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While world models are increasingly positioned as a pathway to overcoming data scarcity in domains such
as robotics, open training infrastructure for world modeling remains nascent. We introduce Jasmine, a
performant JAX-based world modeling codebase that scales from single hosts to hundreds of accelerators
with minimal code changes. Jasmine achieves an order-of-magnitude faster reproduction of the CoinRun
case study compared to prior open implementations, enabled by performance optimizations across data
loading, training and checkpointing. The codebase guarantees fully reproducible training and supports
diverse sharding configurations. By pairing Jasmine with curated large-scale datasets, we establish
infrastructure for rigorous benchmarking pipelines across model families and architectural ablations.
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1. Introduction

Over the past decades, the field of deep learning has increasingly been shaped by methods that leverage
vast data troves (Chowdhery et al., 2023; Deng et al., 2009; Fedus et al., 2022; Jozefowicz et al., 2016;
Radford et al., 2018, 2019; Raffel et al., 2020), and paradigms that unlock new ones (Berner et al.,
2019; Christiano et al., 2017; Guo et al., 2025a; Radford et al., 2021; Silver et al., 2016; Srambical
and Mahajan, 2025). Internet-scale pre-training, preference modeling, and reinforcement learning
using verification signals offer a compelling pathway for language models to attain human-level
performance (Lin and Cheng, 2025; Luong and Lockhart, 2025), yet data is increasingly bottlenecking
progress from spiky towards general intelligence. While some domains can leverage user feedback
from deployed products for iterative model improvement (Cursor, 2025), domains like robotics cannot
afford such a privilege.

One paradigm proposed by the research community to overcome the data scarcity in those
domains is that of world models (Ha and Schmidhuber, 2018). World models can aid frontier model
development in numerous ways, but one particularly ambitious goal of the community is to train a
world model to act as a simulation of the real world (Agarwal et al., 2025; Ball et al., 2025; Bruce
et al., 2024; Parker-Holder et al., 2022), in order to train agents in that simulation (Hafner et al.,
2025b), via an adaptive curriculum (Parker-Holder et al., 2022), or otherwise. This regime requires
the compounding error of the world model to be orders of magnitude smaller than when solely
used for short-term look-ahead. The feasibility of such a world model in its truest sense is entirely
understudied. Jasmine provides the foundational infrastructure for future empirical investigation
of how compute and data requirements scale with environment complexity for downstream agent
training.
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Figure 1 | Autoregressive sampling of Jafar (Willi et al., 2024) (middle row) and Jasmine (bottom
row) on the CoinRun case study with four conditioning frames (conditioning frames not shown). The
top row shows the ground-truth sequence.

2. Jasmine

Our contributions in this work are threefold: i) we introduce Jasmine, a highly optimized and
scalable JAX-based codebase for world modeling, which we use to reproduce Genie’s CoinRun case
study (Bruce et al., 2024; Cobbe et al., 2020) an order of magnitude faster than prior work (Willi
et al., 2024). This speedup is the result of infrastructure optimizations, including a fully reproducible,
scalable training and data pipeline built on the JAX (Bradbury et al., 2018) ecosystem. ii) We find
that a critical modification to the original Genie architecture, prepending latent actions instead of
adding them to video embeddings, is required for the world model to yield generations that faithfully
reproduce the CoinRun environment. iii) Finally, we openly release the Jasmine codebase, along with
pretrained checkpoints, curated datasets, model inspection notebooks, and a dataset of dense IDE
interactions captured during Jasmine’s development, providing the first openly published dataset of
months-long software engineering.

