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Abstract

In the classic expert problem, Φ-regret measures the gap between the learner’s
total loss and that achieved by applying the best action transformation ϕ ∈ Φ. A
recent work by Lu et al. [2025] introduces an adaptive algorithm whose regret
against a comparator ϕ depends on a certain sparsity-based complexity measure
of ϕ, (almost) recovering and interpolating optimal bounds for standard regret
notions such as external, internal, and swap regret. In this work, we propose a
general idea to achieve an even better comparator-adaptive Φ-regret bound via
much simpler algorithms compared to Lu et al. [2025]. Specifically, we discover a
prior distribution over all possible binary transformations and show that it suffices
to achieve prior-dependent regret against these transformations. Then, we propose
two concrete and efficient algorithms to achieve so, where the first one learns over
multiple copies of a prior-aware variant of the Kernelized MWU algorithm of
Farina et al. [2022b], and the second one learns over multiple copies of a prior-
aware variant of the BM-reduction [Blum and Mansour, 2007]. To further showcase
the power of our methods and the advantages over [Lu et al., 2025] besides the
simplicity and better regret bounds, we also show that our second approach can be
extended to the game setting to achieve accelerated and adaptive convergence rate
to Φ-equilibria for a class of general-sum games. When specified to the special
case of correlated equilibria, our bound improves over the existing ones from
Anagnostides et al. [2022a,b].

1 Introduction

Expert problem [Freund and Schapire, 1997] is one of the most fundamental online learning problems,
where a learner repeatedly hedges over d experts with the goal of being comparative to a strong
benchmark. More concretely, in each round t, the learner proposes a distribution pt ∈ ∆(d) over d
experts and suffers loss ⟨pt, ℓt⟩ where ℓt ∈ [0, 1]d is a loss vector decided by an adversary. Consider
a benchmark that always applies a fixed linear transformation ϕ : ∆(d) 7→ ∆(d) to the learner’s
strategy and thus suffers loss ⟨ϕ(pt), ℓt⟩ in round t. The regret of the learner against ϕ is then defined
as Reg(ϕ) ≜

∑T
t=1⟨pt − ϕ(pt), ℓt⟩, that is, the difference between the learner’s total loss and that

of the benchmark. Given a class of linear transformations Φ, the learner’s Φ-regret is defined as
maxϕ∈Φ Reg(ϕ) [Greenwald and Jafari, 2003]. With an appropriate choice of Φ, this general notion
of Φ-regret subsumes many well-studied regret notions in the literature, such as external regret,
internal regret, and swap regret.
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While the optimal Φ-regret bound naturally depends on the complexity of the class Φ and different
algorithms have been proposed for different Φ’s in the literature, a recent work by Lu et al. [2025]
developed a comparator-adaptive algorithm whose regret against ϕ depends on a certain sparsity-based
complexity measure cϕ of ϕ, almost recovering the optimal regret bounds for external regret, internal
regret, and swap regret simultaneously via one single algorithm. Specifically, their algorithm achieves

Reg (ϕ) = O
(√

cϕ(T + d) (log d)
3
)

for all ϕ simultaneously, where cϕ = min{d−dself
ϕ , d−dunif

ϕ +

1}, dself
ϕ is the number of experts that are mapped to themselves by ϕ, and dunif

ϕ is the maximum
number of experts mapped to the same expert by ϕ (see Section 2 for formal definitions). The design
of their algorithm, however, is somewhat complicated and uses Haar-wavelet-inspired matrix features.

In this work, we significantly improve over Lu et al. [2025] by developing simpler algorithms,
achieving better comparator-adaptive regret bounds, and demonstrating broader applications to
accelerated convergence in games. Specifically, our contributions are as follows.

• First, in Section 3, we propose a general idea of achieving an improved comparator-adaptive
regret bound Reg(ϕ) = O(

√
cϕT log d), removing both the extra Õ(

√
cϕd) additive term and

also the extra log d factor compared to that of Lu et al. [2025]. We achieve so by proposing a
prior distribution π over all binary and linear transformations and showing that as long as a natural
prior-dependent regret bound Reg(ϕ) = O(

√
T log(1/π(ϕ))) holds, then the aforementioned new

comparator-adaptive regret bound holds.

• While at first glance it is unclear at all how to achieve the prior-dependent regret bound above effi-
ciently (since the number of all binary transformations is dd), we propose two efficient approaches
to achieve so thanks to the special structure of our prior. For the first approach (Section 4), we
utilize and extend the Kernelized Multiplicative Weight Update algorithm of Farina et al. [2022b]
and show that a certain prior-dependent kernel can be computed efficiently; for the second approach
(Section 5), we develop a prior-aware variant of the classic BM-reduction [Blum and Mansour,
2007] and learn over multiple copies of it. Both approaches are arguably much simpler than the
algorithm of Lu et al. [2025].

• Besides its simplicity and better regret bounds, we further demonstrate the power of our second
approach by extending it to an uncoupled learning dynamic for games and achieving accelerated
and adaptive convergence to Φ-equilibria (Section 6). Specifically, we develop an algorithm such
that, when deployed by all players for a broad class of N -player general-sum games considered
by Anagnostides et al. [2022c], each player enjoys a T -independent regret bound Reg(ϕ) =
O(cϕN log d + N2 log d) for all ϕ simultaneously. Based on standard connection between Φ-
regret and Φ-equilibria, this implies an adaptive (maxϕ∈Φ cϕN log d+N2 log d)/T convergence
rate to Φ-equilibria, simultaneously for all classes Φ, which is the first result of this kind to our
knowledge. Moreover, when specified to the case of correlated equilibria (where Φ is all binary
linear transformations), we improve over Anagnostides et al. [2022b] on the d-dependence and
remove any polylog(T ) dependence compared to Anagnostides et al. [2022a,b] (although their
results hold more generally for any general-sum games). Our technique is also new and relies
on the flexibility and a particular structure of our second approach, which allows us to bound the
path-length of the learning dynamic via showing small external regret. We remark that it is highly
unclear (if possible at all) how to achieve similar results using the algorithm of Lu et al. [2025] (or
even our first approach).

Related Work We refer the reader to Cesa-Bianchi and Lugosi [2006] for detailed discussions on
external regret (e.g., [Freund and Schapire, 1997]), internal regret (e.g., [Foster and Vohra, 1999,
Stoltz and Lugosi, 2005]), and swap regret [Blum and Mansour, 2007], whose formal definition can
be found in Section 2. As mentioned, they all belong to the family of Φ-regret, a concept proposed
by Greenwald and Jafari [2003] and further studied in many subsequent works such as Stoltz and
Lugosi [2007], Gordon et al. [2008], Rakhlin et al. [2011], Piliouras et al. [2022], Bernasconi
et al. [2023], Cai et al. [2024], Zhang et al. [2024] due to its generality and connection to various
equilibrium concepts. However, comparator-adaptive Φ-regret bounds were only recently considered
by Lu et al. [2025] as far as we know.

