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Abstract

Graph matching in the setting of federated learn-
ing is still an open problem. This paper proposes
an unsupervised federated graph matching algo-
rithm, UFGM, for inferring matched node pairs
on different graphs across clients while maintain-
ing privacy requirement, by leveraging graphlet
theory and trust region optimization. First, the
nodes’ graphlet features are captured to generate
pseudo matched node pairs on different graphs
across clients as pseudo training data for tack-
ling the dilemma of unsupervised graph matching
in federated setting and leveraging the strength
of supervised graph matching. An approximate
graphlet enumeration method is proposed to sam-
ple a small number of graphlets and capture
nodes’ graphlet features. Theoretical analysis is
conducted to demonstrate that the approximate
method is able to maintain the quality of graphlet
estimation while reducing its expensive cost. Sec-
ond, we propose a separate trust region algorithm
for pseudo supervised federated graph matching
while maintaining the privacy constraints. In or-
der to avoid expensive cost of the second-order
Hessian computation in the trust region algorithm,
we propose two weak quasi-Newton conditions to
construct a positive definite scalar matrix as the
Hessian approximation with only first-order gradi-
ents. We theoretically derive the error introduced
by the separate trust region due to the Hessian
approximation and conduct the convergence anal-
ysis of the approximation method.

1. Introduction
Federated graph learning (FGL) is a promising paradigm
that enables collaborative training of shared machine learn-
ing models over large-scale distributed graph data, while
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preserving privacy of local data (Zheng et al., 2020; Chen
et al., 2021; Zhang et al., 2021a). Only recently, researchers
have started to attempt to study the FGL problems (Suzu-
mura et al., 2019; Mei et al., 2019; Zhou et al., 2020b; Jiang
et al., 2020; Wang et al., 2020a; Chen et al., 2021; Ke &
Honorio, 2021; Wu et al., 2021a; Wang et al., 2021a; He
et al., 2021b;c). Most of them concentrate on node classifi-
cation (Zhang et al., 2021b; Wang et al., 2022a; Chen et al.,
2022a; Baek et al., 2022; Xie et al., 2023; Zhang et al., 2023;
Li et al., 2023), graph classification (Xie et al., 2021; He
et al., 2021a; Tan et al., 2022; Wang et al., 2022b), network
embedding (Ni et al., 2021; Zhang et al., 2022b; Hu et al.,
2023; Zhu et al., 2023), and link prediction (Chen et al.,
2022c; Baek et al., 2022). Graph matching (i.e., network
alignment) is one of the most important research topics in
the graph domain, which aims to match the same entities
(i.e., nodes) across two or more graphs (Zhang & Yu, 2015;
Zhang et al., 2015; Liu et al., 2016; 2017; Malmi et al., 2017;
Vijayan & Milenkovic, 2018; Nassar et al., 2018; Zhou et al.,
2018b; Chu et al., 2019; Wang et al., 2019b).

Despite achieving remarkable performance in the above
graph learning domains, there is still a paucity of tech-
niques of effective federated graph matching (FGM), which
is much more difficult to study. Directly sharing and infer-
ring matched node pairs on different graphs across clients
and local graphs over multiple clients gives rise to a serious
privacy leakage concern and thus limits the applicability of
graph matching in the centralized setting. A real applica-
tion is user account linking in different social networks (Shu
et al., 2016; Li et al., 2019a). Since the user information con-
tain many sensitive information, directly uploading the raw
user data to the server for centralized graph matching (CGM)
gives rise to a serious privacy risk (Zhang et al., 2021a). An-
other real scenario is financial crime detection on transaction
networks with millions to billions of bank customers and
transactions (Suzumura et al., 2019; Wang et al., 2019a).
Data exchange among clients and server about sensitive
bank customer and transfer data should be prohibited for pri-
vacy concerns. Recently, US and UK governments launched
a privacy-enhancing technology challenge about federated
learning for financial crime detection in July 2022 (NSF;
IBM). The dataset contains SWIFT transfer data between
bank accounts and individual bank account transaction data.
Frequent interbank transactions between the same or affili-
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ated entities may be potential money laundering activities.
In this work, we aim to answer the following questions: (1)
How to train effective FGM models on distributed clients
with maintaining high matching performance? (2) How
to make FGM models with strong privacy protection for
cross-client information exchange?

Research activities on CGM can be classified into two
groups: supervised graph matching (Man et al., 2016; Zhou
et al., 2018a; Yasar & Çatalyürek, 2018; Li et al., 2019b;a;
Chu et al., 2019; Fey et al., 2020) and unsupervised graph
matching (Zhou et al., 2018b; Heimann et al., 2018; Zhong
et al., 2018; Li et al., 2018; Huynh et al., 2020b). The
former utilizes a set of pre-matched node pairs between
pairwise graphs belonging to the same entities as training
data to learn an effective graph matching model by minimiz-
ing the distances (or maximizing the similarities) between
the pre-matched node pairs. The latter fails to employ the
strength of training data and thus often leads to sub-optimal
solutions. However, supervised graph matching using the
pre-matched node pairs as the training data is improper for
the FGM scenarios due to privacy risks of direct cross-client
information exchange when the graphs to be matched are
distributed over different clients.

This motivates us to capture nodes’ graphlet features to
generate pseudo matched node pairs on different graphs
across clients as the pseudo training data for leveraging the
strength of supervised graph matching. A graphlet is a small
graph of size up to k nodes of a larger graph, such as triangle,
wedge, or k-clique, which describes the local topology of a
larger graph. A node’s local topology can be measured by a
graphlet feature vector, where each component denotes the
frequency of one type of graphlets. Thus, a graphlet feature
vector is one of node structure representation (Shervashidze
et al., 2009; Kondor et al., 2009; Soufiani & Airoldi, 2012;
Jin et al., 2018; Tu et al., 2019). It is highly possible that the
nodes in different graphs with the small distances regarding
their graphlet features correspond to the same entities. Thus,
they can be treated as the pseudo matched node pairs for
pseudo supervised FGM.

However, graphlet enumeration one by one on large graphs
is impossible due to expensive cost. We propose to lever-
age Monte Carlo Markov Chain (MCMC) technique for
sampling a small number of graphlets. The number of
graphlet samples is much smaller than that of all graphlets
in the graphs, which dramatically improves the efficiency
of graphlet enumeration. Theoretical analysis is conducted
to demonstrate that the estimated graphlet count based on
the MCMC sampling strategy is close to the actual count of
all graphlets, which implies that the graphlet samples and
all graphlets share similar distributions.

In order to maintain the privacy requirement of federated
learning, we first encrypt local raw graph data on each client

with a key shared by all clients (not accessed by the server).
The encrypted graph data from all clients are accessed by
only the server (not by other clients) for matching the graphs
with each other. Note that stochastic gradient descent (SGD)
optimization widely used in deep learning fails to work on
the clients in the FGM, since each client can access only its
own local graph data and thus cannot update local loss based
on the pseudo matched node pairs. If we choose to conduct
both evaluation and optimization of the graph matching
model at the server, then the computational capability of
each client are unutilized. This will dramatically degrade the
algorithm efficiency, especially large-scale graph matching
is often time-consuming. We propose a separate trust region
algorithm for pseudo supervised FGM while maintaining
the privacy constraints. Specifically, we separate model
optimization from model evaluation in the trust region algo-
rithm: (1) the server aggregates the local model parameter
Ms
b on each client s into a global model parameter Mb at

global iteration b, runs and evaluates Mb on the all pseudo
training data D̃st and the encrypted graph data, and com-
putes the individual loss Ls(Mb), the gradient ∇Ls(Mb),
and the Hessian ∇2Ls(Mb) for each client s; (2) client s
receives its individual Ls(Mb), ∇Ls(Mb), and ∇2Ls(Mb)
from the server and optimizes Ms

b+1.

Unfortunately, the second-order Hessian computation
∇2Ls(Mb) in the separate trust region algorithm is time-
consuming over large graphs. We propose to explore
quasi-Newton conditions to construct a positive definite
scalar matrix αbI, where αb ≥ 0 is a scalar and I is
an identify matrix. Client s uses only first-order gradi-
ents ∇Ls(Mb) to compute the Hessian approximation, i.e.,
zT∇2Ls(Mb)z ≈ αbzT z. We theoretically derive the error
by the separate trust region due to the Hessian approxima-
tion and conduct the convergence analysis of the approx-
imation method. In conclusion, the server computes the
individual loss and the first-order gradients. The clients
calculates the second-order Hessians and optimizes the lo-
cal models. This design is helpful to make full use of the
computational capability of each client to improve the FGM
efficiency over large graphs.

To our best knowledge, this work is the first to offer an un-
supervised federated graph matching solution for inferring
matched node pairs on different graphs across clients while
maintaining the privacy requirement of federated learning,
by leveraging the graphlet theory and trust region optimiza-
tion. Our UFGM method exhibits three compelling advan-
tages: (1) The combination of the unsupervised FGM and
the encryption of local raw graph data is able to provide
strong privacy protection for sensitive local data; (2) The
graphlet feature extraction can leverage the strength of su-
pervised graph matching with the pseudo training data for
improving the matching quality; and (3) The separate trust
region for pseudo supervised FGM is helpful to enhance the
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efficiency while maintaining the privacy constraints.

2. Background
2.1. Supervised Graph Matching

Given a set of S graphs G = {G1, · · · , GS}. Each graph
is denoted as Gs = (V s, Es) (1 ≤ s ≤ S), where V s =
{vs1, vs2, · · · } is the set of nodes and Es = {(vsi , vsj ) : 1 ≤
i, j ≤ |V s|, i 6= j} is the set of edges. Each Gs has a binary
adjacency matrix As, where each entry As

ij = 1 if there
exists an edge (vsi , v

s
j ) ∈ Es; otherwise As

ij = 0. As
i:

specifies the ith row vector of As and is used to denote the
representation of a node vsi .

The entire training data consist of a set of
training data between pairwise graphs, i.e.,
D = {D12, · · · , D1S , · · · , D(S−1)S}. Each Dst

(1 ≤ s < t ≤ S) specifies a set of pre-matched node
pairs Dst = {(vsi , vtj)|vsi↔vtj , vsi ∈ V s, vtj ∈ V t}, where
vsi↔vtj represents that two nodes vsi and vtj are the
equivalent ones in two graphs Gs and Gt and are treated as
the same entity. The goal of supervised graph matching is
to utilize Dst as the training data to identify the one-to-one
matchings between nodes vsi and vtj in the test data.