Jasmine implements the Genie (Bruce et al., 2024) architecture, enabling training of interactive
environments from unlabeled videos. The architecture includes a video tokenizer, which encodes
videos into tokens, a latent action model (LAM) that extracts latent actions between video frames,
and a dynamics model that predicts the tokens of the next frame based on the previous tokens and
corresponding latent actions. At sampling time, the LAM is discarded and replaced by input from
the user. All modules use an ST-Transformer (Ho et al., 2019) backbone which approximates full
attention by performing intra-frame (spatial) followed by inter-frame (temporal) attention, thus
reducing the attention sequence length. The tokenizer uses a VQ-VAE (Van Den Oord et al., 2017) to
encode image patches using reconstruction, vector-quantization, and commitment losses. To train
an action-conditioned video-generation model from unlabeled videos, Genie learns latent actions
(Schmidt and Jiang, 2024). Like the tokenizer, the LAM uses a VQ-VAE, with its codebook representing
the latent actions. The model learns to distill information from future frames into this bottlenecked
codebook: Frames xo.; are encoded, producing latent actions ag., which the decoder receives along
with past frames xg..—1 to predict the next frame x,. A temporal causal mask allows the entire sequence
to be processed in a single forward pass. The dynamics model is a decoder-only transformer that
predicts future frames conditioned on past frames and corresponding latent actions. Genie uses
MaskGIT (Chang et al., 2022), which masks input-tokens at training time, similar in spirit to BERT
(Devlin et al., 2019). Unlike MaskGIT, Genie masks with probability p ~ U(0.5, 1) (refer to Appendix
F for details about extending MaskGIT to videos).

Building upon prior work (Willi et al., 2024) that openly published a reimplementation of the Genie
(Bruce et al., 2024) architecture, we release a highly optimized JAX-based world modeling codebase
amenable to scale. Jasmine implements a range of baselines, including MaskGIT-based (Chang et al.,
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Figure 2 | Validation metrics of the CoinRun case study (patch size 4). While the loss (left) is similar
between the default Genie configuration and our minimal modification, rollout metrics (middle and
right, refer to Section G) differ substantially.

2022), fully causal (Srambical, 2024), and diffusion-based approaches (Appendix C). The codebase
depends solely on battle-tested libraries from the Google ecosystem (JAX, NNX, Grain (Ritter et al.,
2023), Orbax, Optax, Treescope (Johnson, 2024), ArrayRecord (Google, 2024)), and scales from
single hosts to hundreds of accelerators using XLA. Jasmine supports complex sharding configurations
in a few lines of code through Shardy (OpenXLA Project, 2025). It provides asynchronous distributed
checkpointing with configurable policies, process-parallel dataloading, and checkpointing of model,
optimizer, and data loader states. Training runs are bitwise deterministic, yielding identical loss
curves under identical seeds (Appendix D). To enable efficient large-scale experimentation, Jasmine
integrates mixed-precision, FlashAttention via cuDNN SDPA (NVIDIA Corporation, 2025), activation
checkpointing, host memory offloading, and index-shuffling during data loading. The codebase
follows the shape suffix convention of Shazeer (2024), aiming to provide a didactic implementation
of modern world modeling architectures.

We run the reproducible case study described in Bruce et al. (2024) by generating a dataset
containing 50M transitions of CoinRun, an environment of the Procgen benchmark (Cobbe et al.,
2020) (Appendix A). In contrast to Bruce et al. (2024) we find that strict adoption of the architecture
and hyperparameters described in their case study leads to deteriorating autoregressive generations in
both Jasmine and Jafar (Willi et al., 2024) (Figure 4, middle row). However, a minimal modification
of the case study setting, namely prepending latent actions instead of adding them to the video
embeddings, yields autoregressive generations that faithfully simulate the CoinRun environment
(Figure 4, bottom row and Figure 2). We hypothesize that this discrepancy between Bruce et al.
(2024) and our work stems from an ambiguity in extending MaskGIT to videos (refer to Appendix F
for further discussion).

Beyond openly publishing'® the Jasmine codebase, we recorded every keystroke during Jasmine’s
development using crowd-code (Srambical and Mahajan, 2025), a VS Code/Cursor extension that
enables crowd-sourcing dense IDE interaction data. To our knowledge, this represents one of the first
open datasets capturing the full temporal scale of months-long software development, thus laying
groundwork for future work in behaviour cloning, goal-conditioning, and verification signal mining.

Thttps://github.com/p-doom/jasmine
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Figure 3 | An order of magnitude faster convergence in wall-clock time in Jasmine (blue) compared
to Jafar (Willi et al., 2024) (orange). We report the train loss since Jafar does not collect validation
metrics. Refer to Appendix B for Jasmine’s validation metrics. Jasmine’s lower variance stems from a
subtle refinement in its batched masking logic (Appendix H).