The concept of comparator-adaptive regret, nevertheless, is much older and has been studied under
various different contexts; we refer the reader to Orabona [2019] for in-depth discussion. The
algorithm of Lu et al. [2025] makes use of advances from this line of work [Cutkosky, 2018],
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while ours uses two simpler ideas: prior-dependent external regret via the classic Multiplicative
Weight Update (MWU) algorithm [Littlestone and Warmuth, 1994, Freund and Schapire, 1997] and
combining multiple algorithms to learn over the learning rates via a meta MWU (an idea that has
been used in many prior works such as Koolen et al. [2014], Van Erven and Koolen [2016], Foster
et al. [2017], Cutkosky [2019], Bhaskara et al. [2020], Chen et al. [2021]).

The connection between online learning and games dates back to Blackwell [1956], Hannan [1957],
Freund and Schapire [1999]. Greenwald and Jafari [2003] showed that in a general-sum game, if all
players deploy an online learning algorithm with sublinear Φ-regret, then the empirical distribution
of their joint strategy profiles converges to a Φ-equilibrium with the convergence rate being the
average (over time) Φ-regret. While Φ-regret is usually of order

√
T in the worst case (leading to

1/
√
T convergence rate), since the work of Daskalakis et al. [2011], Rakhlin and Sridharan [2013],

Syrgkanis et al. [2015], there has been a surge of research showing that accelerated convergence rate
of order polylog(T )/T is possible in many cases by utilizing the structure of the game and certain
optimistic online learning algorithms [Daskalakis et al., 2021, Anagnostides et al., 2022a,b, Farina
et al., 2022a]. Our result in Section 6 adds to the growing body of this line of work and is the first
accelerated convergence rate that is also adaptive in the complexity of Φ. Our approach also makes
use of standard optimistic online learning algorithms, but existing analysis does not work directly
due to various technical hurdles. We resolve them by exploiting a particular structure of our second
algorithm, borrowing ideas from a two-layer framework of Zhang et al. [2022], and considering a
subclass of games where the sum of all players’ external regret is always nonnegative (a broad class
as shown by Anagnostides et al. [2022c]).

2 Preliminaries

General Notations For a positive integer n, let [n] denote the set {1, 2, . . . , n}. Define Rn+ to be
the positive orthant of the n-dimensional Euclidean space, and ∆(n) ≜ {p ∈ Rn+,

∑n
i=1 pi = 1} to

be the (n− 1)-dimensional simplex. Given a finite set S, denote |S| to be its cardinality and ∆(S) to
be the set of probability distributions over S. Given p, q ∈ ∆(n), define KL(p, q) ≜

∑n
i=1 pi log

pi
qi

as the KL-divergence between p and q. For a matrix M ∈ Rm×n, we denote by Mi: ∈ Rn the i-th
row of M and M:j ∈ Rm the j-th column of M . For two matrices M1,M2 ∈ Rm×n, define the
inner product ⟨M1,M2⟩ ≜ trace

(
M⊤

1 M2

)
. Let 1 and 0 be the all-one and all-zero vector in an

appropriate dimension, let ei be the one-hot vector in an appropriate dimension with the i-th entry
being 1 and all other entries being 0, and let I be the identity matrix in an appropriate dimension.

Define S ≜ {ϕ ∈ [0, 1]d×d | ϕk: ∈ ∆(d),∀ k ∈ [d]} as the set of all row-stochastic matrices, which
is also the set of all possible linear transformations from ∆(d) to ∆(d) if we treat each ϕ ∈ S as
a linear operator: ϕ(p) = ϕ⊤p. The subset Φb ≜ {ϕ ∈ {0, 1}d×d | ϕk: ∈ ∆(d),∀ k ∈ [d]} ⊆ S
consisting of all binary row-stochastic matrices is of particular interest. For a distribution π ∈ ∆(Φb),
we let π(ϕ) be the probability mass of ϕ ∈ Φb.

Expert Problem and Φ-regret In an expert problem, the interaction between the environment
and the learner proceeds for T rounds. At each round t ∈ [T ], the learner decides a distribution
pt ∈ ∆(d) over the d experts and the environment decides a loss vector ℓt ∈ [0, 1]d. The learner then
receives ℓt and suffers loss ⟨pt, ℓt⟩. Given a transformation ϕ ∈ S, the regret of the learner against
this ϕ is defined as Reg(ϕ) ≜

∑T
t=1 ⟨pt − ϕ(pt), ℓt⟩, and given a class of transformations Φ ⊆ S,

the Φ-regret is defined as Reg(Φ) ≜ maxϕ∈Φ Reg(ϕ) [Greenwald and Jafari, 2003].

With an appropriate choice of Φ, Φ-regret reduces to many standard regret notions. For example,
with Φ = ΦExt ≜ {1e⊤i }i∈[d], Φ-regret recovers the standard external regret that competes with a
fixed expert, and it is well known that the minimax bound in this case is Θ(

√
T log d), achieved by

for example the classic Multiplicative Weight Update (MWU) algorithm [Littlestone and Warmuth,
1994, Freund and Schapire, 1997]; with Φ = ΦInt ≜ {I− eie

⊤
i + eie

⊤
j }i,j∈[d],i̸=j , Φ-regret recovers

internal regret and competes with a strategy that moves all the weights for expert i to expert j for
some fixed i and j, and the minimax bound in this case is also Θ(

√
T log d) [Stoltz and Lugosi,

2005]; and with Φ = Φb, Φ-regret reduces to swap regret and competes with all possible swaps
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between experts, and the minimax bound in this case is Θ(
√
dT log d) [Blum and Mansour, 2007,

Ito, 2020] for a certain regime of T and d.2

In a recent work by Lu et al. [2025], they derive a comparator-adaptive regret bound of the form

Reg (ϕ) = O
(√

cϕ(T + d) (log d)
3
)

for all ϕ ∈ S simultaneously, where cϕ is a certain sparsity-
based complexity measure of ϕ, formally defined as follows.

Definition 2.1 (Complexity measure of ϕ from Lu et al. [2025]). For any ϕ ∈ Φb, define cϕ ≜
min{d − dself

ϕ , d − dunif
ϕ + 1}, where dself

ϕ , the degree of self-map of ϕ, is the number of experts i
such that ϕ(ei) = ei (equivalently, dself

ϕ = trace (ϕ)), and dunif
ϕ , the degree of uniformity of ϕ, is the

multiplicity of the most frequent element in the multi-set {ϕ(e1), . . . , ϕ(ed)}. For any ϕ ∈ S \ Φb,
define cϕ ≜ minq∈Qϕ Eϕ′∼q[cϕ′ ] where Qϕ = {q ∈ ∆(Φb) : Eϕ′∼q[ϕ

′] = ϕ}.

Direct calculation shows that maxϕ∈ΦExt
cϕ = maxϕ∈ΦInt

cϕ = 1 and maxϕ∈Φb cϕ = d, and thus their
algorithm achieves almost optimal external regret, internal regret, and swap regret simultaneously.

