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Abstract

We aim to significantly enhance the science return
of astronomical observatories, and in particular
giant terrestrial optical telescopes. Observatories
employ Adaptive Optics (AO) systems in order
to acquire high sensitivity diffraction limited im-
ages of the sky. The incumbent “workhorse” for
control of AO systems employs a linear real-time
controller in a closed loop, with sensing of state
performed via a (Shack-Hartmann) wavefront sen-
sor (WFS). The actuators of a deformable mirror
(DM) are driven, with the action performed in each
iteration having a continuous representation as an
array of DC voltages. The typical control regime is
practical and scalable, nonetheless, there remains
a residual uncompensated turbulence that leads to
optical aberrations limiting the class of scientific
assets that can be acquired. We have developed and
trained a translational GAN model that accurately
estimates residual perturbations from WFS images.
Model inference occurs in 0.34 milliseconds using
off-the-shelf GPU hardware, and is applicable for
use in AO control where the control loop might
be running at 500Hz. We develop an AO control
regime with a second controller stage actuating a
second DM controlled in an open loop according to
the estimated residual turbulence. Using the open-
source COMPASS tool for simulation, we are able
to significantly improve the performance using our
new regime.

1 INTRODUCTION

Adaptive Optics (AO) systems are an important component
of astronomical imaging for large ground based telescopes,
enabling the capture of high contrast images of faint objects
in space. Aberrations due to Earth’s atmospheric turbulence

are a significant impediment to deep-space imaging, so the
ability to estimate and compensate is critical. The scale
of data requirements for this estimation problem increases
quadratically with the telescope diameter, an ongoing prob-
lem as astronomers build larger telescopes to capture light
from ever fainter objects, such as exoplanets and distant
galaxies.

An AO system contains three main components: (i) a De-
formable Mirror (DM) with a reflective surface that can be
adjusted with an array of actuators to counteract some of
the wavefront phase aberrations, (ii) a Wavefront Sensor
(WFS) that collects information about the wavefront phase,
and (iii) a controller that interprets the wavefront sensor
observations and computes a control action to drive actu-
ators to update the DM state. Wavefront phase estimation
is required because atmospheric turbulence is a stochastic
process typically evolving over a few milliseconds time
frame. The real-time control of an instrument’s mirror in-
corporates estimation at high-frequency – e.g. 500Hz. The
WFS is used to capture the instantaneous state of the phase
into intensity variations in an image. In the case of the
Shack-Hartmann concept, the telescope aperture is split into
sub-regions, called sub-apertures, and an image of the refer-
ence guide source is created for each of these sub-apertures
and captured by a camera. A centroider algorithm is then
used to estimate the spot displacements, in each of these
sub-apertures, with respect to a reference position. These
displacements are directly related to the local slopes of the
wavefront [Roddier, 1999].

Existing real-time closed-loop mirror control uses displace-
ment information. A key drawback is that all such control
regimes neglect non-linear, high-order wavefront informa-
tion captured on the WFS. This is an important limitation
of existing instruments. It is highly desirable that non-linear
information is available in real-time. This enables the con-
ception of novel control regimes, to increase performance
of the AO system and thereby the image quality at the focus
of the telescope.
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1.1 CONTRIBUTIONS

Building on a translational GAN network architecture moti-
vated in a range of computer vision applications, we have
developed and evaluated: (i) A new method for real-time
phase estimation from wavefront sensing data in AO, and (ii)
a new robust control regime that is able to significantly en-
hance instrument performance by leveraging our innovative
approach to phase estimation. Compared to the model-based
state-of-the art, our network-based approach to phase esti-
mation is: (i) fast enough for use in real-time control, (ii)
avoids strong (unrealistic) assumptions about the nature
of the stochastic process driving atmospheric turbulence
and system geometry, and (iii) conceptually simple and
based on established machine learning technology. Specifi-
cally, we use a translational CNN to infer the phase directly
from the Shack-Hartmann WFS image. Our method takes
advantage of high frequency information available in the
Shack-Hartmann WFS that is not accessible with existing
estimation methods. On the control side, we develop a GAN
Assisted Open Loop (GAOL) AO design. To our knowledge
this is the first AO concept to apply accurate wavefront esti-
mates in a way that is amenable to real-time control of AO
systems with real-world operating parameters. We expose
higher-order information in the control loop via our phase
estimates, enabling control of DMs with relatively high actu-
ator counts, and thereby enable AO systems that effectively
compensate for high-frequency turbulence. The simulation
experiments demonstrate that our approach robustly leads
to substantially improved performance—specifically a 70
nanometer RMS reduction in wavefront error, which trans-
lates to an improvement which materially adds to the range
of science tasks that an instrument can perform—in a range
of atmospheric conditions when compared to incumbent AO
methods.

The paper is structured as follows. First, we discuss the AO
setting and current methods. Secondly, we describe COM-
PASS – a state-of-the-art GPU accelerated AO simulation
package. Thirdly, we describe our approach to using image-
to-image CNNs for phase recovery in our setting. Fourthly,
we describe current methods in wavefront phase estimation
and control methods for AO systems. Finally we present
a detailed analysis of experimental results comparing our
approach to a classical AO systems control approach.