3. Experiments

We evaluate the performance of Jasmine and analyze the impact of its core components through
rigorous ablations. Using Jasmine, we reproduce the CoinRun case study at a patch size of 16 in
under nine hours on a single GPU, compared to over 100 hours reported in prior work (Willi et al.,
2024) under the same setting (Figure 3). We present ablations identifying the factors responsible for
this speedup in Table 2. Section B further reports results from architectural modifications including
replacing the latent action model with ground-truth actions, ablating co-training, adopting fully
causal and diffusion baselines, and setting the feedforward expansion factor to four.

Architectural optimizations We adapt Genie’s architectural choices by integrating best practices
from the language modeling community. Specifically, we use a feedforward expansion factor of four
relative to the model dimension, following common practice in large-scale language modeling (Brown
et al., 2020; Radford et al., 2019; Raffel et al., 2020). We simultaneously reduce network depth,
resulting in lower overall parameter count than the Genie defaults, thus achieving higher throughput
(Table 1) while maintaing competitive performance (Figure 5). We employ the warmup-stable-decay
(WSD) learning rate schedule (Mahajan et al., 2018; Zhai et al., 2022), which allows flexible training
durations by resuming from a checkpoint prior to the decay phase. Unlike (Bruce et al., 2024), we
warm up from and decay the learning rate to zero, in line with established best practices (Zhai et al.,
2022). We further compare co-training LAM and dynamics model (as done in Bruce et al. (2024))
with pre-training the LAM (as done in Willi et al. (2024)), embedding ground-truth actions instead of
using the latent action model (Appendix B), and replacing MaskGIT with fully causal and diffusion
baselines. Co-training, pre-training the LAM, and using ground-truth actions are all competitive
(Figure 5), while the fully causal baseline underperforms in the 200k steps training regime (Figure 6).
However, our results indicate that the fully causal baseline in particular may benefit from longer
training. Diffusion-forcing (Chen et al., 2024) outperforms MaskGIT, even when using identical
per-frame sampling step counts and untuned hyperparameters (Figure 7, Appendix C).

Infrastructure optimizations A substantial portion of our speedup compared to Willi et al. (2024)
arises from our data loader design (Tables 4 and 5). We use Grain for data loading with prefetching
enabled and preprocess datasets into ArrayRecords (Google, 2024), a file format optimized for random
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Throughput (bs=36) Throughput (bs=2048)

Jasmine-base 1.00x 1.00x
1x feedforward expansion 0.93x 0.79x

Table 1 | Training throughput with a feedforward expansion factor of one, relative to Jasmine-base.
We double the number of layers compared to Jasmine-base to roughly match the parameter count
(refer to Genie’s default configuration in 6).

access indexing. The chosen chunking strategy significantly affects throughput, and we describe
our configuration in Appendix B. Jasmine further leverages FlashAttention (Dao et al., 2022) via
cuDNN SDPA (NVIDIA Corporation, 2025) and mixed precision training with bfloat16. We report
throughputs when ablating mixed precision, FlashAttention and Grain in Table 2.

4. Related Work and Discussion

Although research on world models with its inception decades ago (Sutton, 1991) has matured over
the years (Alonso et al., 2024; Ha and Schmidhuber, 2018; Hafner et al., 2019, 2020a,b, 2025a), they
have only been scaled up recently (Agarwal et al., 2025; Ball et al., 2025; Bruce et al., 2024; Decart
et al., 2024; Guo et al., 2025b; Hafner et al., 2025b; Hu et al., 2023; Li et al., 2025; Parker-Holder
et al., 2024; Pearce et al., 2025; Seid and Hojel, 2024; Valevski et al., 2025). While the open training
ecosystem in language modeling provides mature solutions for large-scale language pretraining
(Shoeybi et al., 2019; Witten and MaxText Authors, 2024), open training infrastructure for world
modeling is still nascent (Castricato et al., 2025; Savov et al., 2025). Closest to our work is Willi
et al. (2024), an open-source reproduction of Genie (Bruce et al., 2024), which we build upon and
significantly extend.