We remark that, in fact, Lu et al. [2025] define cϕ for ϕ ∈ S \ Φb using the exact same definition as
the case when ϕ ∈ Φb, which is rather unnatural and results in a discontinuous function over S —
for example, a slight perturbation for a ϕ ∈ Φb with a large dself

ϕ (and thus small cϕ) can lead to a
ϕ′ ∈ S with dself

ϕ′ = 0 (and thus potentially large cϕ′ ). The definition we use here, on the other hand,
is a continuous and natural extension from Φb to S. It can be shown that our definition leads to a
strictly smaller complexity measure; see Proposition A.1 in Appendix A for more discussion.

However, what is perhaps not realized by Lu et al. [2025] is that their bound Reg (ϕ) =

O
(√

cϕ(T + d) (log d)
3
)

in fact also holds under our better definition of cϕ (via the same al-
gorithm). The reasoning is the same as our proof for Theorem 3.3: it suffices to show this bound for
ϕ ∈ Φb and then take convex combination of the bound when dealing with ϕ ∈ S \Φb. This explains
why we change the definition to this version.

One may wonder why we care about any ϕ ∈ S\Φb — after all, since the benchmark
∑T
t=1 ⟨ϕ(pt), ℓt⟩

is linear in ϕ, the best ϕ from a set Φ is always on its boundary. The reason is that what the learner
ultimately cares about is her total loss

∑T
t=1 ⟨pt, ℓt⟩ =

∑T
t=1 ⟨ϕ(pt), ℓt⟩ + Reg(ϕ), and when a

comparator-adaptive bound on Reg(ϕ) is available, we should consider the ϕ that minimizes the sum∑T
t=1 ⟨ϕ(pt), ℓt⟩+ Reg(ϕ), instead of just

∑T
t=1 ⟨ϕ(pt), ℓt⟩, and in this case, it is totally possible

that the best ϕ is not in Φb.

3 Achieving cϕ-Dependent Regret via a Special Prior

In this section, we present a new and general idea to achieve a cϕ-dependent bound for Reg(ϕ). To
this end, we define a prior distribution π over Φb through the following definitions, which plays an
important role in our approach.
Definition 3.1 (ψ-induced distribution). Given a row-stochastic matrix ψ ∈ S , it induces a distribu-
tion πψ ∈ ∆(Φb) such that πψ(ϕ) = Πi∈[d] ⟨ψi:, ϕi:⟩ for all ϕ ∈ Φb.3

Definition 3.2 (special prior distribution π). The prior distribution π over Φb is a mixture of d+ 1
distributions such that

π ≜
1

2d

d∑
k=1

πψk +
1

2
πψd+1 , (1)

where ψ1, . . . , ψd+1 ∈ S are defined as

ψk ≜
d− 2

d− 1
· 1e⊤k +

1

d(d− 1)
11⊤,∀k ∈ [d], and ψd+1 ≜

d− 2

d− 1
· I+ 1

d(d− 1)
11⊤. (2)

2More concretely, for the regime where d log d ≲ T ≲ d3/2/(log d). For other regimes, see recent work
by Dagan et al. [2024], Peng and Rubinstein [2024].

3We remark that this is a valid distribution since
∑
ϕ∈Φb

πψ(ϕ) =
∑
ϕ∈Φb

∏
i,j∈[d]:ϕij=1 ψij =∏d

i=1

∑d
j=1 ψij =

∏d
i=1 1 = 1.
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It is straightforward to verify that ψ1, . . . , ψd+1 are indeed row-stochastic matrices. In fact, when
viewed as transformation rules, each ψk (for k ∈ [d]) transforms all experts to expert k with a large
probability mass of 1− 1/d and to other experts uniformly with the remaining mass, and similarly,
ψd+1 transforms each expert to itself with a large probability mass of 1− 1/d and to other experts
uniformly with the remaining mass. At a high-level, ψd+1 is intuitively connected to dself

ϕ in the
definition of cϕ and {ψk}k∈[d] are connected to dunif

ϕ . Building on such connections, we prove the
following main result.
Theorem 3.3. For any ϕ ∈ Φb, we have log( 1

π(ϕ) ) ≤ 2 + 2cϕ log d. Consequently, if an algorithm
achieves

Reg(ϕ) = O

(√
T log

(
1

π(ϕ)

)
+B

)
(3)

for all ϕ ∈ Φb and some ϕ-independent term B, then it also achieves Reg (ϕ) =

O
(√

(1 + cϕ log d)T +B
)

for all ϕ ∈ S simultaneously.

We defer the proof to Appendix A and give some intuition here by considering two special cases.
First, consider a ϕ ∈ ΦExt: we know that ϕ = 1e⊤i for some i ∈ [d] and thus π(ϕ) ≥ 1

2dπψi(ϕ) =
1
2d (1−

1
d )
d = Θ(1/d), meaning that log(1/π(ϕ)) is of order log d and consistent with cϕ log d. As

another example, consider a ϕ ∈ ΦInt: we have ϕ = I − eie
⊤
i + eie

⊤
j for some i ̸= j and thus

π(ϕ) ≥ 1
2πψd+1(ϕ) = 1

2 (1−
1
d )
d−1 · 1

d(d−1) = Θ(1/d2), which means log(1/π(ϕ)) is also of order
log d and consistent with cϕ log d.

To see why Eq. (3) is a natural bound one should aim for, we recall a standard idea from Blum
and Mansour [2007], Gordon et al. [2008] that reduces the Φ-regret for the expert problem to
the standard (external) regret of an Online Linear Optimization (OLO) problem over Φ: if at
each round t, the proposed distribution over experts pt ∈ ∆(d) is computed as the stationary
distribution of some ϕt ∈ S (that is, pt = ϕt(pt)), then we have Reg(ϕ) =

∑T
t=1 ⟨pt − ϕ(pt), ℓt⟩ =∑T

t=1 ⟨ϕt(pt)− ϕ(pt), ℓt⟩ =
∑T
t=1

〈
ϕt − ϕ, ptℓ

⊤
t

〉
, which means Reg(ϕ) is exactly the standard

regret of the sequence ϕ1, . . . , ϕT against a fixed ϕ for an OLO instance with
〈
·, ptℓ⊤t

〉
as the

linear loss function in round t. We can solve this OLO instance by treating it as yet another expert
problem with Φb as the expert set, in which case a bound in the form of Eq. (3) is just the standard
prior-dependent regret achievable by many algorithms, such as MWU.

The caveat, of course, is that naively doing so is computationally inefficient since the size of Φb is
dd. In fact, a similar concern was raised by Lu et al. [2025] as a motivation for their totally different
approach. However, thanks to the special structure of our prior π, we manage to develop two different
efficient approaches to achieve Eq. (3), as shown in the next two sections.

Regret comparison with Lu et al. [2025] In our two approaches that achieve Eq. (3), the term B is
either O(

√
T log log d) or O(

√
T log d), making our final regret bound essentially O(

√
cϕT log d).