2 ADAPTIVE OPTICS BACKGROUND

The goal of AO is to obtain a sharp image of an observed
target. Any perturbation of the incoming wavefront creates
aberrations in the image, which reduces the contrast of the
observation – this translates as blur. A perfectly unaberrated
image of a point source obtained through a circular aperture
telescope will produce a point spread function (PSF) that is
an Airy disk – i.e., image quality and resolution are only lim-

ited by the diffraction of the telescope aperture. Aberrations
(e.g., from turbulence) perturb the wavefront by introducing
optical path differences between the different points of the
telescope aperture, affecting the PSF, and therefore image
quality.

The PSF is related to the wavefront phase as the absolute
square of the Fourier transform of the complex electromag-
netic field. This is an important relationship and is not di-
rectly invertible from PSF to phase, shown in Eqn. 1.

PSF = |F(amplitude · ei·phase)|2 (1)

In an AO system a DM is controlled in real-time to com-
pensate for aberrations. The compensation made using in-
cumbent control regimes is imperfect, leading to residual
error. The residual error (AO loop error) is made up of sev-
eral contributing sources and is dealt with in detail through
an error budget estimation. The error budget describes the
total AO loop error in terms of components for Bandwidth
error, Anisoplanatism, Aliasing, Noise, Wavefront measure-
ment error, mode filtering and fitting error. All of these error
sources contribute to a decrease in image quality at the out-
put of the telescope, and are described and incorporated into
the state-of-the-art residual wavefront error estimation by
Ferreira et al. [2018a].

The Shack-Hartmann WFS used in AO systems is designed
to take the wavefront phase information and encode it as
an intensity image distributed over small sub-regions of the
aperture. It does this with an array of small lenslets that
focus the aperture sub-region onto a sensor, creating a spot
that is tilted off axis by the average slope of the incoming
wavefront sub-region in two dimensions. Figure 1 shows the
one dimensional case and how the aberrated wavefront of
a sub-region moves the focal point on the sensor off center.
This displacement gives an indication of the average slope of
the area of the wavefront covered by the sub-aperture. From
the sensor image for all sub-apertures, centroider algorithms
are used to find the centre of the spots and so a granular map
of slopes is created and passed to the DM control system.

Figure 1: Shack-Hartmann WFS lenslet diagram showing
displacement of spots due to wave from perturbations

Slope measurements made from centroider data are inher-
ently lossy due to limits on sub-aperture size. Non-linear



Figure 2: Shack-Hartmann WFS lenslet spots

information is lost when the algorithm picks the centroid of
the spot for each sub-aperture, reducing the image to points
on an x, y plane. Figure 1 shows the off axis measurements
(∆x) that are used to measure the wavefront sub-aperture
slopes, where the higher-order wavefront information is lost.
The size of the lenslets limits the spatial frequency that can
be measured, behaving like a low pass filter.

The sensor image captured at each subaperture corresponds
to a low fidelity PSF, where the captured irregular patterns
of light intensity correspond to a representation of higher-
order information about the wavefront. A depiction of such
patterns is given in Figure 2, which shows a portion of a
simulated Shack-Hartmann WFS image. For the intuition
about what is being lost using centroider algorithms, Fig-
ure 1 gives a simplified 1D schematic of the wavefront,
lenslet array and sensor image. The dashed lines drawn in
the turbulent wavefront above lenslets represent the gradient
measured by a centroider, here clearly missing out important
details about high frequency turbulence. It remains an open
question in astronomy, to quantify exactly how much infor-
mation is being lost in this setting depending on the actual
instrument design (e.g. number of sub-apertures, number
of pixels per sub-apertures, measurement wavelength, etc.).
Model-based approaches to phase retrieval rely on detailed
physical models to recover phase information from centroi-
der slopes only – i.e. the irregular patterns from the WFS
are not used. Our approach is model free, using precisely
that information to recover phase.

AI for Adaptive Optics: AO systems have been used to
compensate for atmospheric turbulence since the late 1980s,
when the available computer technology was first able to
match the requirements for controlling the available DM
technology. Since then, efforts to improve wavefront esti-
mates have been ongoing both in model-based statistical
estimation and other techniques using advances in Artificial
Intelligence.

Some AI based techniques for improving AO systems have
been investigated with many studies using slope estimates
from centroider data [Swanson et al., 2021] and typically
making wavefront estimates by predicting the weights of
a small number of low order, linearly independent Zernike
modes [Guo et al., 2006; Weddell and Webb, 2007] that

can be added to create the wavefront phase. Using the slope
estimates from centroider algorithms limits WFS data to
low order information, as these wavefront slope estimates
filter out higher order information captured on the Shack-
Hartmann WFS. Sensor-less methods with Convolutional
Neural Networks (CNNs) [Guo et al., 2019] make estimates
directly from the PSF in the AO loop, rather than from a
WFS, can avoid the loss of some higher-order information
but are best suited to low turbulence conditions and small
telescope settings.

COMPASS Simulation Software: The COMPASS AO
simulation software [Ferreira et al., 2018b] simulates at-
mospheric conditions, telescope and AO system to create
accurate simulated residual wavefront and WFS images used
to train our CNNs. COMPASS is a GPU accelerated AO
loop simulator with a comprehensive API that allows simple
integration with Python code. Highly detailed parameter
information can be input to generate specific atmospheric
conditions and other AO loop characteristics such as sensor
noise and control loop delay. This is perfect for generating
training data for CNNs and also for testing ranges of con-
ditions for inference performance with trained models. See
Figure 3 for sample of simulated data.