With Jasmine we make progress towards democratizing world modeling research. Alongside
the codebase, we openly release checkpoints and datasets for CoinRun, Atari and Doom, as well as
dense IDE interaction data collected over months of research engineering?. While Jasmine greatly
accelerates wall-clock convergence compared to prior work, it has yet to match throughput efficiencies
of frontier language model implementations.
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Figure 4 | Autoregressive sampling of Jasmine when adding (middle row) and prepending actions
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A. Coinrun Case Study

For the CoinRun case study, we strictly adhere to the setting of Bruce et al. (2024) and train our
models to unmask sequences of 16 frames with a resolution of 64x64 pixels per frame. To generate
the dataset, we capture 50M observation frames and corresponding ground-truth actions during
random agent rollouts and only use the ground-truth actions for a LAM ablation (Section B). Instead
of sampling seeds from a fixed pool as described in Bruce et al. (2024), we initialize all episodes
with a seed unique to the respective episode. Furthermore, we verify that our generated dataset
contains no duplicate episodes and only find 7.46% duplicate frames. We confirm that the validation
and test set are disjoint from the train set and publish our script for duplication detection along
with the repository®. While train metrics are near-identical between Genie’s configuration and our
action-prepending modification, rollout quality differs significantly (Figure 2). We collect rollout
metrics during training (Section G) that capture this discrepancy.

Shttps://github.com/p-doom/jasmine/blob/main/data/jasmine_data/detect_array_record_
duplicates.py
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Figure 5 | Architectural ablations of Jasmine’s base configuration (refer to Table 6) on CoinRun. We
report loss (left) and rollout metrics (middle and right) of the dynamics model on a validation set.

B. Ablations

For our ablations, we reuse the CoinRun setting and ablate from Jasmine’s base configuration, depicted
in Table 6.

Co-training LAM and dynamics model Bruce et al. (2024) co-train the LAM and the dynamics
model. However, their implementation remains unclear as the LAM is supervised on frames while the
dynamics model is supervised on tokens. One approach to co-training is a combined loss function
including stop-gradients that prevent gradients from flowing from the dynamics model to the LAM.
However, such a combined loss formulation remains unmentioned in Bruce et al. (2024). Willi et al.
(2024) instead train LAM and dynamics model sequentially, thus reducing memory footprint at the
cost of longer total training time. For Jasmine’s co-training implementation, we omit the LAM decoder
entirely and allow gradients to flow from the dynamics model to the LAM.

Training with ground-truth actions We ablate the LAM (Figure 5) by training the dynamics model
using ground-truth actions captured in the environment. We use an embedding layer to map action
indices to action latents, which are then used as additional input to the dynamics model.

Throughput ablations We ablate core components of Jasmine’s infrastructure in Table 2. Replacing
Grain with the default data loader of Willi et al. (2024) reduces throughput by an order of magnitude.
In Jasmine’s base CoinRun configuration (sub-100M parameter model and a maximum attention
sequence length of 16) the XLA compiler dispatches higher-throughput CUDA kernels than FlashAtten-
tion. While FlashAttention only outperforms XL.A-compiled kernels at large model sizes and sequence
lengths (Table 3), we enable it by default to reduce accelerator memory usage. At small batch sizes,
the compiled train loop of our configuration achieves higher throughput using full precision. We
attribute this to XLA largely operating based on heuristics, and posit that writing optimized Pallas
kernels for key operations in the model forward pass will result in mixed precision outperforming full
precision in throughput, even at small batch sizes.

The ArrayRecord file format allows storing a configurable amount of records per file. In our
case, each record corresponds to a sequence of frames and actions. We find that the chosen format
significantly affects throughput (Tables 4 and 5). Based on preliminary experiments, we preprocess
the dataset to have 100 records per ArrayRecord file with 160 frames per record.
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Figure 6 | Loss (left) and rollout metrics (middle and right) of the fully causal baseline. We depict the
final performance of our MaskGIT implementation (Jasmine’s default configuration) for the rollout
metrics. The loss indicates that the causal baseline might benefit from longer training and separately
tuned hyperparameters. The losses between the two architectures are not comparable, hence we omit
the MaskGIT loss.