Based on structure, attribute, or embedding features, exist-
ing efforts often aim to learn an matching functionM to map
the node pairs (vsi , v

t
j) ∈ Dst with different features across

two graphs into common space, i.e, minimize the distances
(or maximize the similarities) between source nodes M(vsi )
and target ones M(vtj) (Man et al., 2016; Zhou et al., 2018a;
Yasar & Çatalyürek, 2018; Li et al., 2019b;a). The node
pairs (vsi , v

t
j) ∈ Dst with the smallest distances or largest

similarities in the test data are selected as the matching re-
sults. This work follows these existing efforts to design the
loss function.

L =

S∑
s=1

S∑
t=s+1

E(vs
i ,v

t
j)∈D

st‖M(vsi )−M(vtj)‖22 (1)

Graph convolutional networks (GCNs) have demonstrated
their superior learning performance in network embedding
tasks (Kipf & Welling, 2017). In this paper, if there are
no specific descriptions, we utilize the GCNs to learn the
embedding representation with the same dimensions of each
node vsi in each graph Gs, based on its original structure
features As

i:. The embedding representation of vsi is denoted
by vsi . Thus, the objective of supervised graph matching is
reformulated as follows.

L =

S∑
s=1

S∑
t=s+1

E(vs
i ,v

t
j)∈D

st‖M(vs
i )−M(vt

j)‖22 (2)

2.2. Federated Graph Matching

In this work, without loss of generality, we assume each
client contains only one local graph in the federated setting,

but it is easy to extend to the case of multiple local graphs
owned by each client. Given S clients with a set of S
graphs G = {G1, · · · , GS} and their local training data
D = {D12, · · · , D1S , · · · , D(S−1)S}, and a server, FGM
aims to learn a global graph matching model M on the
server by optimizing the problem below.

min
M∈Rd

L(M) =

S∑
s=1

Ls(M) =

S∑
s=1

S∑
t=s+1

Nst

N
Lst(M)

where Lst(M) =
1

Nst

∑
(vs

i ,v
t
j)∈D

st

lstij (M)

(3)

where lstij (M) = ‖M(vsi ) − M(vtj)‖22 denotes the loss
function of the prediction on the pre-matched node pair
(vsi , v

t
j) ∈ Dst made with M . Ls(M) and L(M) are the

local loss function on client s and the global one respectively.
Nst = |Dst| denotes the size of local training dataset Dst.
N is the size of total training data D, i.e., N = N12 + · · ·+
N1S+· · ·+N (S−1)S . A local graph matching modelMs is
optimized based on the local loss Ls(M). In the FGM,M is
iteratively updated with the aggregation of allM1, ·,MS on
S clients in each round, i.e., M =

∑S
s=1

∑S
t=s+1

Nst

N Ms.

Observed from Eq.(3), when calculating the local loss
Ls(M) on client s for optimizing the local model Ms, we
need to access the pre-matched node pairs {vsi , vtj} ∈ Dst

and the graph Gt on client t. This operation obviously vio-
lates the privacy requirement of federated learning. Thus, it
is difficult to utilize the pre-matched node pairs for super-
vised FGM.

3. Monte Carlo Markov Chain for Graphlet
Feature Extraction

As discussed in the last section, the supervised graph match-
ing usually achieves better performance than the unsuper-
vised one. In addition, supervised FGM may lead to serious
privacy concerns. In this work, we explore to capture nodes’
graphlet features to generate pseudo matched node pairs on
different graphs across clients as the pseudo training data
for leveraging the strength of supervised graph matching
while keeping the local graph data safe.

In order to prohibit other clients and server from accessing
local raw graphs and embedding representations on any
client s for maintaining the privacy requirement of FGM, we
first utilize an efficient matrix generation method (Randall,
1993) to produce a random nonsingular matrix K as a key.
Each client employs K to encrypt its network embedding
v̂si = vsiK from the original one vsi and uses its inverse
K−1 to decrypt from v̂si to vsi = v̂siK

−1. The encrypted
v̂si from all clients will be uploaded to the server for graph
matching. It is important that K is kept secret between
senders and recipients. In our setting, K is shared by all
clients, but not accessed by the server.
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The first step of graphlet feature extraction is to enumerate
all graphlets in a graph G = (V,E). Concretely, let Gk
be the set of all C connected induced k-subgraphs (with
k nodes) in G. Let G1,G2, · · · ,GR be all R types of non-
isomorphic k-graphlets (with k nodes) for which we would
like to count. We denote a k-subgraph g ∈ Gk that is
isomorphic to a k-graphlet Gr (1 ≤ r ≤ R) as g ∼ Gr. The
number of k-graphlets of type r in G is equal to

nkr(G) =
∑
g∈Gk

I (g ∼ Gr) (4)

where I(·) is an indicator function.

However, graphlet enumeration one by one on large-scale
graphs is impossible due to expensive cost. We propose a
MCMC sampling technique for which one can calculate the
stationary distribution p on the k-subgraphs in Gk. We only
sample a small number of k-subgraphs gk1, · · · , gkO in G,
where the size O << C. Then we use Horvitz-Thompson
inverse probability weighting to estimate the graphlet counts
as follows.

ñkr(G) =
1

O

O∑
o=1

I (gko ∼ Gr)

p(gko)
(5)

Next, we describe how to expand from 1-subgraphs to k
subgraphs in the graphlet enumeration. For any (k − 1)-
subgraph gk−1, we expend it to a k-subgraph by adding a
node from its neighborhood Nv(gk−1) at random in terms
of a certain probability distribution, where Nv(gk−1) is the
set of all nodes adjacent to a certain node in gk−1 but not
including all nodes in gk−1.

This expansion operation can explore any subgraph in Gk.
It iteratively builds a k-subgraph gk from a starting node.
First, suppose that a starting node v1 is sampled from the dis-
tribution q, which can be computed from local information.
We assume that q(v) = f(deg(v))

F , where f(x) is a certain
function (usually a polynomial) and F is a user-defined nor-
malizing factor. Thus, a 1-subgraph g1 = {v1} is generated.
Second, it samples an edge (v1, v2) uniformly in Ne(g1),
where Ne(g1) is the set of all edges that connect a node
in g1 and a node outside of g1. Thus, a node v2 is then at-
tached to g1, forming a 2-subgraph g2 = g1 ∪ v2 ∪ (v1, v2).
Similarly, at each iteration, it samples an edge (vi, vj+1)
(1 ≤ i ≤ j) from Ne(gj) uniformly at random and attach
the node vj+1 to the subgraph gj , forming a j + 1-subgraph
gj+1 = gj ∪ vj+1 ∪ (vi, vj+1). After k − 1 iterations,
we obtain a k-subgraph gk. Once gk has been sampled
we need to classify it into a graphlet type, i.e., gk ∼ Gr.
The method repeats the above process O times until O k-
graphlets gk1, gk1, · · · , gkO are produced.

We conduct the theoretical analysis to evaluate the perma-
nence of our graphlet enumeration based on the MCMC
sampling, in terms of the difference between the estimated
and actual graphlet counts.

In the estimation ñkr(G) in Eq.(5), a key problem is to cal-
culate p(gko). The probability p(gk) of getting a k-subgraph
gk via subgraph expansion from a (k − 1)-subgraph gk−1

is given by the sum p(gk) =
∑
gk−1

P(gk|gk−1)p(gk−1),
where the sum is taken over all connected (k−1)-subgraphs
gk−1 ⊂ gk, and P(gk|gk−1) is the probability of getting
from gk−1 to gk in the expansion process.

p(gk) =
∑

gk−1⊂gk

p(gk−1)
deggk−1

(
Vgk − Vgk−1

)
|Ne(gk−1)|

=
∑

gk−1⊂gk

p(gk−1)
|Egk | −

∣∣Egk−1

∣∣∑
v∈Vgk−1

deg(v)− 2
∣∣Egk−1

∣∣
(6)

where for a subgraph gk ⊆ G, Vgk the set of its nodes and
Egk is the set of its edges. deggk−1

(V ) specifies the number
of nodes in gk−1 that are connected to a node set V . deg(v)
denotes the number of associated edges of a node v.

In order to calculate p(gk), we need to consider all pos-
sible orderings of nodes in gk. Assume that the origi-
nal node ordering of gk via the subgraph expansion is
xk = {v1, v2, · · · , vk}. Let S(gk) = [v1, v2, · · · , vk] be
the set of all possible node sequences of xk. Notice that
an induced subgraph hl(xk) = {v1, v2, · · · , vl, xk, G} of
graph G with the first l nodes {v1, v2, · · · , vl} in xk must
be a connected subgraph for any l (1 ≤ l ≤ k). Thus, we
have

S(gk) = {[v1, . . . , vk]|{v1, . . . , vk}
= Vgk , gk|{v1, . . . , vl}is connected}

(7)

The following theorems give an explicit solution of the
probability p(gk) of getting a k-subgraph gk via subgraph
expansion and the variance of the estimation ñkr(G) of
graphlet counts.
Theorem 1. Let xk = {v1, v2, · · · , vk} be the original
node ordering of gk via the subgraph expansion, S(gk) =
[v1, v2, · · · , vk] be the set of all possible node sequences of
xk, xk[i] be the ith node in xk, F be a user-defined nor-
malizing factor in the subgraph expansion, and hl(xk) =
{v1, v2, · · · , vl, xk, G} be an induced subgraph of graph G
with the first l nodes {v1, v2, · · · , vl} in xk, then the proba-
bility of getting a k-subgraph gk via the subgraph expansion
is

p(gk) =
∑

xk∈S(gk)

f(deg(xk[1]))

F

k−1∏
l=1

∣∣Ehl+1(xk)

∣∣− ∣∣Ehl(xk)

∣∣∑l
i=1 deg(xk[i])− 2

∣∣Ehl(xk)

∣∣
(8)

Theorem 2. Let ñkr(G) = 1
O

∑O
o=1

I(gko∼Gr)
p(gko) be the esti-

mation of graphlet counts, d1, · · · , dk be the k highest de-
grees of nodes in G, and denote D =

∏k−1
l=2 (d1 + · · ·+ dk).
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If q for sampling the starting node is the stationary distribu-
tion of the node random walk, then the upper bound of the
variance Var(ñkr(G)) is

Var(ñkr(G)) ≤ 1

O
nkr(G)

2 |EG|
|S(Gr)|D (9)

Please refer to Appendix A.2 for detailed proof of Theorems
1 and 2.
It is observed that the variance Var(ñkr(G)) is small when
the distribution of p(gk) is close to uniform distribution. A
larger p(gk) results in a smaller variance of the estimator.
Thus, the variation can be reduced by an appropriate choice
of q for sampling the starting node, say a smaller normal-
izing factor F . In this case, the estimated graphlet count
ñkr(G) is close to the actual count nkr(G), which implies
that the graphlet samples and all graphlets share similar
distributions.