Compared to the bound O
(√

cϕ(T + d) (log d)
3
)

of Lu et al. [2025], we have thus removed the

extra Õ(
√
cϕd) additive term and also the extra log d factor. When specified to standard regret

notations (external/internal/swap regret), our bound exactly recovers the minimax bound while theirs
exhibits a slight gap.

Discussion on the optimality of cϕ dependency As discussed above, it is clear that the dependence
on cϕ is tight for the standard cases of external, internal, and swap regret, since in these settings cϕ
respectively equals 1, 1, and d, matching the known lower bounds. In fact, via a simple argument,
one can establish a stronger lower bound showing that for any integer k ∈ [d] and any algorithm,
there exists a d-expert problem and a comparator mapping ϕ with cϕ ≤ k + 1, such that Reg(ϕ) =
Ω
(√

cϕT log cϕ
)
. To see this, consider the following construction. Let d − k experts be dummy

experts that always incur the maximum loss of 1, while the remaining k experts follow the swap-regret
lower bound instance of Ito [2020], scaled by a factor of 1/2. We define ϕ ∈ Φb as follows. For each
non-dummy expert, ϕ maps it optimally to another non-dummy expert (minimizing the total loss after
swapping). For dummy experts, we distinguish two cases: if the algorithm selects dummy experts
more than

√
kT log k times, we let ϕ map all dummy experts to a single fixed non-dummy expert
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Algorithm 1 MWU over Φb with prior π
Input: learning rate η > 0 and prior distribution π defined in Definition 3.2. Initialize q1 as π.
for t = 1, 2 . . . , T do

Propose ϕt = Eϕ∼qt [ϕ] ∈ S and receive loss matrix ptℓ⊤t ∈ [0, 1]d×d.
Update qt+1 such that qt+1(ϕ) ∝ qt(ϕ) exp

(
−η
〈
ϕ, ptℓ

⊤
t

〉)
.

(so that dunif
ϕ ≥ d− k); otherwise, each dummy expert maps to itself (so that dself

ϕ ≥ d− k). In both
cases, we have cϕ ≤ k + 1.

In the first case, the regret satisfies Reg(ϕ) ≥ 1
2

√
kT log k, since whenever the algorithm chooses

a dummy expert i, it incurs loss 1 while ϕ(ei) incurs loss at most 1/2. In the second case, Reg(ϕ)
corresponds to the swap regret of the algorithm on a k-expert problem that lasts for at least T −√
kT log k rounds. Because this instance follows the lower bound construction of Ito [2020], we

again obtain Reg(ϕ) ≥ Ω(
√
kT log k). This shows that the dependence on cϕ in our upper bound is

tight.

4 First Approach: Learning over Multiple Kernelized MWU’s

In this section, we introduce our first approach to achieve Eq. (3). As mentioned, based on standard
analysis (see e.g., [Freund and Schapire, 1999]), simply running MWU (Algorithm 1) with expert set
Φb, a fixed learning rate η > 0, and our prior distribution π defined in Eq. (1) to get qt ∈ ∆(Φb) and
outputting the stationary distribution of Eϕ∼qt [ϕ] already gives Reg(ϕ) ≤ KL(q,π)

η +ηT for any ϕ ∈ S
and q ∈ Qϕ (recall Qϕ defined in Definition 2.1), which further implies Reg(ϕ) ≤ log(1/π(ϕ))

η + ηT

for any ϕ ∈ Φb. With the “optimal tuning” of η, Eq. (3) would have been achieved. However, there
is no such fixed “optimal tuning” since we require the bound to hold for all ϕ simultaneously, and
different ϕ might lead to different optimal tuning. We will first address this issue using a simple idea,
before addressing the other obvious issue that naively running MWU is computationally inefficient.

Learning the learning rate via a meta MWU While there are many different ways to handle the
aforementioned issue of parameter tuning (see e.g., Luo and Schapire [2015], Koolen and Van Erven
[2015]), we resort to the most basic idea of learning the learning rate via another meta MWU, which
is important for resolving the computational inefficiency later; see Algorithm 2 for the pseudocode.
Specifically, the meta MWU learns over and combines decisions from a set of 2⌈log2 d⌉ base learners,
the h-th of which is an instance of MWU (Algorithm 1) with learning rate ηh =

√
2h/T . This

ensures that the optimal learning rate of interest always lies in [ηh, 2ηh] for certain h. At each round
t, the meta MWU maintains a distribution wt over all base learners. After receiving ϕht , the expected
transformation matrix from each base learner Bh, the meta MWU computes the weighted average of
them using wt and proposes pt as the stationary distribution of this weighted average.4 Then, after
receiving the loss vector ℓt, the meta MWU constructs the loss ℓwt,h ≜

〈
ϕht , ptℓ

⊤
t

〉
for each Bh and

updates its weight wt via an exponential weight update. Finally, the meta MWU sends the loss matrix
ptℓ

⊤
t to each base learner Bh. It is straightforward to prove the following result.

Theorem 4.1. Algorithm 2 guarantees Reg(ϕ) = O
(√

TKL(q, π) +
√
T log log d

)
for any ϕ ∈ S

and q ∈ Qϕ. Consequently, it also guarantees Eq. (3) with B =
√
T log log d and thus Reg(ϕ) =

O
(√

(1 + cϕ log d)T +
√
T log log d

)
for any ϕ ∈ S.

The bound in terms of
√
TKL(q, π) is stronger than what we need in Eq. (3), and using this stronger

version in fact also allows us to additionally obtain the near-optimal ε-quantile regret bound of order
O(
√
T log(1/ε) +

√
T log log d) when competing with the top ε-quantile of experts [Chaudhuri

et al., 2009]; see Theorem B.3 for details.

4We remark that it is important to use the stationary distribution of the weighted average of ϕht , but not the
weighted average of the stationary distribution of ϕht .
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Algorithm 2 Meta MWU Algorithm

Initialization: Set η =
√

log log d
T , M = 2⌈log2 d⌉, and w1 = 1

M ·1 ∈ ∆(M); initializeM instances

of Algorithm 1 (or Algorithm 3) {Bh}Mh=1 with the learning rate for Bh being ηh =
√
2h/T .

for t = 1, 2, · · · , T do
Receive ϕht = Eϕ∼qht [ϕ] from Bh for each h ∈ [M ] and compute ϕt =

∑M
h=1 wt,hϕ

h
t .

Play the stationary distribution pt of ϕt (that is, pt = ϕt(pt)) and receive loss ℓt.
Update wt+1 such that wt+1,h ∝ wt,h exp

(
−ηℓwt,h

)
, where ℓwt,h =

〈
ϕht , ptℓ

⊤
t

〉
for each h ∈ [M ].

Send loss matrix ptℓ⊤t to Bh for each h ∈ [M ].

Algorithm 3 Kernelized MWU with non-uniform prior
Input: learning rate η > 0 and prior distribution π (Definition 3.2); initialize B1 = 11⊤ ∈ Rd×d.
for t = 1, 2, · · · , T do

Compute ϕt ∈ S such that (ϕt)ij = 1− K(Bt,11
⊤−eie⊤j )

K(Bt,11⊤)
.

