. The striking empirical results—where 7B-
parameter models equipped with HeroCode outperform models ten times their size—reveal that
security expertise can be systematically instilled through principled training rather than emerging
from massive-scale pre-training.

6 THE USE OF LARGE LANGUAGE MODELS

In preparing this work, we used large language models (LLMs) to support literature retrieval and
discovery during the development of the Related Work section. Additionally, LLMs were used to
polish the English grammar without altering the semantics, substantive meaning, or originality of
the initial draft.

7 REPRODUCIBILITY STATEMENT

We will release all assets required to reproduce our results upon publication: (i) training/evaluation
code for HeroCode and the HERO optimizer; (ii) the Epistemic Uncertainty-Guided Vulnerability
Reasoning Generation (EUG-VRG) pipeline, including prompts, filtering scripts, and selection logs
for the final 22,400-instance reasoning dataset (with hashes for integrity);

8 ETHICS STATEMENT

This work targets defensive software security: HeroCode is a vulnerability identification framework
that reasons about why code is vulnerable or safely patched. All data were collected from publicly
disclosed CVE records and high-quality open-source repositories.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuanqi Tao. Mvd: memory-related
vulnerability detection based on flow-sensitive graph neural networks. In ICSE, pp. 1456–1468,
2022.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet? arXiv preprint arXiv:2009.07235, 2020.

Yuxin Chen et al. On softmax direct preference optimization for recommendation. In Advances in
Neural Information Processing Systems, 2024.

Zhi Chen, Melvyn Sim, and Huan Xu. Distributionally robust optimization with infinitely con-
strained ambiguity sets. Operations Research, 67(5):1328–1344, 2019.

Xiao Cheng, Xu Nie, Ningke Li, Haoyu Wang, Zheng Zheng, and Yulei Sui. How about bug-
triggering paths?-understanding and characterizing learning-based vulnerability detectors. IEEE,
2022.

Corgea. Fine-tuning for precision and privacy: How corgea’s llm enhances en-
terprise application security, 2024. URL https://corgea.com/blog/
fine-tuning-for-precision-and-privacy.

CWE. Cwe-369: Divide by zero, 2024. URL https://cwe.mitre.org/data/
definitions/369.html.

Zhilong Ding et al. Primevul: A comprehensive benchmark for evaluating vulnerability detection
with prompt-based methods. In Proceedings of the International Conference on Software Engi-
neering, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming
and natural languages. In Findings of EMNLP, pp. 1536–1547, 2020.

Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based line-level vulnerability
prediction. In MSR, pp. 608–620, 2022.

Michael Fu, Chakkrit Tantithamthavorn, Van Nguyen, and Trung Le. Chatgpt for vulnerability
detection, classification, and repair: How far are we? arXiv preprint arXiv:2310.09810, 2023.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. In ACL, pp. 7212–7225, 2022.

Jingxuan He and Martin T Vechev. Large language models for code: Security hardening and adver-
sarial testing. In CCS, pp. 1865–1879, 2023.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John C
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. arXiv preprint arXiv:2308.10620, 2023.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Changhua Luo, Wei Meng, and Shuai Wang. Strengthening supply chain security with fine-grained
safe patch identification. ICSE, pp. 89:1–89:12, 2024.

10

https://corgea.com/blog/fine-tuning-for-precision-and-privacy
https://corgea.com/blog/fine-tuning-for-precision-and-privacy
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/369.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuxin Luo, Binhao Li, Amit Singhal, Po-An Tseng, Lei Zhang, Qiben Zou, Xing Sun, Peng Liu,
Hanyu Hu, Angelina Sung, and Ritu Verma. Exploring prompt patterns for effective vulnerability
repair in real-world code by large language models. In Proceedings of the 10th ACM International
Workshop on Security and Privacy Analytics, pp. 23–33, 2025.

Tetsuro Morimura, Mitsuki Sakamoto, Yuu Jinnai, Kenshi Abe, and Kaito Ariu. Filtered direct
preference optimization. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 22729–22770, 2024.

Yu Nong et al. Chain-of-thought prompting of large language models for discovering and fixing
software vulnerabilities. arXiv preprint arXiv:2402.17230, 2024.

Nilay Noyan, Burcu Balcik, and Semih Atakan. Distributionally robust optimization under decision-
dependent ambiguity set with applications to machine scheduling and humanitarian logistics. IN-
FORMS Journal on Computing, 34(2):729–751, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OWASP Foundation. Owasp top 10 for large language model applications 2025. Technical report,
Open Worldwide Application Security Project, 2025. URL https://genai.owasp.org/
llm-top-10/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Ze Sheng et al. Llms in software security: A survey of vulnerability detection techniques and
insights. arXiv preprint arXiv:2502.07049, 2025.

Statista. Number of common it security vulnerabilities and exposures (cves) worldwide from 2009
to 2024 ytd, 2024. URL https://www.statista.com.

Shams Tarek, Dipayan Saha, Sujan Kumar Saha, and Farimah Farahmandi. Bugwhisperer: Fine-
tuning llms for soc hardware vulnerability detection. Technical Report 2025/546, Cryptology
ePrint Archive, 2025.

Xin-Cheng Wen, Xinchen Wang, Cuiyun Gao, Shaohua Wang, Yang Liu, and Zhaoquan Gu. When
less is enough: Positive and unlabeled learning model for vulnerability detection. IEEE/ACM
International Conference on Automated Software Engineering, pp. 345–357, 2023.

Xin-Cheng Wen, Cuiyun Gao, Feng Luo, Haoyu Wang, Ge Li, and Qing Liao. Livable: exploring
long-tailed classification of software vulnerability types. IEEE Transactions on Software Engi-
neering, 50(6):1325–1339, 2024.

Junkang Wu et al. β-dpo: Direct preference optimization with dynamic β. In Advances in Neural
Information Processing Systems, 2024.

Wenyi Xu et al. A comprehensive survey of direct preference optimization: Datasets, theories,
variants, and applications. arXiv preprint arXiv:2410.15595, 2024.

Aidan Yang et al. Security vulnerability detection with multitask self-instructed fine-tuning of large
language models. In arXiv preprint arXiv:2406.05892, 2024.

Yanjun Yang et al. Dlap: A deep learning augmented large language model prompting framework
for software vulnerability detection. Journal of Systems and Software, 219:112240, 2025.

Jingwei Zhang, Hongwei Bu, Hui Wen, Yang Liu, Hui Fei, Rongrong Xi, Lingjuan Li, Yong Yang,
Haojin Zhu, and Dan Meng. When llms meet cybersecurity: a systematic literature review. Cy-
bersecurity, 8(1):1–45, 2025.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual
evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnera-
bility identification by learning comprehensive program semantics via graph neural networks. In
NeurIPS, pp. 10197–10207, 2019.

11

https://genai.owasp.org/llm-top-10/
https://genai.owasp.org/llm-top-10/
https://www.statista.com

	Introduction
	Related Work
	Method
	Mathematical Foundation
	Dual Representation Theory
	Epistemic Uncertainty-Guided Dataset Construction
	Three-Stage Hierarchical Filtering Pipeline
	Reasoning Chain Synthesis via Nested Optimization
	Dataset Statistics and Distribution

	Variance-Stabilized Gradient Flow

	Experimental Results
	Main Results and Comparative Analysis
	Ablation Study and Component Analysis
	Analysis of Training Dynamics and Generalization

	Conclusion
	The Use of Large Language Models
	Reproducibility Statement
	Ethics Statement