We capture the graphlet features of a node by computing the
frequency of each type of graphlet with size up to k that is
associated with this node. For the node pairs between pair-
wise graphs, we compute the cosine similarity scores based
on the graphlet features on all R types of graphlet. The top-
K node pairs with the largest similarities between pairwise
graphs Gs and Gt are treated as the pseudo matched node
pairs and added to the pseudo training data D̃st.

4. Separate Trust Region for Unsupervised
Federated Graph Matching

In this work, according to the graphlet-based pseudo train-
ing data D̃st and the encrypted network embedding v̂si , we
propose a separate trust region algorithm for pseudo su-
pervised FGM while maintaining the privacy constraints.
Specifically, we separate model optimization from model
evaluation in the trust region algorithm: (1) the server ag-
gregates the local model parameter Ms

b on each client s
into a global model parameter Mb at global iteration b, runs
and evaluates Mb on all the pseudo training data D̃st and
the encrypted network embeddings v̂si , and computes the
individual loss Ls(Mb), the gradient ∇Ls(Mb), and the
Hessian ∇2Ls(Mb) for each client s; (2) client s receives
its individual Ls(Mb),∇Ls(Mb), and∇2Ls(Mb) from the
server and optimizes Ms

b+1.

Server : ComputeMb =

S∑
s=1

S∑
t=s+1

Nst

N
Ms

b ,

Lst(Mb) =
1

Nst

∑
(vs

i ,v
t
j)∈D̃

st

‖Mb(v̂
s
i )−Mb(v̂

t
j)‖22,

Ls(Mb) =

S∑
t=s+1

Nst

N
Lst(Mb),

∇Ls(Mb), and∇2Ls(Mb)
(10)

Client s : Optimize z∗ = argminub(z)

= Ls(Mb) + (∇Ls(Mb))
T z +

1

2
zT∇2Ls(Mb)z,

s.t.‖z‖ ≤ ∆s, UpdateMs
b+1 = Ms

b + z∗

(11)

where ∆s > 0 is the trust-region radius. z∗ is the trust-
region step. The individual loss Ls(Mb) aims to minimize
the sum of distance between nodes on client s and nodes
on other clients in the pseudo training data D̃st. The node
pairs with the smallest distance between pairwise encrypted
network embeddings are selected as the matching results.

A key challenge in the separate trust region algorithm is to
compute the second-order Hessian computation∇2Ls(Mb).
It is time-consuming over large-scale graph data. We pro-
pose to explore quasi-Newton conditions to construct a posi-
tive definite scalar matrix αbI, where αb ≥ 0 is a scalar and
I is an identify matrix, as the Hessian approximation with
only first-order gradients, i.e., zT∇2Ls(Mb)z ≈ αbzT z.

Concretely, the quasi-Newton condition is given as follows.

∇2Ls(Mb)zb = yb (12)

where zb = Mb+1−Mb and yb = ∇Ls(Mb+1)−∇Ls(Mb).
The condition is derived from the following quadratic
model.

ub+1(z) = Ls(Mb+1)+(∇Ls(Mb+1))T z+
1

2
zT∇2Ls(Mb+1)z

(13)

The quadratic model is an approximation of the objective
function at iteration b+ 1 and satisfies the following three
interpolation conditions:

(1) ub+1(0) = Ls(Mb+1), (2)∇ub+1(0) = ∇Ls(Mb+1),

(3)∇ub+1(−zb) = ∇Ls(Mb)
(14)

It is difficult to satisfy the quasi-Newton equation in Eq.(12)
with a nonsingular scalar matrix (Farid et al., 2010). A
recent study introduced a weak condition form by project-
ing the quasi-Newton equation in Eq.(12) in the direction
zb (J. E. Dennis & Wolkowicz, 1993).

zTb ∇2Ls(Mb+1)zb = zTb yb (15)

The choice of zb may influence the quality of the curvature
information provided by the weak quasi-Newton condition.
Another weak condition is directly derived from an inter-
polation emphasizing more on function values rather than
from the projection of the quasi-Newton condition (xiang
Yuan, 1991).

ub+1(−zb) = Ls(Mb) (16)
By combining sub-conditions (1) and (2) in Eq.(14) and
replacing (3) with Eq.(16), we can get another weak quasi-
Newton condition.
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zTb ∇2Ls(Mb+1)zb = (1− ω)zTb yb + ω
[
2 (Ls(Mb)− Ls(Mb+1)) + 2zTb ∇Ls(Mb+1)

]
= zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))T zb

] (18)

αb+1(ω) =
zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))T zb

]
zTb zb

(19)

zTb ∇2Ls(Mb+1)zb = 2
(
Ls(Mb)− Ls(Mb+1) + zTb ∇Ls(Mb+1)

)
(17)

By integrating two types of weak quasi-Newton conditions
together, we have a generalized weak quasi-Newton condi-
tion in Eq.(18), where ω ≥ 0 is the weight.

If∇2Ls(Mb+1) is set to be a scalar matrix α∗b+1(ω)I, then
we have Eq.(19).

The following theorems derive the error introduced by the
separate trust region due to the Hessian approximation and
conduct the convergence analysis of the approximation
method.
Theorem 3. Let d be the dimension of the flattened Mb+1,
⊗ be an appropriate tensor product, Ab+1 ∈ Rd×d×d and
Bb+1 ∈ Rd×d×d×d are the tensors ofLs(Mb+1) at iteration
b+ 1 satisfying

Ab+1 ⊗ z3b =

d∑
i,j,k=1

∂3Ls(Mb+1)

∂M i∂M j∂Mk
zibz

j
bz

k
b (18)

and

Bb+1 ⊗ z4b =

d∑
i,j,k,l=1

∂4Ls(Mb+1)

∂M i∂M j∂Mk∂M l
zibz

j
bz

k
b z

l
b. (19)

Suppose that Ls(Mb+1) is sufficiently smooth, if ||zb|| is
small enough, then we have

zTb ∇2Ls(Mb+1)zb−αb+1(ω)zTb zb =

(
1

2
− ω

6

)
Ab+1 ⊗ z3b−(

1

6
− ω

12

)
Bb+1 ⊗ z4b +O

(
‖zb‖5

)
(20)

Theorem 4. Suppose ‖∇Ls(Mb)‖ 6= 0, the solution zb
of the separate trust region optimization argminub(z) =
Ls(Mb) + (∇Ls(Mb))

T z + 1
2z
T∇2Ls(Mb)z, s.t.‖z‖ ≤

∆s in Eq.(11) satisfies

ub(0)− ub(zb) ≥
1

2
‖∇Ls(Mb)‖min

{
∆s,
‖∇Ls(Mb)‖

αb

}
(21)

Please refer to Appendix A.2 for detailed proof of Theorems
3 and 4.
Finally, the separate trust region based on two weak quasi-
Newton conditions is given below.

z∗ = argminub(z) ≈Ls(Mb) + (∇Ls(Mb))
T z+

1

2
αb(ω)zT z, s.t.‖z‖ ≤ ∆s

(22)

5. Experimental Evaluation
In this section, we have evaluated the performance of our
UFGM model and other comparison methods for federated
graph matching over serval representative federated graph
datasets to date. We show that UFGM with graphlet fea-
ture extraction and separate trust region is able to achieve
higher matching accuracy and faster convergence in fed-
erated settings against several state-of-the-art centralized
graph matching, federated graph learning, and federated
domain adaption methods.

Datasets. We focus on three representative graph learn-
ing benchmark datasets: social networks (SNS) (Zhang
et al., 2015), protein-protein interaction networks (PPI) (Zit-
nik & Leskovec, 2017), and DBLP coauthor graphs
(DBLP) (DBL). Without loss of generality, we assume that
each client contains only one local graph in the federated
setting. For the supervised learning methods, the training
data ratio over the above three datasets is all fixed to 20%.
We train the models on the training set and test them on the
test set for three datasets. The detailed descriptions of the
federated datasets are presented in Appendix A.5.

Baselines. To our best knowledge, this work is the first to
offer an unsupervised federated graph matching solution
for inferring matched node pairs on different graphs across
clients while maintaining the privacy requirement of feder-
ated learning, by leveraging the graphlet theory and trust re-
gion optimization. Thus, we choose three types of baselines
that are most close to the task of federated graph matching:
centralized graph matching, federated graph learning, and
federated domain adaption. We compare the UFGM model
with six state-of-the-art centralized graph matching models:
NextAlign (Zhang et al., 2021c), NetTrans (Zhang et al.,

6



Effective Federated Graph Matching

Table 1: Final performance on SNS

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.430 0.512 0.571 0.635 2.149

Centralized NetTrans 0.379 0.439 0.447 0.496 1.611

Graph CPUGA 0.230 0.238 0.252 0.297 2.551

Matching ASAR-GM 0.199 0.229 0.252 0.337 1.410
SIGMA 0.220 0.232 0.253 0.262 1.330

SeedGNN 0.319 0.340 0.342 0.388 2.919
DualAdapt 0.001 0.002 0.002 0.002 2.049

Federated EFDA 0.001 0.001 0.002 0.002 3.427
Domain WSDA 0.003 0.005 0.007 0.011 5.129
Adaption FedKA 0.001 0.001 0.010 0.013 3.715

FedGraphNN 0.051 0.100 0.116 0.161 3.120

Federated FKGE 0.177 0.205 0.222 0.250 1.086

Graph SpreadGNN 0.078 0.146 0.175 0.192 0.189

Learning SFL 0.000 0.000 0.000 0.001 4.332
FederatedScope-GNN 0.000 0.000 0.000 0.001 5.611

FedStar 0.039 0.071 0.105 0.136 3.770
UFGM 0.371 0.440 0.411 0.459 0.501

2020a), CPUGA (Pei et al., 2022), ASAR-GM (Ren et al.,
2022), SeedGNN (Yu et al., 2022), and SIGMA (Li et al.,
2022), six representative federated graph learning architec-
tures: FedGraphNN (He et al., 2021a), FKGE (Peng et al.,
2021), SpreadGNN (He et al., 2022), SFL (Chen et al.,
2022b), FederatedScope-GNN (Wang et al., 2022b), and
FedStar (Tan et al., 2022), and four recent federated do-
main adaption methods: DualAdapt (Peng et al., 2020),
EFDA (Kang et al., 2022), WSDA (Jiang & Koyejo, 2023),
and FedKA (Sun et al., 2022). The detailed descriptions of
the baselines are presented in Appendix A.5.