Receive ptℓ⊤t and update Bt+1 ∈ Rd×d such that (Bt+1)ij = (Bt)ij · exp(−η(ptℓ⊤t )ij).

Efficient Implementation of Algorithm 1 via Kernelization To address the computational ineffi-
ciency of Algorithm 1, we take inspiration from Farina et al. [2022b] that shows that Algorithm 1
with a uniform prior can be simulated efficiently as long as a certain kernel function can be evaluated
efficiently, and extend their idea from uniform prior to non-uniform prior. Specifically, we propose
the following prior-dependent kernel function.

Definition 4.2 (kernel function). Define kernel K(B,A) =
∑
ϕ∈Φb

π(ϕ)
∏
i,j∈[d]:ϕij=1BijAij for

any B,A ∈ Rd×d.

We then show that this kernel function can be evaluated efficiently thanks to the structure of our
prior π and consequently the key output ϕt in Algorithm 1 (required for Algorithm 2) can also be
computed efficiently via the Kernelized MWU shown in Algorithm 3.

Theorem 4.3. The kernel function K defined in Definition 4.2 can be evaluated in time O(d3).
Moreover, the ϕt matrix computed by Algorithm 1 and Algorithm 3 are exactly the same.

This theorem already shows that each iteration of Algorithm 3 can be implemented in time O(d5)
since it requires evaluating the kernel 2d2 times. However, by reusing some intermediate statistics
that are common in these 2d2 kernel evaluations and the special structure of the stochastic matrices
ψ1, . . . , ψd+1 defined in Eq. (2), we can further speed up the algorithm such that each iteration takes
only O(d2) time, making our algorithm as efficient as those by Blum and Mansour [2007], Lu et al.
[2025]; see Appendix B.3.2 for details.

Combining Theorem 4.3 and Theorem 4.1, we have thus shown that Algorithm 2 is an efficient
algorithm with regret Reg(ϕ) = O(

√
(1 + cϕ log d)T +

√
T log log d) for all ϕ ∈ S simultaneously.

5 Second Approach: Learning over Multiple BM-Reductions

In this section, we introduce our second approach to achieve Eq. (3) using a prior-aware variant of
the BM-reduction [Blum and Mansour, 2007]. As a reminder, BM-reduction reduces swap regret
minimization to d external regret minimization problems, each with a different scaled loss vector
in each round, and achieves Reg(ϕ) ≤ d log d

η + ηT when each base external regret minimization
algorithm is MWU (over [d]) with learning rate η. Given a prior π ∈ ∆(Φb), it is natural to ask
whether a variant of BM-reduction can achieve Reg(ϕ) ≤ log(1/π(ϕ))

η + ηT , replacing d log d with
log(1/π(ϕ)). We first show that this is indeed possible, but only when π is a ψ-induced distribution
for some ψ ∈ S (Definition 3.1), and the only modification needed is to let the i-th MWU subroutine
use the prior ψi: ∈ ∆(d). See Theorem C.1 in Appendix C for details.
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Given that our prior of interest is a mixture of d+ 1 distributions induced by ψ1, . . . , ψd+1 (Defini-
tion 3.2) and also the same issue that a fixed learning rate η cannot be adaptive to different comparator
ϕ, we propose a natural meta-base framework that is very similar to Algorithm 2 and learns over
both different ψk and different learning rates. Specifically, we maintain (d+1)M (where M is again
2⌈log2 d⌉) base-learners Bk,h, indexed by k ∈ [d + 1] and h ∈ [M ]. Each base-learner Bk,h is an
instance of the prior-aware BM-reduction Algorithm 8 with prior ψk and learning rate

√
2h/T . With

this set of base learners, the rest of the algorithm is exactly the same as Algorithm 2, and we thus
defer all details to Algorithm 7 in the appendix. The only crucial point (similar to Footnote 4) is that,
even though the standard BM reduction directly outputs the stationary distribution of a stochastic
matrix, it is important here that we first take a convex combination of these stochastic matrices
and then compute its stationary distribution, instead of using the convex combination of stationary
distributions.

The following theorem shows that Algorithm 7 satisfies Eq. (3) with B =
√
T log d.

Theorem 5.1. Algorithm 7 satisfies Eq. (3) with B =
√
T log d. Consequently, it guarantees

Reg(ϕ) = O
(√

(1 + cϕ log d)T +
√
T log d

)
for any ϕ ∈ S.

Even though the guarantee of this second approach is slightly worse than that of Algorithm 2 (but
still better than Lu et al. [2025]), in the next section, we show that its particular structure is crucial in
extending our results to games.

6 Applications to Games

In this section, we discuss how to extend Algorithm 7 to achieve accelerated and adaptive Φ-
equilibrium convergence in N -player general-sum normal-form games. We first introduce necessary
background on the connection between online learning and games. Consider anN -player general-sum
normal-form game, where each player n ∈ [N ] has a finite set of actions [d].5 For a given joint action
profile a = (a1, . . . , aN ) ∈ [d]N ≜ A, the loss received by player n is given by some loss function
ℓ(n) : A → [0, 1]. For notational convenience, denote a(−n) = (a1, . . . , an−1, an+1, . . . , aN ).
Given Φ = ×Nn=1Φn where each Φn ⊆ S is a set of action transformations for player n, the
corresponding (approximate) Φ-equilibrium is defined as follows.
Definition 6.1 (ε-approximate Φ-equilibrium). We call a distribution p ∈ ∆(A) over all joint action
profiles an ε-approximate Φ-equilibrium if for all players n ∈ [N ] and all ϕ ∈ Φn, Ea∼p[ℓ

(n)(a)] ≤
Ea∼p[ℓ

(n)(ϕ(a(n)),a(−n))] + ε. When ε = 0, we call p a Φ-equilibrium.

When Φn = ΦExt for all n, Φ-equilibrium reduces to Coarse Correlated Equilibrium (CCE), and
when Φn = Φb for all n, Φ-equilibrium reduces to Correlated Equilibrium (CE).

Approximate Φ-equilibrium can be found via the following uncoupled no-regret learning dynamic.
At each round t ∈ [T ], each player n proposes p(n)t ∈ ∆(d), forming an uncorrelated distribution
pt = (p

(1)
t , . . . , p

(N)
t ), and receives a loss vector ℓ(n)t ∈ [0, 1]d as the feedback where ℓ(n)t,a ≜

Ea∼pt [ℓ
(n)
(
a,a(−n)

)
], for any a ∈ [d]. The Φn-regret for player n is then defined as Regn ≜

maxϕ∈Φn Regn(ϕ) = maxϕ∈Φn

∑T
t=1⟨p

(n)
t − ϕ(p

(n)
t ), ℓ

(n)
t ⟩, and we denote the special case of

external regret for Φn = ΦExt as RegExtn . The following proposition from Greenwald and Jafari
[2003] builds the connection between no-Φ-regret learning and convergence to Φ-equilibrium.
Proposition 6.2 ([Greenwald and Jafari, 2003]). The empirical distribution of joint strategy profiles,
that is, uniform over p1, . . . ,pT , is a maxn∈[N]{Regn}

T -approximate Φ-equilibrium.