Throughput (bs=36) Throughput (bs=2048)

Jasmine-base 1.00x 1.00x
w/o grain data loader 0.25x 0.11x
wy/o flash attention 1.15x 1.04x
w/0 mixed precision 1.18x 0.71x

Table 2 | Training throughput of infrastructure ablations, relative to Jasmine-base. We report the
throughput at Genie’s default batch size (36), as well as at the batch size resulting in the highest
throughput (2048) on a single H100 with 80GB of accelerator memory.

Throughput (frames/sec) Throughput (relative)

wy/ flash attention 36.15 1.00x
wy/o flash attention 24.24 0.67x

Table 3 | Training throughput using a larger model (1B parameter) and spatial sequence length
(1024). We decrease the patch size to two. In this regime, FlashAttention yields higher throughput
than the XLA compiler.

# frames per record # records per file Throughput (frames/sec) Throughput (relative)

16 100 7,527.27 1.12x
160 (Base) 100 6,709.09 1.00x
1,600 100 3,752.73 0.56x
16,000 100 3,720.00 0.55x
160,000 100 3,785.45 0.56x

Table 4 | Training throughput at Genie’s default batch size (36) with different number of frames per
record. Throughput decreases as the number of frames per record increases. We opt for 160 frames
per record to be able to vary the sequence length.
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# frames per record # records per file Throughput (frames/sec) Throughput (relative)

160 1 6,098.18 0.91x
160 10 6,643.64 0.99x
160 (Base) 100 6,709.09 1.00x
160 1,000 6,480.00 0.97x
160 10,000 6,763.64 1.01x

Table 5 | Training throughput at Genie’s default batch size (36) with different number of records per
file.

C. Diffusion Baseline

We implement a diffusion baseline inspired by the Dreamer 4 architecture (Hafner et al., 2025b),
combining a masked autoencoder (MAE, He et al. (2022)) tokenizer with an ST-DiT (Ho et al., 2019;
Peebles and Xie, 2023) dynamics model trained under the diffusion-forcing objective (Chen et al.,
2024). We leave implementing the shortcut objective (Frans et al., 2024) to future work.

Tokenizer Following Hafner et al. (2025b), we use a MAE to compress raw video frames into
continuous latents. Our autoencoder implementation uses an ST-Transformer backbone and a latent
bottleneck. Before passing the latents to the decoder, we apply the tanh activation to constrain them to
the range (-1, 1) for downstream dynamics model training. We uniformly sample per-frame masking
probabilities p; ~ U(0, 0.9). Unlike Hafner et al. (2025b), we omit the auxiliary LPIPS loss (Zhang
et al., 2018) and directly train on pixel-level reconstructions using mean-squared error. We find the
tokenizer hyperparameters from Table 6 to work well for MAE training as well.

Dynamics model We implement diffusion forcing (Chen et al., 2024), sampling an independent
noise level per frame during training. Analogous to Hafner et al. (2025b) and Jasmine-base, we
prepend latent actions and the embedded denoising step to the patch latents. Following Hafner et al.
(2025b), we use x-prediction* and employ a ramp loss. During inference, frame-wise latents are
autoregressively generated with 25 denoising steps per frame, while past input latents are slightly
corrupted using a noise level of 0.1. We adopt the hyperparameters of Jasmine-base, and only change
the learning rate to 1e-4 following Peebles and Xie (2023).

D. Bitwise Determinism

On TPUgs, bitwise determinism is guaranteed by Jasmine via proper usage of JAX’s implementation of
parallel random number generation via Threefry counters (Salmon et al., 2011). On GPUs however, an
additional XLA flag (x1a_gpu_deterministic_ops=true) is needed in certain cases to guarantee
identical training curves.

“4In the diffusion literature, x-prediction often refers to supervision in latent-space rather than pixel-space. We follow
that nomenclature but believe that the term z-prediction is a more accurate description.
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Figure 7 | Loss (left) and rollout metrics (middle and right) of the diffusion baseline. We omit the
MaskGIT loss as the losses are not comparable between the two architectures.

