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Abstract

The primary objective of most lead optimization campaigns is to enhance the bind-
ing affinity of ligands. For large molecules such as antibodies, identifying mutations
that enhance antibody affinity is particularly challenging due to the combinatorial
explosion of potential mutations. When the structure of the antibody-antigen com-
plex is available, relative binding free energy (RBFE) methods can offer valuable
insights into how different mutations will impact the potency and selectivity of a
drug candidate, thereby reducing the reliance on costly and time-consuming wet-
lab experiments. However, accurately simulating the physics of large molecules is
computationally intensive. We present an active learning framework that iteratively
proposes promising sequences for simulators to evaluate, thereby accelerating the
search for improved binders. We explore different modeling approaches to identify
the most effective surrogate model for this task, and evaluate our framework both
using pre-computed pools of data and in a realistic full-loop setting.

1 Introduction

Proteins are complex macromolecules composed of linear chains of amino acids folded into a tertiary
structure. Antibodies are noteworthy proteins that interact with a diverse range of molecules via their
complementarity-determining regions (CDRs). Through a process called sonic hypermutation, the
immune system continually refines and optimizes the specificity and strength of antibody binding
to a particular antigen via iteration of mutation and selection. We can emulate such a biological
process by applying active learning to relative binding free energy (RBFE) methods, which model
the antibody-antigen interaction to predict their binding affinity relative to a parent antibody.
Active learning is a model-based strategy to taking informed decisions about future experiments to
perform under a certain objective. A special case is Bayesian optimization (Garnett, 2023) that uses
this approach for global optimization, making it a suitable method for identifying improved binders
using RBFE methods.

The primary goal of this work is the systematic identification of novel antibody mutations that lead to
improved binding properties when forming a complex with a particular antigen, with the following
contributions. For related work, please refer to Appendix A.1.

1. We construct a Bayesian optimization loop that interacts with RBFE methods to identify antibody
sequences with enhanced stability and improved binding properties w.r.t. a wild type antibody.

2. We introduce a simple yet effective encoding scheme based on the BLOcks SUbstitution Matrix
(BLOSUM) (Henikoff & Henikoff, 1992b,a) and evaluate it together with other encoding schemes.

3. We validate our method on pre-calculated data and evaluate a range of antibody sequence encodings
and model choices.
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Figure 1: Schematic of the active learning loop.
We initially train the surrogate model with a set of
single-point mutations of our wild-type antibody for
which we have results from an RBFE simulator (Sec-
tion 2.1). We run Bayesian optimization to sequen-
tially propose new sequences that improve binding
affinity. The new candidate is proposed by optimiz-
ing an acquisition function and triggers a new query
of the simulator. The encoded sequence and the
simulated output are added to the pool and used to
update the surrogate model. The building blocks of
the active learning loop are discussed in Section 2.2

4. We run the most promising setups from the validation runs in a full loop and find that our algorithm
consistently finds vastly improved binders over the mutations available in the pre-computed dataset.

2 Methods

2.1 Relative binding free energy methods

Relative binding free energy (RBFE) simulators are powerful methods for the prediction of binding
affinity, incorporating protein flexibility, solvents, and entropic effects. Despite their limitations due
to high computational costs, force field accuracy, and automation challenges, RBFE methods offer
valuable insights into protein-protein interactions, binding affinity, and specificity.
We employ two different RBFE simulators with varying degrees of dynamics to estimate the relative
binding affinity ∆∆G of an antibody that has been mutated with respect to a fixed parent and target,
based on their sequences of amino acids. The RBFE simulators compute ∆∆G = (∆Gbound) −
(∆Gunbound), where (∆Gbound) and (∆Gunbound) represent the difference in Gibbs free energy
between the wild type (WT) and the mutant in the bound and unbound states respectively. ∆∆G hence
denotes the gain or loss of energy from forming an antibody-antigen complex relative to the WT, and
a negative ∆∆G indicates an enhancement in binding affinity.

NQFEP: Utilizing our own implementation of the non-equilibrium free energy perturbation
(NQFEP) method with GROMACS and pmx (Seeliger & De Groot, 2010), we calculate the ∆G
of a specific mutation in both the bound and unbound states. By completing two legs of the
thermodynamic cycle, we calculate the ∆∆G of the mutation. This simulator provides fairly
accurate estimates but at a high computational cost of 6-24 hours on a modern GPU.

Schrödinger Res Scan: This cheaper (∼minutes on a few CPUs) but less accurate alternative esti-
mates the absolute energies of the bound complex and the unbound states, taking the ∆∆G as
the difference between these absolute energies. This method is error-prone, particularly because
it uses a single snapshot of the complex.