While one can apply our Algorithm 2 or Algorithm 7 directly for each player to obtain 1/
√
T

convergence rate that is adaptive to the complexity of Φ, we are interested in achieving accelerated
Õ(1/T ) convergence rate that has been shown possible in recent years for canonical Φ. For example,
for CCE, Daskalakis et al. [2021], Farina et al. [2022a], Soleymani et al. [2025] show the following
polylog(T ) bound on RegExtn respectively: O(N log d log4 T ),O(Nd log T ),O(N log2 d log T );

5For notational conciseness, we assume that the action set size is the same for all players, but our analysis
can be directly extended to games with different action set sizes.
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Algorithm 4 Meta Algorithm for Accelerated and Adaptive Convergence in Games
Input: learning rate ηm > 0, correction scale λ > 0

1 Initialize: d + 2 base learners B1, . . . ,Bd+2, all with learning rate η = 1
16N . For k < d + 2, Bk

is an instance of Algorithm 8 with prior ψk and SubAlg being OMWU (Algorithm 9); Bd+2 is an
instance of Algorithm 9 (with uniform prior); set ŵ1 = [ 1

2d , . . . ,
1
2d ,

1
4 ,

1
4 ] ∈ ∆(d+ 2).

for t = 1, 2 . . . , T do
2 Receive ϕkt ∈ S from base learner Bk for each k ∈ [d+ 2].
3 Compute ct ∈ Rd+2 where ct,k = λ∥p̃kt−1 − p̃kt−2∥21 · 1{t ≥ 3} and p̃kt = ϕkt (pt).
4 Compute mw

t ∈ Rd+2 where mw
t,k =

〈
ϕkt , pt−1ℓ

⊤
t−1

〉
· 1{t ≥ 2} for k ∈ [d+ 2].

5 Compute wt such that wt,k ∝ ŵt,k exp(−ηm(mw
t,k + ct,k)).

6 Compute ϕt =
∑d+2
k=1 wt,kϕ

k
t and play stationary distribution pt satisfying pt = ϕt(pt).

7 Receive ℓt and compute ℓwt ∈ Rd+2 where ℓwt,k =
〈
ϕkt , ptℓ

⊤
t

〉
for k ∈ [d+ 2].

8 Update ŵt+1 such that ŵt+1,k ∝ ŵt,k exp(−ηm(ℓwt,k + ct,k)).
9 Send ptℓ⊤t to Bk for k ∈ [d+ 1] and send ℓt to Bd+2.

for CE, Anagnostides et al. [2022a,b] show the following bound on Regn: O(Nd log d log4 T ) and
O(Nd2.5 log T ). Our goal is to achieve similar fast rates while at the same time being adaptive to the
complexity of Φ, and we successfully achieve so, albeit only for the following class of games.
Definition 6.3 (Nonnegative-social-external-regret games). We call a game a nonnegative-social-
external-regret game if

∑N
n=1 Reg

Ext
n ≥ 0 always holds.

This class was explicitly considered in Anagnostides et al. [2022c] and contains a broad family of
well-studied games, including constant-sum polymatrix games, polymatrix strategically zero-sum
games, and quasiconvex-quasiconcave games. Therefore, we believe that our results are still very
general and non-trivial. We are unable to deal with general games using ideas from aforementioned
recent work due to the two-layer nature of our algorithms. In fact, even when considering only this
subclass of games, it is unclear to us how to make our first approach discussed in Section 4 or the
algorithm of Lu et al. [2025] work, and we have to resort to extending our Algorithm 7. In the
following, we discuss how we design our algorithm (shown in Algorithm 4) based on similar ideas of
Algorithm 7 and what extra ingredients are needed.

Base learners Compared to Algorithm 7, there are several differences in the base learner design.
First, while we still maintain a base learner Bk (Algorithm 8) for each prior ψk, we do not need to
maintain different copies of it to account for different learning rates, since in the end we will use
a fixed constant learning rate, similar to prior work on accelerated convergence. Second, inspired
by a long line of work showing that optimism accelerates convergence, for each Bk, we replace its
subroutines from MWU to Optimistic MWU (OMWU) [Rakhlin and Sridharan, 2013, Syrgkanis
et al., 2015] (Algorithm 9). Finally, besides these d + 1 base learners, we additionally include a
base learner Bd+2, an instance of OMWU (Algorithm 9) with a uniform prior, to explicitly minimize
external regret. This last modification is in a way most crucial to our analysis, since it allows us to
utilize the nonnegative-social-external-regret property and show that the path-length of the entire
learning dynamic is T -independent and of order O(N log d) only; see Appendix D.3 for details.

Meta learner In addition, there are also several modifications to the meta learner compared to
Algorithm 7. First, similar to the base learners, instead of using MWU, we apply OMWU to compute
wt and the auxiliary ŵt (Line 5 and Line 8 of Algorithm 4). Importantly, the update of wt uses
a “predictive loss vector” mw

t such that mw
t,k =

〈
ϕkt , pt−1ℓ

⊤
t−1

〉
(Line 4). The fact that mw

t is not
simply the previous loss vector ℓwt−1, a canonical setup for OMWU, is important for the analysis,
as already shown in Zhang et al. [2022] under a different context. Second, also inspired by Zhang
et al. [2022], Zhao et al. [2024], in order to aggregate the guarantee for all base learners, in both the
update of wt and ŵt, we propose to add a stability correction term ct (Line 3 of Algorithm 4), which
guides the meta algorithm to bias toward the more stable base learners, hence also stabilizing the final
decision. While the idea is similar, the specific value of ct,k is tailored to our analysis and takes into
account not only the stability of ϕkt from the base learner Bk but also the stability of the stationary
distribution pt. Our main result is as follows.

9



Theorem 6.4. For an N -player normal-form general-sum game satisfying Definition 6.3, if each
player n ∈ [N ] runs Algorithm 4 with ηm = 1

64N and λ = N , then we have Regn(ϕ) =

O(cϕN log d + N2 log d) and RegExtn = O(N log d) for all n ∈ [N ]. Consequently, the uni-

form distribution over their joint strategy profiles is an O
(
N log d
T

)
-approximate CCE and also an

O
(

maxn∈[N],ϕ∈Φn cϕN log d+N2 log d

T

)
-approximate Φ-equilibrium, simultaneously for all Φ ⊆ SN .

To our knowledge, our result achieves the first adaptive and accelerated Φ-equilibrium guarantee. For
the special case of CCE, the rate O(N log d

T ) matches that of OMWU (for nonnegative-social-external-
regret games), and for CE, it is unclear at all what better results one can obtain for nonnegative-social-
external-regret games than those rates from [Anagnostides et al., 2022a,b] for general games. If we
compare their bounds to ours, since maxn∈[N ],ϕ∈Φn cϕ = d in this case, we improve over Anag-
nostides et al. [2022b] on the d-dependence and remove any polylog(T ) dependence compared
to Anagnostides et al. [2022a,b]. One disadvantage of our results is the additive term of N2 log d for
Φ-equilibrium other than CCE. Removing this term is an interesting future direction.

