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Abstract

Recent works of Mei et al. [1, 2] have deepened the theoretical understanding of
the Stochastic Gradient Bandit (SGB) policy, showing that using a constant learning
rate guarantees asymptotic convergence to the optimal policy, and that sufficiently
small learning rates can yield logarithmic regret. However, whether logarithmic
regret holds beyond small learning rates remains unclear. In this work, we take a
step towards characterizing the regret regimes of SGB as a function of its learning
rate. For two–armed bandits, we identify a sharp threshold, scaling with the sub-
optimality gap ∆, below which SGB achieves logarithmic regret on all instances,
and above which it can incur polynomial regret on some instances. This result
highlights the necessity of knowing (or estimating) ∆ to ensure logarithmic regret
with a constant learning rate. For general K-armed bandits, we further show the
learning rate must additionally scale inversely with K to avoid polynomial regret.
We introduce novel techniques to derive regret upper bounds for SGB, laying the
groundwork for future advances in the theory of gradient-based bandit algorithms.

1 Introduction

A K-armed bandit is a sequential decision-making problem where, at each time t ∈ [T ], a learner
chooses an action At ∈ [K] and receives a reward rt drawn independently at random from the fixed
distribution νAt

. The objective is to select a policy π, which at each step t maps past observations
Ht−1 = (As, rs)s∈[t−1] to a sampling probability pπk,t = Pπ(At = k | Ht−1) for each arm k ∈ [K],
in order to maximize the expected cumulative reward Eπ[

∑T
t=1 rt] when actions are chosen according

to π. This is equivalent to minimizing the regret, defined by

Rπ
T :=Eπ

[
T∑

t=1

K∑
k=1

∆k1(At = k)

]
, with ∀k, ∆k = max

j∈[K]
µj − µk and µk = Er∼νk

[r] , (1)

or equivalently Rπ
T = Eπ

[
T∑

t=1

K∑
k=1

pπk,t∆k

]
≤ Eπ

[
T∑

t=1

(1− pπ1,t)

]
· max
k∈[K]

∆k, (2)

where for convenience we assume that arm 1 is the unique optimal arm, i.e., µ1 > maxj∈{2,...,K} µj .
We further define the minimum gap ∆ := mink:∆k>0 ∆k. Finally, we denote by F the family of
reward distributions supported on [−1, 1], and assume that νk ∈ F for all k ∈ [K].

Notation We now detail the symbols used throughout the paper. Let (A,B) ∈ R2, then: A ∧B =
min{A,B}, A ∨ B = max{A,B}, and (A)+ = A ∨ 0. If A,B depend on the horizon T , we use
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interchangeably A ≲ B or A = O(B) (resp. A ≳ B and A = Ω(B)) when there exists c > 0 s.t.
A ≤ cB (resp. ≥) and c is independent of T but can be problem-dependent. To hide poly-logarithmic
factors in T , we respectively use Õ and Ω̃, for example A ≥ T/ log(T ) =⇒ A = Ω̃(T ). Finally, we
use A ≍ B when both A ≲ B and B ≲ A hold.

1.1 Motivation and related work

Stochastic gradient ascent methods have been extensively studied in the context of bandits and
reinforcement learning, tracing back to foundational works such as Robbins and Monro’s stochastic
approximation [3], the REINFORCE algorithm [4], and subsequent developments in policy gradient
(PG) methods [5]. Despite the empirical success of these algorithms in modern deep reinforcement
learning [6–10], the theoretical understanding of their convergence and regret guarantees remains
limited. This motivates a closer examination of their foundational components in simpler settings.
We study one such component, the Stochastic Gradient Bandit algorithm (SGB) [11, Chapter 2.8], a
softmax policy gradient method for Multi-Armed Bandits (MAB).

A central challenge in analyzing SGB stems from the weakness of its underlying optimization structure,
making the analysis difficult even in the case of PG with access to exact gradient information [12].
The optimization challenge arises from the softmax parameterization satisfying only a non-uniform
version of the Polyak–Łojasiewicz (PL) inequality [13, Lemma 3]. Consequently, if the sampling
probability of the best arm becomes too small, the gradient signal vanishes and SGB may require an
exponentially long time to recover, even with access to exact gradients [14, 15]. Nevertheless, PG with
softmax parameterization and exact gradients has been shown to converge to a globally optimal policy
asymptotically [16, Theorem 5.1], and with a O(1/T ) rate [13], although the rate of convergence
depends on suitable initialization and problem dependent constants [14, 15]. Convergence guarantees
have also been obtained with regularization [12] or by modifying the softmax function [17].

The analysis of SGB with stochastic gradients becomes even more convoluted. Contrary to typical
policies like UCB [18] or Thompson Sampling [19], the decisions of SGB depend intricately on the
order in which all past rewards were collected, and thus cannot be analyzed through simple summary
statistics; see Appendix A.3 for a detailed comparison with standard bandit policies. Despite these
difficulties, a number of recent works are able to show global convergence of variants of SGB (and
its generalization for Markov Decision Process) [20–27]. However, these result require decaying
learning rate or regularization resulting in at best O(1/

√
T ) convergence rate [20–23]. Mei et al. [28]

showed that natural policy gradient with oracle baselines achieves a O(1/T ) convergence rate. A
closely related algorithm to SGB is SAMBA [29], a policy that achieves logarithmic regret for Bernoulli
rewards by performing stochastic gradient ascent directly on the sampling probabilities without
relying on the softmax transformation; for a detailed comparison to SGB see Appendix B.2.

Recently, Mei et al. [1] established a regret upper bound of O(log(T )) for SGB with a small constant
learning rate η satisfying η ≲ ∆2/K3/2 where K is the number of arms. In a follow-up work,
Mei et al. [2] further proved that SGB asymptotically converges to a globally optimal policy for any
constant learning rate. While asymptotic convergence is a desirable property, it does not guarantee
favorable regret guarantees, as we discuss in Appendix A.4. This motivates further investigation of
the regret properties of SGB without the small rate constraint.

The goal of our work is to characterize the strengths and limitations of SGB, as a principled yet simple
and scalable learning rule; which is representative of algorithms that have shown empirical success in
more complex, large-scale settings. Importantly, our aim is not to promote SGB over state-of-the-art
bandit algorithms such as KL-UCB [30] or Thompson Sampling [31, 32]. To achieve our goal, in this
work, we depart from optimization-based analyses of SGB and develop a regret-based analysis. Our
analysis exploits a novel decomposition into a term that remains logarithmic for all learning rates,
and a second term capturing the probability of failure–that is, the chance that the optimal arm fails to
stand out–which crucially depends on η. This enables us to determine regimes where SGB succeeds.

1.2 The Stochastic Gradient Bandit policy (SGB)

Following Sutton and Barto [11, Section 2.8], we define SGB as a randomized policy, with sampling
probabilities at time t ≥ 1 given by the softmax transform of some parameters (θk,t)k∈[K] ∈ RK ,

∀t ∈ [T ], ∀k ∈ [K] : pSGBk,t ∝ exp (θk,t) . (3)
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In the following, we drop the superscript for simplicity of notation. Given a fixed learning rate η, the
parameter of each arm k ∈ [K] is initialized at θk,1 = 0, and is updated as follows,

∀t ≥ 1 : θk,t+1 = θk,t+η·δθk,t, with δθk,t := (1−pk,t)·rt·1(At = k)−pk,t·rt·1(At ̸= k) . (4)

For completeness, we provide the pseudo-code of SGB in Algorithm 1 in Appendix A.1. In the
remainder of the paper, we use the shorthand notation Et[·] for the conditional expectation E[·|Ht−1].
From Equation (4), we derive the following first fundamental property of SGB,

∀k ∈ [K], t ≥ 1 : Et[δθk,t] = pk,t(1− pk,t)µk − pk,t
∑
j ̸=k

pj,tµj = pk,t · (Et[∆At
]−∆k) . (5)

This equation allows to verify (see Appendix A.1) that SGB indeed performs a stochastic gradient
ascent in order to maximize the value of the policy at time t, V SGB

t :=
∑K

k=1 pk,t ·µk, since (δk,t)k∈[K]

is an unbiased estimate of ∇θV
SGB
t . It also shows that a parameter θk,t is expected to increase only if

the gap of arm k is smaller than Et[∆At ] =
∑K

j=1 pj,t∆j , the instantaneous regret of SGB. From (5),
we further obtain that if arm 1 is the only optimal arm, the parameter of the best arm satisfies

E[θ1,T+1] = η · E

[
T∑

t=1

δθ1,t

]
= η · E

[
T∑

t=1

p1,tEt [∆At
]

]
≥ η · E

[
T∑

t=1

p1,t(1− p1,t)∆

]
(6)

which is an equality if all sub-optimal arms have the same gap ∆. This allows us to express an upper
bound on the regret as a function of the parameter θ1,T+1. Defining ∆max = maxk∈[K] ∆k, and
using that (1− p1,t) = p1,t(1− p1,t) + (1− p1,t)

2, by plugging (6) into (2) we obtain that

RT ≤ ∆max · E

[
T∑

t=1

(1− p1,t)

]
≤ ∆max

η∆
· E [θ1,T+1]︸ ︷︷ ︸

Post-convergence
term

+∆max · E

[
T∑

t=1

(1− p1,t)
2

]
︸ ︷︷ ︸

Failure regret

. (7)

This regret decomposition, though obtained via a straightforward reformulation, appears to be novel
and, to the best of our knowledge, has not been exploited in prior analyses of SGB. In fact, Equation (7)
provides a powerful lens through which we develop all the upper bounds in this work, as it splits the
regret into two interpretable components. In Section 3, we prove that the post-convergence term is
bounded by O(log T ) for any learning rate. Therefore, whether SGB achieves logarithmic regret or
not depends entirely on the scaling of the failure regret. We justify this terminology in Appendix F.1,
where we discuss an alternative formulation of Eq. (7) establishing the relation between failure
regret and the sum of probabilities that p1,t stays bounded away from 1. The empirical study in
Section 4 further supports this decomposition: most trajectories of SGB fall into one of two distinct
regimes–successful runs, with convergence to the optimal policy at rate O(t−1), and failed runs,
where the optimal arm remains persistently under-sampled up to horizon T .

In addition to the above regret bound, we present in Appendix A.2 some other elementary properties
of SGB that can be directly derived from its update rule (4), and will be useful in our analyses.

1.3 Outline and contributions

We introduced in Section 1.2 an original decomposition of the regret of SGB into a post-convergence
term and a failure regret. In Section 2, we build on Eq. (7) to provide a tight regret analysis for
two-armed bandits when η ≲ ∆ (Thm. 1). We then prove in Thm. 2 that the regret of SGB can be
polynomial on some instances if η ≳ ∆. Hence, we characterize the regret of SGB in two-armed
bandits, except for a critical regime η ≈ ∆ that we discuss in Section 2.2. In particular, knowing a
lower bound on the gap ∆ is necessary and sufficient to tune η to guarantee logarithmic regret. We
summarize our results for the two-armed bandit problem in Table 1 below, denoting by F2

∆ the class
of two-armed bandits with distributions supported on [−1, 1] and gap larger than ∆ ∈ (0, 1).

In Section 3, we consider a general number of arms K. Using lower bound arguments, we first prove
a second necessary condition: logarithmic regret can be guaranteed only if η decreases linearly in K
(Thm. 3). By combining this result with Thm. 2 we conjecture that the critical tuning of η might be
proportional to ∆/K. For the regret analysis, we establish in Lemma 2 that the post-convergence
term is logarithmic for any constant learning rate. Then, in Lemma 3, we derive an intermediate
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η ≤ ∆−O(∆2) ≈ ∆ ≥ ∆+O(∆2)

RT

∀ν ∈ F2
∆,

RT ≤ log(T )
2η

(Thm. 1)

∃ν0 ∈ F2
∆ s.t.

E[(1− p1,t)
2] ≍ t−1

(Conjecture from the
proofs of Thm. 1 and 2)

∃ν1 ∈ F2
∆ s.t.

RT = Ω̃
(
T 1− ∆

η(1−∆)

)
(Thm. 2)

Regime Logarithmic Critical Polynomial

Table 1: Regret guarantees for SGB as a function of η for two-armed bandits

upper bound on the failure regret. The upper bound contains additional terms compared to the case
K = 2, causing significant technical challenges that we detail, but leave their dedicated analysis for
future work. Nonetheless, as a promising first complete result for K-armed problems, we prove in
Theorem 4 that the regret of SGB is logarithmic if ηe2η ≤ 2∆

K+2 , when all arms have identical gap ∆.

Finally, in Section 4 we present some synthetic experiments that illustrate our theoretical findings.

2 Characterizing the regret regimes for two-armed bandits

In this section we propose a tight characterization of the regret regimes of SGB when K = 2. We
exhibit a separation between logarithmic and polynomial regret close to the gap ∆.

2.1 Regret analysis for η ≤ ∆−O(∆2)

We directly detail the main result of this section and its complete proof.
Theorem 1 (Regret upper bound for K = 2). For a two-armed bandit instance ν ∈ F2 with a gap
∆ ∈ (0, 1), the regret of SGB tuned with a learning rate η satisfying ηCη < ∆ is upper bounded by

RSGB
T ≤ log(1 + 4η∆T )

2η
+

∆

2η(∆− ηCη)
, with Cη := 2

+∞∑
n=0

(2η)n

(n+ 2)!
≤ e2η.

Proof. Since θ2,t = −θ1,t for all steps t, by (9), we drop the subscript 1 to simplify the notation.
Starting from the regret decomposition of Equation (7), we readily obtain that for any instance ν,

RSGB
T ≤ E [θT+1]

η
+∆ · E

[
T∑

t=1

(1− pt)
2

]
.

We start by upper bounding E[θT+1]. Jensen inequality provides that

E[θT+1] =
1

2
· E
[
log
(
e2θT+1

)]
≤ 1

2
· log

(
E
[
e2θT+1

])
.

We then use the update rule of (θt)t≥1 to upper bound E[e2θt ]. From the Taylor expansion of the
exponential, for any constant q ∈ R and random variable r supported on [−1, 1], it holds that

E[eqr] = 1 + qE[r] +
+∞∑
n=2

qn

n!
E[rn] ≤ 1 + qE[r] + q2 ·

+∞∑
n=2

qn−2

n!
≤ 1 + qE[r] +

q2

2
· C |q|

2
. (8)

Using the notation at = 2η(1− pt) and bt = 2ηpt, for any t ≥ 1 Eq. (4) and (8) give that

Et[e
2θt+1 ] = e2θt · Et[e

2ηδθt ] = e2θt ·
(
ptEt[e

atrt |At = 1] + (1− pt)E[e−btrt |At = 2]
)

≤ e2θt ·
(
1 + pt ·

(
atµ1 + a2t · 0.5 · Cat/2

)
+ (1− pt) ·

(
−btµ2 + b2t · 0.5 · Cbt/2

))
≤ e2θt ·

(
1 + 2pt(1− pt) ·

(
η∆+ η2Cη

))
, since at ∨ bt ≤ 2η .

Then, we use the relation e2θt(1− pt) = pt (Eq. (11) in Appendix A) to obtain that

∀t ≥ 1, Et[e
2θt+1 ] ≤ e2θt + p2t · 2

(
η∆+ η2Cη

)
=⇒ E

[
e2θT+1

]
≤ 1 + 2

(
η∆+ η2Cη

)
· T,
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which gives the logarithmic term in the theorem. It remains to upper bound E[
∑T

t=1(1− pt)
2]. For

t ≥ 1, we define xt :=
1−pt

pt
= e−2θt , and obtain with the same arguments as above that

Et[xt+1] ≤ xt ·
(
1− 2pt(1− pt)η∆+ 2pt(1− pt)η

2Cη

)
= xt − 2η(1− pt)

2 · (∆− ηCη) .

By taking expectation on both sides and summing over time steps, we thus obtain that

E[xT+1 − x1] ≤ −2η · (∆− ηCη) · E

[
T∑

t=1

(1− pt)
2

]
,

from which the result follows by using that E[x1 − xT+1] ≤ x1 = 1 and that ∆− ηCη > 0.

Tightness of the bound In addition to being strikingly simple, the proof of Thm. 1 is also tight
under the assumption that rewards are bounded in [−1, 1]. First, for ν1 = Rad(∆) and ν2 = Rad(0),
and ηCη = (1−ε)∆ for some ε > 0, the logarithmic (post-convergence) term matches the asymptotic
lower bound up to a factor (1−ε)−1(1+O(∆)) (see D.1 for details). It thus cannot be much improved
if ε,∆ are small. For the constant term, the only possible improvement would be to use higher-order
moments for a tighter approximation in Eq.(8). However, for Rademacher distributions we could at
most replace Cη by 1, so the gain would be minor for small η since we already have that Cη ≤ e2η .

Comparison with existing results Theorem 1 is a fully explicit regret upper bound, which sur-
prisingly does not rely on any techniques from standard analyses of gradient ascent policies. For
two arms, we obtain guarantees for a much broader range of learning rates2 than Mei et al. [1], and
even obtain near-optimal logarithmic scaling of the regret if η happens to be close to ∆. We then
compare SGB with SAMBA, another policy performing (non-parametric) gradient ascent. For two arms,
SAMBA running with parameter α < ∆ achieves a regret bound of α−1 log(T ) [29], which is close to
our result. We elaborate on the comparison between the two policies in Appendix B.2. While their
analysis extends to K > 2, it is more involved than the proof of Thm. 1, is restricted to Bernoulli
rewards, and involves non-explicit and potentially large constants. Finally, we highlight that the
logarithmic component of Thm. 1 is valid for all constant η. Hence, for SGB restricting η is required
only to guarantee that the failure regret converges, which is a novel insight compared to [29].

Alternative moment-based condition A closer examination of Eq. (8) reveals that the analysis of
Thm. 1 can be extended or sharpened under general moment assumptions on the reward distribution.
For example, if one assumes that supm≥2 E[rmt ] ≤ s2 for some s > 0, then the result continues
to hold by scaling the term ηCη by s2 when bounding the failure regret, so ηCη < ∆

s2 is sufficient
for logarithmic regret. Hence, SGB can be fine-tuned under higher-moment conditions, akin to how
Bernstein-type inequalities [33, Chapter 2.8] improve confidence intervals in UCB-style algorithms.
Such assumptions are often realistic in applications like marketing or online advertising, where reward
distributions are typically bounded and the average outcomes (e.g. click rates) are small [34, 35].
In Appendix F.5 we also discuss the case of unbounded rewards, e.g. sub-Gaussian. Notably, for
SGB these assumptions merely expand the admissible range of learning rates. By contrast, standard
approaches would require substantial structural changes, such as tighter confidence intervals for UCB
or modified priors/posteriors for TS, to exploit higher-order moment information.

Knowledge of ∆ While assuming that a lower bound on ∆ is known remains a strong requirement,
we conclude this section by showing that, even without this knowledge, a learning rate that depends
only on the time horizon T leads to meaningful regret guarantees in the two-armed bandit setting.

Corollary 1 (of Theorem 1). If ∆ is unknown, one can set η =
√

log(T )
T , which yields

∀ν ∈ F2, RT ≲
log(T )

η
· 1(2ηCη ≤ ∆) +∆T · 1(∆ < 2ηCη) ≲

√
T log(T ),

by using the upper bound from the theorem if η is small enough, and RT ≤ ∆T otherwise.

In Proposition 4 (App. F.3) we further prove that a time-varying learning rate ηt =
√

log(e ∨ t)/t

also yields RT = Õ(
√
T ). While Mei et al. [1, Section 3] hint that such a rate may be an appropriate

2We document in Appendix B.1 a potential issue with their result, and propose a non-trivial fix for K = 2.
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tuning for SGB, it appears that comparable results to ours have only been been obtained with
regularization added to the policy update, as in [20, 21]. On the other hand, the regret upper bound of
the gap-free variant of SAMBA [29, Thm.2] still involves large problem-dependent constants, while the
constants in Corollary 1 are absolute. Hence, the time-dependent tuning of η that we propose stands
out as a practical choice when no lower bound on ∆ is available (see Appendix G.1 for experiments).
For the two-armed case, we believe that these theoretical results offer a comprehensive guideline on
how to choose η when using SGB in practice: if the learner has access to a lower bound on ∆̄ < ∆

such that the gap-dependent tuning η ≈ ∆̄ guarantees that log(1+4η∆T )
2η ≤

√
T log(T ) for horizon T ,

then the gap-dependent tuning should yield better performance, since we believe that the bound of
the theorem is tight. Otherwise, the horizon-dependent tuning that we propose can be safely used.

2.2 Necessary condition on fixed η for logarithmic regret

In this section, we prove that the knowledge of the minimum gap ∆ is necessary to tune the fixed
learning rate of SGB in order to obtain logarithmic regret. The following Thm. 2 shows that if η
is larger than a fixed constant that depends on the gap ∆ and the number of arms K, there exists
a K-armed bandit problem with gap ∆ for which SGB has polynomial regret. To define it, for
µ ∈ [−1, 1] we denote resp. by Rad(µ) and δµ the Rademacher and Dirac distributions of mean µ.

Theorem 2 (Polynomial regret). Fix ∆ ∈ (0, 1), and consider the instance ν = (νk)k∈[K] with
ν1 = Rad(∆) and ν2 = · · · = νK = δ0. If the learning rate of SGB satisfies

η > λ∆ := K−1
K log

(
1 + 2∆

1−∆

)
,

then its regret on the instance ν is lower bounded as follows,

∀ ε > 0, RT = Ω̃
(
T 1−(1+ε)λ∆/η

)
,

where Ω̃ hides polylogarithmic terms in T and constants depending on η and ∆.

Proof sketch. Let us assume K = 2 in the following, and introduce the main steps of the proof of the
theorem. Details and supporting results can be found in Appendix C, where we directly consider a
general number of arms. Since only arm 1 yields non-zero rewards, we directly have

∀t ≥ 1, θ1,t+1 = θ1,t + η(1− p1,t) · rt · 1(At = 1) ,

so we denote by p̃n+1 the sampling probability of arm 1 after its n first pulls. The proof consists of
identifying a scenario with linear regret, and lower bounding its probability as a function of η.

Step 1: Let S be the event that p̃n+1 ≤ 1
2T , for some fixed value of n. Then, under S the probability

that arm 1 is never pulled again after its n first selections is larger than 1/2, in which case the regret
is larger than ∆(T − n). It thus holds that RT ≥ 0.5 ·∆ · P(S) · (T − n)+.

Step 2: We lower bound P(S) for a well-chosen value of n = n0 + n1, for two integers n0 and n1.
Consider the following scenario: in a preliminary phase, arm 1 collects only −1 rewards from its first
n0 pulls, and in a next phase it collects n1 rewards with an empirical mean satisfying µ̂n1

≈ −∆,
while the number of +1s received is never more than the number of −1s throughout this phase. First,
we derive in Lemma 6 a lower bound on the probability of this scenario. Then, we prove (Lemma 7)
that setting n1 = O(log(T )) and n0 = O(log(n1)) guarantees that this scenario is included in the
event S .From a high-level perspective, the preliminary phase only serves to make p̃n0+1 small enough
to reduce the impact of the ordering of the rewards in the next phase, and the scaling of the lower
bound (ignoring log terms) comes from the choice of n1.

Lastly, we emphasize that the result should hold with random sub-optimal arms (further assuming
that they are “lucky enough” throughout the trajectory), but constant rewards simplify the proof.

Critical regime We remark that Theorems 1 and 2 do not provide explicit results about the regret
of SGB when η ≈ ∆, that we thus call the critical regime. However, by comparing both theorems
and their proofs we conjecture that, on some difficult instances, SGB satisfies E

[
(1− pt)

2
]
≍ t−

∆
η .
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Indeed, after summation this scaling makes the failure regret admit a Ω(T 1−∆
η ) lower bound when

η > ∆ (see Thm. 2). If there is a smooth interpolation between the logarithmic and polynomial
regime, then there might exists a small range of learning rates η ≈ ∆ for which the failure regret
could be logarithmic on difficult instances. This is supported by experiments from Section 4 and
Appendix G: we observe a relatively smooth evolution of performance metrics (regret, percentage of
failed runs) with the learning rate. In the experiments, the critical learning rates, such as η = ∆ when
K = 2, provide good empirical performance.