2.2 Active learning loop

Bayesian optimization Bayesian optimization (BO; Garnett, 2023) is a black-box optimization
technique aimed at finding the minimum (w.l.o.g.) of a function f : X → R, where in our case X
represents the space of antibodies, and f denotes the true ∆∆G. The method uses observed input-
output pairs (xi, yi) to construct a probabilistic surrogate model. The model uncertainty enables an
efficient exploration-exploitation trade-off through an acquisition function a : X → R that aims to
estimate the utility of selecting a new antibody and its simulated ∆∆G value. Given an initial set of
sequences and ∆∆G values, we alternate between updating the surrogate model and acquiring new
sequences until our budget (e.g., time, or total compute) is exhausted.
The most common class of surrogate models for BO are Gaussian processes (GPs; Rasmussen &
Williams, 2006). We model the observations as yi = f(xi) + ϵi, with ϵi ∼ N (0, σ2), and place a GP
prior on f . A GP is defined entirely by its mean function, µ : X → R (here a learned constant), and
its kernel function, k : X × X → R, which measures the similarity between two points.

2



Encoding antibody sequences GPs do not naturally operate on sequence data. In order to use them
on antibody sequences, we need to map strings of amino acids s ∈ S to numerical values x ∈ X ,
emb(s) : s 7→ x. We compare the following embeddings:

One-hot encoding: Each letter in the alphabet of amino acids gets assigned a unique one-hot vector
and the encoding is their concatenation according to the sequence.

Bag of amino acids: We count matching n-grams of amino acids, corresponding to the bag of words
embedding (Jurafsky & Martin, 2000). We set n = 5.

BLOSUM: The Blocks Substitution Matrix (BLOSUM; Henikoff & Henikoff, 1992a) is a substi-
tution matrix used in bioinformatics for sequence alignments of proteins. It is an indefinite
similarity matrix quantifying the similarity between pairs of amino acids upon substitution. We
perform an eigendecomposition of this kernel matrix, UDU⊤, and encode the individual amino
acids with the rows of U |D|1/2. This is motivated by observations in Oglic & Gärtner (2018,
2019) on flip-spectrum transformations of indefinite kernels.

AbLang2: AbLang2 (Olsen et al., 2024) uses an antibody-specific language model to encode the
light and heavy chain of the antibody jointly.

Gaussian processes on sequence embeddings We consider two types of GP models that are apt to
handle the high-dimensional sequence embeddings; firstly, dot-product covariance functions, where
we focus on the Tanimoto kernel (Ralaivola et al., 2005),

kTanimoto(x,x
′) =

⟨x,x′⟩
∥x∥+ ∥x′∥ − ⟨x,x′⟩

, (1)

and secondly, stationary kernels. For the latter, we use the RBF and Matérn-3/2 kernels after projecting
the embedded data to a lower-dimensional space where these covariance functions are known to
work better. For the dimension reduction we use random matrices of size Nemb ×Nlow with entries
sampled from a normal distribution, partly inspired by Wang et al. (2016).

Active learning on sequence data In order to propose new mutations of the parental antibody
for querying the simulator, we require a mechanism for optimizing the acquisition function. To do
so, we follow the work of Moss et al. (2020), and use a genetic algorithm (GA), which “evolves" a
“population" of sequences to maximize the “fitness" of the sequences, in this case the acquisition value.
The evolution is achieved by a mutation operation, which introduces a single amino acid mutation,
and a crossover operation, which takes two existing sequences, splices them at a random location,
and combines the splices to create a new sequence. In practice, to implement our genetic algorithm,
we extend the mol_ga package (Tripp & Hernández-Lobato, 2023) (based off the packages of Brown
et al., 2019; Jensen, 2019) to handle mutation and crossover operations for protein sequences.

3 Data

We pre-simulated ∆∆G values for selected mutations of a parent antibody, including 532 single-point
mutations from the costly NQFEP simulator and 60, 479 mutations from the Schrödinger Res Scan
simulator (cf. Section 2.1). The input data comprises sequences of amino acids for both the light
and heavy chains of the antibody. We use the standard single-letter codes representing the 20 amino
acids. Except for AbLang2, all embeddings concatenate the light and heavy chains using an auxiliary
character to treat them as a single sequence. The resulting sequences have a fixed length of 238,
obviating the need for padding. The embeddings are of dimensions of 4998 for the one-hot and
BLOSUM encodings, 835 (NQFEP) and 834 (Schrödinger Res Scan) for the bag-of-amino-acids
employing 5-grams, respectively, and 480 for AbLang2.