Figure 3: COMPASS Artifacts - typical data available
through simulator. The top left image shows the simulated
atmosphere, top-middle and top-right shows the deformable
and tip tilt mirrors respectively. The bottom left image is
the residual wavefront phase and the bottom middle is the
Shack-Hartmann WFS image – these are the two images
we will use for training data. The bottom-right image is the
short exposure PSF image in log scale.

3 AO CONTROL

Typical AO systems consist of three main components, i.e.
the DM, WFS and controller. Such systems have many possi-
ble configurations that are designed for purpose. The incum-
bent design that we are using for a benchmark is a Single
Conjugate Adaptive Optics (SCAO) system with a Shack-
Hartmann WFS. The command signal, uk, applied to the



DM(s) at time t = kT (where T is the AO control period) is
derived from the WFS slope vector sk, and the previous DM
commands uk−1, uk−2, · · · , uk−d, where d is the AO con-
trol loop latency in frames. For the remainder of this paper,
we assume a 2-frame delay (without loss of generality). This
delay is the source of bandwidth error in an AO system, and
is the combination of several effects: integration time on the
WFS camera, frame transfer and read-out on the detector,
pixel data transfer to the Real-Time Control (RTC), RTC
pure delay, DM rise time and DM zero-order hold.

For its convenient stability properties and robust perfor-
mance, we employ a Pseudo-Open-Loop Control (POLC)
scheme [Ellerbroek and Vogel, 2003; Piatrou and Gilles,
2005], which has a recursive control law in the form:

u0 = 0,

uk = (1− g)uk−1 + gRDuk−2 + gRsk, (2)

where 1 − g and g are the input and output coefficients
(respectively) of a first-order IIR filter, and can be tuned
to obtain a desired temporal cut-off frequency [Cranney
et al., 2020]. The matrix D is the interaction matrix between
the WFS slopes and the DM commands. The matrix R is
the linear reconstructor matrix, which takes WFS slopes,
and computes the (filtered) commands that would optimally
regulate those measurements.

Our GAOL Control Regime: In the following section,
we develop a nonlinear network-based method to extract
high resolution wavefront estimates from closed-loop WFS
pixel data (beyond slope-only estimation). This is the ba-
sis of our GAOL control regime, in which such wavefront
estimates are projected onto a DM in order to provide an
improved wavefront correction at a higher-order than pos-
sible using a linear slope-based controller. The most direct
method to evaluate the performance of such a scheme in AO
is to add a second DM (with a high actuator density) before
the science camera, but after the first DM and WFS, and
to control this second DM in open-loop using the output
of the nonlinear estimator. The use of an open-loop DM
has several advantages and disadvantages that will not all
be discussed in detail here. The most notable are that the
second DM has guaranteed bounded-input bounded-output
stability, assuming that actuator creep is negligible, coming
at the financial cost and opto-mechanical burden of having
multiple DMs.

In principle the control of all DMs could be done on an
orthogonalised set of modes, with the modes able to be
linearly controlled put on the first DM, and the remainder
allocated to the second DM (i.e., a Woofer / Tweeter pair),
[Gavel and Norton, 2014]. For our GAOL approach, we
instead match the first DM to the WFS geometry (so-called
Fried geometry), and increase the resolution of the second
DM beyond this limit.

The closed-loop linear control law in this regime remains

identical to Eqn. (2), and the open-loop nonlinear control
law operates in parallel with the following structure:

unl0 = 0,

unlk = (1− gnl)unlk−1 + gnlRnlŷk, (3)

where unlk is the nonlinear command signal to be applied to
the second DM, ŷk is the high resolution network-derived
estimate of the residual phase error after the first mirror
has acted, Rnl is the high resolution reconstructor which
takes the estimated phase and projects to the DM space,
and 1 − gnl and gnl are the input and output coefficients
(respectively) of a first-order IIR filter (cf. Eqn. (2)).

4 GAN FOR PHASE ESTIMATION

We estimate the residual phase by adapting an artificial
neural network for Image to Image translation [Isola et al.,
2017], where Figure 4 gives a visual breakdown of the
network. This design is a conditional Generative Adversarial
Network (cGAN), with the translational encoding performed
by a UNet and the adversarial training performed using a
Markov discriminator. The network learns to take an input
of a Shack-Hartmann WFS image and output the inferred
wavefront phase.

To motivate the UNet generator component of the network,
it can be compared to the similar and widely used auto-
encoder – a CNN – that is used for image transformation.
An auto-encoder encodes an image to some latent variable
through successive convolutional layers, and then through
deconvolutional steps generates a new image from the la-
tent variable. An auto-encoder learns to transform images
minimising a reconstruction loss and can be used for sev-
eral applications. For our purposes an auto-encoder is not
ideal, because it is deterministic by design, and because we
need to preserve some structure from the original image in
our application, such as spatial relationships for translation.
The UNet design adds skip connections, where information
from layers of the encoder is transported to corresponding
decoder layers via concatenation, allowing for some struc-
ture from the input image to be preserved. Because we aim
to translate WFS images from sensor data with incomplete
information we cannot map from image to image in a deter-
ministic manner as there will be many possible wavefront
phase images that could be represented by each input image.
To avoid the deterministic nature of the auto-encoder (and
UNet) structure, some stochastic process needs to be added
to allow for variability in the output. This is accomplished
by introducing noise to the network via network dropout (z),
where Gaussian noise is ineffective because this approach
learns to filter it.