7 Conclusion and Future Directions

In this work, we significantly improve over a recent work by Lu et al. [2025] regarding comparator
adaptive Φ-regret, by developing simpler algorithms, better bounds, and broader applications to games.
The most interesting future direction is to improve our results for games, especially to remove the
requirement on nonnegative social external regret. The idea of high-order stability from Daskalakis
et al. [2021], Anagnostides et al. [2022a] might be useful, but appropriately combining this idea with
our approaches requires further investigation. For the expert problem, it is also interesting to derive
comparator-adaptive Φ-regret with respect to other complexity measure of the comparator.
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NSF award IIS-1943607.
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: This paper is theoretic-focused and does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper is theoretic-focused and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper is theoretic-focused and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper is theoretic-focused and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is theoretical, and we do not foresee any negative ethical or societal
outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work is theoretical, and we do not involve data and models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This work is theoretical, and no existing assets are involved in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work is theoretical, and no new assets are involved in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Omitted Details in Section 2 and Section 3

As mentioned, Lu et al. [2025] define cϕ as min{d − dself
ϕ , d − dunif

ϕ + 1} for all ϕ ∈ S, while our
definition for ϕ ∈ S \ Φb is different. The following shows that ours is strictly better.
Proposition A.1. For any ϕ ∈ S , we have cϕ ≤ min{d− dself

ϕ , d− dunif
ϕ +1}. Moreover, there exists

ϕ ∈ S such that cϕ = O(1) and min{d− dself
ϕ , d− dunif

ϕ + 1} = Ω(d).

Proof of Proposition A.1. Since

cϕ = min
q∈Qϕ

Eϕ′∼q[cϕ′ ] = min
q∈Qϕ

Eϕ′∼q[min{d− dself
ϕ′ , d− dunif

ϕ′ + 1}]

≤ min
q∈Qϕ

min{Eϕ′∼q[d− dself
ϕ′ ],Eϕ′∼q[d− dunif

ϕ′ + 1]}

= min{min
q∈Qϕ

Eϕ′∼q[d− dself
ϕ′ ], min

q∈Qϕ
Eϕ′∼q[d− dunif

ϕ′ + 1]}

= min{d− trace (ϕ) , d− max
q∈Qϕ

Eϕ′∼q[d
unif
ϕ′ ] + 1},

it suffices to prove dself
ϕ ≤ trace (ϕ) and dunif

ϕ ≤ maxq∈Qϕ Eϕ′∼q[d
unif
ϕ′ ] separately. First, by the

definition of dself
ϕ , it directly follows that dself

ϕ ≤ trace (ϕ).

Second, we construct a distribution p ∈ ∆(Φb) such that ϕ =
∑
ϕ′∈Φb

p(ϕ′)ϕ′ and show that∑
ϕ′∈Φb

p(ϕ′)dunif
ϕ′ ≥ dunif

ϕ , which in turn implies that maxq∈Qϕ Eϕ′∼q[d
unif
ϕ′ ] ≥ dunif

ϕ . Suppose that
the most frequent element in {ϕ(e1), · · · , ϕ(ed)} is q ∈ ∆(d) and ϕ(ej) = q for all j ∈ A ⊆ [d] with
|A| = dunif

ϕ . Then, we can write ϕ as ϕ =
∑d
i=1 qiϕi, where ϕi(ej) = ei for all j ∈ A and ϕi(ej) =

ϕ(ej) for all j /∈ A. This guarantees that dunif
ϕi

≥ dunif
ϕ . Furthermore, let ϕi =

∑
ϕ′
i∈Φb

pi(ϕ
′
i) · ϕ′i

be any convex decomposition of ϕi, and note that for any ϕ′i in the support of pi, we must have
ϕ′i(ej) = ei for all j ∈ A, meaning that dunif

ϕ′
i
≥ dunif

ϕi
. Now we have constructed a convex combination

for ϕ:

ϕ =

d∑
i=1

qiϕi =

d∑
i=1

∑
ϕ′
i∈Φb

qi · pi(ϕ′i) · ϕ′i

and consequently,

dunif
ϕ ≤

d∑
i=1

qi · dunif
ϕi ≤

d∑
i=1

∑
ϕ′
i∈Φb

qi · pi(ϕ′i) · dunif
ϕ′
i
≤ max
q∈Qϕ

Eϕ′∼q[d
unif
ϕ′ ].

This proves that dunif
ϕ ≤ maxq∈Qϕ Eϕ′∼q[d

unif
ϕ′ ]. Combining with dself

ϕ ≤ trace (ϕ), we have shown
cϕ ≤ min{d− dself

ϕ , d− dunif
ϕ + 1}.

Moreover, the complexity measures cϕ and min{d− dself
ϕ , d− dunif

ϕ + 1} can differ significantly in
some cases. For example, when ϕ1 is a row-stochastic matrix with all diagonal entries equal to
1 − ε for small ε > 0 (implying each row’s off-diagonal entries sum to ε), trace (ϕ1) is (1 − ε)d
while dself

ϕ1
is 0. Similarly, when ϕ2 = (1 − ε) · 1d · e⊤1 + εI, it can be verified that dunif

ϕ2
= 1 and

maxq∈Qϕ2 Eϕ′∼q[d
unif
ϕ′ ] = (1 − ε)d + ε = d − (d − 1)ε. With ε < 1

d , we have cϕ = O(1) and
min{d− dself

ϕ , d− dunif
ϕ + 1} = Ω(d) for ϕ = ϕ1, ϕ2.

Next, we prove Theorem 3.3.

Proof of Theorem 3.3. First, for πψd+1 , we have for any ϕ ∈ Φb,

πψd+1(ϕ) =

(
1− 1

d

)dself
ϕ

·
(

1

d(d− 1)

)d−dself
ϕ

≥
(
1− 1

d

)dself
ϕ

· 1

d2(d−d
self
ϕ )
,
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which leads to

log
1

πψd+1(ϕ)
≤ 2(d− dself

ϕ ) log d+ 1, (4)

since −dself
ϕ log

(
1− 1

d

)
≤ −d log

(
1− 1

d

)
≤ 1 for d ≥ 2. Then, for ϕ ∈ Φb, assume that the most

frequent element in the set {ϕ(e1), . . . , ϕ(ed)} is er. It holds that

πψr (ϕ) =

(
1− 1

d

)dunif
ϕ

·
(

1

d(d− 1)

)d−dunif
ϕ

≥
(
1− 1

d

)dunif
ϕ

· 1

d2(d−d
unif
ϕ )

,

which leads to

log
1

πψr (ϕ)
≤ 2(d− dunif

ϕ ) log d+ 1, (5)

since −dunif
ϕ log

(
1− 1

d

)
≤ −d log

(
1− 1

d

)
≤ 1 for d ≥ 2. Using the definition of π in Definition 3.2

and combining Eq. (4) and Eq. (5), we have

log
1

π(ϕ)
≤ min

{
log

1
1
2 · πψd+1(ϕ)

, log
1

1
2d · πψr (ϕ)

}
≤ min

{
2(d− dunif

ϕ ) log d+ 1 + log 2, 2(d− dunif
ϕ ) log d+ 1 + log(2d)

}
≤ 2min{d− dself

ϕ , d− dunif
ϕ + 1} · log d+ 2. (6)

This completes the proof of the first statement that log
(

1
π(ϕ)

)
≤ 2 + 2cϕ log d.