3 Results for K > 2 arms

In this section, we explore the theoretical guarantees of SGB for K > 2. We start by proving that the
learning rate must decrease with the number of arms in order to guarantee logarithmic regret. Then,
we provide preliminary results for upper bounding the regret of SGB by generalizing the proof of
Theorem 1. We also provide some intuition about why this case is significantly harder than K = 2,
and what we believe to be the right critical scaling for η.

3.1 Necessary scaling of η in K for logarithmic regret

In this part, we exhibit a necessary condition on the learning rate for logarithmic regret, depending
on the number of arms K. While we proved Thm. 2 by directly analyzing a difficult instance, on the
contrary, the proof technique of Thm. 3 exploits the efficiency of SGB on an easy problem instance,
from which we deduce the result using lower bound arguments. We start by presenting the regret
upper bound leading to this conclusion.
Lemma 1 (Regret upper bound on an easy instance). Let ν ∈ FK be a MAB defied by ν1 = δ0 and
ν2 = · · · = νK = δ−∆, for some ∆ > 0. Then, for any learning rate η, SGB satisfies

∀ ε ∈ (0, 1), RSGB
T ≤ 1 + log (1 + (K − 1)Tη∆)

(1− ε)η
+

K2

ε
·
(
∆+

1

η
log

(
K

ε

))
.

Proof sketch. We present the full proof in Appendix D.2. We first show that, since rewards are
deterministic, arm 1 remains the mode of the sampling distribution for all steps t, and pk,t/p1,t is
non-increasing for any sub-optimal arm k. Hence, we establish that p1,t ≥ 1− ε happens in finite
expected time for any threshold ε ∈ (0, 1), which gives the O(ε−1) term of the bound. We then prove
that, from that stage, 1− p1,t decreases exponentially fast with the total number of sub-optimal
plays. This careful decomposition allows us to obtain a logarithmic term that does not involve a
multiplicative factor of K − 1. In Appendix D.2 and G.3 we further discuss how this result might be
tightened by a factor K−1

K , which we prove formally for K = 2 (Lemma 14).

Implication on the consistency of SGB Lemma 1 suggests that, for a fixed horizon, the regret
of SGB can be arbitrarily small for large η in some easy bandit instances. As a consequence of the
well-known asymptotic regret lower bound [36, 37], this must come at a cost on other instances. We
dedicate Appendix D.1 for a thorough presentation of the lower bound we use in the proof (restated
in Thm. 6), and other technical results needed to derive the following theorem.
Theorem 3 (Polynomial regret for η ≳ K−1). Let ∆ ∈ (0, 1) and α ∈ (0, 1). Consider the class
FK

∆ of K-armed bandit instances with minimum gap at least ∆. If the learning rate satisfies

η >
1

∆(1− α)
log
(
1 + 2∆

1−∆

)
· 1

K − 1
,

then there exists an instance ν ∈ FK
∆ such that the regret of SGB satisfies

RT = Ω(Tα).

Proof. Setting ε−1 =
√
log(3 + T ), Lemma 1 yields RT = η−1 · log(T ) + O(

√
log(T )) for the

instance ν = {δ0, δ−∆, . . . , δ−∆} ∈ FK
∆ , for any η > 0. In contrast, Theorem 6 (adaptation of

the Lai & Robbins lower bound) and Lemma 11 (specialization to Dirac distributions) imply that
any policy with regret RT = O(Tα) on all instances in FK

∆ should satisfy lim infT→∞
RT

log(T ) >
(K−1)(1−α)∆ log(T )

log(1+ 2∆
1−∆ )

on this deterministic instance ν. Combining these two results proves the theorem.
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Discussion The fact that the learning rate has to be inversely proportional to the number of arms
might be surprising at first sight. An intuitive explanation is that the update rule of θ1,t is agnostic to
the number of arms: for any step t ≥ 1, the distribution of δθ1,t conditioned on Ht−1 is the same if
arm 1 faces a single arm (K = 2) or a mixture of K − 1 identical arms. Hence, in order to reduce the
speed of convergence of p1,t, and thus guarantee sufficient exploration of the K − 1 alternatives, it is
necessary to make the learning rate decrease with K. In contrast, standard bandit policies typically
have a separate exploration mechanism for each arm, determined by their respective observations.

Conjectures Combining Thm. 2 and 3, we establish that logarithmic regret is only achievable for
η ≲ ∆∧K−1. This suggests that the critical threshold separating logarithmic from polynomial regret
may depend on the ratio ∆/K. We explore this idea further in Appendix D.3, where we present and
motivate two conjectures. Conjecture 1, inspired by Theorem 3, posits that regret cannot be too small
on an "easy" instance. Conjecture 2 considers a construction with one slightly sub-optimal arm and
many very sub-optimal arms: ν1 = Rad(∆), ν2 = δ0, and ν3 = · · · = νK = δ−1. Both suggest that
the critical rate, above which SGB may suffer polynomial regret, is near 2∆

K for K-armed bandits.

3.2 Tools for upper bounding the regret

In this section we propose some tools to derive upper bounds on the regret of SGB for K > 2. While
our current results do not lead to a complete regret upper bound in general, we introduce promising
preliminary results, with full regret bounds in some cases, showing the potential of the techniques
introduced in this paper for future investigation on this problem.

Let us introduce the random variable MT = supk∈{2,...,K} supt∈[T ] E[eθk,t ]. Then, our first result of
this section states that E[θ1,T+1] is always logarithmic in T when K > 2, as detailed below.
Lemma 2. For any horizon T ≥ 1 and for any learning rate η, parameter θ1,T+1 of SGB satisfies

E[θ1,T+1] ≤ log

(
1 +

(
η∆+

η2

2
eη
)
(K − 1) ·MT · T

)
∧ (K − 1) · (log(T ) + 4η) ,

We prove the lemma in Appendix F.2, with distinct proofs for the two bounds. The first one is based
on Jensen inequality, similarly to the proof of Thm. 1. For the second bound, we first prove that
the expectation of the minimum parameter E[mink∈[K] θk,t] cannot be smaller than − log(T ). We
then deduce the bound scaling with (K − 1) log(T ) by using the linear relationship (9) between all
parameters. The first bound is tighter asymptotically e.g. if MT = O(T ), which we think should
hold at least for small enough η, but proving it formally requires new techniques. Nonetheless, the
potentially sub-optimal K − 1 factor only appears in the upper bound, and does not translate into a
supplementary constraint on how to tune SGB to achieve logarithmic regret.

We now introduce an upper bound on the failure regret obtained by generalizing the proof of Thm. 1.
Lemma 3. For any instance ν ∈ FK

∆ and learning rate satisfying ηCη < ∆, SGB satisfies

E

[
T∑

t=1

(1− p1,t)
2

]
≤ K − 1

K · η(∆− ηCη)
+ E

[
T∑

t=1

ηHt +
η2

2 Wt

p1,t

]
, with

Ht =
∑K

k=2 p
2
k,t (Et[∆At

]− (1− p1,t)∆k) and Wt =
∑K

k=2 p
2
k,t(1− pk,t)− p1,t(1− p1,t)

2.

This result, proved in Appendix F.4, matches the upper bound on the failure regret in Thm. 1 for
K = 2, since Ht = Wt = 0 in this scenario. Unfortunately, upper bounding the additional terms
depending on Ht and Wt is intricate in general. However, these terms can be non-positive under
favorable scenarios, and are thus not necessarily causing regret. In Appendix F.4.1 we detail some
properties and intuition about Ht and Wt, that can be useful for future works. Intuitively, Wt reflects
how uniformly the probability 1 − p1,t is divided among sub-optimal arms, leading to increased
variance for parameter updates. Moreover, Ht > 0 can occur in a scenario where increasing the
probability of an arm whose gap is lower than the expected gap of the policy might be preferable to
increasing p1,t. Finally, we remark that Lemma 3 does not hint that η should depend on K, suggesting
that the scaling found in Thm. 3 is required to further upper bound the newly introduced terms.

We finally present a complete regret upper bound when the gaps are identical among all arms, that we
prove in Appendix E. As expected from previous results, the main difficulty is to upper bound the
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failure regret, although we can exploit the fact that Ht = 0 in the case of identical gaps. The factor
K in the tuning of the learning rate emerges from the initialization p1,1 = K−1

Theorem 4 (Logarithmic regret for identical gaps). Let ν ∈ FK be a MAB instance satisfying
∆2 = · · · = ∆K = ∆, for some ∆ ∈ (0, 1). Then, the regret of SGB tuned with a learning rate η
satisfying ηCη < 2∆

K+2 is upper bounded as follows,

RSGB
T (ν) ≤ 2

η
· E[θ1,T+1] + Γν ≤ 2(K − 1)

η
· log(T ) + Γν , for some constant Γν > 0.

Finally, we present in Lemma 15 in Appendix E a result analogous to Corollary 1. With a refined
analysis of the constant Γν , we prove that a tuning ηT = 1/

√
T yields a regret bound RT ≲ K

√
T .

Thus, in this setting a horizon-dependent learning rate can also be used when ∆ is unknown.

4 Experiments

We now provide empirical support for the theoretical results presented in previous sections, focusing
on the performance of SGB as a function of its learning rate η. We present additional experiments in
Appendix G, where we also empirically compare SGB to some standard bandit algorithms.

Experimental Setups To illustrate Thm. 1 and 2 we first consider a two-armed bandit experiment
with distributions ν1 = Rad(0.1) and ν2 = Rad(0), on which we test SGB with four different learning
rates: (ηi)i∈[4] =

{
∆
2 ,∆, 2∆, 5∆

}
. Among these, η1 = ∆

2 yields logarithmic regret (Thm. 1), and
η2 = ∆ is the critical threshold identified in Section 2. Assuming that Thm. 2 is tight, and using
λ∆ ≈ ∆, we expect η3 and η4 to suffer polynomial regret of resp. order

√
T and T 4/5. For the second

experiment, we consider K = 10 arms and the instance defined by ν1 = Rad(0.1), ν2 = δ0 and
ν3 = · · · = ν10 = δ−1, in order to support Thm. 3, and more precisely the conjecture that the critical
learning rate is η = 2∆/K for K-armed problems. Thus, we compare the performance of SGB
with learning rates (ηi)i∈[5] =

{
∆
K , 2∆

K = ∆
5 ,

∆
2 ,∆, 5∆

}
. For each setup, we run 104 independent

trajectories of SGB over horizon T = 2 · 104. Our results are displayed in Figures 1 and 2 respectively.

Results The results of both experiments support the theoretical findings developed in this work. In
each setting, only learning rates below the critical threshold 2∆/K (specifically, η1 and η2) lead to a
logarithmic average regret. For the rate just above the critical threshold (η3), the additional statistics
presented alongside the average regret curves highlight the fragility of this tuning. In particular, the
average regret shifts closer to the 90th percentile across runs, indicating a noticeable increase in failed
trajectories compared to smaller learning rates. For K = 2, the table in Fig. 1 confirms this finding.

The figures also remarkably illustrate the regret decomposition of Eq.(7), particularly the right panel
of Figure 2, which shows the empirical distributions of regret across trajectories at time T . These
distributions are distinctly bimodal. A subset of runs exhibits a post-convergence behavior, with regret
concentrated around a value proportional to η−1 log(T ) (see Eq. (7) and Lemma 2). We highlight this
by plotting dotted lines that scale the average regret of SGB tuned with η1—used as a reference due to
its negligible failure rate—by the factor η1/ηi for each i ∈ [5]. These reference lines align well with
the “success” mode of their respective learning rates. At the same time, the distributions also reveal
a failure mode, whose mass substantially increases with the learning rate (30% for η5). Across all
configurations, only a small fraction of trajectories deviate from these two dominant modes.

Connections with related works Prior works [38, 39] documented bimodal regret distributions
for certain UCB-based algorithms, and derived impossibility results for the tail behavior of regret,
later strengthened in [40]. Prop. 7 from [40] particularly resonates with our findings on SGB : let
b > 0, and π be a policy with regret RT ≤ (1 + b)Aν log(T ) on every instance ν ∈ FK , where
Aν log(T ) denotes the Lai–Robbins lower bound (Eq. (17), letting α = 0). Then, for some c > 0,
the empirical regret R̄T satisfies Pπ(R̄T > cT ) ≍ T−(1+b) (we refer to the paper for a more formal
statement). This closely mirrors our theoretical and empirical observations on SGB, in particular
the connection between the learning rate η and the failure regret. We conjecture that the critical
value of η aligns the logarithmic regret term with the best logarithmic bound Aν log(T ), and that
the failure regret can be derived from the above polynomial-decay bound, probably extending to
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Figure 1: K = 2, average regret and 10− 90% percentiles (dashed lines) for 104 independent runs
up to T = 2 · 104 (Left), and percentage of trajectories with emp. regret larger than T∆

2 (Right).

negative b ∈ (−1, 0]. These connections suggest that the aforementioned results could be generalized
further, at least for some policy classes such as SGB. Finally, we note that [41] studied conditions
under which exponential decay of the regret distribution is possible, but unfortunately one of them is
that the problem-dependent regret is polynomial. Strong decay of the distribution of empirical regret
is incompatible with logarithmic regret.
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Figure 2: K = 10, average regret and 10− 90% percentiles on 104 independent runs up to horizon
T = 2 · 104 (Left), and distribution of the empirical regret at time T (Right).

5 Conclusion

This work sheds light on the theoretical properties of SGB, a simple policy gradient algorithm for
bandits, whose behavior is governed by a learning rate η. In contrast to much of the existing literature,
which largely adopts an optimization perspective, we approach the problem through the lens of regret
analysis. For two-armed bandits, we show that knowledge of a lower bound on the sub-optimality
gap ∆ is both necessary and sufficient to achieve logarithmic regret. For general K-armed settings,
our results indicate that the critical learning rate threshold scales as 2∆/K, and we provide technical
tools and insights that could serve as a foundation for a full regret characterization of SGB in broader
contexts. Our theoretical and empirical findings reveal a fundamental trade-off in tuning SGB: while
larger learning rates may enhance performance in favorable scenarios, exceeding the critical threshold
significantly raises the risk of failure—that is, trajectories in which the optimal arm is consistently
under-sampled. Further understanding and managing this trade-off is essential for deploying SGB and
its variants reliably and effectively, and offers a compelling direction for future research.
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A Supplementary material for Section 1

A.1 Pseudo-code of SGB

We detail below the pseudo-code of SGB for a constant learning rate η. This implementation only
needs a slight modification to consider a time-varying learning rate, as discussed in Section 2: an
input sequence (ηt)t≥1 should be provided, and η should be replaced by ηt in the parameter update.

Algorithm 1 Stochastic Gradient Bandit (SGB)
Input: Learning rate η > 0
Set (θk,1)k∈[K] = (0)k∈[K] ; ▷ Uniform initialization
for t ≥ 1 do

For k ∈ [K]: set pk,t = eθk,t∑K
j=1 eθj,t

; ▷ Compute the sampling probabilities

Pull an arm At ∼ pt := (pk,t)k∈[K], collect reward rt ; ▷ Sample arm, collect reward
for k ∈ [K] do

Set θk,t+1 = θk,t + ηrt · {(1− pk,t)1(At = k)− pk,t1(At ̸= k)} ; ▷ Parameter update

Verification that SGB performs stochastic gradient ascent For simplicity of notation, consider
parameters θ = (θk)k∈[K], and define p = (pk)k∈[K] by ∀k ∈ [K], pk = eθk∑K

j=1 eθj
. We further

define S =
∑K

j=1 e
θj for simplicity, and the value of the policy V =

∑K
k=1 pkµk. Then, for any

k ∈ [K], it holds that
∂V

∂θk
=

K∑
j=1

∂pj
∂θk

µj .

We then obtain that ∂pk

∂θk
= eθkS−e2θk

S2 = pk(1 − pk) and, for j ̸= k, ∂pj

∂θk
= −eθj eθk

S2 = −pjpk.
Hence, by summing we obtain that

∀k ∈ [K],
∂V

∂θk
= pk(1− pk)µk − pk

∑
j ̸=k

pjµj .

which matches the second term of Equation (5), by adapting the notation. This verifies that the
expected parameter update of SGB matches the gradient of the policy, up to multiplication by the
learning rate η.

A.2 Some elementary properties of SGB

To enhance clarity, we recall that at time step t ≥ 1, the sampling probabilities of all arms for SGB
are given by the softmax transform of some parameters

(θk,t)k∈[K] ∈ RK , ∀k ∈ [K] : pk,t ∝ exp (θk,t) ,

and that for a learning rate η, the parameter are updated as follows,

∀t ≥ 1 : θk,t+1 = θk,t+ η · δθk,t, with δθk,t := (1− pk,t) · rt ·1(At = k)− pk,t · rt ·1(At ̸= k) .

We present some properties that are particularly useful for our analysis.

The parameters are linearly dependent From (4), we can verify that

K∑
k=1

δθk,t = rt ·

(1− pAt
)−

∑
j ̸=At

pj,t

 = 0,

and as a consequence we obtain the following relation

∀t ≥ 1,

K∑
k=1

δθk,t = 0 =⇒ ∀t ≥ 1,

K∑
k=1

θk,t = 0 . (9)
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This equation shows that the growth of the parameter of the best arm θ1,t is bound to how much
the parameters of the sub-optimal arm can be negative, which is a crucial ingredient in the proof of
Lemma 2. Furthermore, for K = 2 it holds that θ1,t = −θ2,t, which simplifies the expression of the
sampling probability. For instance, for the sub-optimal arm 2 it holds that

If K = 2 : ∀t ≥ 1, p2,t =
e−θ1,t

e−θ1,t + eθ1,t
=

e−2θ1,t

1 + e−2θ1,t
≤ e−2θ1,t . (10)

In the same setting this relation furthermore leads to
p1,t

1− p1,t
=

p1,t
p2,t

= e2θ1,t . (11)

The variance of updates scales with the expectation Again starting from (4), we analyze the
squared variation of the parameters. For all arms k ∈ [K], it holds that

(δθk,t)
2 = r2t ·

(
(1− pk,t)

2
1(At = k) + p2k,t1(At ̸= k)

)
,

using that 1(At = ·)2 = 1(At = ·) and that 1(At = k)1(At ̸= k) = 0. For all k ∈ [K], we now
introduce s2k = E[r2t |At = k], and define s2 = maxj∈[K] s

2
k. We then obtain that

Et

[
(δθk,t)

2
]
≤ s2k · pk,t(1− pk,t)

2 + p2k,t ·
∑
j ̸=k

s2j · pj,t,

that we can upper bound as follows,

Et

[
(δθk,t)

2
]
≤ s2 ·

(
pk,t(1− pk,t)

2 + p2k,t(1− pk,t)
)
= s2 · pk,t(1− pk,t) . (12)

Again, this property is essential for our analysis. For instance, it implies that

Et[δθ1,t] ≥ ∆ · p1,t(1− p1,t) ≥
∆

s2
· Et[(δθ1,t)

2] .

Iterative formula for the sampling probabilities Lastly, inspired by standard proofs in bandits
(see Chapter 11 in [42]), we can express the following recursion on the sampling probabilities, which
we use in the proof of all the regret upper bounds presented in this paper,

∀k ∈ [K], t ≥ 1 : pk,t+1 =
eθk,t+1∑K
j=1 e

θj,t+1

= pk,t ·
eηδθk,t∑K

j=1 pj,t · eηδθj,t
, (13)

which is direct using that ∀j ∈ [K], θj,t+1 = θj,t + η · δθj,t, and by dividing both the numerator and
denominator by

∑K
j=1 e

θj,t .

A.3 Detailed literature review on Multi-Arm Bandits

The multi-armed bandit (MAB) problem has inspired a vast body of research, with many algorithms
proposed to balance exploration and exploitation. In this section, we introduce some of the most
standard frameworks developed in the literature. In particular, we focus on algorithms proposed to
optimize problem-dependent regret bounds in stochastic bandits, where rewards are drawn indepen-
dently at random from fixed distributions, since this is the setting considered in this paper. We refer to
[42, 43] for comprehensive surveys and broader discussions, including (but not limited to) adversarial
bandits, problem-independent bounds, and Bayesian regret bounds in stochastic bandits.

The classical optimism in the face of uncertainty principle underlies the popular UCB family of
algorithms. The original UCB1 policy [44, 18] achieves logarithmic regret under bounded or
sub-Gaussian rewards. Later, the KL-UCB framework [30] was proposed, and proved to yield
asymptotically optimal policies for various families of distribution (e.g. bounded distributions
and single-parameter exponential families), in the sense that its regret upper bounds match the
asymptotic lower bound of Lai and Robbins [36] (see Appendix D.1 for details). These algorithms
rely on carefully constructed confidence bounds, involving the information-theoretic Kinf divergence
(formally defined in Theorem 6), and thus better exploit the statistical properties of distribution
classes than simpler UCB variants.
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A second major class of policies is Thompson Sampling (TS), which dates back to Thompson [31]
and has enjoyed renewed popularity since the empirical study of Chapelle and Li [45]. Regarding
frequentist analyses, its theoretical foundations were first rigorously established for Bernoulli rewards
[19, 46], and further extended to Gaussian [47], single-parametric exponential families [32], and
non-parametric bounded distributions [48]. TS is inherently Bayesian, using posterior samples of arm
parameters to guide exploration. In all of these settings, TS has been proved to achieve asymptotic
optimality under an appropriate choice of prior distribution. For instance, for Bernoulli rewards a
uniform prior and Beta posterior yields such guarantees.

A third family, Minimum Empirical Divergence (MED) and its deterministic counterpart IMED aim to
directly minimize regret by exploiting empirical divergence estimates [49, 50], often inspired by the
Kinf quantity like KL-UCB approaches, but do not rely on confidence bounds in the algorithm designs.
Recently, this approach has been rediscovered under the name SoftElim [51] or Maillard Sampling
(MS) [52, 53], and shown to perform optimally under general sub-Gaussian and bounded settings.
Interestingly, [54] have analyzed MED through a policy-gradient lens in contextual extensions. A
recent work [55] proposes a unified problem-dependent analysis of MED for generic distribution
classes, and establishes a strong connection between MED and (a variant of) Thompson Sampling
using non-informative prior, showing that the sampling probabilities of sub-optimal arms under the
two policies decrease at the same rate asymptotically.

Beyond these three canonical families, a number of works have explored nonparametric randomized
strategies. These include bootstrapping-based methods [56, 57], sub-sampling algorithms [58–61],
and variants of the nonparametric TS algorithm [48, 62, 63], which connects to the Bayesian bootstrap
[63]. While SGB could be perceived as fitting into this line of randomized, data-driven policies, these
approaches rely on fundamentally different principles. Indeed, the core ingredients of SGB are gradient
ascent and stochastic approximation [3], while these approaches exploit the properties of sample
statistics which, in particular, requires storing the entire history of observed rewards.

Hence, it is clear that the SGB policy stands apart from the classical design principles that shape the
landscape of bandit algorithms with optimal problem-dependent regret guarantees. In the following
we elaborate on why this implies that the analysis of SGB must depart from standard techniques
derived in previous bandit analyses. Nonetheless, we then detail how familiarity with these standard
approaches still guided our investigation of the theoretical properties of SGB .

Key differences between SGB and standard policies Fix a generic time step t. It is clear from (4)
that the sampling probabilities of SGB depend in a complex, nonlinear way on the entire sequence of
past rewards, across all arms, and the exact order in which they were collected. For instance, consider
the ratio pk,t/pj,t for two arms (k, j) ∈ [K]2. Using (4), we obtain

pSGBk,t

pSGBj,t

= eη
∑t

s=1 rs·{(1−pk,s)1(As=k)−pk,s1(As ̸=k)−(1−pj,s)1(As=j)+pj,s1(As ̸=j} .