Evaluation metrics. By following the same settings in two
representative graph matching models (Yasar & Çatalyürek,
2018; Fey et al., 2020), We employ a popular measure,
Hits@K, to evaluate and compare our UFGM model to
previous lines of work, where Hits@K measures the pro-
portion of correctly matched nodes ranked in the top-K list.
A larger Hits@K value indicates a better graph matching
result. We use final Hits@K to evaluate the quality of
the federated federated learning algorithms. In addition,
we plot the measure curves regarding Hits@K and Loss
Function Values (Loss) with increasing rounds to verify
the convergence of different federated learning methods:
(Karimireddy et al., 2020; Mitra et al., 2021; Liu et al.,
2020; Reddi et al., 2021; Karimireddy et al., 2021; Wang
et al., 2021b). A smaller Loss score shows a better federated
learning result.

Final Hits@K and Loss on SNS and PPI. Tables 1 and
2 show the quality of six centralized graph matching, six
federated graph learning, and four federated domain adap-

tion algorithms over SNS and PPI respectively. We have
observed that our UFGM federated graph matching solution
outperforms all the competitors of federated graph learning
and federated domain adaption in most experiments. UFGM
achieves the highest Hits@K values (> 0.771 over SNS
and > 0.371 on PPI respectively) and the lowest Loss val-
ues (= 0.659 over SNS and = 0.501 on PPI respectively),
which are better than other ten baseline methods in all tests.
In addition, theHits@K scores achieved by UFGM is close
or much better than the centralized graph matching method.
Compared with the best centralized graph matching method,
NextAlign, theHits@1, Hits@5, Hits@10, andHits@50
scores by UFGM are only 15.3% lower respectively. A
reasonable explanation is that the combination of graphlet
feature extraction, separate trust region, and pseudo super-
vised learning is able to achieve higher matching accuracy
and faster convergence in federated settings. In addition,
the promising performance of UFGM over both datasets im-
plies that UFGM has great potential as a general federated
graph matching solution over federated datasets, which is
desirable in practice.

Hits@K Convergence on SNS and PPI. Figures 1 and
2 exhibit the Hits@K curves of eleven federated learning
models for graph matching over SNS and PPI respectively. It
is obvious that the performance curves by federated learning
algorithms initially keep increasing with training rounds and
remains relatively stable when the curves are beyond con-
vergence points, i.e., turning points from a sharp Hits@K
increase to a flat curve. This phenomenon indicates that
most federated learning algorithms are able to converge to
the invariant solutions after enough training rounds. How-
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Table 2: Final performance on PPI

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.951 0.962 0.972 0.979 2.115

Centralized NetTrans 0.921 0.932 0.958 0.960 1.571

Graph CPUGA 0.248 0.392 0.433 0.563 2.598

Matching ASAR-GM 0.299 0.394 0.453 0.668 1.699
SIGMA 0.499 0.560 0.633 0.782 1.652

SeedGNN 0.884 0.943 0.959 0.960 3.039
DualAdapt 0.006 0.006 0.007 0.011 2.106

Federated EFDA 0.007 0.011 0.014 0.029 3.249
Domain WSDA 0.009 0.011 0.013 0.016 2.746
Adaption FKA 0.005 0.006 0.006 0.008 2.227

FedGraphNN 0.081 0.132 0.179 0.200 4.259

Federated FKGE 0.231 0.323 0.352 0.441 0.817

Graph SpreadGNN 0.115 0.179 0.213 0.236 0.290

Learning SFL 0.000 0.001 0.001 0.002 5.285
FederatedScope-GNN 0.001 0.001 0.001 0.002 4.259

FedStar 0.057 0.092 0.137 0.211 2.255
UFGM 0.771 0.880 0.902 0.930 0.659
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Figure 1: Convergence on SNS
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Figure 2: Convergence on PPI

ever, among six federated graph learning and four federated
domain adaption approaches, our UFGM method can sig-
nificantly speedup the convergence on two datasets in most
experiments, showing the superior performance of UFGM
in federated settings. Compared to the learning results by
other federated learning models, based on training rounds
at convergence points, UFGM, on average, achieves 31.8%
and 35.4% convergence improvement on two datasets re-
spectively.

Loss Convergence on SNS and PPI. Figures 1 and 2 also
present the Loss curves achieved by eleven federated learn-
ing models on two datasets respectively. We have observed
obvious that the reverse trends, in comparison with the
Hits@K curves. In most experiments, our UFGM is able
to achieve the fastest convergence, especially, UFGM can
converge around 1,000 training rounds and then always
keep stable on two datasets. A reasonable explanation is
that UFGM fully utilizes the proposed graphlet feature ex-

traction techniques to generate the pseudo training data and
employ the strength of supervised graph matching for accel-
erating the training convergence.

Influence of trust-region radius. Figure 3 (a) demon-
strates the influence of trust-region radius in the separate
trust region in our UFGM model by varying it from 0.1
to 0.9. We have observed that the performance initially
raises when the trust-region radius increases. Intuitively,
a trust-region radius can help the algorithm quickly find
the optimal solution and thus help improve the quality of
federated graph learning. Later on, the performance curves
decrease quickly when the trust-region radius continuously
increases. A reasonable explanation is that a too large trust-
region radius may miss the optimal solution with large step
size in the search process. Thus, it is important to deter-
mine the optimal trust-region radius for the federated graph
learning.
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Figure 3: Final Hits@1 with varying parameters on three datasets

Sensitivity of subgraph size. Figure 3 (b) shows the in-
fluence of k-graphlets with k nodes in the graphlet feature
extraction in our UFGM model by varying it from 1 to 9.
We make the observation: on the quality over three datasets:
the performance curves keep increasing when the maximum
subgraph size for the graphlet counting increases and then
become stable when k continuously increases. A rational
guess is that a larger subgraph size initially makes UFGM
capture more graphlet features and be more resilient to the
unavailability of the training data. Later on, when k con-
tinues to increase and goes beyond some thresholds, the
performance curves become stable. A reasonable explana-
tion is that after the enough graphlet features have been
already extracted at a certain threshold and considered in
the FGM training, our UFGM model is able to generate a
good graph matching result. When k continuously increases,
this does not affect the performance of graph matching any
more.

Impact of training round. Figure 3 (c) exhibits the sen-
sitivity of training rounds of our UFGM model by vary-
ing them from 100 and 2,000. As we can see, the perfor-
mance curves continuously increase with increasing training
rounds. This is consistent with the fact that more training
rounds make the graph matching models be resilient to the
federated setting. It is observed that our UFGM converges
very fast on three datasets. From rounds 1,500 to 2,000, the
Hits@1 scores oscillate within the range of 7.8% on three
datasets.

Impact of graphlet sample numbers. Figure 9 (a) mea-
sures the performance effect of sampled graphlet numbers in
the Monte Carlo Markov Chain sampling for graphlet enu-
meration and estimation by varying O from 10 to 1,000. We
have witnessed the performance curves by UFGM initially
increase quickly and then become stable when O contin-
uously increases. Initially, a large O can help utilize the
strength of effective graphlet feature extraction for gener-
ating the pseudo training data for tackling the dilemma of
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Figure 4: Final Hits@1 with varying parameters on three
datasets

unsupervised graph matching in federated setting and em-
ploying the strength of supervised graph matching. Later
on, when O continues to increase and goes beyond some
thresholds, the performance curves become stable. A ratio-
nal guess is that after the enough graphlet features have been
already extracted at a certain threshold and considered in the
FGM training, our UFGM model is able to generate a good
graph matching result. When O continuously increases,
this does not affect the performance of graph matching any
more.

6. Conclusions
In this work, we have proposed an unsupervised federated
graph matching algorithm. First, an approximate graphlet
enumeration method is proposed to capture nodes’ graphlet
features to generate pseudo matched node pairs as pseudo
training data. Second, a separate trust region algorithm is
proposed for pseudo supervised federated graph matching
while maintaining the privacy constraints. Finally, empir-
ical evaluation on real datasets demonstrates the superior
performance of our UFGM.
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To our best knowledge, this work is the first to offer an un-
supervised federated graph matching solution for inferring
matched node pairs on different graphs across clients while
maintaining the privacy requirement of federated learning,
by leveraging the graphlet theory and trust region optimiza-
tion. Supervised graph matching methods that use the pre-
matched node pairs as the training data is improper for the
federated graph matching (FGM) scenarios due to privacy
risks of direct cross-client information exchange when the
graph data are distributed over different clients. Our method
combines the unsupervised FGM and the encryption of lo-
cal raw graph data to provide strong privacy protection for
sensitive local data. The proposed separate trust region for
pseudo supervised FGM is helpful to enhance the efficiency
while maintaining the privacy constraints. Our framework
can play an important building block for a wide variety
of cross-graph analysis applications that usually require
near-zero tolerance of data leaking, such as financial crime
detection and user account linking. This paper is primarily
of a theoretical nature. We expect our findings to produce
positive impact, i.e, significantly improve the privacy of
FGM models by utilizing the pseudo supervised FGM. To
our best knowledge, we do not envision any immediate nega-
tive societal impacts of our results, such as security, privacy,
and fairness issues.

An important product of this paper is to explore the possibil-
ity of capturing nodes’ graphlet features to generate pseudo
matched node pairs on different graphs across clients as
the pseudo training data for leveraging the strength of su-
pervised graph matching. Due to the expensive cost of
graphlet enumeration one by one on large-scale graphs. The
Monte Carlo Markov Chain (MCMC) technique is lever-
aged to sample a small number of graphlets for dramatically
improving the efficiency of graphlet enumeration. Theoreti-
cal analysis is conducted to demonstrate that the estimated
graphlet count based on the MCMC sampling strategy is

close to the actual count of all graphlets, which implies
that the graphlet samples and all graphlets share similar
distributions.
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Rácz, M. Z. and Sridhar, A. Correlated stochastic
block models: Exact graph matching with applica-
tions to recovering communities. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pp. 22259–
22273, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/
baf4f1a5938b8d520b328c13b51ccf11-Abstract.
html.