4 Experiments

4.1 Validation

To validate our method, we run the BO loop on both pre-simulated datasets for different embedding
schemes and choices of GP model. We initialize the GP with a small subset of the data, 0.01%
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Figure 2: Validation on the Schrödinger Res Scan pre-computed dataset over 200 iterations averaged
over 10 runs. Best ∆∆G value found using the RBF (left), Matérn (center), and Tanimoto (right)
kernels, respectively, for all encodings. In the case of the RBF and Matérn kernel, the embeddings
have been projected to 5 dimensions. The horizontal dashed line is the best value in the dataset.

(0.001%) of the NQFEP (the Schrödinger Res Scan) data. In each iteration of the Bayesian optimiza-
tion loop, we evaluate the acquisition function on the heldout data and find the new candidate by
choosing the maximizing value. We use expected improvement from BoTorch (Balandat et al., 2020)
as acquisition function and fix the observation variance σ2 to 10−4. Fixing the noise variance is
motivated by the determinism of the Schrödinger Res Scan simulations and the low variance expected
for the NQFEP simulations. The experiments for NQFEP can be found in Appendix A.2. For selected
choices of covariance function and embedding, we run 10 trials with 200 loop iterations each and
track the best value found by the algorithm. Our baseline is a random strategy that records the best
∆∆G observed from random picks of a (sequence,∆∆G)-pair from the remaining pool.

Due to the size of the Schrödinger Res Scan dataset, we restrict the selection of model settings and
compare the Tanimoto and stationary kernels for all embeddings except the one-hot encoding, and
fix the dimension reduction to five. The results for fixed noise variance are displayed in Figure 2;
those for trained noise variance can be found in Appendix A.2.2. While the stationary kernels do not
even outperform the random strategy, the Tanimoto kernel with the AbLang2 encoding finds the best
value in the dataset (−8.00 kcal/mol) within ≈ 150 iterations. For the Tanimoto kernel, the BLOSUM
encoding did not terminate in validation mode due to the large embedding size.

4.2 Full loop

We use the results from Section 4.1 to inform model choices when placing the simulator in the
loop. Due to computational constraints, we only consider the Schrödinger Res Scan simulator. We
select the AbLang2, BLOSUM, and bag-of-AAs encodings and choose the Tanimoto kernel for
the GP and initialize the loop using single-residue mutants of the wild type, choosing 3 random
mutations at each residue in the antibody’s CDR. We then run the BO loop for 50 iterations, using the
GA-based acquisition to select new queries from the set of all possible CDR mutations to send to the
simulator. Each experiment is repeated 3 times. The results are shown in Section 4.2. We observe
that for all encodings, using an unrestricted search space allows us to quickly find significantly better
∆∆G values than using an explicit pool of allowed sequences. Interestingly, the AbLang2 encoding
now shows the weakest performance of all the methods, suggesting that it might be spending more
resources exploring the space than the other encodings, as the space is extremely large.
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Figure 3: Results of the full loop run with
the Schrödinger Res Scan simulator. We plot
the best ∆∆G values found for each of three
encodings using the Tanimoto kernel, as well
as the best value from the pooled data from the
validation experiments as a dashed line.
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5 Conclusion and Outlook

Our work employs active learning to accelerate the in silico search for antibody mutations with
improved binding properties to a fixed antigen. We studied various choices of sequence encodings
and model choices for Bayesian optimization in sequence space and found well-performing model
choices. In the future, we aim to include structural information about the antibody and adapt the
model to handle multiple data sources. Finally, we plan to validate it on experimental data.
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A Additional information

A.1 Related work

Bayesian optimization has been used to optimize sequences in both discrete sequence space (Lodhi
et al., 2002; Moss, 2023) and continuous latent space (Stanton et al., 2022; Gómez-Bombarelli et al.,
2018). For example, substring kernels combined with a black-box optimization method such as GA
are proposed for optimization in discrete space (Moss, 2023; Khan et al., 2022) while the optimization
in latent space is done through embeddings of sequences in a generative modelling setting (Grosnit
et al., 2021; Deshwal & Doppa, 2021).

Scoring functions used for optimizing molecules for binding affinity include docking scores (Noh
et al., 2022; Jeon & Kim, 2020), relative binding free energy (RBFE) (Ghanakota et al., 2020; Moore
et al., 2023) and absolute binding free energy (ABFE) (Feng et al., 2022; Eckmann et al., 2024, 2022),
and can be used as a proxy for binding affinity. Moreover, the docking score is known to be inaccurate
and has low correlation with experimentally measured affinities (Coley et al., 2020; Handa et al.,
2023; Pinzi & Rastelli, 2019) while scores based on binding free energy tend to be more accurate, but
computationally more expensive, than docking scores (Moore et al., 2023). Since we focus on lead
optimization in this work, we use RBFE simulators as they tend to be computationally more efficient.

