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Abstract

This study presents an anatomy-informed segmentation approach for neurofibroma in
fat-suppressed T2-weighted whole-body MRI (WB-MRI). By adapting TotalSegmentator
for WB-MRI segmentation and employing dedicated Dynamic UNet models across four
anatomical zones, we achieved improvements of 20% in terms of the Dice coefficient on a
test set. The proposed method promises to streamline neurofibroma segmentation, empha-
sizing future integration into interactive workflows.
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1. Introduction

Neurofibromas (NFs), associated with the genetic disorder neurofibromatosis type 1 (NF1),
manifest as tumors along nerves in the skin and deeper soft tissues (Lammert et al., 2005).
Monitoring NF1 patients is critical due to the potential for malignancy with a high tumor
burden being a risk factor for malignant transformation (Korf, 1999). Whole-body MRI
(WB-MRI) is an important clinical feature in NF diagnosis (Legius et al., 2021), yet chal-
lenges in manual tumor quantification (Kollmann et al., 2020) and the subjectiveness of
human observers prompt a need for enhanced methods. NF segmentation, vital for the
analysis, is time-intensive and challenging, with manual segmentation taking up to five
hours per patient and state-of-the-art automatic methods like nnU-Net showing only 25%
accuracy (Zhang et al., 2022). While semi-automatic interactive methods (Diaz-Pinto et al.,
2022) improve accuracy, they still demand significant manual intervention in case of high
tumor load. Improved automatic pre-segmentation in addition to the interactive pipeline
alleviates the manual effort.

We propose an anatomy-informed approach to the automatic pre-segmentation of NF in
WB-MRI. As it was reported in (Zhang et al., 2022), a default nnU-Net pipeline shows a low
performance on this task. Hence, we leverage the acquisition of anatomical information from
accompanying T1-weighted (T1w) data. Our contributions are: 1) establishing a pipeline for
anatomy segmentation based on the adaptation of the TotalSegmentator; 2) inclusion of the
anatomical information in the NF segmentation; 3) anatomical zone based NF segmentation.
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2. Materials and Methods

Figure 1: Anatomy-informed neurofibromas (NFs) segmentation pipeline. T1w and T2w MRIs are regis-
tered. T1w is segmented with the adapted TotalSegmentator to get anatomical masks. T2w is
split into anatomical zones. Each zone is segmented with a dedicated DynUnet to get respective
NFs masks. The NFs masks are stitched together to form the final segmentation mask.

Dataset. Single-center data was acquired at the University Medical Center Hamburg-
Eppendorf. The dataset contained T1w and T2-weighted (T2w) fat-suppressed WB-MRIs
of 60 patients covering a period of 14 years (2006 - 2020). NF tumors in the dataset were
manually segmented with ITK-SNAP 3.8.0 (Yushkevich et al., 2006) by two radiologists
(I.R. and M.-L. S.). The WB-MRIs were randomly split on a patient level into train (48
patients, 70 MRIs, median tumor burden 319 ml), validation (6 patients, 12 MRIs, median
tumor burden 413 ml), and test subset (6 patients, 11 MRIs, median tumor burden 602
ml). The dataset underwent spacing alignment, Gaussian smoothing, and intensity scaling.