Randall, D. Efficient generation of random nonsingular ma-
trices. Random Struct. Algorithms, 4(1):111–118, 1993.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
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A. Appendix
A.1. Related Work

Centralized Graph Matching. Graph machine learning has attracted active research in recent years (Zhou et al., 2009;
2010; Cheng et al., 2011; Zhou & Liu, 2012; Cheng et al., 2012; Zhou & Liu, 2013; 2014; Zhou et al., 2015d; Zhou &
Liu, 2015; Zhou et al., 2015a; 2013; 2016; Zhou, 2017; Zhou et al., 2019d; 2018d;c; 2019b; Zhou & Liu, 2019; Zhou
et al., 2019c; 2020d; Wu et al., 2020a; 2021c; Jin et al., 2021; Wu et al., 2021b;d). Graph matching, also well known
as network alignment, which aims to identify the same entities (i.e., nodes) across multiple graphs, has been a heated
topic in recent years (Chu et al., 2019; Xu et al., 2019a; Wang et al., 2020e; Chen et al., 2020a;c; Zhang & Tong, 2016;
Mu et al., 2016; Heimann et al., 2018; Li et al., 2019b; Fey et al., 2020; Qin et al., 2020; Feng et al., 2019; Ren et al.,
2020; 2019a; Zhou et al., 2020e; Zhang et al., 2020b; Zhou et al., 2021; Ren et al., 2021; Zhang et al., 2021e; Zhou
et al., 2022b; Yuan et al., 2024b). Graph matching has been widely applied to many real-world applications ranging from
protein network matching in bioinformatics (Kelley et al., 2003; Singh et al., 2008), user account linking in different social
networks (Shu et al., 2016; Mu et al., 2016; Zhong et al., 2018; Li et al., 2018; Zhou et al., 2018a; Feng et al., 2019; Li
et al., 2019a), and knowledge translation in multilingual knowledge bases (Xu et al., 2019b; Zhu et al., 2019), to geometric
keypoint matching in computer vision (Fey et al., 2020). Research activities can be classified into three broad categories. (1)
Topological structure-based techniques, which rely on only the structural information of nodes to match two or multiple
graphs, including CrossMNA (Chu et al., 2019), MOANA (Zhang et al., 2019), GWL (Xu et al., 2019a), DPMC (Wang et al.,
2020e), MGCN (Chen et al., 2020a), GraphSim (Bai et al., 2020), ZAC (Wang et al., 2020c), GRAMPA (Fan et al., 2020),
CONE-Align (Chen et al., 2020c), DeepMatching (Wang et al., 2020b), Exact Graph Matching (Rácz & Sridhar, 2021),
qc-DGM (Gao et al., 2021), OTTER (Weighill et al., 2021), IA-GM (Zhao et al., 2021), GMTracker (He et al., 2021d), Proxy
Graph Matching (Tan et al., 2021), Fusion Moves for Graph Matching (Hutschenreiter et al., 2021), D-GAP (Lyu et al.,
2022), CPUGA (Pei et al., 2022), CAPER (Zhu et al., 2022a); (2) Structure and/or attribute-based approaches, which utilize
highly discriminative structure and attribute features for ensuring the matching effectiveness, such as FINAL (Zhang & Tong,
2016), ULink (Mu et al., 2016), gsaNA (Yasar & Çatalyürek, 2018), REGAL (Heimann et al., 2018), SNNA (Li et al., 2019b),
CENALP (Du et al., 2019), GAlign (Huynh et al., 2020b), Deep Graph Matching Consensus (Fey et al., 2020), CIE (Yu
et al., 2020), RE (Zhou et al., 2020c), Meta-NA (Zhou et al., 2020a), G-CREWE (Qin et al., 2020), GA-MGM (Wang
et al., 2020d), EAGM (Qu et al., 2021), DLGM (Yu et al., 2021), SIGMA (Liu et al., 2021), CGMN (Jin et al., 2022a),
FOTA (Liu et al., 2022c), SCGM (Liu et al., 2022a), and Grad-Align+ (Park et al., 2022); (3) Heterogeneous methods
employ heterogeneous structural, content, spatial, and temporal features to further improve the matching performance,
including SCAN-PS (Zhang et al., 2013a), MNA (Kong et al., 2013), HYDRA (Liu et al., 2014), COSNET (Zhang et al.,
2015), Factoid Embedding (Xie et al., 2018), HEP (Zheng et al., 2018), LHNE (Wang et al., 2019c), ActiveIter (Ren et al.,
2019b), NAME (Zhou et al., 2019a), TransLink (Zhou & Fan, 2019), DPLink (Feng et al., 2019), DETA (Meng et al., 2019).
BANANA (Ren et al., 2020), SAUIL (Qiao et al., 2020). GCAN (Jiang et al., 2022), and Deep Multi-Graph Matching (Ye
et al., 2022); Several papers review key achievements of graph matching across online information networks including
state-of-the-art algorithms, evaluation metrics, representative datasets, and empirical analysis (Shu et al., 2016; Guzzi &
Milenkovic, 2018; Huynh et al., 2020a; Vijayan et al., 2020; Yan et al., 2020; Zhang & Tong, 2020; Haller et al., 2022). It
has been widely applied to many real-world applications, including protein network alignment in bioinformatics (Liu et al.,
2017; Vijayan et al., 2020), user account linking in multiple social networks(Shu et al., 2016; Mu et al., 2016; Feng et al.,
2019), object matching in computer vision (Fey et al., 2020; Wang et al., 2020c;f; Yang et al., 2020), knowledge translation
in multilingual knowledge bases (Xu et al., 2019b; Zhu et al., 2019; Sun et al., 2020; Wu et al., 2020b; Zhu et al., 2022b;
Chakrabarti et al., 2022; Liu et al., 2022d; Guo et al., 2022; Zhu et al., 2022b; Xin et al., 2022) and text matching (Chen
et al., 2020b).

Federated Graph Learning. Parallel, distributed, and federated learning have been extensively studied in recent
years (Zhang et al., 2013b; Lee et al., 2013; Su et al., 2013; Zhang et al., 2014; Su et al., 2015; Zhou et al., 2015b;
Bao et al., 2015; Zhou et al., 2015c; Lee et al., 2015; Jiang et al., 2016; Lee et al., 2019; Qu et al., 2020; Zhang et al., 2021d;
Zhou et al., 2022a; Guimu Guo & Zhou, 2022; Jin et al., 2022b; Zhang et al., 2022a; Che et al., 2022; Yan et al., 2022a;
Liu et al., 2022b; Yan et al., 2022b;c; Che et al., 2023b; Hong et al., 2023; Chen et al., 2023; Che et al., 2023a; Liu et al.,
2023; 2024b;a; Yuan et al., 2024a; Khalil et al., 2024). With the increasing privacy awareness, commercial competition,
and regulation restrictions, real-world graph data is often generated locally and remains distributed graphs of multiple data
silos among a large number of clients (Zheng et al., 2020; Chen et al., 2021; Zhang et al., 2021a). Federated graph learning
(FGL) is a promising paradigm that enables collaborative training of shared machine learning models over large-scale
distributed graph data, while preserving privacy of local data. Based on how graph data can be distributed across clients,
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existing FGL techniques on machine unlearning can be broadly classified into three categories below. (1) Graph-level
FGL: each client possesses a set of graphs and all clients collaborate to train a shared model to predict graph properties,
including (Xie et al., 2021; He et al., 2021a; Zhang et al., 2022b; Chen et al., 2022c; Tan et al., 2022; Hu et al., 2023; Qu
et al., 2023). Typical graph-level FGL task is graph classification/regression, which have been applied multiple domains,
such as molecular property prediction (Xie et al., 2021; He et al., 2022) and brain network analysis (Bayram & Rekik,
2021); (2) Subgraph-level FL: each client contains a subgraph of a global graph, a part of node features, and a part of FGL
model (Zhang et al., 2021b; Ni et al., 2021; Wang et al., 2022a; Chen et al., 2022a; Baek et al., 2022; Xie et al., 2023; Zhang
et al., 2023; Li et al., 2023; Zhu et al., 2023; Tian et al., 2023). The clients aim to collaboratively train a global model with
the partial features and subgraphs to predict node properties. Typical graph-level FGL task is node classification and link
prediction; (3) Node-level FGL: the clients are connected by a graph and thus each of them is treated as a node (Lalitha
et al., 2019; Meng et al., 2021; Caldarola et al., 2021; Rizk & Sayed, 2021). Namely, the clients, rather than the data,
are graph-structured. For example, each client performs learning with its own data and they exchange data through the
communication graph (Lalitha et al., 2019; Meng et al., 2021). The server maintains the graph structure and uses a GNN to
aggregate information (either models or data) collected from the clients (Caldarola et al., 2021; Rizk & Sayed, 2021).

A recent work studied the problem of federated knowledge graphs embedding with a byproduct of knowledge graph
alignment (Peng et al., 2021). It exploits adversarial generation between pairs of knowledge graphs to translate identical
entities and relations of different domains into near embedding spaces. To our best knowledge, this workThis work is the
first to has the potential to tackle the problem of general federated graph matching. However, it is a supervised learning
method with aligned entities and relations as training data. In addition, it is possible that neural models may memorize
inputs and reconstruct inputs from corresponding outputs (Carlini et al., 2021). The method exchanges the embeddings of
entities and relations between clients and server. Adversarial samples and gradients are interchanged among the clients.
Although a host client cannot access the embeddings of the other’s, the exchange of translational mapping matrices (1.e., the
gradients in the generators of the other clients) makes it possible for the host client to reconstruct the former’s embeddings
with the inverse of translational mapping matrices. The combination of the above two properties dramatically limits the
applicability of the method in real scenarios. This work is the first to offer an unsupervised federated graph matching
solution for inferring matched node pairs on different graphs across clients while maintaining the privacy requirement of
federated learning, by leveraging the graphlet theory and trust region optimization.