This expression shows that the current sampling ratio cannot be deduced from simple summary
statistics such as empirical means or counts. In contrast, standard policies typically admit arm-
specific exploration mechanisms, whose analyses rely on the concentration of statistics derived from
each arm’s individual history.

To illustrate this, consider first the MED algorithm, which, like SGB , is a randomized policy with
explicit sampling probabilities. As shown by Baudry et al. [55], MED can be abstractly described
using a divergence function D mapping the empirical distributions (Fk,t)k∈[K] (distibutions of
rewards collected by each arm, respectively) and the best empirical mean µ⋆(t) = maxk∈[K] µk,t, to
positive values. Then, using the sample sizes (Nk(t))k∈[K], the sampling probability ratio is given by

pMEDk,t

pMEDj,t

=
e−Nk(t)D(Fk,t,µ

⋆(t))

e−Nj(t)D(Fj,t,µ⋆(t))
,

Under mild conditions for divergences D, with similar properties to the Kinf function, this form
allows the regret to be decomposed according to events involving µ⋆(t) and concentration of the
empirical distributions, leading to a complete regret analysis [55, Theorem 1].

A similar arm-specific structure underpins Thompson Sampling (TS), perhaps the most well-known
class of randomized policies. While TS does not admit a closed-form expression for its sampling

17



probabilities, its analyses rely on the arm-wise posterior distributions. In particular, modern problem-
dependent analyses [19, 46, 32] exploit quantities of the form

PTS(µ̃k,t ≥ µ|Ht−1) = PTS(µ̃k,t ≥ µ|Fk,t−1), for µ ∈ R

or their lower-tail counterparts, where µ̃k,t is a sample from the posterior distribution of arm k at
time t. Crucially, these events depend only on the history of arm k. This structural decoupling is
entirely absent in SGB , which lacks any notion of per-arm sampling mechanism or posterior.

Finally, consider the deterministic UCB family. Given arm-specific confidence indices UCBk,t, the
action at time t is chosen as

AUCB
t = argmaxk∈[K]UCBk,t ,

and the analysis focuses on events such as {UCBk,t ≥ µk + c∆k}, for some values of c ∈ (0, 1). As
with TS, the confidence bounds are based solely on arm-specific empirical distributions and are thus
fully decomposable across arms. In stark contrast, even in highly simplified environments (e.g., when
only one arm yields random non-zero rewards), deriving concentration inequalities for the parameters
(θk,t)k∈[K] in SGB is challenging due to their entangled dependence on the global history.

Comparison of Eq. (7) with similar regret decompositions in the literature While we have
highlighted the challenges of applying classical bandit analysis techniques to SGB, we now draw
parallels between our approach and prior works on randomized policies for MAB.

Several studies have proposed general frameworks for analyzing the regret of randomized algorithms,
including Thompson Sampling [42, Thm. 36.2], MED [55, Lemma 3], and bootstrap-based strategies
[57, Thm. 1], [62, Thm. 3.1]. Although these analyses differ in presentation, they typically yield a
regret decomposition of the following idealized form (using the notation of the present paper):

Rπ
T (ν) ≤ Cπ

ν log(T ) +

T∑
t=1

P(p1,t ≥ 1− ε) , for some constant Cπ
ν ≥ 0 .

These decompositions directly inspired our derivation of Eq.(7) and our interpretation of the two terms
in the regret bound. In particular, Riou and Honda [48] introduced and motivated the terminology
of post-convergence and pre-convergence terms to describe the first (logarithmic term) and second
components, respectively. We adopt a similar language in this work: we prove that the post-
convergence term in Eq. (7) is logarithmic in T (Lemma 2), and we show in Appendix F.1 that the
second term of Eq. (7), that we call failure regret, satisfies

E

[
T∑

t=1

(1− p1,t)
2

]
≍

T∑
t=1

P(p1,t ≥ 1− ε).

In regimes where the pre-convergence term dominates the regret, this equivalence shows that the
second term of Eq. (7) highlights a failure of the policy to consistently converge to the optimal action
at a logarithmic rate. This motivates our use of the term failure regret to characterize this term.

A.4 Detailed discussion on global convergence and finite-time regret

In this section we complete the discussion from Section 1.1 that the global convergence properties of
SGB does not preclude poor performance over finite horizons.

A globally convergent policy with poor regret We start by formally proving the statement that
asymptotic convergence guarantees do not necessarily imply non-trivial regret guarantees.
Proposition 1. Define an ε-Greedy policy π as follows: for t ≤ K sample each arm once, and
compute their empirical averages. Then, for the rest of time steps t ≥ K +1, select an arm uniformly
at random with probability εt = (t log t)−1, and otherwise play the arm with best sample average.

Then, the policy π converges asymptotically to an optimal policy, but its regret satisfies RT ≳ T∆
log(T )

for any K-armed bandit problem with Bernoulli distributions of non-zero means.

Proof. The proof below assumes that arm 1 is the only sub-optimal arm, but the arguments easily
extend to cases where multiple arms are optimal. We start by proving the convergence claim. Since
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∑
t≥1(t log(t))

−1 = +∞, each arm is guaranteed to be explored infinitely often. Hence, after
waiting long enough, the optimal arm is guaranteed to obtain sufficiently enough samples so that
its empirical average will remain, for instance, over µ1 − ∆

2 for the rest of the trajectory. Similarly,
over-estimation of any sub-optimal arm will be corrected, either thanks to the forced exploration
scheme or because the arm was played a lot by appearing optimal for some time. This establishes
that the policy π converges to an optimal arm almost surely.

We now prove the (almost) linear regret lower bound. We prove that εt is decaying fast enough so that
there is a non-negligible probability that there is no exploration at all during a trajectory of length
T > K. In particular, this probability is lower bounded by

pno exploration :=

T∏
t=K

(
1− 1

t log(t)

)
= e

∑T
t=K log(1− 1

t log(t) )

≥ e
−

∑T
t=K

1
t log(t)

−
∑T

t=K
1

2t2 log(t)2
· t log(t)
t log(t)−1

≳ e−
∑T

t=K
1

t log(t) ≳
1

log(T )
.

Hence, if this scenario occurs and the best arm collected a reward 0 for its first pull, while at least
one other arm received a +1 reward, then a sub-optimal arm is selected for the T −K remaining
steps. The probability of this specific event is e.g. lower bounded by (1− µ1)maxk≥2 µk > 0, by
assumption that maxk≥2 µk > 0. Hence, in this setting the regret of π satisfies RT ≳ T∆

log(T ) .

Linear regret on finite horizon We now formalize the intuition that, for a fixed horizon T , using
a learning rate that scales with log(T ) in the softmax transformation may be problematic: a small
number of unfavorable rewards can drastically reduce the probability of selecting arm 1 in subsequent
rounds. Since log(T ) remains moderate for practical values of T , this highlights a potential fragility
of SGB when large learning rates are used without additional assumptions on the reward distributions.

Proposition 2 (Linear regret). Let ν ∈ FK defined by ν1 = Rad(1/2) and ν2 = · · · = νK = δ0.

Then, for any ε ∈ (0, 1), η ≥ log
(

T−1
(K−1)(1−ε)

)
=⇒ RSGB

T (ν) ≥ ε(T−1)
8 .

The proof of Proposition 2 follows directly from the more general result presented below, instantiated
with 1−µ1 = 1

2 , ∆k = 1
2 for all k ∈ {2, . . . ,K}. We highlight that the K−1 term in the proposition

is permitted, by a slight change in the last steps of the proof of the lemma, that we detail below.

Lemma 4 (Example 1: optimal Rademacher vs non-negative rewards). Let ν1 be a Rademacher
distribution of mean µ1 > 0, and (ν2, . . . , νk) be any distributions supported on [0, 1]. Then,

∀ ε ∈ (0, 1) : η ≥ log

(
T − 1

1− ε

)
=⇒ RT (ν) ≥ ε ·1− µ1

2
·∆ · (T − 1) .

Proof. As in the main paper, we use the notation ∆ := mink≥2 ∆k. For this example, since the
sub-optimal arms have non-negative rewards, then δθ1,t ≤ 0 if At ̸= 1. Let t0 denote the first
(random) time for which At = 1 holds. Then, it holds that

RT ≥∆(T − 1) · P(N1(T ) ≤ 1)

≥∆(T − 1) · P(N1(T ) ≤ 1|rt0 = −1) · Pν(rt0 = −1) .

=∆(T − 1) · P(N1(T ) ≤ 1|rt0 = −1) · 1− µ1

2

≥∆(T − 1) · 1− µ1

2
·
(
1− P

(
∃t ∈ {2, . . . , T} : At = 1|p1,t ≤ e−η

))
,

where the last line comes from a worst case bound for the value of t0 and the fact that after receiving
rt0 = −1 then

p1,t0+1 ≤ e−ηK−1
K

e−ηK−1
K + e

η
K

≤ e−η.
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Indeed, since all rewards from sub-optimal arms are non-negative, then (1) θ1,t ≤ 0 for t ≤ t0, and
p1,t remains the minimum of the sampling distribution, so 1− p1,t ≥ K−1

K ; and (2) from (9) at least
one sub-optimal arm has a non-negative parameter and probability larger than 1/K, thus the bound
on the denominator. We now use the union bound

P
(
∃t ∈ {2, . . . , T} : At = 1|p1,t ≤ e−η

)
≤ (T − 1)e−η,

which, for any ε ∈ (0, 1), is smaller than 1 − ε if η ≥ log
(

T−1
1−ε

)
. Note that for the proof of

Proposition 2, since sub-optimal arms does not yield non-zero rewards the sampling probabilities
remain uniform until t0, and then it holds that

p1,t0+1 =
e−ηK−1

K

e−ηK−1
K + (K − 1)e

η
K

≤ e−η

K − 1
,

which by substituting in above steps allows to include a K − 1 term in the logarithm.

We now complement Lemma 4 by showing that choosing η = Ω(log(KT )) leads to linear regret
for a broad class of reward distributions. This further demonstrates that large learning rates can be
harmful in the absence of stronger assumptions on the distributional structure.
Lemma 5 (Example 2: Non-negative support). Assume that the rewards are supported on [0, 1].
Then if η > 1

maxk≥2 µk
· log((K − 1)(T − 1)) then the regret is linear, and more precisely,

∀ ε ∈ (0, 1) : RT ≥ ε

K
·

(
K∑

k=2

Pr∼νk
(r ≥ µk)∆k · 1

(
η ≥ 1

µk
log

(
(K − 1)(T − 1)

1− ε

)))
· T ,

which holds for η > log((K − 1)(T − 1)) directly if the rewards are Bernoulli.

Proof. For each distribution νk with k ∈ [K], there exists a constant qk > 0 such that qk = P(rt ≥
µk | At = k). Therefore, at time t = 1, each arm k has a probability qk

K of being selected and
yielding a reward r1(k) ≥ µk. Conditioned on this event for arm k, the probability assigned to arm k
at the beginning of the next round satisfies

pk,2 ≥ e
η(K−1)µk

K

(K − 1)e−
ηµk
K + e

η(K−1)µk
K

=⇒ 1− pk,2 ≤ (K − 1)e−ηµk ,

and arm k is played for all remaining rounds with probability larger than 1 − (T − 1)(1 − pk,2),
using a union bound argument. In particular, this probability is larger than ε > 0 if η ≥ 1

µk
·

log
(

(K−1)(T−1)
1−ε

)
. The result then comes by summing over all sub-optimal arms. Finally, the

refinement for Bernoulli distributions is straightforward by replacing µk by 1 in the bound on
pk,2.

B Detailed comparison with related works

In this appendix, we elaborate on the comparison between the analysis of SGB proposed in this paper
and the two most closely related works [1, 29]. Mei et al. [1] introduced the only existing prior
regret analysis of SGB but, as we will show, suffers from certain limitations, and Walton and Denisov
[29] introduced the SAMBA algorithm, another gradient ascent-based policy, for which they prove
logarithmic regret for any number of arms and Bernoulli rewards, under proper gap-dependent tuning
of the learning rate. As we will discuss, while SAMBA shares some similarities with SGB , it also
exhibits key differences that impact both its theoretical and practical behavior.

B.1 Comments on the previous analysis of SGB for small learning rates

In this appendix, we compare the results we obtained in this work with the previous guarantees
derived by [1], for a general number of arms K but small learning rates. We also document a potential
issue in their analysis, which might invalidate the proof of the main regret upper bound [1, Theorem
5.5]. We propose a correction (Theorem 5), that yields a fully explicit logarithmic regret bound for
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K = 2 (Eq. (15)), under the same restriction on the learning rate as in the original paper. To do that,
we used some of the results introduced in this paper, more precisely from the proof of Theorem 1.

Unfortunately, this technique is specific to the case K = 2, and we are not aware of a straightforward
extension to settings with K > 2. In fact, the missing arguments appear closely related to those
required to complete the regret analysis in Corollary 3, discussed in Section 3. For this reason, we
present Section 3 with the view that a full regret analysis of SGB in the general K-armed setting
remains an open and challenging problem.

Comparison of the regret upper bounds Adopting the notation of the present paper, we can
restate Theorem 5.5 of Mei et al. [1] as follows,

η ≤ ∆2

40K3/2
=⇒ ∀ν ∈ FK : RSGB

T ≤ 2

E[c2]
· log(T )

η
+ 1 , where c = inf

t≥1
p1,t .

Beyond the requirement that the learning rate must scale with ∆2 (as opposed to ∆), we observe that
c2 ≤ p21,1 = 1

K2 , so the regret bound scales at least as 2K2 log(T )
η . In contrast, in the symmetric case

where ∆2 = · · · = ∆K = ∆, Theorem 4 shows that the regret is at most 2K
η log(T ), for learning

rates that may be as large as η ≈ 2∆
K+2 . This improves the bound by a factor at least 80K5/2

(K+2)∆ , which
is significant in many settings.

Based on the theoretical developments in this work, we further conjecture that the regret of SGB in
the general K-armed setting should be K−1

K · log(T )
η +o(log(T )), for learning rates that could be only

required to satisfy η ≤ 2∆
K . This suggests that the analysis in [1] may be conservative, potentially

leading to a suboptimal characterization of SGB’s regret. It remains an open question whether the
techniques from this work—closely related to those used in the analysis of stochastic gradient descent
in optimization—and the tools introduced in the present paper can be combined to obtain tighter
regret bounds in the general K-armed case.

Issue with the proof The development in Equation (282) in the proof of [1, Theorem 5.5] assumes
that the random variable c is independent of δ(θt) (using the notation of their paper where δ(θt) :=
(π∗ − πθt)

⊤r denotes the sub-optimality gap at the current state of the policy) which we believe
does not hold. Indeed, the variable c satisfies c = p1,t ∧ infs≥1,s̸=t p1,s for any t including the one
that defines δ(θt), and thus it cannot be independent of c. In addition, it is clear that the correlation
between c and δ(θt) is in the wrong direction for Equation (282) to hold.

In order to overcome this issue, we suggest to get back to their Equation (277), and to keep the
t-dependent quantity πθt(a

⋆) (or p1,t for us) instead of taking the infimum over all time steps. Then,
we can adapt their Equation (281) to obtain, with their notation,

∀t ≥ 1, δ(θt)− Et[δ(θt+1)] ≥
η · πθt(a

⋆)2

2
· δ(θt)2 .

Here, to correctly account for the dependence between δ(θt) and πθt(a
⋆), we can use Cauchy-

Schwartz inequality to obtain that

E[δ(θt)2πθt(a
⋆)2] ≥ E[δ(θt)]2

E
[

1
πθt (a

⋆)2

] .
As a remark, we think that taking the supremum outside the expectation makes further analysis of
this term easier. From that step, we can directly follow the proof steps of Mei et al. [1] to adapt their
result and obtain the following correction.
Theorem 5 (Corrected version of Theorem 5.5 from [1]). For any instance ν ∈ FK , SGB tuned with
learning rate η admits the following regret bound,

η ≤ ∆2

40K3/2
=⇒ RSGB

T ≤ sup
t∈[T ]

E
[

1

πθt(a
⋆)2

]
· 2 log(T )

η
+ 1 . (14)

We recall that the original proof steps could have led to a factor 1
inft∈[T ] E[πθt (a

⋆)2] , which the authors
rightfully treated as a positive problem-dependent constant. Indeed, since there exist some favorable
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scenarios for which πθt(a
⋆) rapidly starts converging to 1, it is clear that on can assume that there

exists a finite constant γ > 0 (depending on ν and η) such that inft∈[T ] E[πθt(a
⋆)2] > γ.

Unfortunately, after correction it is non-trivial to deduce that the regret is logarithmic: proving
that E

[
1

πθt (a
⋆)2

]
< C for some constant C > 0 requires a much more careful analysis, since it

becomes necessary to consider extreme events that could make the ratio large. For instance, if
πθT (a

⋆) = O(T−1) with probability Ω(T−1) then the regret bound becomes linear in T . This
scenario needs to be carefully considered, since it is typical for optimized bandit policies, like
Thompson Sampling, as documented by [40].

For the case K = 2, however, we can apply the techniques from the proof of Theorem 1 to show
that this upper bound is non-vacuous. Indeed, using our notation (and dropping the 1 subscript), we
obtain by expanding the fraction that

E
[
1

p2t

]
= E

[(
1− pt
pt

)2

+
2

pt
− 1

]
,

and from the second to last equation in the proof of Thm. 1, we know that for η ≤ ∆e−2∆ the
expectation E[2/pt] initialized at p1 = 1/2 is decreasing and thus

E
[
1

p2t

]
= E

[(
1− pt
pt

)2

+
2

pt
− 1

]
≤ E

[(
1− pt
pt

)2
]
+ 3

Using the notation x2
t :=

(
1−pt

pt

)2
used in the proof of Thm 1, we have x2

t = e−4θt by Eq. (11) in

Appendix A. The exponential form allows to derive an equivalent bound on the expectation of x2
t as

done for the expectation of xt in the proof of Thm. 1 but with 2η instead of η. Consequently, we have
that x2

t is a supermartinagele for 2ηC2η ≤ ∆ and with x1 = 1/2 its expectation is bounded as

for K = 2, 2ηC2η ≤ ∆ =⇒ sup
t≥1

E

[(
1− pt
pt

)2
]
≤ (1− p1)

2

p21
= 1 ,

which yields that E[1/p2t ] ≤ 4.

This condition on η required for E[1/p2t ] ≤ 4 is weaker than the one η ≤ ∆2/(40K3/2) needed for
the rest of the convergence proof of Theorem 5. Hence, for K = 2, Theorem 5 yields the upper
bound on the regret as

η ≤ ∆2

40K3/2
=⇒ ∀ν ∈ F2 : RSGB

T ≤ 8 log(T )

η
+ 1 . (15)

We can comment this result is strictly weaker than the one we establish in Theorem 1, which yields
the following bound for the same range of learning rates,

RSGB
T ≤

log
(
1 + ∆3

25 T
)
+ 1

2η
,

where in the logarithm we used that η ≤ ∆2

40·23/2 ≤ ∆2

100 . Notably, our result allows for learning
rates that are approximately a factor 100/∆ larger than the ones permitted by Thm. 5, while still
maintaining a tighter regret guarantee (for a fixed learning rate).

Unfortunately, for the general K-arms case fixing the proof of Thm. 5.5 from [1] by bounding
E[1/p21,t] appears difficult, potentially requiring to derive the same tools needed to complete an
independent regret analysis from the upper bounds presented in Section 3.

An interestingly comparison between the two regret bounds arises by noticing that Thm. 5 yields
an upper bound that multiplies a (logarithmic) term, resembling the post-convergence component of
Eq. (7), by a term related to the failure regret (proportional to E[1/p2t ]). On the other hand our regret
decomposition in (7) is the result of adding the two components.
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Comment on the small learning rate Lastly, we investigated whether the small learning rate
requirement in [1] is a byproduct of some looseness in some technical results or a more intrinsic
limitation of the policy. We found that the restriction arises from the foundational technical results
used to derive the analysis. Consider the two-armed case. In this paper, we showed that for small
η,∆, ignoring for convenience the term Cη in the following lines, it holds that

Et[1− pt+1] ≈ Et[e
−2θt+1 ] = e−2θtEt[e

−2ηδθt ] ≈ (1− pt)− 2η(∆− η) · pt(1− pt)
2,

using that ex ≈ 1 + x + x2/2 and the expressions for δθt and (δθt)
2 from Appendix A.2. This

indicates that the policy improves in expectation between step t and step t+ 1 when η < ∆ holds,
for any value of pt, but with an amplitude that depends on the current value of pt.

In contrast, the analysis in [1] is based on the equation stated above their Proposition 3.1, which
follows from the 5

2 -smoothness of the current value of the policy under the softmax parametrization
[13, Lemma 2]. Specializing this equation to the case of K = 2 arms yields the following bound in
expectation:

Et[pt − pt+1] ·∆ ≤ −2η · p2t (1− pt)
2∆2 +

5

2
· η2 · pt(1− pt),

where we used Eq. (12) with s ≤ 1 to bound the term Et[∥θt+1 − θt∥22]. The correctness of the
scaling of all terms in the inequality above can be confirmed by comparison with Lemma 4.3 in [1].

However, this bound is difficult to interpret, especially when pt(1− pt) is small, due to the mismatch
in the dependence on pt between the progress (negative) and noise (positive) terms. Even assuming
that both terms had the same dependence on some common factor At, we would still obtain that the
policy’s value increases in expectation only if η ≲ ∆2. This indicates that the overly conservative
scaling of η in terms of ∆ arises from looseness in this preliminary bound, rather than from any
fundamental limitation of SGB itself: the 5

2 -smoothness property of the softmax-parametrized policy
does not appear to accurately capture the dynamics of the SGB update.

B.2 Detailed comparison between SGB and SAMBA

In SAMBA the gradient ascent is directly performed on the sampling probabilities, with no use of
parametrization. Starting from the uniform probability, at each time step t > 1 SAMBA performs the
following steps:

1. Define a⋆t = argmaxa∈[K] pt(a), draw at ∼ pt, collect Rt.

2. If at = a⋆t , then for a′ ̸= a⋆t : pt+1(a
′) = pt(a

′)− αpt(a
′)2 · Rt

pt(a⋆
t )

3. Else, pt+1(at) = pt(at) + αpt(at)
2 · Rt

pt(at)
.

4. Define pt+1(a
⋆
t ) = 1−

∑
a̸=a⋆

t
pt+1(a)

It is easy to verify that if α ≤ 1, the update remains within the probability simplex. Interestingly,
under this scheme a probability pt(a) is updated only if it was pulled or if the arm with the highest
current probability was pulled. From a gradient ascent perspective, this is a natural approach: the arm
with the highest probability serves as the current best guess for the optimal arm, making it reasonable
to form importance-weighted estimates of the gap ∆a relative to this reference. However, this feature
introduces a structural asymmetry, between the leading arm and the others, that complicates direct
comparisons between SGB and SAMBA when K > 2.

For K = 2, we can compare the two methods more precisely. Consider the asymptotic regime in
which arm 1 has the highest selection probability. In this setting, SAMBA updates the probability of
arm 2 according to

ESAMBA
t [p2,t+1] = p2,t − α∆ · p22,t .

Meanwhile, under SGB we have

ESGB
t [p2,t+1] ≈ p2,t · Et[e

−2δθt ]

≈ p2,t · (1− 2p2,t(1− p2,t)η(∆− ηCη))

= p2,t − 2η(∆− ηCη) · p22,t(1− p2,t) ,
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using the same steps as in the second to last equation in the proof of Thm. 1. Hence, in the asymptotic
regime where p2,t ≪ 1, the expected update of SGB and SAMBA become approximately equivalent if
the learning rates are related by α∆ = 2η(∆− ηCη).