E. Hyperparameter Configurations

We mention four distinct training configurations. We present hyperparameters and training settings
of each configuration in Table 6 and briefly describe them:

Genie: The hyperparameter configuration of Appendix F of Bruce et al. (2024), but with a patch
size of 16 (for easier comparison against Jafar). We use this configuration for the CoinRun case
study (Figure 4, middle row; refer to Section A).

Genie w/ prepend: As detailed in Section 2, we found a minimal modification to the Genie
configuration to be necessary to yield generations faithful to the CoinRun environment (Figure
1, bottom row and Figure 4, bottom row). This setting is identical to our Genie configuration,
with the exception that we prepend latent actions to the video embeddings instead of adding
them.

Jafar: The hyperparameters used by Jafar (Willi et al., 2024) for their CoinRun case study.
This setting is identical to Bruce et al. (2024), but Willi et al. (2024) use a patch size of 16 for
faster training. Unlike Bruce et al. (2024), they pre-train the LAM as opposed to co-training the
LAM with the dynamics model. We use this configuration for the Jafar baseline runs (Figure 1,
middle row and Figure 3). We solely run this configuration with the Jafar repository.
Jasmine-base: We define a base configuration for Jasmine that represents a trade-off between
training speed, modeling quality and simplicity, integrating best practices from the language
modeling literature. This is Jasmine’s configuration in the wall-clock convergence comparison
(Figure 3) between Jasmine and Jafar, as well as our architectural and infrastructure ablations
(Figures 5, 10 and Tables 1, 2, 3, 4, 5).

F. Extending MaskGIT to Videos

MaskGIT (Chang et al., 2022) is defined on images and there are multiple ways to extend it to videos.
We follow Willi et al. (2024) by randomly masking tokens in the entire sequence using the uniformly
sampled probability p ~ U(0.5,1). An alternative would be to sample a different masking probability
per frame, similar to Chen et al. (2024), or leaving k ~ U(0, T) frames unmasked to closely emulate
inference.
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Parameter Genie | Genie w/ prepend | Jafar | Jasmine-base
Tokenizer # blocks 8 4
# heads 8
model dim 512
ffn dim 512 2048
# codes 1024
latent dim 32
patch size 16
total train steps 300k
learning rate 3%107%
Ir decay end 3x1074 0
batch size 48
LAM # blocks 8 4
# heads 8
model dim 512
ffn dim 512 2048
# codes 6
latent dim 32
patch size 16
total train steps 200k
learning rate 3%107°
Ir decay end 3%107° 0
batch size 48
Dynamics # blocks 12 6
# heads 8
model dim 512
ffn dim 512 2048
total train steps 200k
learning rate 3%107°
Ir decay end 3%107° 0
batch size 36
action conditioning additive prepend prepend
baseline MaskGIT
Training  optimizer AdamW
Ir schedule cos wsd
warmup steps 1k
wsd decay steps - 10%
dataset size (frames) 50M
co-training yes no
Inference temperature 1.0
maskgit steps 25

Table 6 | Configurations used in our experiments. We only show the difference to our base Genie
configuration. Note that Bruce et al. (2024) uses a tokenizer patch size of four, and that we use an
expanded dataset with 50M frames for all of our runs (to ensure that no method performs worse due
to overfitting).
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mask_prob = jax.random.uniform(rngl, minval=self.mask_limit)

mask = jax.random.bernoulli(rng2, mask_prob, vid_embed.shape[:-1])

mask = mask.at[:, 0].set(False)

vid_embed = jnp.where(jnp.expand_dims(mask, -1), self.mask_token, vid_embed)

Figure 8 | Code snippet from Willi et al. (2024) showing their batched masking logic.

mask_prob = jax.random.uniform(
_rng_prob, shape=(batch_size,), minval=self .mask_limit
)
per_sample_shape = vid_embed_BTNM.shape[1:-1]
mask = jax.vmap(
lambda rng, prob: jax.random.bernoulli(rng, prob, per_sample_shape),
in_axes=(0, 0),
) (jnp.asarray(_rngs_mask), mask_prob)
mask = mask.at[:, 0].set(False)
vid_embed_BTNM = jnp.where(
jnp.expand_dims(mask, -1), self.mask_token.value, vid_embed_BTNM
)

Figure 9 | Code snippet from Jasmine showing its batched masking logic.