A.2. Proof of Theorems

Theorem 1. Let xk = {v1, v2, · · · , vk} be the original node ordering of gk via the subgraph expansion, S(gk) =
[v1, v2, · · · , vk] be the set of all possible node sequences of xk, xk[i] be the ith node in xk, F be a user-defined normalizing
factor in the subgraph expansion, and hl(xk) = {v1, v2, · · · , vl, xk, G} be an induced subgraph of graph G with the first l
nodes {v1, v2, · · · , vl} in xk, then the probability of getting a k-subgraph gk via the subgraph expansion is

p(gk) =
∑

xk∈S(gk)

f(deg(xk[1]))

F

k−1∏
l=1

∣∣Ehl+1(xk)

∣∣− ∣∣Ehl(xk)

∣∣∑l
i=1 deg(xk[i])− 2

∣∣Ehl(xk)

∣∣ (23)

Proof. We can consider a subgraph expansion process as a way of sampling a sequence xk = {v1, v2, · · · , vk}, ordered
from the first node sampled to the last one, that is then used to generate a k-subgraph gk. Denote the set of such sequences
as V kG . Let hl = {v1, v2, · · · , vl} is a l-subgraph of graph G obtained by the subgraph expansion process on step l. The
probability of sampling node vl+1 on the step l+ 1 to produce a (l+ 1)-subgraph hl+1 = {v1, v2, · · · , vl, vl+1} is equal to

P (vl+1 | hl) =
deghl

(vl+1)

|Ne (hl)|
=

∣∣Ehl+1

∣∣− |Ehl
|∑l

i=1 deg(vi)− 2 |Ehl
|

(24)

where Ne(hl) is the set of all edges that connect a node in hl and a node outside of hl. deghl
(vl+1) specifies the number of

nodes in hl that are connected to the node vl+1.

Thus, the probability p̃(xk) of sampling a sequence xk = {v1, v2, · · · , vk} ∈ S(gk) in the subgraph expansion process is
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equal to

p̃(xk) = q (v1)

k−1∏
l=1

P (vl+1 | hl) =
f (deg (v1))

F

k−1∏
l=1

∣∣Ehl+1

∣∣− |Ehl
|∑l

i=1 deg(vi)− 2 |Ehl
|

(25)

Notice that

p(gk) =
∑

xk∈S(gk)

p̃(xk) (26)

Since

S(gk) = {[v1, . . . , vk]|{v1, . . . , vk} = Vgk , gk|{v1, . . . , vl}is connected} (27)

,

then we have

p(gk) =
∑

xk∈S(gk)

f(deg(xk[1]))

F

k−1∏
l=1

∣∣Ehl+1(xk)

∣∣− ∣∣Ehl(xk)

∣∣∑l
i=1 deg(xk[i])− 2

∣∣Ehl(xk)

∣∣ (28)

where xk = {v1, v2, · · · , vk} be the original node ordering of gk via the subgraph expansion process. xk[i] be the ith node
in xk. hl(xk) = {v1, v2, · · · , vl, xk, G} be an induced subgraph of graph G with the first l nodes {v1, v2, · · · , vl} in xk

Therefore, the proof is concluded.

Theorem 2. Let ñkr(G) = 1
O

∑O
o=1

I(gko∼Gr)
p(gko) be the estimation of graphlet counts, d1, · · · , dk be the k highest degrees of

nodes in G, and denote D =
∏k−1
l=2 (d1 + · · ·+ dk). If q for sampling the starting node is the stationary distribution of the

node random walk, then the upper bound of the variance Var(ñkr(G)) is

Var(ñkr(G)) ≤ 1

O
nkr(G)

2 |EG|
|S(Gr)|

D (29)

Proof. Consider sampling the starting node v1 independently and from an arbitrary distribution q when we have access
to all the nodes. Sampling nodes independently implies that the subgraph expansion process will result in independent
k-subgraph samples. Thus, the variance of the graphlet count estimator can be decomposed into the variance of the
individual k-subgraph samples. The variance of the estimator ñkr(G) is then

Var(ñkr(G)) =
1

O
Var

(
I (gkO ∼ Gr)
p(gkO)

)
=

1

O

 ∑
gk∈Gk

I (gk ∼ Gr)
p(gk)

− nkr(G)2

 (30)

It is observed that the variance Var(ñkr(G)) is small when the distribution of p(gk) is close to uniform distribution. A
larger p(gk) results in a smaller variance of the estimator. Thus, the variation can be reduced by an appropriate choice of q
for sampling the starting node, say a smaller normalizing factor F . In this case, the estimated graphlet count ñkr(G) is
close to the actual count nkr(G), which implies that the graphlet samples and all graphlets share similar distributions.

Let

φo =
I (gko ∼ Gr)
p(gko)

(31)
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The variance can be rewritten as follows.

Var (ñkr(G)) =
1

O
Var (φo) (32)

Notice that nkr(G) = Eφo, and ñkr(G) = 1
O

∑O
o=1 φo for the estimator.

We can bound the variancein Eq.(30) by the second moment, which is bounded by,

Eφ2
o ≤ Eφo maxφo = nkr(G) maxφo (33)

By seeking to control the the maximum of φo, we have

max
gk

1

p(gk)
≤ max

xk

1

|S(gk)|p̃(xk)
≤ max

∏k−1
l=1 (d1 + · · ·+ dl)

|S (Gr)| q (d1)
(34)

and we obtain

max
x

|Nv(x)|
S(Gr)|p̃(x)

≤ max

∏k−1
l=1 (d1 + · · ·+ dl)

|S (Gr)| q (d1)
(35)

Thus, we can construct a bound on Var (φo) and Var (ñkr(G)).

Therefore, the proof is concluded.
Theorem 3. Let d be the dimension of the flattened Mb+1, ⊗ be an appropriate tensor product, Ab+1 ∈ Rd×d×d and
Bb+1 ∈ Rd×d×d×d are the tensors of Ls(Mb+1) at iteration b+ 1 satisfying

Ab+1 ⊗ z3
b =

d∑
i,j,k=1

∂3Ls(Mb+1)

∂M i∂M j∂Mk
zibz

j
bz
k
b (36)

and

Bb+1 ⊗ z4
b =

d∑
i,j,k,l=1

∂4Ls(Mb+1)

∂M i∂M j∂Mk∂M l
zibz

j
bz
k
b z
l
b. (37)

Suppose that Ls(Mb+1) is sufficiently smooth, if ||zb|| is small enough, then we have

zTb ∇2Ls(Mb+1)zb − αb+1(ω)zTb zb =

(
1

2
− ω

6

)
Ab+1 ⊗ z3

b −
(

1

6
− ω

12

)
Bb+1 ⊗ z4

b +O
(
‖zb‖5

)
(38)

Proof. By utilizing the Taylor expansion, we obtain

Ls(Mb) =Ls(Mb+1)− (∇Ls(Mb+1))T zb +
1

2
zTb ∇2Ls(Mb+1)zb−

1

6
Ab+1 ⊗ z3

b +
1

24
Bb+1 ⊗ z4

b +O
(
‖zb‖5

) (39)

and

(∇Ls(Mb))
T zb =(∇Ls(Mb+1))T zb − zTb ∇2Ls(Mb+1)zb+

1

2
Ab+1 ⊗ z3

b −
1

6
Bb+1 ⊗ z4

b +O
(
‖zb‖5

) (40)
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In addition, we have

αb+1(ω) =
zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

]
zTb zb

(41)

By combining Eqs.(39), (40), and (41), we get

zTb ∇2Ls(Mb+1)zb − αb+1(ω)zTb zb

=zTb ∇2Ls(Mb+1)zb − zTb yb−

ω
[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

]
=

(
1

2
− ω

6

)
Ab+1 ⊗ z3

b −
(

1

6
− ω

12

)
Bb+1 ⊗ z4

b +O
(
‖zb‖5

) (42)

Therefore, the proof is concluded.

Sensitivity analysis of weight ω. Based on Eq.(41), if ω = 0, we have

αb+1(0) =
zTb yb
zTb zb

(43)

Then, it derives the following equation based on Eq.(38).

zTb ∇2Ls(Mb+1)zb − αb+1(ω)zTb zb =
1

2
Ab+1 ⊗ z3

b −
1

6
Bb+1 ⊗ z4

b +O
(
‖zb‖5

)
(44)

According to Eq.(44) and Theorem 3, it is reasonable to believe that if the weight parameter ω is chosen such that

∣∣∣∣12 − ω

6

∣∣∣∣ < 1

2
(45)

and

∣∣∣∣16 − ω

12

∣∣∣∣ < 1

6
(46)

i.e., 0 < ω < 4, then αb+1(ω)zTb zb may capture the second order curvature zTb ∇2Ls(Mb+1)zb with a high precision.

Now, let us further compare several possible choices of ω and the corresponding formulas for αb+1(ω).

(1) If ω = 1, then

αb+1(1) =
zTb yb + 2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

zTb zb
(47)

The resulting matrix αb+1(1)I satisfies the weak quasi-Newton equation in Eq.(17). Based on Eq.(38), we have

zTb ∇2Ls(Mb+1)zb − αb+1(1)zTb zb =
1

3
Ab+1 ⊗ z3

b −
1

12
Bb+1 ⊗ z4

b +O
(
‖zb‖5

)
(48)
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(2) If ω = 2, then

αb+1(2) =
zTb yb + 4 (Ls(Mb)− Ls(Mb+1)) + 2 (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

zTb zb
(49)

The following equation is derived from Eq.(38).

zTb ∇2Ls(Mb+1)zb − αb+1(2)zTb zb =
1

6
Ab+1 ⊗ z3

b +O
(
‖zb‖5

)
(50)

(3) If ω = 3, then

αb+1(3) =
zTb yb + 6 (Ls(Mb)− Ls(Mb+1)) + 3 (∇Ls(Mb) +∇Ls(Mb+1))

T
zb

zTb zb
(51)

According to Eq.(38), we obtain

zTb ∇2Ls(Mb+1)zb − αb+1(3)zTb zb =
1

12
Bb+1 ⊗ z4

b +O
(
‖zb‖5

)
(52)

Theorem 4. Suppose ‖∇Ls(Mb)‖ 6= 0, the solution zb of the separate trust region optimization argminub(z) = Ls(Mb) +
(∇Ls(Mb))

T z + 1
2z
T∇2Ls(Mb)z, s.t.‖z‖ ≤ ∆s in Eq.(11) satisfies

ub(0)− ub(zb) ≥
1

2
‖∇Ls(Mb)‖min

{
∆s,
‖∇Ls(Mb)‖

αb

}
(53)

Proof. We have the separate trust region optimization based on two weak quasi-Newton conditions as follows.

z∗ = argminub(z) ≈ Ls(Mb) + (∇Ls(Mb))
T z +

1

2
αbz

T z, s.t.‖z‖ ≤ ∆s (54)

Since ‖∇Ls(Mb)‖ 6= 0, the solution of the separate trust region optimization based on two weak quasi-Newton conditions
in Eq.(54) can be solved as follows.