Considering the Variational Auto-Encoder (VAE) as an al-
ternative - it also has the ability to create varied translations
from an input image and does not have deterministic out-



comes due to encoding and sampling from distributions.
The output images from a VAE tend to be blurry and faint,
which is not ideal for our application, as we find this oc-
curs in important regions of the wavefront phase. The loss
function for a VAE must be carefully designed, which is
additionally very difficult to do in practice. By contrast, a
GAN [Goodfellow et al., 2014] has the benefit of learning
a loss function, and so simplifies the loss design problem
associated with VAEs, as well as tending toward sharper
output images, while adding complexity to the network with
the addition of a CNN classifier forming the discriminator
network that is trained simultaneously with the generator.

A conditional GAN improves the performance of the GAN
by including a ‘semantic-image’ in the discriminator as a
paired image with either the “real” or “fake” image, which
acts as a label for the distribution generated, adding super-
vision which further improves the sharpness and accuracy
of the translated image. The discriminator in Figure 4 is a
PatchGAN discriminator, also known as a Markov discrimi-
nator [Li and Wand, 2016]. This discriminator architecture
operates by classifying local image regions, and is broadly
motivated in computer vision applications due to the speed
of inference (i.e. local inference is relatively fast), and the
quality of PatchGAN architectures in preserving complex
image detail, such as texture. The discriminator component
is a convolutional classifier, trained simultaneously with
the generator, with the objective to maximise the value of
Eqn. 4.

The overall objective function (Eqn. 5) combines the cGAN
loss (Eqn. 4), with the L1 reconstruction loss terms (e.g., of
the form in Eqn. 6) that provide strong guidance to learning
of low frequency structure. Note that a second reconstruc-
tion loss term is added in Eqn. 5 to reinforce the reconstruc-
tion loss where the network underestimates the upper and
lower extreme phase values GM (or G ’masked’). These
regions of the wavefront with the largest perturbations sub-
stantially impact the important metrics in our setting, and
our ablation testing of this parameter shows this term is
required.

The approach is to simultaneously train: (i) a generator,
G(x, z), that models the distribution of wavefront phases
consistent with the input WFS image x – i.e. z is a noise
term, specifically dropout noise, and (ii) a discriminator,
D(x, y), that estimates the probability that a pair (x, y),
comprising a wavefront phase image y and a corresponding
WFS image x, are “real”.

LcGAN (G,D) = Ex,y[log(D(x, y))]

+ Ez,x[log(1−D(x,G(x, z))] (4)

G∗ = arg min
G

max
D
LcGAN (G,D)

+ λLL1(G) + λMLL1(GM ) (5)

LL1(G) = Ex,y,z[||y −G(x, z)||1] (6)

Figure 4: cGAN architecture – UNet / PatchGAN

Network architecture: We adapted our network architec-
ture and code from Isola et al. [2017], where much of the
architecture details remains the same and we will follow
the same labeling conventions. Ck denotes a Convolution-
Batchnorm-ReLU layer with k filters and CDk denotes
a Convolution-BatchNorm-Dropout-ReLU layer. Dropout
rates, stride, downsample scaling, and upsample scaling, are
all determined as per the literature mentioned above. Refer
to the literature for any other parameters.

Generator architecture – Our network uses a UNet gen-
erator, consisting of an encoder, a decoder and skip connec-
tions between some layers as shown in the following layer
structures:

UNet encoder:

C64-C128-C256-C512-C512-C512-C512-C512

UNet decoder:

CD1024-CD1024-CD1024-C1024-C1024-C512-C256-
C128

Discriminator architecture – The Markovian Discrimi-
nator architecture by layer:

C64-C128-C256-C256

Data Transformations: The raw data from astronomical
instruments and simulators requires some transformation to
be amenable to the translational architecture we have just
discussed. First, the piston mode—i.e., a constant phase
shift across the full aperture—is removed from the resid-
ual phase data, since it is not measured by the WFS. This
is done by subtracting the average value of the wavefront
phase that is inside the pupil from the phase array. Second,
the residual phase data is normalised to sit in the range
[0, 1] by dividing through by a constant value so that the
amplitude can be restored by multiplying any inferred image
from the network by the same constant. The normalisation
factor is a tuning parameter, with high values scaling small
wavefront errors too much, leading to mode collapse. When
normalised perfectly, so the largest value in the training data
is exactly 1, we find the trained network does not perform
well in generalisation evaluations – For example, where we
infer a residual phase in turbulence unseen during training.
In our work we have set this factor to 10, leaving some
headroom over the minimum required value, apprx. 7. The
WFS image is also normalised, again dividing by a constant



value which is slightly above the maximum. The WFS scale
is preserved because the WFS amplitude information, along
with the shape of the WFS spots, is the additional nonlin-
ear information captured using our estimation method. In
all cases our networks use a constant scaling factor of 1.2
million for WFS images. This value is chosen according to
the magnitude of the guide star, with our simulations using
a fixed guide of magnitude 10.