A.2 Validation experiments

The validation loop, described in Section 4.1 is conceptually visualized in Figure 4.

encode

AB sequences

find argmax
from heldout data

add to
training set

ddG
Training data

Acquisition
    Function

Heldout data

Surrogate
Model

Figure 4: Schematic of the validation
loop. We split the pre-computed dataset
into a training set and a pool of held-out
data. The loop iteratively selects a new
sequence from the pool by maximizing
the acquisition function on the held-out
data and updates the surrogate model.

A.2.1 Validation experiments for NQFEP

For the smaller dataset from the NQFEP simulator, we ran the validation for all combinations of
GP models with all encodings. For the latter, we additionally explore the effect of the dimension
we project the embedded sequences to prior to feeding them into the kernel. We record the best
∆∆G value found by the Bayesian optimization routine up to the current iteration.
Overall, we observe that the choice of projection dimension has little influence on the performance of
the BO model. The choice of encoding appears to be more important where AbLang2 consistently
outperforms the other encodings. This is especially true for the Tanimoto kernel (right panel of
Figure 5), where the best value in the dataset (−5.3 kcal/mol) is found within 30 iterations across all
ten trials.

Fixed noise variance Figure 5 shows the results for the RBF, Matérn, and Tanimoto kernel, where
the input to the stationary dimensions has been projected to five dimensions. We observe that the
Tanimoto kernel clearly outperforms the stationary kernels. Figure 6 and Figure 7 show additional
results for the RBF and Matérn kernel, respectively, for different projection dimensions for the
embeddings. Only the AbLang2 encoding consistently outperforms the random strategy. At larger
projection dimensions, the one-hot encoding also displays good performance.
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Figure 5: Validation on the NQFEP pre-computed dataset over 200 iterations averaged over 10
runs. Best ∆∆G value found using the RBF (left), Matérn (center), and Tanimoto (right) kernels,
respectively, for all encodings. In the case of the RBF and Matérn kernel, the embeddings have been
projected to 5 dimensions. The horizontal dashed line is the best value in the dataset.
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Figure 6: Validation on the NQFEP pre-computed dataset over 200 iterations averaged over 10 runs.
Best ∆∆G value found using the RBF kernel with inputs projected to 10 (left), 15 (center), and 20
(right) dimensions using random projections, respectively, for all encodings. The horizontal dashed
line is the best value in the dataset.
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Figure 7: Validation on the NQFEP pre-computed dataset over 200 iterations averaged over 10 runs.
Best ∆∆G value found using the Matérn kernel with inputs projected to 10 (left), 15 (center), and 20
(right) dimensions using random projections, respectively, for all encodings. The horizontal dashed
line is the best value in the dataset.

Trained noise variance We present the same results as before but train the variance of the likelihood.
This requires a modification of the acquisition function in the BO loop, since expected improvement
assumes noise-free evaluations. Instead, we employ noisy expected improvement using quasi Monte
Carlo (Letham et al., 2018), and rely on the implementation in BoTorch. The results in Figure 8,
Figure 9, and Figure 10 are organized as their counterparts for fixed noise variance in Figure 5,
Figure 6, and Figure 7.
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Figure 8: Same as Figure 5, but with learned noise variance, RBF (left), Matérn (center), and
Tanimoto (right) kernel.
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Figure 9: Same as Figure 6, but with learned noise variance, for the RBF kernel
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Figure 10: Same as Figure 7, but with learned noise variance, for the Matérn kernel.

A.2.2 Schrödinger Res Scan with learned noise variance

Figure 11 shows the results for the larger dataset when training the variance of the likelihood.
Remarkably, the RBF kernel combined with AbLang2 (left panel of Figure 11) performs significantly
better than in the case of fixed noise. However, the training becomes unstable and the runs did not
actually complete. This is indicated by the plateau of the curve. For the Tanimoto kernel, only the
AbLang2 encoding completed its runs. Due to the larger size of the other encodings, the evaluation
of the acquisition function on the entire dataset becomes prohibitively expensive.
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Figure 11: Validation on the Schrödinger Res Scan pre-computed dataset. Same as Figure 2, but with
learned noise variance, for the RBF (left), Matérn (center), and Tanimoto (right) kernel.
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