(1) if ‖∇Ls(Mb)‖ ≤ αb∆s, zb = − 1
αb
∇Ls(Mb);

(2) if ‖∇Ls(Mb)‖ > αb∆
s, the optimal solution sk will be on the boundary of the separate trust region, i.e., zb is the

solution of the following problem.

z∗ = argminub(z) ≈ Ls(Mb) + (∇Ls(Mb))
T z +

1

2
αbz

T z, s.t.‖z‖ = ∆s (55)

From Eq.(55), we have the solution zb = − ∆s

‖∇Ls(Mb)‖∇L
s(Mb).

Thus, the general solution of the separate trust region optimization based on two weak quasi-Newton conditions in Eq.(54)
can be rewritten as follows.

zb = − 1

α̃b
∇Ls(Mb), where α̃b = max

{
αb,
‖∇Ls(Mb)‖

∆s

}
(56)
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If ‖∇Ls(Mb)‖ ≤ αb∆s, then zb = − 1
αb
∇Ls(Mb). Thus, we obtain

ub(0)− ub(zb) =− (∇Ls(Mb))
T

(
− 1

αb
∇Ls(Mb)

)
− 1

2

(
− 1

αb
∇Ls(Mb)

)T
αbI

(
− 1

αb
∇Ls(Mb)

)
=
‖∇Ls(Mb)‖2

αb
− 1

2

‖∇Ls(Mb)‖2

αb

=
1

2

‖∇Ls(Mb)‖2

αb

(57)

If ‖∇Ls(Mb)‖ > αb∆
s, then zb = − ∆s

‖∇Ls(Mb)‖∇L
s(Mb). Hence, we have

ub(0)− ub(zb) =− (∇Ls(Mb))
T

(
− ∆s

‖∇Ls(Mb)‖
∇Ls(Mb)

)
− 1

2

(
− ∆s

‖∇Ls(Mb)‖
∇Ls(Mb)

)T
αbI

(
− ∆s

‖∇Ls(Mb)‖
∇Ls(Mb)

)
=∆s ‖∇Ls(Mb)‖ −

1

2
αb(∆

s)2

>∆s ‖∇Ls(Mb)‖ −
1

2
∆s ‖∇Ls(Mb)‖

=
1

2
∆s ‖∇Ls(Mb)‖

(58)

By integrating Eqs.(57) and (58), we obtain Eq.(53).

Therefore, the proof is concluded.

A.3. Additional Experiments

Table 3: Final performance on DBLP

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.572 0.609 0.632 0.690 0.222

Centralized NetTrans 0.529 0.592 0.616 0.632 1.881

Graph CPUGA 0.136 0.199 0.276 0.296 2.232

Matching ASAR-GM 0.172 0.237 0.260 0.271 2.052
SIGMA 0.276 0.360 0.378 0.421 1.992

SeedGNN 0.530 0.582 0.637 0.702 4.185
DualAdapt 0.000 0.001 0.001 0.001 4.023

Federated EFDA 0.000 0.000 0.000 0.000 2.452
Domain WSDA 0.000 0.001 0.001 0.001 3.332
Adaption FKA 0.001 0.001 0.002 0.002 4.601

FedGraphNN 0.072 0.117 0.134 0.166 5.373

Federated FKGE 0.272 0.375 0.402 0.449 1.482

Graph SpreadGNN 0.092 0.140 0.176 0.197 0.052

Learning SFL 0.000 0.000 0.000 0.000 4.120
FederatedScope-GNN 0.000 0.001 0.002 0.002 4.020

FedStar 0.048 0.092 0.120 0.152 3.145
UFGM 0.453 0.552 0.591 0.659 0.332
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Final Performance and Convergence on SNS, PPI, and DBLP. Table 3 and Figures-5-8 exhibit the quality of six
centralized graph matching, six federated graph learning, and four federated domain adaption algorithms over SNS, PPI,
and DBLP respectively, based on Hits@1, Hits@5, Hits@10, Hits@50, and Loss. Similar trends are observed for the
comparison of federated graph matching effectiveness and convergence in these figures: our UFGM method achieves the
close or much better than the centralized graph matching method, regarding Hits@1 (¿0.37), Hits@5 (¿0.43), Hits@10
(¿0.41), and Hits@50 (¿0.45) on three datasets respectively. Our UFGM method achieves better performance than all
the competitors of federated graph learning and federated domain adaption in most experiments. In addition, our UFGM
method can significantly speedup the convergence on two datasets in most experiments, compared with all federated learning
algorithms. Especially, UFGM can converge around 1,000 training rounds and then always keep stable on SNS. This
demonstrates that UFGM fully utilizes the proposed graphlet feature extraction techniques to generate the pseudo training
data and employ the strength of supervised graph matching for accelerating the training convergence. The above experiment
results demonstrate that UFGM is effective as well as efficient for addressing the federated graph matching problem. This
advantage is very important for large-scale federated graph matching. For example, innovators were asked to develop
privacy-preserving federated learning solutions that help tackle the challenge of international money laundering across
large-scale local transaction network owned by multiple banks (NSF, 2022). Federated graph matching (FGM) can be
utilized to infer cross-graph edges over multiple clients (e.g., identify the same potential criminals transferring money
between multiple organizations) and derive a latent global graph (i.e., a global financial transaction network) (Suzumura
et al., 2019; Wang et al., 2019a; Zhang et al., 2021a).
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Figure 5: Convergence on SNS
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Figure 6: Convergence on PPI
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Figure 7: Convergence on DBLP
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Figure 8: Convergence on DBLP

Table 4: Final performance of centralized learning on SNS

Algorithm Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss

UFGM
SNS 0.371 0.440 0.411 0.459 0.501
PPI 0.771 0.880 0.902 0.930 0.659

DBLP 0.453 0.552 0.591 0.659 0.332

UFGM-C
SNS 0.387 0.417 0.478 0.486 0.427
PPI 0.786 0.911 0.922 0.932 0.495

DBLP 0.471 0.563 0.635 0.718 0.182

Final Performance of Centralized Learning. We evaluate two versions of UFGM to show the strength of our UFGM
method for federated graph matching. UFGM is the federated version with graph data encryption, graphlet feature extraction,
model evaluation on the server, model optimization with the trust region on the clients, and Hessian approximation. UFGM-C
is the centralized version with raw graph data uploaded to the server, graphlet feature extraction, model evaluation and
model optimization with the standard stochastic gradient descent on the server. The experiment results in Table 4 exhibit
that the performance of the centralized version, UFGM-C, is close to our federated version, UFGM over all three datasets.
This further validates that our UFGM algorithm can achieve superior performance for the federated graph matching.
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Table 5: Final performance of UFGM on large-scale datasets

Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss
DBLP 100K 0.536 0.659 0.671 0.735 1.115
DBLP 200K 0.405 0.496 0.559 0.619 1.720

Final Performance on Large-scale Datasets. In order to evaluate the scalability of our UFGM algorithm on large-scale
datasets, we select and split the original DBLP dataset into 20 graphs by publication year, ranging from 2002-2022, such
that each graph has around 100,000 and 200,000 authors as nodes and coauthor relationships as edges respectively. Thus,
most authors occur in all 20 graphs but different graphs contain few emeritus and new authors. The experiment results in
Table 5 demonstrate that our UFGM method scales well on two large-scale datasets.

Table 6: Final performance of quasi-Newton approximation on three datasets

Algorithm Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss Runing Time (m)

UFGM
SNS 0.371 0.440 0.411 0.459 0.501 168
PPI 0.771 0.880 0.902 0.930 0.659 153

DBLP 0.453 0.552 0.591 0.659 0.332 732

GMA-PGD
SNS 0.380 0.441 0.472 0.497 0.453 399
PPI 0.786 0.907 0.937 0.947 0.633 367

DBLP 0.487 0.606 0.657 0.687 0.228 1,556

Final Performance of quasi-Newton Approximation. We evaluate two versions of UFGM to show the strength of the
quasi-Newton approximation for improving the efficiency while maintaining the quality federated graph matching. UFGM
is the approximate version with the quasi-Newton approximation. GMA-PGD is the exact version with the exact Hessian
computation. The experiment results in Table 6 exhibit that the approximate version UFGM achieves slightly lower
performance than the exact version GMA-PGD but has much smaller running time. This demonstrates that the quasi-Newton
approximation method is able to dramatically improve the efficiency while maintaining the utility constraints.

A.4. Parameter Sensitivity

In this section, we conduct more experiments to validate the sensitivity of various parameters in our UFGM method for the
federated graph matching task.
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Figure 9: Final Hits@1 with varying parameters on three datasets

Impact of graphlet sample numbers. Figure 9 (a) measures the performance effect of sampled graphlet numbers in
the Monte Carlo Markov Chain sampling for graphlet enumeration and estimation by varying O from 10 to 1,000. We
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have witnessed the performance curves by UFGM initially increase quickly and then become stable when O continuously
increases. Initially, a large O can help utilize the strength of effective graphlet feature extraction for generating the pseudo
training data for tackling the dilemma of unsupervised graph matching in federated setting and employing the strength of
supervised graph matching. Later on, when O continues to increase and goes beyond some thresholds, the performance
curves become stable. A rational guess is that after the enough graphlet features have been already extracted at a certain
threshold and considered in the FGM training, our UFGM model is able to generate a good graph matching result. When O
continuously increases, this does not affect the performance of graph matching any more.