5 EXPERIMENTAL RESULTS

COMPASS Parameters: Parameters for simulation were
selected to demonstrate performance for realistic large tele-
scope AO loop scenarios. The degree of turbulence is de-
fined by the so-called Fried parameter, r0, which is a mea-
sure of the coherence scale of the turbulence [Roddier, 1999]
and depends on the wavelengths we are observing. Typically
the real-world operating conditions for r0 are in the range
of 0.16m at visible light wavelengths for the lower range
of atmospheric turbulence to 0.05m for extreme conditions.
For the purposes of this study we have selected a typical
r0 value of 0.10m for GAOL design analysis and a range
from 0.06m to 0.16m for robustness testing to atmospheric
turbulence.

AO loop data has been simulated for a typical
wind speed of 10 ms−1, and 50000 sample im-
age pairs each from data generated with r0 values
in [0.093m, 0.15m, 0.20m, 0.25m, 0.30m, 0.35m, 0.40m].
We thereby provide the network with a range of turbulence
scenarios to learn from, to aid robustness for estimation in
variable atmospheric turbulence that would be expected for
on-sky operating conditions. The upper limit of 0.093 was
selected as it corresponded with a pupil size of 512 pixels.
The training and evaluation atmospheres are different. In par-
ticular, when interrogating network model performance, in a
control setting below and otherwise, we use simulations that
are seeded uniquely, and therefore are of atmospheres not
seen during training. See Table 1 for simulation parameters.

GAN Network Parameters: We adapted the network ar-
chitecture and code from Isola et al. [2017] to use our revised
loss regime. Both Generator and Discriminator networks
used 64 filters. The Generator performs better with 64 fil-
ters over trials run with 32 or 16, however this comes with
a computational cost as the number of parameters is sig-
nificantly increased which in turn increases training time
and hardware memory requirements. Our training dataset is
generated using COMPASS, and consists of 350, 000 image
pairs. In training these are selected at random and we use a
batch size of 1.

Loss parameters were manually optimised for our setting,
and indeed we require a second loss term. The loss regimes
from the literature lead to models that underestimate ex-

Table 1: Simulation parameters

Telescope Parameters
Diameter 8 m

Simulated Atmospheric Parameters
Number of Layers 1
r0 0.10 m
Wind Velocity 10 ms−1

Target Parameters
Wavelength λt 1.65 µm

WFS Parameters
Number of sub-apertures 16 x 16 x 8pix
Wavelength λwfs 0.5 µm

AO Parameters
Loop frequency 500 Hz
Delay 2 frames
Integrator Gain 0.4
# Frames per experiment 2000

DM Parameters
Number of DM actuators
(Woofer)

17 x 17

1 tip-tilt mirror

treme maximum and minimum phase, and this has substan-
tial repercussions in our application.

Our method has a second L1 loss term, which increases the
weight of L1 loss for regions of phase screens with boundary
values. This extends Eqn. 5 with the additional masked
L1 loss term where GM defines the region of extremes
masked in the generated image G, and λM is the weighting
coefficient for the added masked loss term. All experimental
results in this paper use a single trained network with hyper-
parameters λ = 150 and λM = 30.

5.1 AO LOOP SIMULATIONS

One of the benefits of the GAOL design we propose is
the simplicity in extending a typical SCAO linear closed
controller by adding a second DM before the science camera.
This mirror is controlled by the estimates from the GAN and
operates in open loop – I.e., the effect of the second DM is
not fed back to the closed loop. For ease of reference we will
refer to the first DM as the ‘Woofer’ DM, in reference to the
low order information it corrects for, and the ‘Tweeter’ DM
is that driven by the GAN estimates that allow for high-order
corrections [Gavel and Norton, 2014].

Referring to Figure 5, the simulated GAOL AO system con-
sists of a linear controller in closed loop operation, to which
we add a DM Tweeter and controller before the science
camera (highlighted). Our translational network makes es-
timates that include high-order wavefront information that
is able to drive the Tweeter DM with a higher number of
actuators. The input to estimation is the same WFS image



Figure 5: GAOL AO Loop diagram

that is used by the closed loop linear control section of the
system.

For our experiments we contrast the performance of the
GAOL design against the Linear controller, and we vary
the number of actuators in the open-loop (Tweeter) DM.
The motivation of such an experiment is that if the GAOL
controller is able to outperform the linear one, then the GAN
must be able to more accurately infer information about the
wavefront phase than a slope-based linear reconstruction
scheme can. As AO loops take time to stabilize, we run each
experiment for 2000 iterations (4 seconds) before recording
the long exposure (LE) SR from COMPASS. The average
RMS wavefront error can be estimated from the LE SR,
given simulation parameters shown in Table 1.

5.2 EVALUATION METRICS

For the purposes of evaluating the performance of GAOL
control we choose a benchmark of the incumbent SCAO
control regime that is easily simulated with COMPASS.
Contrasting the performance of our novel control variants in
terms of Strehl Ratio (SR) and RMS wavefront error (WFE)
will demonstrate relative performance in domain specific
metrics. The realisation of turbulence for each simulation is
identical, so performance can be compared directly.

The SR measures the light intensity at the core of the PSF
relative to a diffraction limited PSF, so a SR of 100% implies
an aberration-free image. The RMS WFE is independent of
imaging wavelength, and determines the quantity of residual
wavefront phase of a given wavefront. A RMS WFE of
0 nanometres (nm) implies an aberration-free wavefront,
which produces an aberration-free image. Comparisons of
RMS WFE are calculated as discussed in Ross [2009].