Anatomy-informed segmentation. NFs show a predisposition for the head/neck,
trunk, and extremities locations (Staser et al., 2012). According to the initial data analysis,
the appearance of NFs depends on their localization within a body. For example, NFs
located in the legs can look similar to blood vessels, and those in the neck can resemble
lymph nodes. Given varied appearances of NFs across anatomical zones (Staser et al.,
2012), providing location of organs and considering the zones separately could enhance
segmentation accuracy. We used T1w WB-MRI to capture anatomical structures, since
it provides high contrast between fat and water-containing tissues. For identifying NFs,
we used fat-suppressed T2w WB-MRI, which is more sensitive to a fluid content (Ahlawat
et al., 2016). T1w and T2w WB-MRIs were rigidly registered to compensate for a patient
positioning (Figure 1). We trained the TotalSegmentator (Wasserthal et al., 2023) using an
unsupervised domain adaptation method to adapt it to the highly-anisotropic T1w WB-
MRI data following (Weihsbach et al., 2023). The adapted model segmented key anatomical
features in T1w WB-MRI, including body surface and internal organs, which were refined
by removing inaccuracies through connected component analysis. The T2w WB-MRI was
divided into four anatomical zones (head-neck, chest, abdomen, and legs) based on the
landmarks identified from the anatomy segmentation. By dividing the body into these
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zones, we tailored the analysis to each region, accommodating the appearance of tumors in
different body parts. We trained four Dynamic UNets (DynUNets) with anisotropic kernels
and strides suited for each zone. The segmentation was performed patch-wise. An anatomy
segmentation mask was passed as the second channel for each DynUNet. Segmentations
of NF for each zone were stitched together to form the whole-body NF mask. Since the
assessment of internal tumor load is of major importance for physicians, we applied masking
with a morphologically eroded body outline to focus only on the deep soft tissue NFs and to
exclude superficial cutaneous NF that do not tend to undergo malignant transformations.

3. Results

To evaluate the effect of the anatomy-informed approach (Table 1), we compared the base-
line method, whole-body NF segmentation with DynUNet (patch size 128x128x32) without
any anatomical information included (denoted as WB), the WB method with anatomy
masks given as the second channel (WBA), an anatomical zone based segmentation with
a set of DynUNet models described above (ZB), and the ZB method with anatomy masks
given as the second channel (ZBA). Additionally, we checked the effect of masking the seg-
mentation with an eroded body outline (removed 1 cm below the skin surface). Two metrics
were used: Dice similarity coefficient (DSC) and volume overlap error (VOE).

Table 1: Comparison of the performance of the segmentation pipelines.

Segmentation Validation DSC (↑) Validation VOE (↓) Test DSC (↑) Test VOE (↓)
WB (baseline) 0.34 ± 0.19 0.78 ± 0.15 0.32 ± 0.08 0.79 ± 0.07
WB + masking 0.34 ± 0.19 0.77 ± 0.15 0.35 ± 0.09 0.78 ± 0.08
WBA 0.39 ± 0.15 0.74 ± 0.12 0.34 ± 0.08 0.78 ± 0.07
WBA + masking 0.39 ± 0.14 0.74 ± 0.12 0.37 ± 0.09 0.77 ± 0.08
ZB 0.44 ± 0.15 0.71 ± 0.16 0.51 ± 0.07 0.65 ± 0.07
ZB + masking 0.43 ± 0.16 0.69 ± 0.19 0.54 ± 0.07 0.63 ± 0.07
ZBA 0.43 ± 0.16 0.70 ± 0.15 0.53 ± 0.06 0.64 ± 0.05
ZBA + masking 0.43 ± 0.19 0.71 ± 0.17 0.54 ± 0.06 0.62 ± 0.06

Our findings for the baseline aligned with (Zhang et al., 2022) that showed low DSC of
0.25 for the nnU-Net. We observed high performance variability among the cases with lower
tumor burden. Segmenting NFs by anatomical zones enhanced accuracy, particularly for
the test cases with greater tumor burden (20% increase of DSC). Employing anatomy masks
showed only a marginal improvement. We also evaluated the average number of user inter-
actions required to reach a DSC of 0.6, starting from the pre-segmentation masks. When
employing the ZBA masks, we observed a decrease in the average number of interactions
by 30% (59 interactions), compared to the baseline (80 interactions).

4. Conclusion

Our study introduced an anatomy-informed pipeline for NF segmentation in WB-MRI,
enhancing preliminary delineation accuracy. By incorporating anatomical information and
segmenting based on the specific body zones, we achieved a substantial improvement in the
Dice similarity coefficient, highlighting the method’s efficacy. Future efforts will focus on
integrating this pipeline into a semi-automated workflow to streamline NF segmentation.
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