We can now also compare the behavior of the two policies in the transient regime where p2,t ≥ p1,t.
In that case, the analysis of both policies is based on properties of p−1

1,t . It is therefore natural to use
this quantity as a basis for comparison in this regime. For SGB , we showed that

ESGB
t

[
1

p1,t+1

]
≤ 1

p1,t
− 2η(∆− ηCη)(1− p1,t)

2 ,

where the inequality is nearly tight when η is small. For SAMBA, rather than relying on the computa-
tions of [29] which are specific to Bernoulli distributions, we propose a similar approximation to the
one used for SGB , for rewards supported on [−1, 1]. Assuming p2,t > p1,t and small α, we obtain:

ESAMBA
t

[
1

p1,t+1

]
=

1

p1,t
· Et

[
p1,t

1 + αr1,t
+

p2,t
1− α

p1,t

p2,t
r2,t

]

≈ 1

p1,t
·

(
p1,t(1− αµ1 + α2E[r21,t]) + p2,t + αp1,tµ2 + α2

p21,t
p2,t

E[r22,t]

)

=
1

p1,t
− α∆+ α2

(
E[r21,t] +

p1,t
p2,t

E[r22,t]
)

≤ 1

p1,t
− α(∆− 2α) .

This yields the sufficient condition α < ∆
2 to ensure that p−1

1,t is a super-martingale when p2,t > p1,t,
which is a stricter requirement than the one from [29] for Bernoulli rewards. Note the above
computations can be made exact by using a constant Dα analogous to Cη used for second-order
approximation of the exponential in the analysis of SGB .

The main insight from this analysis, however, is that the term (1− p1,t)
2, which appears naturally

in the update dynamics of SGB , does not appear in the approximation for SAMBA. Consequently, the
elegant connection we established between E[p−1

0 − p−1
T ] and the regret for SGB does not seem to

hold for SAMBA: the two policies seem to admit different pre-convergence behavior, even for K = 2.

We can finally remark that, although limited to Bernoulli distributions, the analysis of [29] yields
logarithmic regret for SAMBA under the condition α < ∆. Notably, this requirement does not depend
on K. We leave for future work the investigation of whether it is preferable—both theoretically and
empirically—to maintain the update rule of SGB, where the parameters of all arms are updated at each
step, or to adopt a more selective approach as in SAMBA, where non-leading arms cannot influence
their respective updates. In particular, the intuitive explanation provided in Appendix D.3 regarding
the necessary dependence of η on K for SGB may no longer apply if updates are implemented
through a mechanism akin to that of SAMBA, where a leading arm is treated differently as the others.

C Proof of Theorem 2: polynomial regret when η ≳ ∆

Roadmap Below, we present the proof of Theorem 2, which re-uses the proof sketch of Section 2,
but adding precise references to the technical lemmas needed for the proof. These results, Lemma 6
and Lemma 7, are presented in the following sections of this appendix. Furthermore, the proof of
Lemma 7 is quite technical and itself supported by several intermediate results, that we detail.

We start by restating the theorem.
Theorem 2 (Polynomial regret). Fix ∆ ∈ (0, 1), and consider the instance ν = (νk)k∈[K] with
ν1 = Rad(∆) and ν2 = · · · = νK = δ0. If the learning rate of SGB satisfies

η > λ∆ := K−1
K log

(
1 + 2∆

1−∆

)
,

then its regret on the instance ν is lower bounded as follows,

∀ ε > 0, RT = Ω̃
(
T 1−(1+ε)λ∆/η

)
,

where Ω̃ hides polylogarithmic terms in T and constants depending on η and ∆.
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Proof. We follow the sketch of proof presented in Section 2, adding the detailed computations and
references to the supporting results.

Step 1: let p̃n+1 be the the sampling probability of arm 1 after its n first pulls, and S be the event that
p̃n+1 ≤ 1

2T for some value of n that we will fix later. Then, under S the probability that arm 1 is

never pulled again after its n first selections is larger than
(
1− 1

2T

)T ≥ 1
2 , in which case the regret

is larger than T − n. We hence first obtain that

RT (ν) ≥ ∆ · P(S) · (T − n)+
2

.

Step 2: We lower bound P(S) for a well-chosen value of n, by identifying a scenario that leads
(deterministically) to p̃n+1 ≤ 1

2T . Let n0, n1 be integers to be specified later, we consider the
following repartition of n pulls in two phases,

• Phase 0 - very unlucky start: for its first n0 pulls, arm 1 collects only −1 rewards. We
denote this event by S0.

• Phase 1 - failed recovery: the following n1 pulls of arm 1 have an empirical mean
satisfying µ̂n1

≲ −∆ and the number of +1s received is never more than the number of
−1s throughout this phase. We denote this event by S1.

Since ν1 is Rademacher of mean ∆, it is direct that P(S0) =
[
1−∆
2

]n0 . For phase 1, let (R̃t)t≥1

denote the stream of rewards collected by arm 1 (in the order they are received), and µ̂n1
=

1
n1

∑n0+n1

t=n0+1 R̃t be the empirical mean of the rewards during phase 1. Let Sn1
=
∑n0+n1

t=n0+1 1
{
R̃t =

1
}

be the number of ones received during this phase. We first define

α :=
2

∆

(1
2
−

⌈ 1−∆
2 · n1⌉
n1

)
∈
[
1− 2

∆n1
, 1

]
,

so that 1−α∆
2 is an integer greater than 1−∆

2 · n1 with α that is as close to 1 as possible.

From Lemma 6, we first obtain that

P (µ̂n1
= −α∆) = P

(
Sn1

=
1− α∆

2
· n1

)
≥ e−1/6

√
2

n1π
exp
(
−n1 ·∆ log

(
1 +

2∆

1−∆

))
.

Then, conditioned on this event, Bertrand’s Ballot theorem [64, 65] provides that the running number
of −1 always exceeds the running number of +1 with probability(

n1 − Sn1

)
− Sn1

n1
=

n1 − 2Sn1

n1
= −µ̂n1 = α∆,

which finally gives that the probability of S1 is lower bounded by

P(S1) ≥ α∆ · e−1/6

√
1

2n1π
exp
(
−n1 ·∆ log

(
1 +

2∆

1−∆

))
.

Then, it remains to show that S0 ∩ S1 ⊂ S for some values of n0 and n1. By Lemma 7, this is
guaranteed for n = n0 + n1 by fixing

n0 =

⌈
1

η
· K

K − 1
· log

(
1

ε ·(K − 1)

)⌉
∨
⌈
1

η

( K

K − 1

)2
log
( K3n1

(K − 1)2

)⌉
,

and n1 =

⌈
K − 1

K
· log(2T/(K − 1))

η∆(1− ε)
+

2

∆

⌉
.

By independence of the two sequences of rewards involved, it holds that P(S) ≥ P(S0) · P(S1). To
obtain the scaling of the result, we combine the above results and use that n0 is tuned as a function
of n1. Hence, we can state that there exists a function Cn1 , with (inverse) polynomial scaling in n1,
such that

P(S) ≥ Cn1
· e−n1·∆ log(1+ 2∆

1−∆ ),
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so that replacing n1 by its value and ignoring the Cn1 term, which we hide with the ≳ sign, leads to

P(S) ≳ e−n1·∆ log(1+ 2∆
1−∆ )

≥ e−
(
1+ 2

∆+K−1
K

1+ε
η∆ log 2T

K−1

)
·∆ log(1+ 2∆

1−∆ )

= e−(∆+2) log(1+ 2∆
1−∆ ) · e−

K−1
K

1+ε
η log(1+ 2∆

1−∆ )·log
2T

K−1

= e−(∆+2) log(1+ 2∆
1−∆ ) ·

( 2

K − 1

)−K−1
K

1+ε
η log(1+ 2∆

1−∆ ) · T−K−1
K

1+ε
η log(1+ 2∆

1−∆ ) .

For completeness, we detail the poly-logarithmic terms coming from the expression of Cn1
below,

Cn1
:=
(1−∆

2

)n0

· α∆ · e−1/6

√
2

n1π

≥ α∆ · e−1/6 ·
√

2

n1π
·
(
1−∆

2

)
·
(

K3n1

(K − 1)2

) 1
η (

K
K−1 )

2
log( 1−∆

2 )

= α∆ ·
(
1−∆

2

)
· e−1/6 ·

√
2

π
·
(

K3

(K − 1)2

) 1
η (

K
K−1 )

2
log( 1−∆

2 )
· n− 1

2+
1
η (

K
K−1 )

2
log( 1−∆

2 )
1 .

We can further detail Cn1
by replacing n1 by its value. For simplicity, we capture all the problem-

dependent factors in a new constant cη,∆, and finally obtain that

∃cη,∆ > 0 : Cn1
≥ cη,∆ · (log(T ))−

1
2+

1
η (

K
K−1 )

2
log( 1−∆

2 ) .

Step 3: Combining the results from the first two steps, we obtain that

RT (ν) ≥ ∆ · P(S) · (T − n0 − n1)+
2

≳ T 1−K−1
K

1+ε
η log(1+ 2∆

1−∆ ),

where the omitted constants depending on η and ∆ and polylog factors in T can be recovered from
the above lower bound on P(S).

C.1 Anti-concentration of the empirical mean of Rademacher variables

Lemma 6. Let n be a sample size and Sn be the number of ones received from n independent pulls
of a Rademacher variable of mean ∆ ≥ 2

n . Fix α = 2
∆

(
1
2 − 1

n · ⌈ 1−∆
2 · n⌉

)
∈
[
1− 2

∆n , 1
]
, then

P
(
Sn =

1− α∆

2
· n
)

≥ e−1/6

√
2

nπ
exp

(
−n ·∆ log

(
1 +

2∆

1−∆

))
.

Proof. Using the notation p := 1+∆
2 , we use the following standard formula,

P(Sn = s) =

(
n

s

)
· ps(1− p)n−s

=

(
n

s

)
es log(p)+(n−s) log(1−p)

=

(
n

s

)
en(

s
n log( p

s/n )+
n−s
n log( 1−p

(n−s)/n ))−nH( s
n )

=

(
n

s

)
e−nH( s

n ) · e−nkl( s
n ,p) ,

where H(x) = −x log x − (1 − x) log(1 − x) is the Shannon entropy, and kl the Bernoulli KL-
divergence. With s

n = 1−α∆
2 and α ≤ 1, we have

kl
( s
n
, p
)
≤ kl

(
1−∆

2
,
1 + ∆

2

)
=

1−∆

2
log

1−∆

1 +∆
+

1 +∆

2
log

1 + ∆

1−∆

= ∆ log
(1 + ∆

1−∆

)
= ∆ log

(
1 +

2∆

1−∆

)
.
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Sterling’s approximation for the factorial [66] gives for any n ≥ 1

√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n
e1/12.

Thus, for c ∈ (0, 1) such that cn is integer, we obtain that(
n

cn

)
=

n!

(cn)!((1− c)n)!

≥
√
2πn · nne−n(

e1/12
√
2πcn · ccnncne−cn

)
·
(
e1/12

√
2π(1− c)n · (1− c)(1−c)nn(1−c)ne−(1−c)n

)
=

e−1/6√
2πc(1− c)n

·
(n
e

)n−cn−(1−c)n

· 1

ccn · (1− c)(1−c)n

=
e−1/6√

2πc(1− c)n
· enH(c) .

Remarking that
√
2c(1− c) ≤ 1/

√
2 for any c ∈ (0, 1), we finally obtain with cn = s:

P(Sn = s) ≥ e−1/6

√
2

nπ
· e−nkl( 1−α∆

2 , 1+∆
2 ) = e−1/6

√
2

nπ
exp

(
−n ·∆ log

(
1 +

2∆

1−∆

))
.

C.2 Sufficient conditions on n0 and n1 for S0 ∩ S1 ⊂ S

Lemma 7. Fix any ε ∈ (0, 1), and define n0, n1 as follows:

n0 =

⌈
1

η
· K

K − 1
· log

(
1

ε ·(K − 1)

)⌉
∨
⌈
1

η

( K

K − 1

)2
log
( K3n1

(K − 1)2

)⌉
,

n1 =

⌈
K − 1

K
· log(2T/(K − 1))

η∆(1− ε)
+

2

∆

⌉
.

Then under S0 ∩ S1, it holds that p̃n0+n1+1 ≤ 1
2T .

Proof. Using the same notation as p̃n+1, let θ̃n+1 be the the SGB parameter of arm 1 after its n first
pulls.

First, at the end of phase 0 the policy has received n0 rewards of −1 from arm 1. Therefore, since
1− p̃n ≥ 1− 1

K = K−1
K for all n ≤ n0, we have that

θ̃n0+1 = −η

n0∑
n=1

(1− p̃n) ≤ −K − 1

K
· ηn0. (16)

Next, we show that the combination of this property and the events occurring under S1 are sufficient
to prove the desired result. Indeed, we recall that under S1, the sequence of rewards in phase 1,{
R̃t

}n0+n1

t=n0+1
, satisfy the following two conditions:

• The total number of +1 rewards should be less than 1−α∆
2 · n1 and the total number of −1

rewards should be more than 1+α∆
2 · n1; i.e.

∑n0+n1

t=n0+1 R̃t ≤ −n1α∆.

• There should never be more +1 rewards than −1 rewards observed at the current time step
within the phase; i.e.

∑n0+k
t=n0+1 R̃t ≤ 0 for all k ≤ n1.

The rest of the proof is based on characterizing the sequence among all sequences satisfying the
above conditions that leads to the largest value for θ̃n0+n1+1. We call this the maximizing sequence.
Then, we show that even for that sequence it holds that p̃n0+n1+1 ≤ 1

2T , from which the result of the
lemma follows. We detail below the lemmas that lead us to this result.
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In Lemma 8, we give a general construction for the maximising sequence that applies to reward
sequences satisfying the above conditions for arbitrary initial parameter. Then, in Corollary 2, we
show that under the occurence of phase 0, the maximising sequence of rewards with initial parameter
θ̃n0+1 takes a simple form: a first period alternating −1 and +1 rewards followed by a second period
with only −1 rewards. From this simple form, we can upper-bound θ̃n0+n1+1 for the maximising
sequence (also Corollary 2). Then, in Lemma 9, we show that the proposed tuning for n0 and n1 is
sufficient to get that the probability p̃n0+n1+1 is smaller than 1

2T .

From a high-level perspective, we highlight that the phase S0 serves to mitigate the impact of the
order in which rewards are received in the SGB updates, by ensuring that θ̃n0+t remains “sufficiently”
negative throughout the entire phase 1 (i.e. for t ≤ n1), while the tuning n1 = O(log(T )) permits
that a probability of 1

2T is achieved even in the identified maximizing scenario.

C.2.1 Maximizing reward sequence and probability under S0 ∩ S1

In this section, we consider reward sequences under S1 and characterize the maximizing sequence
for any arbitrary parameter at the start of phase 1.
Definition 1 (Constrained trajectories). Let Z ⊂ {−1, 1}N be the subset of trajectories of rewards
−1 and +1 that satisfy the conditions imposed under S1. Let Sn be a finite trajectory of n rewards
{R1, . . . , Rn} ∈ Z , the feasibility indices IZ+ and IZ− for the n + 1-th reward are the functions
satisfying:

IZ+ (Sn) =1({R1, . . . , Rn,+1} ∈ Z), and

IZ− (Sn) =1({R1, . . . , Rn,−1} ∈ Z) .

In particular, for n < n1, IZ+ (Sn) = 1 if

• the number of +1 rewards in Sn is less than 1−α∆
2 · n1.

• the number of +1 rewards in Sn is less than the number of −1 rewards in Sn.

And IZ− (Sn) = 1 if the number of −1 rewards in Sn is less than 1+α∆
2 · n1.

In words, the feasibility indices formalize whether a reward of +1 or −1 can complete or not a
sequence of rewards that should verify the constraints imposed under S1. We now prove the following
characterization of the maximising reward sequence.

Lemma 8. Fix θ̃1 ∈ RK . Consider
{
R̃M

t

}n1

t=1
∈ Z defined as follows with SM

t =
{
R̃M

1 , ..., R̃M
t

}
:

R̃M
t =


−1, if

{
θ̃Mt > K−1

K log(K − 1) and IZ− (SM
t−1) = 1

}
or IZ+ (SM

t−1) = 0

+1, if
{
θ̃Mt < K−1

K log(K − 1) and IZ+ (SM
t−1) = 1

}
or IZ− (SM

t−1) = 0

+1 or − 1, otherwise (the case where θ̃Mt = K−1
K log(K − 1) and either is fine).

Then
{
R̃M

t

}n1

t=1
is the maximizing sequence for the SGB parameter of arm 1, i.e. it holds that

θ̃Mn1+1 ≥ θ̃n1+1, for θ̃n1+1 obtained from
{
R̃M

t

}n1

t=1
and any θ̃n1+1 obtained from a trajectory{

R̃t

}n1

t=1
∈ Z , both starting from θ̃1.

Proof of Lemma 8. Assume
{
R̃M

t

}n1

t=1
is not the sequence that maximizes θ̃n1+1. Denote the maxi-

mum by θ̃Wn1+1 with reward sequence
{
R̃W

t

}n1

t=1
∈ Z and corresponding θ̃Wt / SW

t . Since
{
R̃W

t

}n1

t=1

is different from
{
R̃M

t

}n1

t=1
, there exists some n such that one of the conditions in the construction of

R̃M
n is violated, so either

1. R̃W
n = +1, θ̃Wn > K−1

K log(K − 1) and IZ− (SW
n−1) = 1.

2. R̃W
n = −1, θ̃Wn < K−1

K log(K − 1) and IZ+ (SW
n−1) = 1.
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3. R̃W
n = +1 and IZ+ (SW

n−1) = 0.

4. R̃W
n = −1 and IZ− (SW

n−1) = 0.

The last two violations cannot occur since
{
R̃W

t

}n1

t=1
∈ Z . Denote m the largest such n. Then

handling the first two cases separately, we have

1. R̃W
m = +1, θ̃Wm > K−1

K log(K − 1) and IZ− (SW
m−1) = 1. We must have R̃W

m+1 = −1.
Suppose not: if R̃W

m+1 = +1, then since IZ− (SW
m ) = 1 and θ̃m+1 ≥ θ̃m > K−1

K log(K−1),
m would not be the largest such that condition 1. is satisfied. Now consider an alternative
sequence R̂W

n in Z defined as follows:

R̂W
n =


R̃W

n , if n ̸= m,m+ 1

−1, if n = m

+1, if n = m+ 1

Let θ̂Wn correspond to the sequence of parameters with rewards R̂W
n . By Lemma 10:

θ̃Wn+2 < θ̂Wn+2.

Since R̂W
n = R̃W

n for all n > m + 1, we end up with θ̂Wn1+1 > θ̃Wn1+1 contradicting that
θ̃Wn1+1 is the maximum.

2. R̃W
m = −1, θ̃Wm < K−1

K log(K − 1) and IZ+ (SW
m−1) = 1. We must have R̃W

m+1 = +1.
Suppose not: if R̃W

m+1 = −1, then since IZ+ (SW
m ) = 1 and θ̃m+1 ≤ θ̃m < K−1

K log(K−1),
m would not be the largest such that condition 2. is satisfied. Now consider an alternative
sequence R̂W

n in Z defined as follows:

R̂W
n =


R̃W

n , if n ̸= m,m+ 1

+1, if n = m

−1, if n = m+ 1

Let θ̂Wn correspond to the sequence of parameters with rewards R̂W
n . By Lemma 10:

θ̃Wn+2 < θ̂Wn+2.

Since R̂W
n = R̃W

n for all n > m + 1, we end up with θ̂Wn1+1 > θ̃Wn1+1 contradicting that
θ̃Wn1+1 is the maximum.

In both cases, we get a contradiction, therefore
{
R̃W

t

}n1

t=1
cannot be the maximizing sequence. Since

this holds for any sequence different from
{
R̃M

t

}n1

t=1
,
{
R̃M

t

}n1

t=1
is the maximizing sequence. We

refer to the end of this section for the statement of Lemma 10 and its proof.

The next corollary characterizes the maximal possible value of parameter θ̃n0+n1+1, under event
S0 ∩ S1 by applying Lemma 8 under the occurrence of the event S0.

Corollary 2. Assume θ̃1 ≤ −K−1
K · ηn0 and n0 ≥ 1

η

(
K

K−1

)2
log
(

K3n1

(K−1)2

)
. Then it holds that

θ̃n1+1 ≤ θ̃Mn1+1 ≤ −ηα∆n1 ·
(
1− 1

K − 1
e−

K−1
K ηn0

)
with θ̃Mn1+1 being the parameter obtained with the following reward sequence

R̃M
nt =

{
(−1)t, if t ≤

(
1− α∆

)
· n1,

−1, otherwise.
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The above corollary highlights the role of phase 0 in ensuring that θ̃1 is small enough so that
θ̃Mt < K−1

K log(K − 1) for all t in the trajectory despite the asymmetry of the SGB update.

Proof of Corollary 2. By Definition 1, IZ+ (SM
t−1) = 0 if either

• the number of +1 rewards up to time t of phase 1 is 1−α∆
2 · n1

• the same number of +1 and −1 rewards have been observed up to time t of phase 1.

We assumed that θ̃1 ≤ −K−1
K · ηn0 < 0 < K−1

K log(K − 1). From Lemma 8, we have that as long
as θ̃t < K−1

K log(K − 1) and IZ+ (SM
t−1) = 1, then R̃M

t = +1. However, since IZ+ (SM
t−1) = 0 when

the same number of +1 and −1 rewards have been observed up to time t of phase 1, this leads to an
alternation of −1 and +1: R̃M

t = (−1)t.

This alternation of −1 and +1 rewards continues until either the parameter θ̃t becomes greater than
K−1
K log(K − 1) or receiving rewards of +1 stops being possible (IZ+ (SM

t−1) = 0) because the
number of +1 rewards up to time t of phase 1 is 1−α∆

2 · n1 (this will occur before t = n1). The
former could happen because of the asymmetry of the SGB update. However, we now show that if
n0 is large enough / phase 0 is long enough so that θ̃1 is small enough then the asymmetry can be
handled so that θt remains negative.

Intermediate claim: If n0 ≥ 1
η

(
K

K−1

)2
log
(

K3n1

(K−1)2

)
, then θ̃M2n+1 ≤ K−1

K θ̃1 < 0 for all n ≤
1−α∆

2 · n1.

We prove the intermediate claim by induction. Recall that the SGB update is θ̃t+1 = θ̃t+η(1− p̃t) ·R̃t.
A positive reward increases the parameter value and a negative reward decreases it.

Base case n = 0 follows from θ̃1 ≤ 0 =⇒ θ̃1 ≤ K−1
K θ̃1.

Inductive step: assume true for all k ≤ n < 1−α∆
2 · n1. Then R̃M

t = (−1)t for all t ≤ 2(n+ 1) (the
alternating sequence has not stopped since n < 1−α∆

2 · n1 so not all +1 rewards have been observed
and the parameter has remained negative throughout). We have:

θ̃M2(n+1)+1 = θ̃1 +

2(n+1)∑
t=1

(1− p̃Mt ) · R̃M
t

= θ̃1 + η

n+1∑
k=1

{
(1− p̃M2k)− (1− p̃M2k−1)

}
= θ̃1 + η

n+1∑
k=1

{
p̃M2k−1 − p̃M2k

}
.

Note that θ̃M2k = θ̃M2k−1 − η(1− p̃M2k−1) < θ̃M2k since R̃M
2k−1 = −1. Therefore the sum appearing in

the above expression is positive. It stems from the asymmetry of the SGB update. The presence of
phase 0 makes θ̃1 small enough such that this asymmetry is not too significant keeping θ̃M2(n+1)+1 of
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the same order as θ̃1. Specifically, we have

p̃M2k−1 − p̃M2k =
1

1 + (K − 1) · e−
K

K−1 θ̃
M
2k−1

− 1

1 + (K − 1) · e−
K

K−1 θ̃
M
2k

= (K − 1) · e−
K

K−1 θ̃
M
2k − e−

K
K−1 θ̃

M
2k−1

(1 + (K − 1)e−
K

K−1 θ̃
M
2k−1)(1 + (K − 1)e−

K
K−1 θ̃

M
2k)

=
(K − 1)e−

K
K−1 θ̃

M
2k−1

1 + (K − 1)e−
K

K−1 θ̃
M
2k−1

· 1

1 + (K − 1)e−
K

K−1 θ̃
M
2k

·
(
e

K
K−1 (θ̃

M
2k−1−θ̃M

2k) − 1
)

≤ 1

K − 1
exp
( K

K − 1
θ̃M2k−1

)
≤ exp

(
θ̃1

)
by the inductive hypothesis

=⇒ θ̃M2(n+1)+1 ≤ θ̃1 + η(n+ 1)eθ̃1 ≤ K − 1

K
θ̃1.