G. Evaluation Metrics

In early experiments, we found the Genie configuration to suffer from a discrepancy in performance
between validation loss and autoregressive rollouts (Figure 2). Therefore, besides validation loss,
Jasmine also tracks rollout metrics throughout training of the dynamics model. We generate a single
frame using the sampling logic of the respective architecture and calculate SSIM and PSNR between
the generated frame and the ground-truth. Although rollout metrics are calculated on a single frame,
we find that they directly correlate with the model’s performance in generating full rollouts. Validation
and rollout metrics are calculated on a validation set. The rollouts in Figures 1, 4, 10 and 11 are
sampled from frames of a test set.

H. Jafar’s Batched Masking Logic

Whereas Willi et al. (2024) sample a single masking probability and apply the same masking
pattern to all samples in a batch (Figure 8), Jasmine samples batch_size many sampling probabilities
and uses per-sequence masking patterns (Figure 9). This leads to significantly reduced loss variance
(Figure 3), especially in highly distributed settings.

I. Model Inspection using Treescope
Jasmine’s training loop is highly modular and supports easy model surgery as well as model inspection

using Treescope (Johnson, 2024). We provide a demo notebook® alongside our repository, which
illustrates debugging a common training instability (Figure 12).

Shttps://colab.research.google.com/drive/1zHkciFIZxX1oJgue9F5LtF1AOmOOT JI£
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b

5

Figure 10 | Autoregressive rollouts on five randomly selected trajectories from the CoinRun environ-
ment. Each set of three rows corresponds to one trajectory, showing ground-truth frames (top), Jafar
samples (middle), and Jasmine samples (bottom). The four conditioning frames are omitted.
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Figure 11 | Autoregressive rollouts on five randomly selected trajectories from the CoinRun envi-
ronment. Each set of three rows corresponds to one trajectory, showing ground-truth frames (top),
samples using the diffusion baseline (middle), and samples using the MaskGIT baseline (bottom).
The four conditioning frames are omitted.
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© # checkpoint @ 20k

lam, rng = build_model{args, rng)

optimizer, Wlr_schedule_fn = build_optimizer(lam, args)

step, optimizer, loader_iterator = restore_checkpoint_if_needed(
args, ckpt_mgr, optimizer, loader_iterator, 20000

)

lam = optimizer.model

print(f"Restored optimizer and dataloader at step {step}.")

enable_sowing(lam)
print("Sowing enabled on encoder/decoder.")

outputs = lam{batch, training=True)
nnx.display(lam.encoder}

num_blocks=4,

num_heads=8,

dropout=0.0,

param_dtype= jax.numpy.float3z2,

dtype=jax.numpy.bfloatl6,

use_flash_attention=True,

sow_logits=True,

sow_weights=False,

sow_activations=False,

input_norml= |[LayerNorm(scale=Param(value=<jax.Array float32(768,) =1.0 +0.0041 [=0.99, <1.0] nonz
input_dense= [Lifn€ar(kernel=Param(value=<jax.Array float32(768, 512) =6.6e-05 +0.036 [=-0.091, s@.
input_norm2= LayerNorm(scale=Param(value=<jax.Array float32(512,) =1.0 #0.0037 [=0.98, =1.@] nonz
pos_enc= _model=512, max_len=5000, pe=Variable(value=<jax.Array
blocks= [ STBlock(activations=Intermediate(value=(<jax.Array float32(36, 16, 17, 512) =0.9 1.5 [=
output_dense=-[Linear(kernel=Param(value=<jax.Array float32(512, 32) =0.00021 20.044 [=-0.11, =0.1

b1

logits="Intermediate( # 313,344 (626.7 KB)
value="(
<jax.Array bfleatl6(36, 16, 17, 32) =-0.013 +6.2 [=-4.4e+01, =4.2e+01] zero:1 nonzero:313_343

-l

axis 1: 16
axis 2: 17

axls B: 36
axis 3:; 32

REEN FRERESEE

Figure 12 | Treescope visualization when performing model inspection. The notebook illustrates
inspecting output logits at specific checkpoints.
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