5.3 RESULTS AND ANALYSIS

The GAOL method is a two step process, leveraging the
incumbent closed loop linear controller that relies on slope

Figure 6: Phase images from GAOL AO design (Linear
and GAN Residual Phase Estimate steps) compared with
the simulated true residual phase image in the AO Loop,
all images after 2000 iterations. Min to max range values
for phase images: True 2036nm, GAOL 1971nm, Linear
961nm, GAOL Error 2926nm, Linear Error 2422nm

measurements through centroider techniques on the Shack-
Hartmann WFS image. The phase estimate from the slope
measurements is then used to find a control solution to
drive the closed loop Woofer DM state. The GAOL method
extends the linear controller by passing the closed loop WFS
image through the GAN to infer the residual phase, and then
use this inferred phase to drive a second (Tweeter) DM to
further reduce the WFE. In this way, we can keep a closed
loop residual phase that is unaffected by the GAOL control
for future iterations of the AO loop.

For comparison of the GAOL control method with the linear
control baseline, Figure 6, shows for a single AO loop itera-
tion, the true residual phase (top-left) seen by the WFS (top
right), after interacting with the Woofer DM. Residual phase
estimates are made from the WFS observation – one with
the linear controler (mid-right) and the other inferred using
the GAN (mid-left) to generate a residual phase estimate for
the Tweeter DM. Each of these phase estimates is shown
with the respective WFE shown in the image below them.
For the baseline linear control case, we can see from the



Table 2: Performance (in Strehl ratio at 1650 nm) of each control scheme. Each controller is evaluated under each system
configuration, with a fixed r0 of 0.10m (∆WFE indicates the relative RMS wavefront error in nanometres for each method
compared to the linear controller)

Linear Control GAOL Control Oracle Control
AO System LE Strehl LE Strehl ∆WFE LE Strehl ∆WFE
No Open Loop DM 62.20% N/A N/A 73.76% 108.42
Open-Loop +0 (17x17) 62.37% 67.33% 72.64 73.76% 107.55
Open-Loop +1 (18x18) 63.96% 69.87% 78.07 75.76% 108.06
Open-Loop +3 (20x20) 64.06% 70.67% 82.82 79.17% 120.85
Open-Loop +7 (24x24) 66.77% 72.45% 75.03 83.99% 125.79
Open-Loop +15 (32x32) 69.39% 73.27% 61.25 89.21% 131.63
Open-Loop +31 (48x48) 68.55% 72.13% 59.25 93.41% 146.08

Table 3: Robustness to atmospheric turbulent conditions (r0) of optimal setting, compared to linear control baseline (both
with +7 actuators on the tweeter DM, in Strehl ratio at 1650 nm. ∆WFE indicates the relative RMS wavefront error in
nanometres compared to the linear controller)

Linear Control +7 actu (24x24) GAOL +7 actu (24x24)
Fried parameter r0 (m) LE Strehl LE Strehl ∆WFE

0.06 38.72% 44.00% 93.89
0.08 56.43% 62.04% 80.85
0.10 66.77% 72.45% 75.03
0.12 73.34% 79.24% 73.05
0.14 77.77% 83.73% 71.36
0.16 80.94% 86.89% 69.94

phase estimate that some limited estimation of the residual
is possible, and this translates to a modest improvement in
the WFE. The residual phase estimate inferred by the GAN
however is clearly able to interpret higher-order wavefront
information from the WFS, and is a close fit to the true
residual. Comparing the two residual phase errors, on the
bottom row of Figure 6, it is clear from the much finer grain
phase perturbations in the GAOL phase error that the linear
controller misses the high-order information inferred by the
GAN, and that the GAN estimate can be used to greatly
reduce the residual phase error of the closed loop linear
controller when applied to the Tweeter DM in open loop for
real-time control.

Table 2 shows the results of the comparison. Each column
of the table corresponds to a different method used to drive
the DMs in the AO system. Each row of the table corre-
sponds to a different AO system configuration, where the
key difference between each configuration is the number of
actuators in the ‘Tweeter’ DM. Each DM has all of its actua-
tors uniformly spread across the pupil, so a larger number of
actuators allows a higher-order correction of the wavefront
by this DM.

Consider the ‘Oracle Control’, where all information about
the wavefront is known to a perfect accuracy. The first and
second rows correspond to systems with DMs of equivalent
order, but with one DM in closed-loop with the SHWFS and
one DM in open-loop. The Oracle performs equivalently

on each of these systems. For the remaining rows, the Or-
acle monotonically improves, due to the higher degree of
freedom in its actuator space.

The ‘Linear Control’ is also allowed to actuate with a higher
degree of freedom for each row in the table, though it can
only use measurements derived from the SHWFS, which
has a limited sensing resolution based on its geometry. Ob-
serving that the WFE of the Oracle with respect to the linear
control monotonically increases, it is clear that the linear
controller is not able to fully utilise the additional actuators
of the open-loop DM.