Impact of weight ω between two types of weak quasi-Newton conditions. Figures 9 (b) shows the influence of weight
of two types of weak quasi-Newton conditions in our UFGM model by varying it from 1 to 2. It is observed that the
performance initially raises when the ω increases. Intuitively, a large ω can help the algorithm well balance two types of
weak quasi-Newton conditions and thus help improve the quality of separate trust region and graph matching. Later on, the
performance curves decrease quickly when the ω continuously increases. A reasonable explanation is that a too large ω may
ruin the first type of weak quasi-Newton condition and miss the optimal solution in the search process. Thus, it is important
to determine the optimal ω for separate trust region.

Table 7: Final performance of quasi-Newton approximation on three datasets

Pseudo Training Data Dataset Hits@1 Hits@5 Hits@10 Hits@50 Loss

20%
SNS 0.077 0.116 0.176 0.292 0.557
PPI 0.372 0.440 0.497 0.627 0.669

DBLP 0.226 0.291 0.309 0.336 0.392

40%
SNS 0.157 0.198 0.306 0.335 0.582
PPI 0.519 0.588 0.702 0.796 0.691

DBLP 0.312 0.378 0.397 0.442 0.449

60%
SNS 0.302 0.332 0.347 0.407 0.512
PPI 0.628 0.776 0.825 0.917 0.686

DBLP 0.381 0.397 0.458 0.559 0.358

80%
SNS 0.362 0.407 0.416 0.438 0.531
PPI 0.752 0.802 0.857 0.927 0.689

DBLP 0.406 0.497 0.533 0.610 0.349

100%
SNS 0.371 0.440 0.411 0.459 0.501
PPI 0.771 0.880 0.902 0.930 0.659

DBLP 0.453 0.552 0.591 0.659 0.332

Influence of pseudo training data. Table 7 tests the influence of the pseudo training data for the performance of graph
matching by varying the ratio of the pseudo training data from 20% to 100%. The ratio 100% corresponds to the number of
the pseudo matched node pairs used in our current experiments. The numbers are 3,041 on SNS, 1,264 over PPI, and 2,817
on DBLP respectively. As we can see, the performance scores continuously increase with increasing pseudo training data.
This is consistent with the fact that more training data makes the graph matching models achieve better performance.

A.5. Experimental Details
Environment. The experiments were conducted on a compute server running on Red Hat Enterprise Linux 7.2 with 2 CPUs
of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce GTX 2080 Ti (with 11GB of GDDR6 on a 352-bit
memory bus and memory bandwidth in the neighborhood of 620GB/s), 256GB of RAM, and 1TB of HDD. Overall, the
experiments took about 2 days in a shared resource setting. We expect that a consumer-grade single-GPU machine (e.g.,
with a 2080 Ti GPU) could complete the full set of experiments in around 3-4 days, if its full resources were dedicated.
The codes were implemented in Python 3.7.3 and PyTorch 1.0.14. We also employ Numpy 1.16.4 and Scipy 1.3.0 in the
implementation. Since the datasets used are all public datasets and our methodologies and the hyperparameter settings are
explicitly described in Section 3, 4, 5, and A.5, our codes and experiments can be easily reproduced on top of a GPU server.
We promise to release our open-source codes on GitHub and maintain a project website with detailed documentation for
long-term access by other researchers and end-users after the paper is accepted.
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Table 8: Statistics of the datasets

Dataset #Clients/#Graphs #Avg. Nodes #Nodes #Avg. Edges #Edges
SNS 3 14,331 14,262 ∼ 14,573 51,358 48,105 ∼ 53,381
PPI 50 1,767 1,767 32,320 31,179 ∼ 32,358

DBLP 20 10,038 9,984 ∼ 10,168 56,314 54,891 ∼ 60,058

Datasets. We study federated graph learning tasks on three representative graph learning benchmark datasets: social
networks (SNS) 1, protein-protein interaction networks (PPI) 2, and DBLP coauthor graphs (DBLP) 3. The above three
graph datasets are all public datasets, which allow researchers to use for non-commercial research and educational purposes.
Among three datasets used in the experiment, social networks (SNS), protein-protein interaction networks (PPI), and
DBLP coauthor graphs (DBLP) contain 3, 50, 20 different graphs respectively. These three datasets are widely used in
training/evaluating the graph matching. The SNS dataset from (Zhang et al., 2015) has 3 different graphs of Flickr, Last.fm,
and MySpace. The PPI dataset from (Zitnik & Leskovec, 2017) has 50 different graphs, each representing a tissue with
proteins as nodes. As for the DBLP dataset, we select and split the original DBLP dataset into 20 graphs by publication
year, ranging from 2002-2022. Thus, most authors occur in all 20 graphs but different graphs contain few emeritus and new
authors.

Training. For each of the above three datasets, we use one client to maintain only one local graph in the federated setting.
We randomly assign the graphs in the three datasets to 3, 50, 20 clients respectively in the experiments. We choose all of
these graphs and clients to participate in the training of the models of federated graph matching. For the supervised learning
methods, the training data ratio over the above three datasets is all fixed to 20%. We train the models on the training set and
test them on the test set for three datasets. In addition, we run each experiment for 3 trials for obtaining more stable results.

Baselines. We compare three types of baselines that are most close to the task of federated graph matching: centralized
graph matching, federated graph learning and federated domain adaption. (1) Centralized graph matching baselines. We
compare the UFGM model with six state-of-the-art models. NextAlign is a semi-supervised network alignment method that
achieves a good trade-off between alignment consistency and alignment disparity (Zhang et al., 2021c). NetTrans is an
end-to-end supervised graph matching model that learns a composition of nonlinear operations to transform one network to
another in a hierarchical manner (Zhang et al., 2020a). CPUGA is a robust supervised graph alignment model designed with
non-sampling learning to distinguish noise from benign data in the given labeled data (Pei et al., 2022). ASAR-GM is a
robust visual graph matching approach that enlarges the disparity among appearance-similar keypoints in graph, orthogonal
to de facto adversarial training (Ren et al., 2022). SeedGNN is a supervised approach that can learn from a training set
how to match unseen graphs with only a few seeds (Yu et al., 2022). SIGMA is a semantIc-complete graph matching
framework that completes mismatched semantics and reformulates the adaptation with graph matching (Li et al., 2022).
(2) Federated graph learning baselines. We evaluate the UFGM model with six representative federated graph learning
architectures. FedGraphNN is an open research federated learning system and a benchmark to facilitate GNN-based FL
research (He et al., 2021a). FKGE is a decentralized scalable learning framework that learns knowledge graph embedding
in an asynchronous and peer-to-peer manner while being privacy-preserving (Peng et al., 2021). SpreadGNN is a multi-task
federated training framework capable of operating in the presence of partial labels and the absence of a central server
for GNNs over molecular graphs (He et al., 2022). SFL is a structured federated learning framework to learn both the
global and personalized models simultaneously using client-wise relation graphs and clients’ private data (Chen et al.,
2022b). FederatedScope-GNN is an easy-to-use FGL package that provides a unified view for modularizing and expressing
FGL algorithms (Wang et al., 2022b). FedStar is an FGL framework that extracts and shares the common under- lying
structure information for inter-graph federated learning tasks (Tan et al., 2022). (3) Federated domain adaption baselines.
We compare the model performance with four recent federated domain adaption methods. DualAdapt aims to align the
represen- tations learned among the different nodes with the data distribution of the target node (Peng et al., 2020). EFDA
extends domain adaptation with the constraints of federated learning to train a model for the target domain and preserve the
data privacy of all the source and target domains (Kang et al., 2022). WSDA leverages auxiliary information to reduce the
risk of federated domain adaption on the target client during local training (Jiang & Koyejo, 2023). FedKA aligns features
from different clients and those of the target task (Sun et al., 2022).

1https://www.aminer.cn/cosnet
2http://snap.stanford.edu/ohmnet/
3http://dblp.uni-trier.de/xml/
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Implementation. For six state-of-the-art centralized graph matching models of NextAlign 4, NetTrans 5, CPUGA 6,
ASAR-GM 7, SeedGNN 8, and SIGMA 9, we used the open-source implementation and default parameter settings by the
original authors for the experiments. All hyperparameters are standard values from reference codes or prior works. For six
representative federated graph learning architectures of FedGraphNN 10, FKGE 11, SpreadGNN 12, SFL 13, FederatedScope-
GNN 14, and FedStar 15, we also use the default parameters in the authors’ implementation. For four recent federated
domain adaption methods of DualAdapt 16, EFDA 17, WSDA 18, and FedKA 19, we utilized the same model architecture
as the official implementation provided by the authors and used the same datasets to validate the performance of these
federated graph matching models in all experiments. All models were trained for 2,000 rounds, with a batch size of 500,
and a learning rate of 0.05. The above open-source codes from the GitHub are licensed under the MIT License, which
only requires preservation of copyright and license notices and includes the permissions of commercial use, modification,
distribution, and private use.

For our UFGM model, we performed hyperparameter selection by performing a parameter sweep on sampled graphlet
numbers O ∈ {1, 5, 10, 15, 20}, weight of two types of weak quasi-Newton conditions ω ∈ {1, 1.25, 1.5, 1.75, 2}, trust-
region radius ∆s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, subgraph size for graphlet feature extraction k ∈ {1, 2, 5, 7, 9}, training round
∈ {100, 500, 1, 000, 1, 500, 2, 000}, and learning rate ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. We select the best parameters
over 50 epochs of training and evaluate the model at test time. In our current implementation, we first utilize an efficient
matrix generation method (Randall, 1993) to produce a random nonsingular matrix K and then orthogonalize it to preserve
the distances between the embedding vectors.

4https://github.com/sizhang92/NextAlign-KDD21
5https://github.com/sizhang92/NetTrans-KDD20
6https://github.com/scpei/CPUGA
7https://github.com/Thinklab-SJTU/ThinkMatch
8https://openreview.net/forum?id=iYvbPx8GTta
9https://github.com/CityU-AIM-Group/SIGMA

10https://github.com/FedML-AI/FedGraphNN
11https://github.com/HKUST-KnowComp/FKGE
12https://github.com/FedML-AI/SpreadGNN
13https://github.com/dawenzi098/SFL-Structural-Federated-Learning
14https://github.com/alibaba/federatedscope
15https://github.com/yuetan031/fedstar
16https://drive.google.com/file/d/1OekTpqB6qLfjlE2XUjQPm3F110KDMFc0/view?usp=sharing
17https://github.com/yuetan031/fedstar
18https://openreview.net/forum?id= 1gu0EX0mM3
19https://github.com/yuweisunn/federated-knowledge-alignment
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