The last inequality follows from

n0 ≥ 1

η

( K

K − 1

)2
log
( K3n1

(K − 1)2

)
=⇒ K3

(K − 1)2
n1 ≤ n0e

ηn0(K−1)2/K2

=⇒ ηn1 ≤ 1

K

(
n0η

(K − 1)2

K2

)
e−θ̃1 using θ̃1 ≤ −

(K − 1

K

)2
ηn0

=⇒ ηn1e
θ̃1 ≤ − 1

K
θ̃1 using again θ̃1 ≤ −

(K − 1

K

)2
ηn0

=⇒ η(n+ 1)eθ̃1 ≤ − 1

K
θ̃1,

using that n ≤ 1−α∆
2 · n1 < n1

2 ≤ n1 − 1. This completes the proof of the intermediate claim.

The claim implies that throughout the alternating sequence of −1 and +1 rewards, the parameter θ̃t
remains negative and that observing all the +1 rewards causes the alternating sequence to terminate.
We have that R̃M

t = (−1)t lasts until we have observed at most 1−α∆
2 · n1 rewards of +1 after

which IZ+ (SM
t−1) = 0 for all remaining rounds and therefore the remaining rewards in the maximizing

sequence are all −1.

When the alternation ends, by the above claim we have that after receiving t0 = (1 − α∆) · n1

samples, it holds that θ̃M2n+1 ≤ K−1
K θ̃1 ≤ −

(
K−1
K

)2
ηn0. There are n1 − t0 = α∆n1 rounds left in

the phase, all of which have a reward of −1. Hence we have

p̃Mt0+t ≤
1

K − 1
e

K
K−1 θ̃

M
t0+t ≤ 1

K − 1
e

K
K−1 θ̃

M
t0 ≤ 1

K − 1
e−

K−1
K ηn0 .

Fixing δ0 = 1
K−1e

−K−1
K ηn0 , we have:

θ̃Mn1+1 = θMt0+(n1−t0)+1

= θ̃Mt0+1 − η

n1∑
k=t0+1

(1− p̃Mk )

≤ −η(n1 − t0)(1− δ0)

= −ηα∆n1(1− δ0)

=⇒ θ̃n1+1 ≤ −ηα∆n1(1− δ0).

With the previous results at hand, we can finally obtain the sufficient condition on n0 and n1 to
guarantee that S0 ∩ S1 ⊂ S.
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Lemma 9. Fix any ε ∈ (0, 1), and define n0, n1 as follows:

n0 =

⌈
1

η
· K

K − 1
· log

(
1

ε ·(K − 1)

)⌉
∨
⌈
1

η

( K

K − 1

)2
log
( K3n1

(K − 1)2

)⌉
,

n1 =

⌈
K − 1

K
· log(2T/(K − 1))

η∆(1− ε)
+

2

∆

⌉
.

Then under S0 ∩ S1, it holds that p̃n0+n1+1 ≤ 1
2T .

Proof. Under S0, we have that θ̃n0+1 ≤ −K−1
K · ηn0 and by construction,

n0 ≥ 1

η
·
(

K

K − 1

)2

· log
(

K3n1

(K − 1)2

)
.

Therefore, we apply Corollary 2 on the rewards in phase 1, which gives

θ̃n0+n1+1 ≤ −ηα∆n1

(
1− 1

K − 1
e−

K−1
K ηn0

)
≤ −ηα∆(1− ε)n1 since n0 ≥ 1

η
· K

K − 1
· log

(
1

ε ·(K − 1)

)
≤ −η∆(1− ε)n1 + 2η(1− ε) since α > 1− 2

∆n1

≤ − K

K − 1
log

(
2T

K − 1

)
since n1 ≥ K − 1

K
· log(2T/(K − 1))

η∆(1− ε)
+

2

∆

=⇒ p̃n0+n1+1 =
eθ̃n0+n1+1

eθ̃n0+n1+1 + (K − 1)e−
θ̃n0+n1+1

K−1

≤ e
K

K−1 ·θ̃n0+n1+1

(K − 1)
≤ 1

2T
.

We conclude this section with Lemma 10, which is the last technical result supporting the proof of
Lemma 7

Lemma 10. Consider an arbitrary parameter θn for SGB at the n-th pull of arm 1 (and the parameters
of all other arms are the same and equal to − 1

K−1θn). Let Rk ∈ {−1, 1} be the reward for the k-th

pull. Let θn+2 correspond to the case where Rn = 1, Rn+1 = −1 and θ̃n+2 correspond to the case
where Rn = −1, Rn+1 = 1.

• If θn > K−1
K log(K − 1), θn+2 < θ̃n+2

• If θn = K−1
K log(K − 1), θ̃n+2 = θn+2

• If θn < K−1
K log(K − 1), θn+2 > θ̃n+2
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Proof of Lemma 10.

θ̃n+2 = θn − η(1− pn) + η(1− p̃n+1) = θn − η(1− pn) + η
K − 1

K − 1 + exp( K
K−1 θ̃n+1)

= θn − η(1− pn) + η
K − 1

K − 1 + exp( K
K−1θn − K

K−1η(1− pn))

θn+2 = θn + η(1− pn)− η(1− pn+1) = θn + η(1− pn)− η
K − 1

K − 1 + exp( K
K−1θn+1)

= θn + η(1− pn)− η
K − 1

K − 1 + exp( K
K−1θn + K

K−1η(1− pn))

=⇒ θn+2 − θ̃n+2 = 2η(1− pn)− η
K − 1

K − 1 + exp( K
K−1θn + K

K−1η(1− pn))

− η
K − 1

K − 1 + exp( K
K−1θn − K

K−1η(1− pn))
.

Using that 1− pn = K−1
K−1+exp( K

K−1 θn)
, consider the function

f(x) =
2η(K − 1)

K − 1 + exp(x)
− η(K − 1)

K − 1 + exp(x+ K
K−1

η(K−1)
K−1+exp(x) )

− η(K − 1)

K − 1 + exp(x− K
K−1

η(K−1)
K−1+exp(x) )

.

Then denoting Y = exp( K
K−1

η(K−1)
K−1+exp(x) ) and Z = K − 1,

f(x) > 0 ⇐⇒ 2

K − 1 + exp(x)
>

1

K − 1 + exp(x+ K
K−1

η(K−1)
K−1+exp(x) )

+
1

K − 1 + exp(x− K
K−1

η(K−1)
K−1+exp(x) )

⇐⇒ 2

Z + exp(x)
>

1

Z + Y exp(x)
+

1

Z + 1
Y exp(x)

⇐⇒ 2Z2 + 2ZY ex +
2Z

Y
ex + 2e2x > 2Z2 + ZY ex +

Z

Y
ex + 2Zex + Y e2x +

1

Y
e2x

⇐⇒ ZY ex +
Z

Y
ex + 2e2x > 2Zex + Y e2x +

1

Y
e2x

⇐⇒ ZY 2 + Z + 2Y ex > 2ZY + Y 2ex + ex

⇐⇒ (Y 2 − 2Y + 1)(Z − ex) > 0

⇐⇒ (Y − 1)2(Z − ex) > 0

⇐⇒ x < logZ = log(K − 1).

Similarly, f(x) < 0 ⇐⇒ x > log(K − 1) and f(x) = 0 ⇐⇒ x = log(K − 1). Since
f( K

K−1θn) = θn+2 − θ̃n+2, we have the stated result.

D Supporting results for the proof of Theorem 3

This section contains the classical lower bound results in bandits (appendix D.1) and the proof of
Lemma 1 (appendix D.2). The proof of Theorem 3 in the main paper is entirely based on the results
presented in this section.

D.1 Details on asymptotic lower bounds in bandits with bounded-support

We denote by KL(·, ·) the Kullback-Leibler divergence between two distributions. We first state
an adaptation of the classical asymptotic lower bound in MAB, first proved by Lai and Robbins
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[36] for parametric families of distributions, and later extended by Burnetas and Katehakis [37] for
non-parametric families. The following result is inspired by the elegant formulation and proof of this
lower bound, that can be found in Emilie Kaufmann’s thesis [67, Theorem 1.2].

Theorem 6 (Asymptotic problem-dependent regret lower bound, adapted from Theorem 1.2 of [67]).
Let ν ∈ FK be a MAB instance with distributions from the same family of distributions F . Let
α ∈ (0, 1), and assume that a policy π satisfies RT = O(Tα) for any instance ν ∈ FK . Then, the
number of pulls of any sub-optimal arm k (such that ∆k > 0) under the policy π must satisfy

lim inf
T→∞

E[Nk(T )]

log(T )
≥ 1− α

KF
inf(νk, µ

⋆)
, KF

inf(νk, µ
⋆) = inf

ν′∈F
{KL(νk, ν

′) :EX∼ν′ [X]>µ⋆} , (17)

for any sub-optimal arm k, and using the notation µ⋆ = maxj∈[K] µj .

The above theorem holds for any generic family F , but we recall that in this paper we use the notation
F for the family of distributions supported on [−1, 1]. Furthermore, in Theorem 3 we consider even
more specifically the family FK

∆ , for some ∆ ∈ (0, 1), of bandit instances with bounded rewards
(with support [−1, 1]) and minimum gap larger than ∆. To prove the theorem, we derive the following
result.

Lemma 11 (KFK
∆

inf for the Dirac distributions of Lemma 1).

∀∆ ∈ (0, 1) : KFK
∆

inf (δ−∆, 0) = log

(
1 +

2∆

1−∆

)

Proof. We first obtain from Lemma 12 below that KFK
∆

inf (δ−∆, 0) = KF
inf(δ−∆,∆). The result then

follows from Lemma 13.

We first prove the relation between KL-inf quantity associated FK
∆ and the one associated with F .

Lemma 12 (Modified Kinf with knowledge of minimum gap). Fix ∆ ∈ (0, 1), and let FK
∆ denote

the class of K-armed bandit instances with distributions bounded in [−1, 1] and with a minimal
non-zero gap of ∆. Then, for any νk ∈ F satisfying ∆k ≥ ∆, it holds that

KFK
∆

inf (νk, µ
⋆) = KF

inf(νk, µ
⋆ +∆).

Proof. The quantity KFK
∆

inf (νk, µ
⋆) reflects how far the distribution νk is from an alternative distri-

bution ν′k such that arm k would be optimal under this reward distribution. By assuming that the
minimum gap is ∆, it is necessary that the average of the distribution ν′k is at least µ⋆ +∆. Since the
support of the distribution has to remain in [−1, 1], the identity is direct.

We then prove the remaining supporting result for the proof of Lemma 11.

Lemma 13 (KF
inf for bounded distributions). Let µ0 ∈ [−1, 1] and µ1 ∈ [−1, 1] satisfying µ1 ≥ µ0.

Then,

KF
inf(δµ0

, µ1) = log

(
1− µ0

1− µ1

)
.

Proof. To turn the Dirac distribution of mean µ0 into a distribution of mean µ1 at minimum (KL-)cost
while keeping its support in [−1, 1], the most efficient way is to transfer as little mass as possible in
+1. We thus solve

p · µ0 + (1− p) = µ1 =⇒ p =
1− µ1

1− µ0
,

which is the probability mass remaining in µ0 after the transfer. This gives the result.

We now formulate some remarks, before recalling some known properties of KL-inf divergences for
bounded distributions.
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Remark 1. If the support [−R,R] for R > 0, and using the notation F[−R,R] for this family of
distributions, we obtain

KF[−R,R]

inf (δµ0 , µ1) =
R− µ0

R− µ1
,

so the thresholds of Theorem 3 are trivially multiplied by R, since log(1+∆) becomes log(1+∆/R)
in the lower bound.

Remark 2. From Lemma 12 we see that KFK
∆

inf (., µ
⋆) is infinite if µ⋆ ≥ 1−∆. This reflects that, in

that case, the regret does not have to be logarithmic. For instance, by adapting the analysis from
[68] we could verify that preceding a UCB policy by a greedy step that would play any arm with
empirical mean larger than 1−∆ (instead of computing the UCB) would yield constant regret in the
case where the best arm admits an expectation larger than 1−∆.

Since this fact is not particularly insightful to understand the theoretical behavior of SGB , and the
interesting scenarios arise when ∆ is small, we chose to ignore this trick in the paper.

Summary of known properties of KF
inf It is well known that for bounded distributions the quantity

KF
inf(νk, µ

⋆) can be expressed as the solution of an optimization problem, but is also related to the
KL-divergence of Bernoulli distributions and to ∆2

k. We now elaborate on these results.

Most existing results in the literature are derived for bounded distributions of support [0, 1] ([50, 30,
69], among many others). We denote this family by F̄ . Since the KL divergence is invariant by
rescaling, it is clear that KF

inf and KF̄
inf are related, more precisely

∀(ν, µ) ∈ F × [−1, 1], KF
inf(ν, µ) = KF̄

inf(ν̄, µ̄),

with µ̄ = 1+µ
2 is the distribution of 1+X

2 for a random variable X ∼ ν, and similarly for ν̄. Honda
and Takemura [50] derived the following expression,

∀(ν̄, µ̄) ∈ F̄ × [0, 1], KF̄
inf(ν̄, µ̄) = sup

λ∈[0,1]

EX∼ν̄

[
log

(
1− λ

X − µ̄

1− µ̄

)]
.

We further denote by kl the Bernoulli divergence, that can be expressed as

∀(µ0, µ1) ∈ [0, 1], kl(µ0, µ1) = µ0 log

(
µ0

µ1

)
+ (1− µ0) log

(
1− µ0

1− µ1

)
.

Then, for any distribution ν0 ∈ F̄ of mean µ0 and µ1 ∈ [µ0, 1] it is established that

KF̄
inf(ν0, µ1) ≥ kl(µ0, µ1) ≥ 2(µ1 − µ0)

2

We refer to [69] for proofs and detailed discussions on the tightness of the inequalities. In particular,
the inequalities are tight for Bernoulli instances with expectation near 1/2 and small gaps. This
translates into the fact that, on F , the most difficult distributions are Rademacher with means
near 0.

Hence, for problems from FK the regret of uniformly efficient policies is expected to scale in the
worst case, as a function of the gap ∆, with 2(K − 1) · log(T )

∆ , which becomes (K−1)
2∆ · log(T ) if ∆ is

assumed to be known, i.e. ν ∈ FK
∆ . This is nearly matched for an instance with K − 1 sub-optimal

Rademacher arms of mean 0 (and so µ1 = ∆). We see that the results we obtained in Theorem 1 and
Theorem 4 verify this property, and are thus coherent with the lower bound.

To be more precise, the asymptotic scaling of the regret upper bound of Theorem 1 is log(T )
2η for

small enough learning rates, while the lower bound on the instance ν1 = Rad(∆), ν2 = Rad(0) is
2∆ log(T )

− log(1−4∆2) , so the two bounds can be arbitrarily close for η = ∆e−2∆ (satisfying the condition of
the theorem) and ∆ → 0.

D.2 Proof of Lemma 1

We start by restating the result presented in the main paper.
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Lemma 1 (Regret upper bound on an easy instance). Let ν ∈ FK be a MAB defied by ν1 = δ0 and
ν2 = · · · = νK = δ−∆, for some ∆ > 0. Then, for any learning rate η, SGB satisfies

∀ ε ∈ (0, 1), RSGB
T ≤ 1 + log (1 + (K − 1)Tη∆)

(1− ε)η
+

K2

ε
·
(
∆+

1

η
log

(
K

ε

))
.

Proof. Since the probabilities are only updated when a sub-optimal arm is played, we introduce
the notation (p̃k,N )N∈N to denote the sampling probabilities at the N -th pull of a sub-optimal arm.
We use notation Nt =

∑K
k=2 Nk(t), where we recall that, for k ∈ [K], Nk(t) =

∑t
s=1 1(As = k).

Then, we can first remark that

∀t ≥ 1, θ1,t+1 = θ1,t + p1,t · η∆1(At ̸= 1) =⇒ θ1,t = η∆ ·
Nt∑
n=1

p̃1,n,

On the other hand, the parameters of sub-optimal arms satisfy

∀k ≥ 2, θk,t+1 = θk,t − η(1− pk,t)∆1(At = k) + ηpk,t∆1(At ̸= {k, 1})
= θk,t − η∆ · ((1− pk,t)1(At = k)− pk,t1(At ̸= {k, 1}))
= θk,t − η∆ · (1(At = k)− pk,t1(At ̸= 1))

=⇒ θk,t = −η∆Nk(t) + η∆

Nt∑
n=1

p̃k,n .

Thus, we obtain that

∀k ∈ {2, . . . ,K},∀t ≥ 1, θ1,t − θk,t = η∆Nk(t) + η∆

Nt∑
n=1

(p̃1,n − p̃k,n). (18)

We additionally prove that p̃1,n ≥ maxk≥2 p̃k,n by induction: this is true at initialization because all
probabilities are equal. Then if the property holds for some time t ≥ 1, it then holds that

max
k={2,...,K}

δθk,t ≤ ∆ ·max
k ̸=1

pk,t1(At ̸= 1) ≤ ∆ · p1,t1(At ̸= 1) = δθ1,t ,

so θ1,t+1 = maxj∈[K] θj,t+1, therefore p1,t+1 remains the maximum sampling probability at the
next step. We deduce that

∀t ≥ 1,∀k ≥ 2 : pk,t ≤
eθk,t

eθ1,t
= e−η∆Nk(t)−η∆

∑t−1
s=1(p1,s−pk,s)1(As ̸=1) ≤ e−η∆Nk(t) . (19)

Consider Tk = {t ≥ 1 : pk,t ≥ ε /K}. From the last bound of (19), we first obtain that

Nk(t) ≥ Nε
k :=

⌈
1

η∆
· log

(
K

ε

)⌉
=⇒ ∀s ≥ t : pk,s ≤

ε

K
.

Then, E[|Tk|] is trivially upper bounded by Nε
k · K

ε , by conditional independence of the number of
steps between two successive pulls of arm k. Thus, it holds that

E[|Tk|] ≤
K

εη∆
· log

(
K

ε

)
+

K

ε

Now, considering T = ∪K
k=2Tk, we can simply write that

E[|T |] ≤
K∑

k=2

E[|Tk|] ≤
K(K − 1)

ε η∆
log

(
K

ε

)
+

K(K − 1)

ε
.

We can now consider the number of sub-optimal pulls incurred for t /∈ T . We can get back to using
Eq. (19), but now exploiting the penultimate inequality with

pk,t ≤ e−η∆(Nk(t)+
∑t−1

s=1(p1,s−pk,s)1(As ̸=1)) ≤ e−η∆(Nk(t)+
∑t−1

s=1(1−ε)1(As ̸=1,s/∈T )),
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since by design t /∈ T ⇒ p1,t − pk,t = 1 −
∑K

k′=2 pk′,t − pk,t ≥ 1 − ε. We denote by T the
complementary of T (so T ∪ T = [T ] and T ∩ T = ∅), and by N t the number of sub-optimal
pulls within this range, so N t =

∑T
s=1 1(As ̸= 1, s /∈ T ). To obtain the result, we just ignore the

Nk(t) term in the upper bound, and use a very standard proof scheme in bandits. We first define
Nε

T = log(1+(K−1)η∆T )
(1−ε)η∆ , and obtain that

E

 T∑
t=1,t/∈T

1(At ̸= 1)

 = E[NT ]

≤ E

 ∑
t∈T ∩[T ]

1
(
At ̸= 1, N t ≤ Nε

T

)
+

∑
t∈T ∩[T ]

1
(
At ̸= 1, N t > Nε

T

)
≤ Nε

T + T (K − 1)e−η∆(1−ε)Nε
T

≤ log(1 + T (K − 1)η∆)

(1− ε)η∆
+

(K − 1)T

1 + T (K − 1)η∆

≤ 1 + log(1 + T (K − 1)η∆)

(1− ε)η∆
,

which concludes the proof since

RT (ν) = ∆E

[
T∑

t=1

1(At ̸= 1)

]
= ∆E

 T∑
t=1,t/∈T

1(At ̸= 1) +

T∑
t=1,t∈T

1(At ̸= 1)


≤ 1 + log(1 + T (K − 1)η∆)

(1− ε)η
+∆E[|T |]

≤ 1 + log(1 + T (K − 1)η∆)

(1− ε)η
+

K2

ε

(
∆+

1

η
log

(
K

ε

))
.

Possible improvement In the last steps of the proof of Lemma 1, we used Eq. (19) and ignored for
simplicity the Nk(t) term in the following bound

pk,t ≤ e−η∆(Nk(t)+
∑t

s=1(1−ε)1(As ̸=1,s/∈T )) .

Intuitively, the symmetry between the arms and the fact that the rewards are deterministic strongly
suggest that it should hold that Nk(t) ≈ Nt

K−1 with high probability, at least when N t becomes large
enough. Hence, this suggest that we could decrease N

ε

T by a factor K−1
K , and obtain a bound

RT ≤ 1

1− ε
· K − 1

K
· log(T )

η
+Aε ,

for some constant Aε. Proving it for a general number of arms seems intricate. Furthermore, for large
K the difference between the two results is minor –and our result already gives the inverse linear
dependency in K– so we leave further investigation for future works. However, we now prove this
improved bound for K = 2 to formally justify this intuition, and support the proof of Theorem 3 in
the case K = 2. We can further remark that the improvement is not only on the 1/2 factor in front of
the logarithmic term, but also is the dependency in ε, which becomes log

(
1
ε

)
instead of ε−1.

Lemma 14 (Improved upper bound on the easy instance for K = 2). Let ν ∈ FK be a MAB defined
by ν1 = δ0 and ν2 = δ−∆, for some ∆ > 0. Then, for any learning rate η, SGB satisfies

∀ ε ∈ (0, 1) , RT ≤ log(1 + 2T ε(1− ε)η∆) + 1

2(1− ε)η
+

log
(
1
ε

)
η

.

Proof. The improved result comes from the fact that for K = 2, θ1,t = −θ2,t at all steps (Eq. (9)),
which simplifies several arguments. Let θ̃N denote the parameter of arm 1 after N pulls of arms 2.
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Using that inft≥1 p1,t = p1,1 = 1/2, we can now prove that a deterministic number of samples Nε

suffices to reach p̃1,N ≥ 1− ε. Indeed, it holds that

1− p̃Nε
≤ e−2θ̃Nε , and θ̃Nε

≥ η∆Nε

2
,

from which we deduce that choosing Nε =
log( 1

ε )
η∆ is sufficient to guarantee that infN≥Nε

p̃N ≥ 1−ε.
Let us now consider a number N of selections of arm 2 after its Nε first pulls. For N = Nε+N ≥ Nε,
it then holds that

θ̃N ≥ θ̃Nε + η∆(1− ε)N ,

which yields 1− p̃N ≤ e−2θ̃N ≤ ε ·e−2η∆(1−ε)N by definition of Nε. Using the same last steps as
for the proof of Lemma 1, and choosing N = log(1+2T ε(1−ε)η∆)

2(1−ε)η∆ , we then obtain that

E[N2(T )] ≤ E

[
T∑

t=1

1
(
At = 2, N2(t) ≤ Nε +N

)
+

T∑
t=1

1
(
At = 2, N2(t) > Nε +N

)]
≤ Nε +N + T ε ·e−2η∆(1−ε)N

≤
log
(
1
ε

)
η∆

+
log(1 + 2T ε(1− ε)η∆)

2(1− ε)η∆
+

ε ·T
1 + 2T ε(1− ε)η∆

≤ log(1 + 2T ε(1− ε)η∆) + 1

2(1− ε)η∆
+

log
(
1
ε

)
η∆

which gives the result.