The ‘GAOL Control’ is designed such that the open-loop
DM is only controlled by the GAN-inferred wavefront. So
the observation that GAOL consistently outperforms Linear
control indicates that the GAN is indeed able to more accu-
rately infer wavefront information than is possible with a
slope-based linear scheme. This observation suggests two
important results:

1. The GAN is able to more accurately infer wavefronts
than a slope-based scheme when DM is geometrically
matched to the WFS (since the second row of the table
shows an improvement for the GAN, despite not having
any extra actuators across the pupil),

2. The GAN is able to infer higher-order spatial infor-
mation relative to the slope-based scheme (since the
∆WFE improves, at least up to the +3 actuator sys-



tem).

We see that for very large actuator counts the Linear and
GAOL control schemes begin to degrade in performance.
This is likely due to numerical issues involved in controlling
many more actuators than available measurements, though
it is worth noting that at the point where the performance
begins to degrade, the open-loop DM has 9 times as many
actuators as the number of subapertures in the WFS.

From Table 3 it is clear that the GAOL control loop con-
sistently delivers large performance gains over the linear
control method for all r0 values, where the performance
improves slightly as the turbulence increases. This demon-
strates robustness to changes in the degree of atmospheric
turbulence, where a single pre-trained GAN can infer for
a wide range of conditions, removing the need to match
networks to conditions.

6 DISCUSSION & FUTURE WORK

We have shown that with CNN Image to Image Transla-
tion we can utilise high-order information from the Shack-
Hartmann WFS in an AO loop that is inaccessible with
centroider algorithms applied by current practical wavefront
estimation strategies. With this high-order data, our transla-
tional network can accurately estimate the wavefront from
just the WFS image. By controlling a second DM in open-
loop using the GAN estimated wavefront, we can further
reduce the residual phase by at least 70 nm RMS compared
to the best available linear controller. Performance of this
GAN-based method is shown to be robust over a wide range
of real-world turbulence conditions. 1

With access to higher-order Shack-Hartmann WFS data, we
can control more DM actuators with less Shack-Hartmann
WFS sub-apertures. This translates to a substantial impact
on how future AO systems will be designed – either as
a cost saving (using cheaper components), or a science
enabler (increasing sky coverage, and building a more potent
systems providing extreme AO correction—high actuators
count—with same sky coverage as current instruments).

We are the first to design a highly accurate method of resid-
ual wavefront estimation and apply it to real-time control.
Specifically, the time-to-solution is in the right regime, with
an average inference time of 0.34ms on a desktop GPU.
With optimization and dedicated hardware [Perret et al.,
2016; Gratadour et al., 2020], and the COSMIC framework
platform [Ferreira et al., 2020], there is potential for hard
real-time AO control using wavefronts inferred from pre-
trained networks. Future lab experiments will allow for
verification of loop control with real sensor equipment.

While these experimental results are just the beginning for
this project, they are a proof of concept that image to image

1Code at https://github.com/GANs4AO/.

translation with CNNs can efficiently and accurately esti-
mate the residual wavefront in AO systems and be easily
applied in simulation with few additional components. The
speed and simplicity, combined with demonstrated perfor-
mance benefit of our method is of great practical interest
to the AO community and shows a lot of promise for the
implementation requirements of the in-construction ELT,
applying eXtreme Adaptive Optics (XAO) to search for exo-
planets[Kasper et al., 2021]. Additionally, our method opens
the door to upgrading existing AO systems to provide better
turbulence compensation while preserving sky coverage,
since the number of sub-apertures can remain unchanged.
In particular, currently contemplated upgrade projects like
SPHERE+ as discussed by Beuzit et al. [2018] would clearly
benefit from this approach by providing a cost effective way
to increase the AO performance and enhance the science
return of this existing instrument.

Author Contributions

Damien Gratadour conceived the idea of applying AI to
the AO estimation problem for PSF reconstruction and real-
time AO control, and supervised experimental methods and
analysis of results as applied to the AO setting.

Charles Gretton conceptualised the application of advanced
CNN methods and supervised experimental methods and
analysis of results in the AI setting.

Jesse Cranney designed and implemented the simulated
AO loop configurations, including COMPASS configura-
tions and provided deep, applied knowledge of AO methods,
COMPASS scripting and analysis.

Jeffrey Smith applied the Image to Image Translation con-
cept for the project context and conducted research and ex-
perimentation for estimation techniques, and applied these
to simulated AO control experiments.

The paper was written by Jeffrey Smith, with guidance and
input from all co-authors excluding the AO Control section
written by Jesse Cranney.

Acknowledgements

Many thanks to Florian Ferreira for donating his time and
knowledge assisting with COMPASS, Felipe Trevizan for
guidance on manuscript editing and Mark Burgess for re-
views and feedback.

This work was supported in part by Oracle Cloud credits
and related resources provided by the Oracle for Research
program.

This research was undertaken with the assistance of re-
sources from the National Computational Infrastructure
(NCI Australia), an NCRIS enabled capability supported by
the Australian Government.

https://github.com/GANs4AO/


References

Jean-Luc Beuzit, David Mouillet, Thierry Fusco, Jean-
François Sauvage, Kjetil Dohlen, Julien Milli, Laurent M.
Mugnier, Arthur Vigan, Carlos M. Correia, Anthony
Boccaletti, Gérard Rousset, Pierre Baudoz, Alexis Car-
lotti, Mamadou N’Diaye, Frantz Martinache, and Markus
Kasper. A possible VLT-SPHERE XAO upgrade: going
faster, going fainter, going deeper (Conference Presen-
tation). In Laird M. Close, Laura Schreiber, and Dirk
Schmidt, editors, Adaptive Optics Systems VI, volume
10703. International Society for Optics and Photonics,
SPIE, 2018.