D.3 Conjectures on the critical threshold for K ≥ 3

We recall that, by combining Theorem 2 and 3, we proved that η ≲ ∆∧K−1 is a necessary condition
to guarantee logarithmic regret for SGB . We also hinted in the main paper (Section 3 and experiments
of Section 4) that we believe that for general K-armed problems η should scale with ∆/K, and more
precisely that the critical learning rate is η = 2∆

K . In this section, we formalize this conjecture, and
present detailed justifications.

Conjecture 1. For ∆ > 0, consider the instance ν ∈ FK
∆ defined by ν1 = δ0 and ν2 = · · · = νK =

Rad(−∆). Then, it holds that

∃η0 >
2∆

K
s.t. ,∀η ∈ (0, η0) : RT ≤ K − 1

K
· log(T )

η
+ o(log(T )) . (20)

and, as a consequence, SGB can be uniformly efficient on all instances from FK
∆ only if η ≤ 2∆

K .

The empirical results presented in Section G.3 support this conjecture, and even suggest that the
logarithmic bound on the post-convergence term is the same for all problems ν ∈ FK

∆ (Conjecture 3),
although considering only the instance described in the conjecture is sufficient to discuss the critical
threshold.

We now formalize how Eq. (20) suffices to establish that the critical learning rate is smaller than 2∆
K ,

and describe the technical results that would be necessary to prove the conjecture.

Intuition. Let us assume that Eq. (20) holds. Then, the deduction that η ≤ 2∆
K is necessary for SGB

to achieve logarithmic regret follows from the same proof steps as Theorem 3: if ∆ is small enough,
then the lower bound of Lai and Robbins [36] (Theorem 6 in Appendix D.1) establishes that the
asymptotic regret of SGB cannot be better than (K − 1) · log(T )

2∆ if it is uniformly efficient on all
instances. By contradiction of the lower bound, this proves the last statement of the conjecture, since
some parameters η ∈

[
2∆
K , η0

]
, which is non-empty, would violate the lower bound for ∆ small

enough.
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Hence, to prove the conjecture it suffices to prove Eq. (20), akin to how Lemma 1 supported the proof
of Theorem 3. More precisely, from Equation (7) and Lemma 2 we believe that it can be proved that,
for an appropriate range of learning rates, the following holds:

E[θ1,T ] ≤
K − 1

K
· log(T )

η
+ o(log(T )) and E

[
T∑

t=1

(1− p1,t)
2

]
= o(log(T )) .

We assume the first result (logarithmic scaling) because we have a strong intuition that the post-
convergence term corresponding to a fixed instance, with random rewards, should admit the same
asymptotic scaling as its deterministic counterpart (νk)k∈[K] = (δµk

)k∈[K], that we studied in
Lemma 1 in the case considered in the conjecture. We furthermore include a K−1

K factor to conform
our intuition that this is a possible improvement of the upper bound of Lemma 1, as discussed in the
main paper and Appendix D.2.

Let us now discuss the upper bound on the failure regret. By introducing η0 > 0, we anticipate
that (in contrast to Lemma 1), it might be necessary to restrict the learning to a bounded range to
prevent large deviations for the parameters (θk,t)k≥2. Indeed, since rewards of sub-optimal arms
are random, it is possible that θk,t becomes arbitrarily large for some k ≥ 2. However, since this
increase would necessarily cause p2,t to be large, we would expect arm 2 to be pulled frequently, and
thus θ2,t to decrease in reasonable time. In simpler terms, the instance chosen to state the conjecture
makes it unlikely that the failure regret of SGB is large: arm 1 cannot deliver bad rewards, and any
over-performance of sub-optimal arms will lead to fast correction, likely causing relatively small
regret, probably upper bounded by a constant (thus o(log(T )).

Conjecture 1 offers a direction to derive the critical threshold for η that is very similar to the proof of
Theorem 3, in which we derived the necessary condition with scaling K−1.

Then next conjecture, on the contrary, mirrors the intuition behind the proof of Theorem 2, by
proposing a candidate difficult instance for SGB , for which scaling of the learning rate below the
critical threshold would be necessary.

Conjecture 2 (Candidate difficult instance). Let K ≥ 3, and ν ∈ FK
∆ be the bandit instance defined

by ν1 = Rad(∆), ν2 = δ0, and ν3 = · · · = νK = δ−µ for any µ ∈ (0, 1). Then, η < 2∆
(K−1)(1−∆) is

necessary to guarantee logarithmic regret on such instance for any number of arms K.

Intuition. As discussed in the main paper after stating Theorem 3, the specificity of SGB compared
to more standard bandit policies is the fact that adding some very sub-optimal arm is not “neutral”
with respect to better-performing arms, which we illustrate by understanding some scenarios that can
happen with this choice of instance.

We follow the proof of Theorem 2 to provide a detailed intuition to support the conjecture. We recall
that, in the proof of Theorem 2, we identified a scenario under which the regret of SGB is linear, and
proved that this scenario happens with a probability that is too large to avoid polynomial regret when
η > ∆+O(∆2). Let us consider a similar scenario.

Phase 0: unlucky start Assume that for its n0 first pulls arm 1 receives a reward −1, and that these
pulls happen during a (random) number of steps t0. By tuning n0, we can make θ2,t0+1 − θ1,t0+1

arbitrarily large, and as a consequence, p2,t0+1 − p1,t0+1 can be made very close to 1. The pulls of
arms {3, . . . ,K} can only make the gap between the two parameters grow faster, since it is clear that
p2,t ≥ p1,t throughout this phase.

Phase 1: failed recovery, with a twist: We are then tempted to consider the same scenario as in the
proof of Theorem 2, in which in a second phase arm 1 continues to receive rewards that are sufficiently
bad to push its probability below 1/(2T ). By following the same proof scheme, we could prove that
the fact that the arms k ≥ 3 are now very sub-optimal can only make this scenario happen faster:
indeed, if the rewards in phase 1 are sufficiently bad that the gap p2,t − p1,t ≈ 1 from the end of
phase 0 can be maintained throughout phase 1, then

∀t ≥ t0 + 1, At ≥ 3 =⇒ θ2,t+1 − θ1,t+1 = θ2,t − θ1,t + ηµ · (p2,t − p1,t)︸ ︷︷ ︸
≈1

.
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Hence, the probability of arm 1 decreases not only because of its unlucky pulls, but also each time a
“very bad” arm is drawn. This is a new phenomenon compared to the instance studied in the proof of
Theorem 2. We believe that this is the reason why the learning rate should depend on ∆/K, as we
explain in the following. In the proof of Theorem 2, we showed that after the n1 pulls of arm 1 in
phase 1 it held that

θ1,t0+t1+1 ≈ θ1,t0+1 − η∆n1 , and ∀k ≥ 2 : θk,t0+t1+1 = −θ1,t0+t1+1

K − 1

which led us to choose n1 ≈ K−1
K · log(2T )

η∆ , using the linear dependency between parameters. In the
new instance considered here, we believe that the following holds instead,

θ1,t0+t1+1 ≈ θ1,t0+1 − η∆n1 − ηµ(nt0+t1 − nt0) , with nt =

t∑
s=1

1(As ≥ 3) .

Hence, intuitively we can expect that a lower value of n1 (compared to the theorem) could lead to
p1,t0+t1+1 ≤ 1

2T with large-enough probability.

The following detailed intuition about this phenomenon is speculative, but we think that from that
point we can argue the following: since arm 1 appears “at best” as a distribution with gap ∆, while
the others appear as distributions with gap −µ < 0, then it should hold that p1,t/pk,t ≍ µ

∆ throughout
the duration of phase 1. We formally this in Conjecture 3 in Appendix G.3, as a new conjecture
supported by experiments. As a consequence, with non-negligible probability, it should hold that
nt0+t1 − nt0 ≈ (K − 2) · ∆

µ · n1, by summing over the sample sizes of the K − 2 bad deterministic
arms. Under such scenario, we would then obtain that

θ1,t0+t1+1 − θ2,t0+t1+1 ≈ θ1,t0+1 − θ2,t0+1 − η∆(K − 1)n1 ,

from which the desired tuning of n1 would become n1 ≈ log(2T )
(K−1)η∆ .

By plugging into the last steps of the proof of Theorem 2, we would obtain that a lower bound on
the probability of linear regret is of order e−

2∆
(K−1)η(1−∆)

log(2T ), which gives a lower bound on the
regret of scaling T 1− 2∆

η(K−1)(1−∆) , polynomial if η > 2∆
(K−1)(1−∆) . We believe that these arguments

motivate the conjecture, although a proper formalization would involve many technicalities (akin
to the proof of Theorem 2, but with more involved arguments), that we leave for future work. In
particular, in order to prove the results presented in this paper we manly had to prove upper bounds
of the form pk,t ≲ 1

η∆kt
, while for this new result it would be necessary to further prove that

pk,t ≳ 1
η∆kt

with some reasonable probability, to use that µ(nt0+t1 − nt0) ≈ ∆n1 during phase 1 is
a likely scenario.

We remark that the upper bound on the critical rate suggested by Conjecture 1 is smaller than the
upper bound suggested by Conjecture 2, but the two are relatively close when ∆ is small and K is
large. Proving either one of the two results presents independent challenges, and successfully proving
either would constitute a significant improvement in the theoretical understanding of SGB .

E Proof of Theorem 4

We start by restating the theorem, before detailing its proof.

Theorem 4 (Logarithmic regret for identical gaps). Let ν ∈ FK be a MAB instance satisfying
∆2 = · · · = ∆K = ∆, for some ∆ ∈ (0, 1). Then, the regret of SGB tuned with a learning rate η
satisfying ηCη < 2∆

K+2 is upper bounded as follows,

RSGB
T (ν) ≤ 2

η
· E[θ1,T+1] + Γν ≤ 2(K − 1)

η
· log(T ) + Γν , for some constant Γν > 0.

Proof. Instead of using Equation (7) directly, we use Proposition 3 (Appendix F.1) to convert it into
an alternative expression depending on the probabilities

∑T
t=1 P(p1,t < 1/2), that is more adapted to
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the arguments presented in the rest of the proof. Combined with Lemma 2, we obtain a first regret
upper bound

RT ≤ 2(K − 1) ·
(
log(T )

η
+ 4

)
+ 2∆

T∑
t=1

P
(
p1,t <

1

2

)
,

which gives the logarithmic term of the theorem, and we can remark the constant Γν should be an
upper bound of 8(K − 1)+

∑T
t=1 P (p1,t < 1/2). It remains to prove that the tuning of η guarantees

that the latter sum is finite. To do that, we use a proof inspired by the analysis of SAMBA [29]. Indeed,
similarly to the proof of Theorem 1, we are going to prove that E[p−1

t ] is decreasing, under a condition
on η determined by the initial stage p1,1 = 1

K . Using Lemma 17 with Ht = 0, thanks to the identical
gaps, we obtain that, for all steps t ≥ 1,

Et

[
1

pt+1

]
≤ 1

pt
− η(∆− ηCη)

K

K − 1
(1− pt)

2 +
η2Cη

2
·
∑K

k=2 p
2
k,t(1− pk,t)− pt(1− pt)

2

pt︸ ︷︷ ︸
Wt

.

(21)
Comparing with our analysis for two-armed bandits (Th. 1), the term Wt causes additional difficulty.
To overcome it, we simply use that

∑K
k=2 p

2
k,t(1 − pk,t) ≤ 1−pt

4 ≤ 1
4 , so we can simplify the

recursion as follows,

Et

[
1

pt+1

]
≤ 1

pt

(
1 +

η2Cη

8

)
− η(∆− ηCη)

K

K − 1
(1− pt)

2,

which we can now use to complete the proof of the theorem.

Step 1: reaching pt =
1
2 in finite time. we now consider the collection of time steps T0 starting in

t = 0, and ending at the stopping time τ0 corresponding to the first time pt ≥ 1
2 holds. We use that

within T0, when pt < 1/2, it holds that K
K−1 (1− pt)

2 ≥ 1
4 . Thus, for t ≤ τ0 it holds that

Et

[
1

pt+1

]
≤ 1

pt

(
1 +

η2Cη

8

)
− η

4
(∆− ηCη) =

1

pt
+

η

8
·
(
ηCη

(
1

pt
+ 2

)
− 2∆

)
. (22)

We then use that p−1
1 = K to obtain that if ηCη < 2∆

K+2 , then it holds that E
[

1
p2

]
< 1

p1
− c, for

the constant c = 2∆ − ηCη(K + 2) > 0. We deduce that E[p−1
t∧τ0 ] ≤ p−1

1 − ct: by induction, if
Et[p

−1
t ] ≤ p−1

1 = K then, after taking expectations, the right hand term of the above equation is
smaller than ηCη(K + 2)− 2∆ ≤ −c, for some constant c > 0. Hence, by using similar proof steps
as Proposition 1 of [29], we obtain that E[t ∧ τ0] ≤ 1

cp1
= K

2∆−ηeη(K+2) .

Step 2: subsequent transient phases. We now consider additional transient phases: after reaching
pτ0 ≥ 1

2 , there is a probability that pτ0+t < 1
2 happens again for some t > 0. This starts a new

transient phase T1, starting at some step s1 > τ0, with initial probability ps1 ≥ e−2η

2 , which is due to
the step-size and the fact the previous iterate is above the threshold, i.e., ps1−1 > 1

2 . Similarly, we
can define potential subsequent transient phases (Tj)j∈N. For each phase, since the update formula
(22) only depends on the probability of arm 1, we obtain with the same arguments as for T0, that

∀j ≥ 1, E[τj − sj |sj < +∞] ≤ 2e2η

2∆− ηCη(K + 2)
.

Step 3: finite expected number of transient phases. For any learning rate η, there exists a ρ ∈ [0, 1)

that, if pt ≥ 1/2 holds, then infs≥1 pt+s ≥ 1/2. In words, after the probability of the best arm
reaches 1/2 there is a positive probability that it remains above 1/2 forever: ∀j ≥ 1, P(sj+1 =
+∞|τj < +∞) ≥ ρ. By conditional independence of the phases, it is then direct to see that the
expected number of transient phases is upper bounded by ρ−1, which leads too

+∞∑
t=1

P
(
pt <

1

2

)
≤ K

2∆− ηCη(K + 2)
+

1

ρ
· 2e2η

2∆− ηCη(K + 2)
,

41



which is a problem-dependent constant with explicit dependency in K, η,∆, ρ. We now prove that
the –non-explicit– constant ρ is positive.

Step 4: proving that ρ > 0. We first prove the bound for the first transient stage, which we then extend
to an arbitrary stage by the Markov property. Denote qt = 1− pt and let qτ0 be the first iterate for
which we know that qτ0 ≤ 1

2 , i.e., pτ0 ≥ 1
2 . Assume there is a non-zero probability p′ > 0 that the

subsequent iterate qτ0+1 is strictly bounded away from 1
2 , that is, qτ0+1 ≥ c < 1

2 .

We denote σ0 to be the first time when qt ≥ 1
2 after the time τ0, that is: σ0 := min{t ≥ τ0 : qt ≥ 1

2}.
Consider qt∧σ0

for t ≥ τ0, which, by the developments in (22), is a supermartingale. As a result we
can sufficiently upper bound E[qt∧σ0

|qτ0+1 < c] using the Optional Stopping Theorem as

c > E [qτ0+1|qτ0+1 < c] ≥ E [qt∧σ0
|qτ0+1 < c]

= E [qσ0
I[t ≥ στ0 ]|qτ0+1 < c] + E [qtI[t < σ0]|qτ0+1 < c]

≥ 1

2
P (σ0 ≤ t|στ0+1 < c) + E [qtI[t < σ0]|qτ0+1 < c]

t→∞−−−→ 1

2
P (σ0 < ∞|qτ0+1 < c) ,

where in the second line we split the expectation of random trajectories that hit στ0 before t and
those that do not, in the third line we use the lower bound qσ0

≥ 1
2 , and in the final line, we apply the

Dominated Convergence Theorem and use that the second term remains a submartingale for all t and
converges to 0 as t → ∞. Therefore we have

P (σ0 = ∞|qτ0+1 < c) > 1− 2c > 0.

To factor out the assumption that qτ0+1 < c, we get

P
(
σ0 = ∞|qτ0+1 ≤ 1

2

)
= (1− p′) + p′P (σ0 = ∞|qτ0+1 < c)

≤ 1− (1− δ)p′ = p′(1− 2c) := ρ > 0.

The argument can be extended to all stages using the Markov property. By the Markov property we
have

P (σk < ∞|τk−1 < ∞) ≥ 1− ρ > 0.

We can decompose the events as

{σk−1 < ∞} ∩ {τk−1 − σk−1 < ∞} = {τk < ∞} ,

and, since P(τk − σk−1 < ∞|σk−1 < ∞) = 1 by the developments in (22) and the bound on the
stepsize, we get

P (σk < ∞|σk−1 < ∞) = P (σk < ∞|τk < ∞) ≥ 1− ρ.

This concludes the proof that ρ > 0, and thus that the constant Γν of the theorem is finite.

We finally state and prove a counterpart of Corollary 1 in the setting of arms with identical gaps,
showing that horizon-dependent tuning can also provide a robust alternative to the knowledge of ∆ in
this setting.

Lemma 15 (
√
T regret with η = 1/

√
T ). Assume that η = 1/

√
T , and that the bandit instance

ν ∈ FK satisfies ∆2 = · · · = ∆K as in Theorem 4. Then the regret of SGB is upper bounded by
RT (ν) ≲ K log(T )

√
T on such instance, where only absolute constants are hidden.

Proof. Again, if the gap ∆ is small enough so that ηCη ≤ ∆
K+2 then we can upper bound the regret

by ∆T , which yields RT (ν) ≲ K
√
T . In the alternative case, we can use the bound of the theorem.

The logarithmic term gives a bound scaling with K log(T )
√
T , as desired. This could be sufficient

if we aimed for a problem-dependent bound, by leaving the constant Γν . However, it is relatively
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easy to change the analysis to obtain a problem-independent bound scaling with
√
T . Indeed, we first

observe from (21) that ∀t ≥ 1,E
[

1
pt

]
≤ K ·

(
1 + η2eη

8

)T
≲ K, hence by Corollary 3 it holds that

∆ · E

[
T∑

t=1

(1− pt)
2

]
≤ ∆ · K − 1

η(∆− ηCη)
+

η2

2
∆ ·

T∑
t=1

E
[
Wt

pt

]

≤ ∆ · K − 1

η
(
∆− ∆

K+2

) +
η2

2

T∑
t=1

E
[
1

pt

]

≲
K

η
+K ≲ K

√
T ,

which finalizes the proof.

F Additional technical results and proofs

In this section we present the detailed computations of the tools presented in Section 3, for the regret
analysis of SGB when there are more than two arms, with additional discussions presenting some
intuitions that we did not include in the main paper for space reasons.

F.1 Alternative regret bound from Equation (7)

In this appendix we present an alternative regret bound that can be derived from Equation (7), and
that we use in the proof of Theorem 4.

Proposition 3 (Generic regret upper bound for SGB). For any learning rate η > 0 and for any
ε ∈ (0, 1), defining Cε =

maxk∈[K] ∆k

(1−ε)∆ , SGB satisfies the following regret bound,

∀ν ∈ FK , RSGB
T ≤ Cε ·

(
E[θ1,T ]

η
+∆ ·

T∑
t=1

P (p1,t < 1− ε)

)
.

Proof. We start from (7), and consider bounding the failure regret in the right-hand term. For any
ε ∈ (0, 1), it holds that

E

[
T∑

t=1

(1− p1,t)
2

]
≤ E

[
T∑

t=1

(1− p1,t)
2
1(p1,t < 1− ε)

]
+ E

[
T∑

t=1

(1− p1,t)
2
1(p1,t ≥ 1− ε)

]

≤ E

[
T∑

t=1

1(p1,t < 1− ε)

]
+ ε ·E

[
T∑

t=1

(1− p1,t)1(p1,t ≥ 1− ε)

]

≤
T∑

t=1

P (p1,t < 1− ε) + ε ·E

[
T∑

t=1

(1− p1,t)

]
,

By recognizing the regret in the last term and putting it together in (7) we get a recursive relation

∀ν ∈ FK , RSGB
T ≤ RT :=

∆max

η∆
E[θ1,T ] + ∆max ·

T∑
t=1

P (p1,t < 1− ε) + ε ·RT ,

which by reorganizing the terms provides

RSGB
T ≤ RT ≤ ∆max

(1− ε)η∆
· E[θ1,T ] +

∆max

1− ε
·

T∑
t=1

P (p1,t < 1− ε) .

The proof is completed by factorizing Cε out of both terms.
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Additional insights from Proposition 3 We recall that, with the same notations, Equation (7)
provides

∀ν ∈ FK , RSGB
T (ν) ≤ C0 ·

(
E[θ1,T ]

η
+∆ · E

[
T∑

t=1

(1− p1,t)
2

])
,

with both regret bounds valid for any value of η > 0, and ε ∈ (0, 1) in Proposition 3. Hence, proving
logarithmic regret for SGB under a specific choice of η can be equivalently done by either proving
that E

[∑T
t=1 (1− p1,t)

2
]
= o(log(T )), as we did in the proof of Theorem 1, or that

E[T η
ε ] = o(log(T )), for T η

ε := {t ∈ [T ] : p1,t ≤ 1− ε} .

In words, E[T η
ε ] is simply the expected number of time steps for which the probability of the best

arm is below the threshold 1− ε, within a trajectory of duration T .

Then, we believe that the following result is interesting to interpret the regret of SGB in the polynomial
regime. We use the notation A ≍ B to express that both A ≲ B and B ≲ A hold.
Corollary 3. Assume that RSGB

T = Ω(Tα) for some instance ν ∈ FK and some α > 0. Then, it
holds that

RSGB
T ≍ E[T η

ε ] ≍ E

[
T∑

t=1

(1− p1,t)
2

]
.

Proof. From Lemma 2, we know that E[θ1,T ] is always logarithmic, and can thus be ignored when
comparing the bounds when the regret is polynomial. Then, the fact that the regret is upper bounded
by each term comes from Proposition 3 and Eq. (7). It remains to show that the converse holds. We
first directly obtain that

RSGB
T ≥ ∆E

[
T∑

t=1

(1− p1,t)

]
≥ ∆E

[
T∑

t=1

(1− p1,t)
2

]
,

and then that

RSGB
T (ν) ≥ ∆E

[
T∑

t=1

(1− p1,t)

]
≥ ∆ εE

[
T∑

t=1

1 (p1,t ≤ 1− ε)

]
,

which gives the result since the regret thus admits the same scaling in T as both quantities.

We interpret this result as follows: when the regret of SGB is not logarithmic, then it scales with the
number of times 1− p1,t is smaller than any fixed threshold. This gives a a way to interpret the term

E
[∑T

t=1 (1− p1,t)
2
]

as the failure regret introduced in the main paper.

Non-unique optimal arm We now show that Proposition 3 and Lemma 2 can be adapted when
several arms are optimal, however we kept the assumption that one arm is optimal throughout the
paper to simplify the presentation.

If the optimal arm is not unique, we can recover an expression similar to (7) by grouping the K⋆

optimal arms together. Indeed, defining θ⋆,t =
∑K

j=1 θj,t1(∆j = 0) and p⋆,t =
∑K

j=1 pj,t1(∆j =

0) we have that

RT ≤ RT := max
k∈[K]

∆k · E

[
T∑

t=1

(1− p⋆,t)

]
,

and also that

E[δθ⋆,t] = η

K⋆∑
j=1

pj,t

K∑
k=1

pk,t∆j,k

≥
K⋆∑
j=1

pj,t(1− p⋆,t)∆

= p⋆,t(1− p⋆,t)∆ ,
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so we can adapt Equation (7) by replacing θ1,t by θ⋆,t and p1,t by p⋆,t. Then, for the proof of
Lemma 2 we only need to consider the event E [maxk>K⋆ θk,t], and remark that under this event and
θ⋆,t ≥ γt it holds that

1− p⋆,t ≤
(K −K⋆)∑K⋆

j=1 e
θj,t + (K −K⋆)

≤ (K −K⋆)∑K⋆

j=1 e
θj,t

≤ K −K⋆

K⋆
· e−

θ⋆,t
K⋆ ≤ K −K⋆

K⋆
· e−

γT
K⋆ ,

so we can adapt the result of Lemma 2 by replacing γT = log(1 + (K − 1)ηT ) by γT =

K⋆ log
(
1 + 2ηK−K⋆

K⋆ T
)

.