Jesse Cranney, Hao Zhang, Nicolas Doucet, François Rigaut,
Damien Gratadour, Visa Korkiakoski, José De Doná, Yuxi
Hong, Hatem Ltaief, and David Keyes. Predictive learn
and apply: MAVIS application - apply. In Laura Schreiber,
Dirk Schmidt, and Elise Vernet, editors, Adaptive Optics
Systems VII, volume 11448, pages 552 – 559. Interna-
tional Society for Optics and Photonics, SPIE, 2020.

Brent L. Ellerbroek and Curtis R. Vogel. Simulations of
closed-loop wavefront reconstruction for multiconjugate
adaptive optics on giant telescopes. In Astronomical
Adaptive Optics Systems and Applications, volume 5169,
2003.

F Ferreira, E Gendron, G Rousset, and D Gratadour. Numer-
ical estimation of wavefront error breakdown in adaptive
optics. Astronomy and astrophysics (Berlin), 616:A102,
2018a.

F Ferreira, A Sevin, J Bernard, O Guyon, A Bertrou-Cantou,
J Raffard, F Vidal, E Gendron, and D Gratadour. Hard
real-time core software of the AO RTC COSMIC plat-
form: architecture and performance. In Proc.SPIE, vol-
ume 11448, 12 2020.

Florian Ferreira, Damien Gratadour, Arnaud Sevin, and
Nicolas Doucet. COMPASS: An efficient GPU-based
simulation software for adaptive optics systems. In Pro-
ceedings - 2018 International Conference on High Perfor-
mance Computing and Simulation, HPCS 2018, 2018b.

Donald Gavel and Andrew Norton. Woofer-tweeter de-
formable mirror control for closed-loop adaptive optics:
theory and practice. In Adaptive Optics Systems IV, vol-
ume 9148, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative Adversarial Nets. In
Z Ghahramani, M Welling, C Cortes, N Lawrence, and
K Q Weinberger, editors, Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc.,
2014.

D. Gratadour, J. Bernard, N. Doucet, F. Ferreira, A. Sevin,
R. Biasi, and F. Rigaut. MAVIS real-time control system:
a high-end implementation of the COSMIC platform. In
Laura Schreiber, Dirk Schmidt, and Elise Vernet, editors,
Adaptive Optics Systems VII, volume 11448, pages 560 –
573. International Society for Optics and Photonics, SPIE,
2020.

Hong Guo, Nina Korablinova, Qiushi Ren, and Josef Bille.
Wavefront reconstruction with artificial neural networks.
Optics Express, 14(14):6456–6462, 2006.

Hongyang Guo, Yangjie Xu, Qing Li, Shengping Du, Dong
He, Qiang Wang, and Yongmei Huang. Improved Ma-
chine Learning Approach for Wavefront Sensing. Sensors
(Basel, Switzerland), 19(16):3533, 2019.

Phillip Isola, Jun Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional ad-
versarial networks. In Proceedings - 30th IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2017, volume 2017-January, 2017.

Markus Kasper, Nelly Cerpa Urra, Prashant Pathak, Markus
Bonse, Jalo Nousiainen, Byron Engler, Cédric Taïssir
Heritier, Jens Kammerer, Serban Leveratto, Chang Ra-
jani, Paul Bristow, Miska Le Louarn, Pierre-Yves Madec,
Stefan Ströbele, Christophe Verinaud, Adrian Glauser,
Sascha P. Quanz, Tapio Helin, Christoph Keller, Frans
Snik, Anthony Boccaletti, Gaël Chauvin, David Mouillet,
Caroline Kulcsár, and Henri-François Raynaud. Pcs — a
roadmap for exoearth imaging with the elt. Published in
The Messenger vol. 182, pp. 38-43:March 2021., 2021.

Chuan Li and Michael Wand. Precomputed real-time texture
synthesis with markovian generative adversarial networks.
In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 9907 LNCS, 2016.

Denis Perret, Maxime Lainé, Julien Bernard, Damien Grata-
dour, and Arnaud Sevin. Bridging FPGA and GPU tech-
nologies for AO real-time control. In Proc.SPIE, volume
9909, 7 2016.

Piotr Piatrou and Luc Gilles. Robustness study of the pseudo
open-loop controller for multiconjugate adaptive optics.
Applied Optics, 44(6), 2005.

François Roddier, editor. Adaptive Optics in Astronomy.
Cambridge University Press, 6 1999.

T. Sean Ross. Limitations and applicability of the Maréchal
approximation. Applied Optics, 48(10), 2009.

Robin Swanson, Masen Lamb, Carlos M Correia, Suresh
Sivanandam, and Kiriakos Kutulakos. Closed loop predic-
tive control of adaptive optics systems with convolutional
neural networks. Monthly Notices of the Royal Astronom-
ical Society, 503(2), 2021.



SJ Weddell and RY Webb. A neural network architecture for
reconstruction of turbulence degraded point spread func-
tions. University of Canterbury. Electrical and Computer
Engineering, 2007.


	Introduction
	Contributions

	Adaptive Optics Background
	AO Control
	GAN for Phase Estimation
	Experimental Results
	AO Loop Simulations
	Evaluation metrics
	Results and Analysis

	Discussion & Future Work