Remark 3. It is actually quite intuitive that the number of optimal arms appear in the regret bound,
since their respective parameters will increase slower by splitting the pulls among them. We believe
that our lower bound

∑K⋆

j=1 e
θj,t ≥ K⋆e

θ⋆,t
K⋆ , that generates this multiplicative factor, is tight in most

plausible scenario if T is large enough. For instance, if the optimal arms share the same distribution
we might the parameters of all optimal arms to be relatively close to each other.

F.2 Proof of Lemma 2 and additional discussions

We restate and prove the lemma.

Lemma 2. For any horizon T ≥ 1 and for any learning rate η, parameter θ1,T+1 of SGB satisfies

E[θ1,T+1] ≤ log

(
1 +

(
η∆+

η2

2
eη
)
(K − 1) ·MT · T

)
∧ (K − 1) · (log(T ) + 4η) ,

Proof. We propose two independent proofs for the two components of the upper bound.

First bound: we derive this first bound, depending on M = supk∈[K] supt≥1 E
[
eθk,t

]
, from Jensen

inequality. The proof follows the same steps as the proof of Theorem 1. For any λ > 0, we obtain
that

E[θT ] =
1

λ
E
[
log
(
eλθT

)]
≤ 1

λ
log
(
E
[
eλθT

])
,

We now study E
[
eλθT

]
, using that eλθt+1 = eλθt+λδθt . As in the proof of Theorem 1, we use

approximations of the exponential to get a recursion formula. More precisely, here we use that for
any q > 0 and bounded reward r of expectation µ it holds that

E[eqr] = 1 + qµ+

+∞∑
n=2

qn

n!
E[rn] ≤ 1 + qµ+ q2 ·

+∞∑
n=2

qn−2

n!
≤ 1 + qµ+

q2

2
· eq,

that we apply in the following computations with notation at = λη(1− pt) and bt = ληpt,

Et[e
λθt+1 ] = eλθt · Et[e

λδθt ] ≤ eλθt ·
(
ptEt[e

atrt |At = 1] + (1− pt)E[e−btrt |At ̸= 1]
)

≤ eλθt ·
(
1 + pt ·

(
atµ1 + a2t · eat/2

)
+ (1− pt) ·

(
−bt max

k≥2
µk + b2t · ebt/2

))
≤ eλθt ·

(
1 + pt(1− pt) ·

(
λη∆+ (λη)2eλη/2

))
,

where in the last line we replaced at, bt by their values and used that λη(pt ∨ 1− pt) ≤ λη. We can
further write that

eλθtpt(1− pt) =
e(1+λ)θt ·

∑K
k=2 e

θk,t

(eθt +
∑K

k=2 e
θk,t)2

= p2t · e(λ−1)θ1,t ·
K∑

k=2

eθk,t .

For K = 2, choosing λ = 2 was convenient because it made this expression exactly equal to p2t .
In general, we unfortunately cannot make this simplification. For that reason, we choose λ = 1 to
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eliminate the term depending on θ1,t. Hence, we just obtain that

E[eθ1,T ] ≤ 1 +

(
η∆+

η2

2
eη
)
·
T−1∑
t=1

E

[
K∑

k=2

eθk,t

]

≤ 1 +

(
η∆+

η2

2
eη
)
· sup
k≥2

sup
t≥1

E
[
eθk,t

]
· (K − 1) · T ,

which leads to the first part of the result of the lemma.

Second bound: the main intuition of the proof is that, when θ1,T becomes large, it must be at
the expense of another parameter, that must be very small. We formalize this with the following
intermediate result.

Lemma 16. For any time horizon T ≥ 1, it holds that

E
[
min
k∈[K]

θk,T

]
≥ − log(T )− 4η .

Before proving this result, we show that it immediately leads to the second bound of Lemma 2: by
Equation (9) it holds that θ1,T = −

∑K
k=2 θk,T ≤ −(K − 1)mink∈[K] θk,T , so

E[θ1,T ] ≤ (K − 1) ·
(
log(T ) + 4η

)
.

We now prove Lemma 16. Fix γT := log(T ) + η, and consider θ−t := −mink∈[K] θk,t ≥ 0. Then,

E[θ−T ] ≤ E[θ−T 1(θ
−
T ≤ γT )] + E[θ−T 1(θ

−
T > γT )]

≤ γTP
(
θ−T ≤ γT

)
+ E[θ−T 1(θ

−
T > γT )]

We now use the following fact: if θ−T ≥ γT , then there exists a time step u ≤ T such that

∀s ∈ {u, . . . , T} : θ−s ≥ γT and θ−u−1 < γT

Using that θ−u ∈ [γT , γT + η], we obtain that

E[θ−T ] ≤ γTP
(
θ−T ≤ γT

)
+ E[θ−u 1(θ

−
T ≥ γT )] + E[(θ−T − θ−u )1(θ

−
T ≥ γT )]

≤ γTP
(
θ−T ≤ γT

)
+ E[(γT + η)1(θ−T ≥ γT )] + E[(θ−T − θ−u )1(θ

−
T ≥ γT )]

≤ γT + η + E[(θ−T − θ−u )1(θ
−
T ≥ γT )]

≤ γT + η + E

[(
T−1∑
s=u

δθ−s

)
1(∀s ≥ u : θ−s ≥ γT )

]
.

From this step, we carefully handle the randomness of u and its dependence with the event Eu =
{∀s ≥ u : θ−s ≥ γT } in the remaining expectation as follows,

E

[(
T−1∑
s=u

δθ−s

)
1(Eu)

]
≤ E

[(
T−1∑
s=u

(δθ−s )+

)
1(Eu)

]

≤ E

[
T−1∑
s=u

(δθ−s )+1(θ
−
s+1 ≥ γT )

]

≤ E

[
T−1∑
s=1

(δθ−s )+1(θ
−
s+1 ≥ γT )

]

≤ E

[
T−1∑
s=1

Es[(δθ
−
s )+]1(θ

−
s+1 ≥ γT )

]
.

Then, for any round s ∈ [T ], let ms = argmink∈[K]θk,t denote the index of the arm corresponding
to the minimum parameter. Then, it either holds that ms = ms+1, and so δθ−s = −δθms+1,s, or
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that ms ̸= ms+1, in which case θms,s ≤ θms+1,s so δθ−s ≤ −δθms+1,s. Hence, in both cases we
have that (δθ−s )+ ≤ |δθms+1,s+1|. To conclude, it remains to remark that, by definition of ms+1 and
the fact that θ−s+1 ≥ γT , it must hold that θms+1,s ≤ −γT + η, so pms+1,s ≤ eθms+1,s ≤ e−γT+η.
Hence, we can finally obtain that

E

[(
T−1∑
s=u

δθ−s

)
1(Eu)

]
≤ ηE

[
T−1∑
s=0

2pms+1,s(1− pms+1,s)1(θms+1,s+1 ≥ γT )

]
≤ 2ηTe−γT+η ≤ 2η.

F.3 Regret upper bound for two arms with time-varying rate

We develop in this section the counterpart of Corollary 1 with a time-varying rate ηt =
√

log(t)
t .

Proposition 4. When ∆ is unknown, the time-varying learning rate ηt =
√

log(e∨t)
t yields a regret

bound RT ≲ log(T )3/2
√
T for any two-armed bandit ν ∈ F2, where the hidden constants are

absolute.

Proof. The first part of the analysis consists in adapting Eq. (7) with time varying learning rates. We
remark that the sequence (ηt)t≥1 is non-increasing, hence we can write that

E[θT ] = E

[
T∑

t=1

ηt · pt(1− pt)

]
∆ ≥ ∆ηT · E

[
T∑

t=1

pt(1− pt)

]
,

so we can reuse Eq. (7) by replacing η by ηT in the first term, which first yields

RT ≤ E[θT ]
ηT

+∆ · E

[
T∑

t=1

(1− pt)
2

]
.

Then, by following the same steps as the proof of Theorem 1, we obtain that

∀t ≥ 1, Et[e
2θt+1 ] ≤ e2θt + p2t · 2

(
ηt∆+ η2tCηt

)
=⇒ E

[
e2θT

]
≤ 1 + 2

T−1∑
t=1

(
ηt∆+ η2tCη

)
≲ T,

since the sequence (ηt)t≥1 can be upper bounded by constants. We further note that a more precise
(e.g.

√
T ) bound would not change the result because it is used inside a logarithm. We now consider

the failure regret term. We first remark that, since the learning rate converges to 0, there exists a
deterministic time t0 satisfying supt≥t0 ηtCηt

≤ ∆
2 . More precisely, it holds that t0 ≲ log(∆−1)

∆2 . The
last part of the proof consists in using the proof steps of Theorem 1 for t ≥ t0, and obtain that

∆ · E

[
T∑

t=1

(1− pt)
2

]
≤ ∆t0 +

∆ · E[xt0 ]

2ηT (∆− supt≥t0 ηtCηt
)
≲

log(∆−1)

∆
+

E[xt0 ]

ηT
.

It remains to upper bound E[xt0 ]. We recall from the proof of the theorem that the following relation
holds, for any learning rate ,

∀t ≥ 1 : Et[xt+1] ≤ xt − 2ηt(1− pt)
2 · (∆− ηtCηt

) ,

which holds for any arbitrary sequence of learning rate since the proof considers each time step
separately. Hence, even in the worst case where ηt is much larger than ∆, we can use that

Et[xt+1]− xt ≲ η2t , so E[xt0 ] ≲
t0∑
t=1

η2t ≤ log(t0) ·
t0∑
t=1

1

t0
≲ log(t0)

2.
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We then deduce from the fact that Et[xt+1]− xt ≲ η2t that E[xt+1] ≲ log(t0), which finally gives a
regret bound of order

RT ≲

(
log(T )

ηT
+

log(∆−1)

∆
+

log(∆−1)2

ηT

)
∧∆T

≲
√
T log(T ) + log(T )3/2

√
T +

log(∆−1)

∆
∧∆T,

and yields the result by remarking that the gap-dependent term cannot itself be larger than
√
T log(T ),

so the dominant term of the bound is log(T )3/2
√
T , that comes from the term involving E[xt0 ] in the

regret decomposition.

Remark 4 (Improved logarithms for ηt = 1/
√
t). We remark that the above regret bound can be

slightly optimized by considering ηt = 1/
√
t, that gives

log(T )

ηT
+

∑t0
t=1 η

2
t

ηT
≲ log(T ) ·

√
T ,

which becomes the scaling of the upper bound. However, we chose to study more precisely ηt =√
log(t∨e)

t in this section and Appendix G.1 because it directly compares to the optimal horizon-
dependent rate of Corollary 1.

F.4 Proof of Lemma 3

The proof of Lemma 3 is a direct consequence of the following technical result, after using the same
telescopic arguments as in the proof of Theorem 1, and that

∑K
k=2 p

2
k,t ≥

(1−p1,t)
2

K−1 .

Lemma 17. Define Cη as in Theorem 1. Then, for any ν ∈ FK and t ≥ 1,it holds that

Et

[
1

p1,t+1

]
≤ 1

p1,t
− ηGt · (∆− ηCη) +

ηHt +
η2

2 Wt

p1,t
,

with


Gt = (1− pt)

2 +
∑K

k=2 p
2
k,t

Ht =
∑K

k=2 p
2
k,t (Et[∆At

]− (1− pt)∆k)

Wt =
∑K

k=2 p
2
k,t(1− pk,t)− pt(1− pt)

2

.

In addition, Ht = 0 if ∆2 = · · · = ∆K = ∆, and Wt = 0 if K = 2.

Proof. We define xt =
1

p1,t
, and use (13) to obtain the following recursion,

xt+1 = xt ·
K∑

k=1

pk,t · eηδθk,t−ηδθ1,t .

By definition of Cη , for η < 1 it holds that ex ≤ 1 + x+Cη · x2

2 . By linearity of the expectation, we
deduce that

Et[xt+1] ≤ xt ·

(
1 + η

K∑
k=1

pk,t · Et [δθk,t − δθ1,t] +
η2Cη

2

K∑
k=1

pk,t · Et

[
(δθk,t − δθ1,t)

2
)]

.

We investigate the first-order term of the approximation. Using (5), and that δθ1,t = −
∑K

k=2 δθk,t
(Eq. (9)) we obtain that

K∑
k=2

pk,t · Et [δθk,t − δθ1,t] = −
K∑

k=2

(1− p1,t + pk,t) · pk,t ·
∑
j ̸=k

pj,t(∆k −∆j) := −Et . (23)
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We now further analyze the newly defined term Et, that we express as a function of Et[∆At ] =∑K
j=1 pj∆j . We can naturally decompose Et into a positive and a negative term. First,

K∑
k=2

(1− p1,t + pk,t) · pk,t ·
K∑
j=1

pj,t∆j =

(
(1− p1,t)

2 +

K∑
k=2

p2k,t

)
Et[∆At

] = Gt · Et[∆At
] ,

with Gt as defined in the statement of the lemma. We then obtain that

K∑
k=2

(1− p1,t + pk,t) · pk,t ·
K∑
j=1

pj,t∆k =

K∑
k=2

(1− p1,t + pk,t) · pk,t ·∆k

= (1− p1,t)Et[∆At ] +

K∑
k=2

p2k,t∆k .

So, by subtracting the two we obtain that

Et = (1− p1,t) · p1,t · Et[∆At
] +

K∑
k=2

p2k,t (∆k − Et[∆At
]) (24)

= (1− p1,t) · p1,t · Et[∆At
] + p1,t ·

K∑
k=2

p2k,t∆k +

K∑
k=2

p2k,t ((1− p1,t)∆k − Et[∆At
])︸ ︷︷ ︸

−Ht

(25)

≥ p1,t ·∆ ·

(
(1− p1,t)

2 +

K∑
k=2

p2k,t

)
︸ ︷︷ ︸

Gt

−Ht . (26)

This writing allows to obtain that Ht = 0 if the gaps are identical, because in that case it holds that
Et[∆At

] = (1− p1,t)∆.

Let us now consider the term

Vt :=

K∑
k=1

pk,t · E
[
(δθk,t − δθ1,t)

2
]
.

To analyze the value of the term inside the expectation, it suffices to consider three cases:

(δθk,t − δθ1,t)
2 =


(1− pk,t + p1,t)

2E[r2t |At = k] if At = k ,

(1− p1,t + pk,t)
2E[r2t |At = 1] if At = 1 ,

(p1,t − pk,t)
2E[r2t |At ̸= 1, k] otherwise.

∀k ∈ {2, . . . ,K} : E
[
(δθk,t − δθ1,t)

2
]
≤pk,t · (1− pk,t + p1,t)

2 + p1,t · (1− p1,t + pk,t)
2

+ (1− p1,t − pk,t) · (p1,t − pk,t)
2 .

Note that this expression is exact for Rademacher distributions, for which r2t = 1 always holds. Let
us use the notation z = p1,t − pk,t to simplify some terms, and again drop the t subscript to simplify
the notation. Replacing the terms, we get

E
[
(δθk − δθ1)

2
]
= pk · (1 + z)2 + p1 · (1− z)2 + (1− p1 − pk) · z2

= pk · (1 + 2z + z2) + p1 · (1− 2z + z2) + z2 − (p1 + pk) · z2

= pk · (1 + 2z) + p1 · (1− 2z) + z2

= pk + p1 − 2z2 + z2

= pk + p1 − z2 .
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From this step we can continue by plugging back the value of z, and finally obtain that

K∑
k=2

pk·E
[
(δθk − δθ1)

2
]
≤

K∑
k=2

pk · (pk + p1 − (p1 − pk)
2) (27)

=

K∑
k=2

pk · (pk(1− pk) + p1(1− p1) + 2p1pk) (28)

=

K∑
k=2

p2k(1− pk) + p1 · (1− p1)
2 + 2p1

K∑
k=2

p2k (29)

=2p1 ·

(
(1− p1)

2 +

K∑
k=2

p2k

)
+

K∑
k=2

p2k(1− pk)− p1 · (1− p1)
2

︸ ︷︷ ︸
W

, (30)

where in the last line we made appear a term that can be expressed similarly to Et in the above
computations. Finally, we get,

Vt ≤ 2η2p1,t ·

(
(1− p1,t)

2 +

K∑
k=2

p2k,t

)
+ η2Wt = 2η2p1,tGt + η2Wt,

with Wt =
∑K

k=2 p
2
k,t(1− pk,t)− p1,t · (1− p1,t)

2. This concludes the proof, since it is immediate
that Wt = 0 for K = 2.

F.4.1 Properties of the components of Lemma 17

In this section, we investigate structural properties of the terms Ht and Wt, which appear in Lemma 17
in the setting K > 2. These terms complicate the analysis of the failure regret compared to the
simpler case K = 2. We believe that understanding their behavior is a crucial step toward extending
the theoretical analysis of SGB to multi-armed settings.

In particular, we show that Ht and Wt may exhibit non-trivial behavior even when K = 3, suggesting
that bounding them uniformly can be challenging. Nevertheless, we also identify several natural
scenarios where these terms are either small or negative, which may help control their contribution in
a refined analysis.

Property 1: Ht can be non-negative

Consider a setting with K = 3 arms where ∆3 > ∆2. Then, for any round t, dropping the subscript
in the sampling probabilities for notational simplicity, we obtain:

Ht = p22(p2∆2 + p3∆3 − (p2 + p3)∆2) + p23(p2∆2 + p3∆3 − (p2 + p3)∆3)

= p22p3(∆3 −∆2) + p23p2(∆2 −∆3)

= p2p3(∆3 −∆2)(p2 − p3) ,

which is non-negative if and only if p2 ≥ p3.

In the regret bound of Lemma 3, the above result converts into a term

SH
T :=

T∑
t=1

E[H ′
t] :=

T∑
t=1

E
[
p2,tp3,t
p1,t

(p2,t − p3,t)

]
· (∆3 −∆2) .

There are several intuitive reasons to believe that this term can be controlled under reasonable tuning
of the learning rate. First, we interpret the fact that p2,t ≤ p3,t yields H ′

t < 0 as follows: if the
current state of SGB is “very wrong”, in the sense that arm 3 (the worst arm) is currently treated as
the best arm by the policy, some self-correction will occur, i.e. this state is unstable. This effect is
even amplified if p1,t is very small. Moreover, for the case where p2,t > p3,t, then H ′

t is positive but
scales with p22,t · p3,t/p1,t. Even in scenarios for which p2,t ≈ 1 we might nonetheless expect p3,t to
have decreased “faster” than p1,t, especially if ∆3 −∆2 is significant. In any case, a scenario where
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both p2,t and p3,t are significantly larger than p1,t appears quite unlikely, and we thus believe that
H ′

t should be (at least) bounded with high probability. This is also supported by the observation that
Ht = 0 at initialization (where p2 = p3 = 1/3).

Property 2: Generalization for K arms

For K arms, assuming ∆2 ≤ · · · ≤ ∆K , we obtain:

Ht =

K∑
k=2

p2k

 K∑
j=2

pj(∆j −∆k)


=

K∑
k=2

p2k

∑
j>k

pj(∆j −∆k)−
k∑

j=2

pj(∆k −∆j)


=

K∑
k=2

p2k
∑
j>k

pj(∆j −∆k)−
K∑
j=2

∑
k>j

p2kpj(∆k −∆j)

=
K∑

k=2

p2k
∑
j>k

pj(∆j −∆k)−
K∑

k=2

∑
j>k

p2jpk(∆j −∆k)

=

K∑
k=2

∑
j>k

(∆j −∆k)pkpj(pk − pj) ,

which we believe might be useful for future analysis of SGB starting from Lemma 3.

Property 3: Wt can be non-negative

We again drop the subscript t for the probabilities, and consider Wt =
∑K

k=2 p
2
k(1−pk)−p1(1−p1)

2.
Let us consider again K = 3, and use the notation W̃t =

∑K
k=2 p

2
k(1 − pk). Then, using that

p3 = 1− p1 − p2 we re-write W̃t as follows,

W̃t = p22(1− p2) + p23(1− p3) = p22(1− p2) + (1− p1 − p2)
2(p1 + p2)

= p1(1− p1)
2 + p22(1− p2) + p2(1− p1)

2 − 2p2p1(1− p1)− 2p22(1− p1) + p22p1 + p32

= p1(1− p1)
2 + p22 + p2(1− p1)(1− 3p1)− 2p22 + 3p22p1

= p1(1− p1)
2 − p22(1− 3p1) + p2(1− p1)(1− 3p1)

= p1(1− p1)
2 + p2(1− 3p1)(1− p2 − p1) .

Hence, we obtain the simple property

K = 3 =⇒ Wt = p2,tp3,t(1− 3p1,t), so Wt ≥ 0 ⇔ p1,t ≤ 1/3.

Furthermore, it is easy to see that for p1 < 1
3 , the maximum of Wt is achieved when p2 = p3 = 1−p1

2 ,
and so:

Wt ≤ (1− p1,t)
2 · 1− 3p1,t

4
.

Note that this allocation is always feasible for K > 3, which provides at least a lower bound on the
maximum possible value of Wt in general.

Property 4: p1,t ≥ 1
3 =⇒ Wt ≤ 0

We proved this property for K = 3, in fact showing that the relation is an equivalence in that case, and
now extend it for K > 3. Let us assume that p1,t ≥ 1

3 . Then, under the constraint
∑K

k=2 pk = 1−p1,
the function p2k(1− pk) is increasing over all admissible values of pk. By symmetry, we deduce that
the maximizer of W should be achieved when m of the suboptimal probabilities are equal to 1−p1

m
and the remaining ones are zero, for some m ∈ [K − 1]. For a fixed m, this yields:

W =
(1− p1)

2

m2

(
1− 1− p1

m

)
− p1(1− p1)

2 .
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If m were continuous, the maximizer would be m = 3
2 (1− p1). Since m must be discrete, it is either

m = 0 or m = 1. Both cases yield W = 0.

This property shows that once SGB correctly identifies arm 1 as the best arm and assigns it a sufficiently
large probability, the term Wt ceases to be problematic and no longer contributes adversely to the
dynamics of Lemma 17.

Property 5: Wt = 0 if the sampling probabilities are uniform

We conclude this section by showing that p1,t ≥ 1
3 is sufficient but not necessary for Wt to be small.

In particular, the uniform probability vector p =
(

1
K , . . . , 1

K

)
also yields

Wt = (K − 1)p21(1− p1)− p1(1− p1)
2 = p1(1− p1)(Kp1 − 1) = 0 .

This indicates that Wt = 0 at the uniform initialization, and thus should remain small in the very first
steps of the algorithm. This observation supports the idea that the early-phase behavior of SGB is
not negatively impacted by Wt. In fact, we even conjecture that, under properly small tuning of the
learning rate η, it might be possible to prove that E

[
Wt

p1,t

]
≤ 0 for all steps t ≥ 1.

F.5 Regret upper bounds for two arms under alternative assumptions on rewards

In this section we discuss how the regret upper bound of Theorem 1, and in particular the necessary
condition on η, can be adapted for unbounded rewards. Indeed, the boundedness of rewards is only
used to derive Equation (8), where we use a second order approximation of the moment-generating
function of rewards. By considering alternative assumptions, we can modify this equation and
propagate it in the rest of the proof.

Sub-Gaussian distributions Consider the classical example of a σ2-sub-Gaussian distribution ν of
expectation µ. By definition, it satisfies the following condition,

∀q ∈ R, Er∼ν [e
qr] ≤ eqµ+

q2σ2

2 .

To adapt our results, we can thus perform a second-order approximation on this inequality, and not
directly on eqr. Assume for instance that |µ+ σ2

2 | ≤ 1, then we can write that

∀q ∈ [−1, 1], Er∼ν [e
qr] ≤ eqµ+

q2σ2

2 ≤ 1 + qµ+
q2σ2

2
+

(
qµ+

q2σ2

2

)2

= 1 + qµ+ q2
(
µ2 +

σ2

2

)
+O(q3) .

In the rest of the example, we neglect the O(q3) term for simplicity of the computations, and present
how the problem quantities appear in the results with this simplification. To use the above result,
we further assume that 2η ≤ 1. Then, it is easy to verify that we can follow the proof steps of the
theorem, and essentially replace Cη (which is ≈ 1 in the theorem) by µ2

1 +
σ2

2 . This yields

E[θT+1] ≤
1

2
log

(
1 + 2

(
η∆+ η2

(
µ2
1 +

σ2

2

))
T

)
for the logarithmic term, and the condition on η to guarantee that E[(1− pt)

2] = O(1) becomes

η ≤ 2∆

σ2 + 2maxk=1,...,K µ2
k

.

This result shows that SGB can work with unbounded sub-Gaussian rewards, if properly tuned accord-
ing to some additional knowledge on the variance proxy and the range of the reward expectations.

Bernstein condition This assumption is also standard (see Chapter 2.8 of [33]). Assume that all
reward distributions satisfy the following moment conditions,

∃B ≥ 0 : ∀k ∈ [K], ∀m ≥ 2, Er∼ν [|r|m] ≤ 1

2
m!Bm−2E[r2] .
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This condition is quite handy for the analysis of SGB, since we can now adapt Eq. (8) as follows,

∀q ∈ R : Er∼ν [e
qr] = 1 + qµ+

+∞∑
m=2

qm

m!
E[rm]

≤ 1 + qµ+
q2E[r2]

2

+∞∑
m=2

(qB)m−2

≤ 1 + qµ+
q2E[r2]

2
· 1

1− qB
,

if we further assume that qB < 1. From this result, if we ignore the 1
1−qB term for simplicity (that is,

ηB ≪ 1) we can then follow the proof steps of Theorem 1 and obtain a sufficient condition η < ∆
s2

for logarithmic regret, with s2 = maxk=1,...,K Er∼νk
[r2].

G Supplementary experiments

In this section, we present additional experiments that support the theoretical findings of the paper
and complement the empirical results from Section 4. We provide the code in the supplementary
material accompanying the paper for reproducibility3.

For simplicity, all experiments use Rademacher distributions unless stated otherwise. These distri-
butions are particularly well-suited for our purposes, as they maximize variance for a given mean
under the constraint that rewards lie in [−1, 1]. Intuitively, they represent the most “challenging" case
within this setting.

Before presenting our results, we clarify a key terminological choice: throughout the paper, the term
regret refers to the quantity defined in expectation, as in Eq. (1). In this section, we report empirical
estimates of this quantity based on multiple runs of the algorithm. Given M independent runs under
a given policy, the empirical regret is computed as

R̂M
T =

1

M

M∑
m=1

Rm
T :=

1

M

M∑
m=1

K∑
k=2

∆kN
m
k (T ) , (31)

where Nm
k (T ) denotes the number of pulls of arm k ∈ [K] up to horizon T for the m-th run of the

policy.

For any M ∈ N, it directly follows that RT = E
[
R̂M

T

]
. In this section, as well as in Section 4 in

the main paper, the term regret (or average regret) refers to this empirical estimate unless otherwise
stated. Finally, references to the “regret” of specific trajectories refer to the values of (Rm

T )m∈M for
a subset of runs indexed by M, while references to the distribution of regret pertain to the empirical
distribution of the values (Rm

T )m∈[M ].

G.1 Time-varying learning rate

We start by illustrating the results presented in Corollary 1 and Appendix F.3, establishing the
theoretical guarantees of SGB with time-dependent learning rate. In each setup, we run SGB tuned
with:

• the oracle gap-dependent tuning η = 2∆
K ,

• a horizon-dependent gap-free tuning η =
√

K log(T )
T , which requires to know T in advance,

• an anytime tuning η = ρ ∧
√

K log(t)
t , for some clipping parameter ρ that we discuss.

We consider horizon T = 104, for which it holds that
√

log(T )
T = 0.03.

3will be turned into a Github link after publication.
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Two-armed bandits We evaluate two configurations, both featuring a sub-optimal arm with mean
0. In the first setup, we set ∆ = 0.05 to explore a regime where the initial anytime learning rate
significantly exceeds the oracle tuning. In contrast, the second setup uses ∆ = 0.5 to examine
the opposite scenario, where the learning rate decays quickly relative to the gap. This allows us to
highlight the algorithm’s sensitivity to the relationship between the decaying learning rate and the
problem difficulty.

The results, presented in Figure 3, lead to two key observations. First, the horizon-dependent tuning
yields sublinear regret in both setups, supporting the theoretical guarantee of Corollary 1. Second,
the experiment with ∆ = 0.05 highlights the critical role of the clipping parameter ρ in stabilizing
performance under the anytime rate: while the average regret under ηt = 0.5∧

√
log(t)/t is sublinear,

a significant fraction of trajectories suffer nearly linear regret. This effect is substantially mitigated
by setting ρ = 0.1 instead of ρ = 0.5. Interestingly, this improvement arises despite the fact that
ηt drops below 0.1 naturally (without clipping) after approximately 650 steps, suggesting that early
iterations with an overly aggressive learning rate can severely compromise the algorithm’s trajectory.

This observation echoes findings from prior work on the sensitivity of SGB to initialization [14, 15].
In particular, as suggested by Theorem 2, if SGB is run with a poor learning rate up to time t0, then
with non-negligible probability it can reach a state where p1,t0 ≲ t−1

0 , making recovery exceedingly
slow.

K-armed bandits The insights presented for two-armed bandits extend to our third experiment
with K = 5 and ∆ = 0.25, where the use of a time-varying learning rate again leads to high variance
in regret across trajectories, an effect that only tighter clipping can avoid. In this setting, it takes
approximately 4000 steps for the un-clipped learning rate to fall below the oracle tuning.

Overall, these experiments emphasize that phases of substantial over-estimation of the learning rate
should be avoided at all costs to ensure reliable performance. If no information about ∆ is available,
tuning the learning rate using the final horizon T appears more robust, and the case where T is
unknown can be handled using a standard doubling trick. More generally, any use of excessively large
learning rates, even briefly, can result in high variance across runs. Nonetheless, these experimental
findings remain consistent with the theoretical results established in this paper, as the regret (in the
sense of Eq. (1)) is defined in expectation, and the sublinear guarantees for time-varying learning
rates apply in that sense.
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Figure 3: Average regret and 10− 90% percentiles up to horizon T = 104, N = 5 · 103 trajectories
on a bandit problem with means µ1 = 0.05, µ2 = 0 (Left), µ1 = 0.5, µ2 = 0 (Right).

G.2 Comparison with standard bandit policies

We now benchmark the performance of SGB against several standard bandit policies. Motivated by
the literature review in Appendix A.3, we include a range of algorithms that exemplify different
frameworks for balancing exploration and exploitation:

• UCB, in its standard implementation [18, Figure 1].

• Thompson Sampling (TS), using a Beta prior/posterior setup [19, 46], and a uniform prior.

• MED, implemented with the Bernoulli KL-divergence [49, 53].
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Figure 4: Average regret and 10− 90% percentiles up to horizon T = 104, N = 5 · 103 trajectories
on the bandit with means µ1 = 0.25, µ2 = · · · = µ5 = 0.

• SAMBA, as defined by Walton and Denisov [29]. While less standard, we include it as an
alternative application of the policy gradient principle to bandits.

Since each of these policies is designed for Bernoulli rewards, we rescale the Rademacher rewards to
binary format before passing them to the algorithm: each reward r is transformed to r′ = 0.5 · (r+1).
We emphasize that this transformation is not applied to SGB , which directly receives the original
Rademacher rewards, r ∈ {−1, 1}.

Among the selected baselines, both MED and TS are known to be asymptotically optimal in the
considered settings, in the sense that their regret upper bounds match the Lai & Robbins lower
bound [36]. For optimism-based algorithms, we chose UCB over KL-UCB. While KL-UCB offers better
asymptotic guarantees, on par with TS and MED, it requires solving an optimization problem at every
time step which significantly increases its runtime. Given the scale of our experimental evaluation,
spanning many settings and runs, this choice is primarily motivated by practical considerations.
Additionally, benchmarking SGB against other algorithms (like UCB) that are not explicitly tailored to
the KL-divergence structure of the environment offers a complementary perspective on its empirical
performance.

Parameters tuning To ensure a fair comparison between SGB and SAMBA, we followed a consistent
rule for setting their respective learning rates. The experiments presented in Section 4 of the main
paper indicate that, for both policies, the most effective strategy seems to consist in using the critical
learning rate predicted by theory for each specific setup. For SGB , this leads us to choose η = 2∆

K ,
which we conjecture to be the critical threshold for K ≥ 2 (see Appendix D.3). For SAMBA, we
set α = ∆

2 . As discussed in Appendix B.2, Walton and Denisov [29] prove logarithmic regret for
Bernoulli rewards when α = ∆

µ1−∆ = ∆
maxk≥2 µk

. The factor 1
2 in our tuning arises from the rescaling

of rewards from the interval [−1, 1] to [0, 1], and we deliberately ignore the denominator to avoid
introducing further assumptions on the mean values of the arms.

Experiments We consider four experimental setups designed to illustrate the comparative perfor-
mance of SGB across a range of scenarios:

• In Figure 5 (Left), we consider a setting with K = 5 arms, all with means close to 0, and
where each sub-optimal arm has the same gap ∆ = 0.1.

• In Figure 5 (Right), we consider a setting with K = 10 arms. The minimum gap is 0.2,
while the other sub-optimal arms have significantly larger gaps: 0.5 for two arms and 1 for
five arms.

• In Figure 6 (Left), we consider K = 5 arms with very low rewards, with µ1 = −0.8.

• In Figure 6 (Right), we consider K = 4 arms with high rewards, with µ1 = 0.96, and the
worst arm having mean 0.9.

The first setup illustrates that, when the problem is fully aligned with the oracle information used by
SGB (i.e., ∆ is known and exactly matches the gap of all sub-optimal arms), the performance of SGB
closely matches that of state-of-the-art policies such as Thompson Sampling. Although TS achieves
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this without oracle knowledge, the experiment shows that, for well-specified problems, SGB can be
highly competitive with proper tuning.

In contrast, the second setup highlights a limitation: when the sub-optimality gaps vary significantly,
SGB becomes sub-optimal compared to optimized policies like MED and TS, which implement separate
exploration mechanism for each arm. While it still performs reasonably well (e.g., better than UCB),
the fixed learning rate results in over-exploration of significantly sub-optimal arms.

Finally, the last two experiments in Figure 6 demonstrate that although SGB outperforms UCB in
scenarios with extreme means (close to the boundaries of the [−1, 1] support), it cannot compete with
approaches like MED and TS, which leverage KL-divergences or tailored posterior distributions to
better adapt to the geometry of the problem.

In all setups, SGB compares favorably to SAMBA in terms of both average regret and the 10–90%
empirical regret range. We believe the parameter tuning of both methods is fair with respect to their
theoretical guarantees and the level of oracle information used. A more detailed comparison with
SAMBA is provided in Appendix G.4.
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Figure 5: Average regret and 10− 90% percentiles up to horizon T = 104, N = 5 · 103 trajectories
on the bandit problems with averages µ1 = 0.1, µ2 = · · · = µ5 = 0 (Left), and µ1 = 0.5, µ2 = 0.3,
µ3 = · · · = µ8 = 0, and µ9 = µ10 = −0.5 (Right).
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Figure 6: Average regret and 10− 90% percentiles up to horizon T = 104, N = 5 · 103 trajectories
on the bandit problems with averages µ1 = −0.8, µ2 = −0.85, µ3 = µ4 = −0.9 = 0, µ5 = −0.95
(Left), and µ1 = 0.96, µ2 = µ3 = 0.92, µ4 = 0.9 (Right).

G.3 Asymptotic tightness of Theorem 1

We propose a set of experiments designed to verify the tightness of the log(T ) factor in the regret
upper bound of Theorem 1 for K = 2, and to support the conjecture that the bound of Lemma 2 for
general K might be tightened by a factor K−1

K .

Two-armed bandits For the case K = 2, we consider a problem with means µ1 = 0 and
µ2 = −0.25, so that ∆ = 0.25. We perform 1000 independent runs of SGB over a horizon T = 105,
for three fixed learning rates: η ∈ {0.05, 0.1, 0.2}. Each choice of η lies within the range of validity
of Theorem 1. In Figure 7, we plot the empirical regret (computed as t 7→ R̂M

t , see Eq. (31) with
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M = 103) in logarithmic scale, along with the theoretical curves t 7→ log(t)
2η corresponding to each

learning rate.

To facilitate the comparison of the asymptotic slopes, we represent the x-axis in logarithmic scale,
and each theoretical curve is vertically shifted to match the empirical regret at time T . That is, we
plot

t ∈ [T ] 7→ log(t)

2η
+ R̂M

T − log(T )

2η
.

The figure confirms the tightness of the bound in Theorem 1 for this particular setup: for all three
values of η, the empirical regret closely follows the theoretical prediction as T increases, thus
supporting the sharpness of the logarithmic term in the regret bound.
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Figure 7: Empirical regret of SGB in logarithmic scale up to horizon T = 105, averaged over N = 103

independent trajectories on the two-armed bandit problem with means µ1 = 0 and µ2 = −0.25.
Results for three learning rates (ηi)i∈[3] ∈ {0.05, 0.1, 0.2}, where the offsets (ai)i∈[3] are chosen so
that each comparator curve matches the empirical regret at time T .

K-armed bandits. We now consider two experimental setups with K > 2. In the first, with
K = 4 arms, we set µ1 = 0 and choose sub-optimal arms with mean −0.4, so that all arms share
the same sub-optimality gap. In the second setup, with K = 5, we choose µ1 = 0.9, µ2 = 0.65,
and µ3 = µ4 = µ5 = −1, so that the minimal gap is ∆ = 0.25, while some arms have significantly
larger gaps.

The results, reported in Figure 8, show that in both cases the regret appears to scale asymptotically
as K−1

K · log(T )
η . While this behavior can be expected in the first setup, where all sub-optimal arms

are symmetric, the second case is more surprising. We refer to discussions in Appendix D.2 for
additional insights. Based on these observations, we formulate the following conjecture.
Conjecture 3. For any bandit problem ν ∈ FK , in the post-convergence regime, all sub-optimal
arms k ∈ [K] are explored at a rate 1

K · 1
η∆kt

, and thus contribute equally to the overall (asymptotic)
regret, each by a term 1

ηK log(T ).

Note that this conjecture is stronger than the conjectures formulated in Appendix D.3: Conjecture 1
could be proved as a consequence of Conjecture 3, while the latter would considerably help in
proving Conjecture 2, as discussed in Appendix D.3. Additionally, we can emphasize that in such
Rademacher/bounded settings, optimized policies like TS and MED typically satisfy an asymptotic
exploration rate of 1

2∆2
kt

(up to some KL-divergence approximation), which matches the above rate if

η = 2∆k

K . This is coherent with the result of the first experiment presented in Section G.2.

To further test the conjecture, we considered two additional setups, for which the results are reported
in Figure 9. We considered instances with K = 9 and K = 12 respectively, with arms with various
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Figure 8: Empirical regret of SGB in logarithmic scale up to horizon T = 105, averaged over N = 103

independent trajectories on the bandit problems defined by µ1 = 0 and µ2 = µ3 = µ4 = −0.4
(Left) and µ1 = 0.9, µ2 = 0.65 and µ3 = µ4 = µ5 = −1 (Right). Results for three learning rates
(ηi)i∈[3] ∈ { ∆

2K , ∆
K , 2∆

K }, where the offsets (bi)i∈[3] and (ci)i∈[3]are chosen so that each comparator
curve matches the empirical regret at time T .

gaps. More precisely, the instances considered in the two experiments are parametrized by the
following averages,

µxp.1 = {0.5, 0.2, 0.2, 0, 0, 0,−0.2,−0.2,−0.2}, and
µxp.2 = {0,−0.4,−0.4,−0.4,−0.5,−0.5,−0.5,−0.6,−0.6,−0.8,−0.8,−0.8} .

We still observe the same asymptotic scaling as in previous experiments, which hints that the
conjecture holds.
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Figure 9: Empirical regret of SGB in logarithmic scale up to horizon T = 105, averaged over N = 104

independent trajectories on the bandit problems defined by averages µxp.1 (Left) and averages µxp.2

(Right). Results for three learning rates (ηi)i∈[3] ∈ { ∆
2K , ∆

K , 2∆
K }, where the offsets (di)i∈[3] and

(ei)i∈[3]are chosen so that each comparator curve matches the empirical regret at time T .

G.4 Detailed comparison with SAMBA

We now isolate SAMBA and SGB , and propose experiments with the double objective of highlighting
the differences between the two approaches, and of illustrating the discussion of Section 2 regarding
the tuning of the learning rate in PG methods under additional moment conditions. We mainly focus
on settings with K = 2, since the experiments presented in Appendix G.2 already show that SGB and
SAMBA are not directly comparable for K > 2 in various scenarios.

In contrast with previous sections, where we considered Rademacher rewards, all problems in this
subsection involve Bernoulli rewards. This model choice allows us to discuss the performance of
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SAMBA directly in the setting under which it was originally studied in [29]. Contrarily to Rademacher
rewards, this setting further allows us to design problems that exhibit interesting moment conditions,
for instance by specifying low average rewards, as typically encountered in online advertising [34].

First, we compare SAMBA and SGB in configurations where their parameter tuning (denoted respectively
by α and η) yields the same asymptotic regret bound. Indeed, while Theorem 1 gives a regret bound
scaling as log(T )

2η for SGB , Theorem 1 of [29] gives a bound of log(T )
α for SAMBA. Hence, in Figure 10,

we present results for two experiments where we choose tunings α = ∆ and η = ∆
2 . While in both

cases the asymptotic (logarithmic) scaling of the two policies appears to match—illustrated by parallel
average regret curves in logarithmic scale—their pre-convergence behaviors differ significantly. Our
results suggest that for these “equivalent” asymptotic tuning, SAMBA outperforms SGB in the settings
considered.

However, while the parameter α is already maximized under no additional assumptions on
maxk≥2 µk, the learning rate η of SGB could be increased further, up to ∆. This illustrates that
even if SAMBA and SGB share comparable post-convergence dynamics under appropriate choices of
learning rates, as discussed from a theoretical perspective in Appendix B.2, their pre-convergence
behaviors differ considerably. As such, the two policies may have distinct merits and limitations.
In the figure, we retain TS from the benchmark policies introduced in Section G.2 to illustrate the
performance of a state-of-the-art bandit policy on this problem.
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Figure 10: Empirical regret in logarithmic scale up to horizon T = 2 · 104, averaged over N = 104

trajectories on the bandit problems defined by µ1 = 0.6 and µ2 = 0.5 (Left) and µ1 = 0.4, µ2 = 0.1
(Right). In both cases, SGB is tuned with η = ∆

2 while SAMBA uses α = ∆.

Then, we illustrate how additional moment assumptions can allow SAMBA and SGB to perform well
with learning rates larger than ∆. We consider two problems with Bernoulli rewards with small
average values. In a first experiment, with K = 2 arms, we use the same learning rate for both
algorithms, η = α = ∆

µ1
; in a second experiment with K = 10 arms and averages µ1 = 0.05

and µ2 = · · · = µ10 = 0.03, for which we still choose α = ∆
µ1

but adopt η = 2∆
Kµ1

in order to
align with our analysis. We recall that the theoretical guarantees of SAMBA for this tuning of α hold
for any number of arms K, thanks to a careful design of the policy that updates the leading arm
differently from the others. We refer to Appendix B.2 for details. The results, presented in Figure 11,
show that the additional oracle knowledge allows the PG algorithms to achieve a performance that
can be comparable to Thompson Sampling. Notably, in the first experiment the regret statistics of
SGB (average regret, 10–90% quantiles) closely match those of TS; and in the second experiment
the average regret of both PG policies remain competitive, although SAMBA suffers larger variance
across trajectories than TS. Nevertheless, we can further remark that in both cases the variance
across trajectories is considerably smaller for SGB compared to SAMBA. Although the results do
not suggest that PG methods should be preferred over TS—even under the additional assumptions
we introduced—the fact that their performance is comparable to a policy that is optimized for the
considered family of distributions is notable.

We then consider a third experiment with K = 10 arms, defined by the following means:

µxp.3 = {0.1, 0.09, 0.09, 0.08, 0.08, 0.08, 0.05, 0.05, 0.05, 0.05}, so
∆

µ1
= 0.1,

In this setting, several sub-optimal arms have sub-optimality gaps up to five times larger than that
of the second-best arm. As illustrated in Figure 12, and in line with the discussion of the second
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Figure 11: Empirical regret in logarithmic scale up to horizon T = 104, averaged over N = 104

trajectories on two bandit problems with small averages: µ1 = 0.05 and µ2 = 0.04 (Left) and
K = 10, µ1 = 0.05, µ3 = · · · = µ10 = 0.03 (Right). In both cases, SGB is tuned with η = 2∆

Kµ1

while SAMBA uses α = ∆
µ1

.

experiment in Figure 5, the performance of PG policies degrades (specifically, compared to optimal
policies like TS) when the learning rate is tailored with respect to the second-best arm, while larger
learning rates could improve performance for arms with larger gaps. However, considering arm-
dependent learning rates would require oracle knowledge of all arm means, which might be unrealistic
in many applications.
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Figure 12: Empirical regret in logarithmic scale up to horizon T = 104, averaged over N = 104

trajectories on the bandit problem defined by K = 10 nd µ = µxp.3. SGB is tuned with η = 2∆
Kµ1

while SAMBA uses α = ∆
µ1

.

Finally, in order to further understand why SGB compares less favorably to SAMBA as in the experiments
of Section G.2, we investigated whether SGB could perform better when rewards are centered around
0 (Rademacher) rather than always positive, as in the case of Bernoulli rewards. From a statistical
perspective, an instance with Rademacher distributions of means (µk)k∈[K] is strictly equivalent to
an instance with Bernoulli distributions of means

(
µk+1

2

)
k∈[K]

. However, the experiment presented
in Figure 13 shows that the results of SGB tuned with η = 2∆/K for Rademacher distributions are
significantly better than the results of SGB with η = ∆

K for the corresponding Bernoulli distributions,
which is nevertheless an “equivalent” tuning of SGB , more precisely both match the critical learning
rate in their respective setting. This can be understood through Theorem 1, which shows that even
though both algorithms use the same oracle knowledge, the logarithmic term of the bound in the
Bernoulli case is twice as large as the bound in the Rademacher case.

This last result suggests that the performance of SGB is optimized when the rewards cover a centered
interval like [−1, 1], in particular if η is tuned solely using that the rewards are bounded within a
known range. Intuitively, it is natural to expect that the full potential of the theoretical tuning from
Theorem 1 is achieved when the restriction on η is tight due to upper bounding the failure regret is
tight, which we proved to be the case for Rademacher arms (see the paragraph “tightness of the bound”
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Figure 13: Empirical regret up to horizon T = 104, averaged over N = 104 trajectories on the
five-armed bandit problem defined by µ1 = 0.2 and µ2 = · · · = µ5 = 0 for the Rademacher instance,
and the corresponding Bernoulli instance.

after Theorem 1). In scenarios where η is tuned using additional moment knowledge—for instance,
on the second moment s2—any transformation that minimizes ∆

s2 would also lead to better empirical
performance. For a closely related discussion, centered on the properties of adding baselines in SGB
’s update, we refer to Section 6 of [1].
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