Next, we prove that Reg(ϕ) = O
(√

(1 + cϕ log d)T +B
)

for all ϕ ∈ S when the condition Eq. (3)
holds. Fix a row-stochastic matrix ϕ ∈ S and let q ∈ Qϕ be such that cϕ = Eϕ′∼q[cϕ′ ]. By linearity
of Reg(ϕ) in ϕ, we have Reg(ϕ) = Eϕ′∼q[Reg(ϕ

′)], and thus

Reg(ϕ) ≤ Eϕ′∼q

[√
T log

(
1

π(ϕ)

)
+B

]
(by Eq. (3))

≤ Eϕ′∼q

[√
T (2cϕ′ log d+ 2) +B

]
(by Eq. (6))

≤
√
T (2 · Eϕ′∼q[cϕ′ ] log d+ 2) +B (by Jensen’s inequality)

= O
(√

(1 + cϕ log d)T +B

)
.

This completes the proof.

B Omitted Details in Section 4

In this section, we show the omitted proofs in Section 4.

B.1 Proof of Theorem 4.1

First, we provide the general form of vanilla MWU for an arbitrary and finite action space A in
Algorithm 5. The following result is well-known for MWU, and we provide a proof for completeness.

Lemma B.1. Algorithm 5 ensures that for any comparator q ∈ ∆(A), we have

T∑
t=1

⟨xt − q, ℓt⟩ ≤
KL (q, x1)

η
+ η

T∑
t=1

∥ℓt∥2∞.
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Algorithm 5 MWU
Input: learning rate η > 0; finite action space A; prior distribution x1 ∈ ∆(A).
for t = 1, 2 . . . , T do

Play xt and receive loss ℓt ∈ [0, 1]|A|.
Update xt+1 such that xt+1,i ∝ xt,i exp (−ηℓt,i) for all i ∈ A.

Proof of Lemma B.1. We aim to show that for all t ∈ [T ],

⟨xt − q, ℓt⟩ =
1

η
(KL(q, xt)− KL(q, xt+1) + KL(xt, xt+1)) . (7)

Note that the update rule of MWU implies that xt+1,i =
xt,i exp(−ηℓt,i)∑
j∈A xt,j exp(−ηℓt,j) with prior distribution

x1. Direct calculation shows that
1

η
(KL(q, xt)− KL(q, xt+1) + KL(xt, xt+1))

=
1

η

∑
i∈A

(xt,i − qi) · log
xt,i
xt+1,i

=
∑
i∈A

(xt,i − qi)

ℓt,i + 1

η
log

∑
j∈A

xt,j exp(−ηℓt,j)


= ⟨xt − q, ℓt⟩ .

Summing Eq. (7) for all t ∈ [T ], we obtain that
T∑
t=1

⟨xt − q, ℓt⟩ =
1

η
(KL(q, x1)− KL(q, xT+1)) +

1

η

T∑
t=1

KL(xt, xt+1). (8)

Next, we bound KL(xt, xt+1) as shown below.

KL(xt, xt+1) =
∑
i∈A

xt,i log
xt,i
xt+1,i

=
∑
i∈A

ηxt,iℓt,i + xt,i log

∑
j∈A

xt,j exp(−ηℓt,j)


≤
∑
i∈A

ηxt,iℓt,i + xt,i log

∑
j∈A

xt,j
(
1− ηℓt,j + η2ℓ2t,j

)
(since exp(−x) ≤ 1− x+ x2 for x ≥ −1)

=
∑
i∈A

ηxt,iℓt,i + xt,i log

1− η
∑
j∈A

xt,jℓt,j + η2
∑
j∈A

xt,jℓ
2
t,j


≤ η

∑
i∈A

xt,iℓt,i − η
∑
j∈A

xt,jℓt,j + η2
∑
j∈A

xt,jℓ
2
t,j (since log(1 + x) ≤ x for all x)

≤ η2∥ℓt∥2∞.

Substituting this in Eq. (8) and using the fact that KL divergence is always non-negative, we get,
T∑
t=1

⟨xt − q, ℓt⟩ ≤
KL (q, x1)

η
+ η

T∑
t=1

∥ℓt∥2∞.

The following lemma proves the statement in Section 4 that the optimal learning rate of interest
always lies in [ηh, 2ηh] for certain h ∈ [M ], where M = 2⌈log2 d⌉.
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Lemma B.2. For any ϕ ∈ S and q ∈ Qϕ, there exists h ∈ [M ], such that ηh ≤

max

{√
KL(q,π)
T ,

√
2
T

}
≤ 2ηh.

Proof of Lemma B.2. For any ϕ ∈ S and q ∈ Qϕ, we have KL(q, π) =
∑
ϕ′∈Φb

q(ϕ′) log q(ϕ′)
π(ϕ′) ≤∑

ϕ′∈Φb
q(ϕ′) log 1

π(ϕ′) ≤ log 1
minϕ′∈Φb

π(ϕ′) ≤ 2d log d+ 1, where the last inequality follows from

the fact that minϕ′∈Φb π(ϕ
′) ≥ minϕ′∈Φb

1
2πψd+1(ϕ′) ≥ 1

2 ·
(

1
d(d−1)

)d
. Therefore, we have

min
h∈[M ]

2h = 2 ≤ max{KL(q, π), 2} ≤ 2d log d+ 1 ≤ d2 = 22 log2 d ≤ max
h∈[M ]

2h,

and thus, there exists an h ∈ [M ], such that ηh ≤ max

{√
KL(q,π)
T ,

√
2
T

}
≤ 2ηh.

Now, we provide the proof of the adaptive Φ-regret bound attained by the Meta MWU algorithm
(Algorithm 2) in Section 4.

Proof of Theorem 4.1. Since pt is a stationary distribution of ϕt, we have Reg(ϕ) =∑T
t=1 ⟨pt − ϕ(pt), ℓt⟩ =

∑T
t=1 ⟨ϕt(pt)− ϕ(pt), ℓt⟩ =

∑T
t=1

〈
ϕt − ϕ, ptℓ

⊤
t

〉
. Further using the

definition of ϕt from Algorithm 2, we can express Reg(ϕ) as the sum of the base and meta algo-
rithms’ regret as follows:

Reg(ϕ) =

T∑
t=1

〈
M∑
h=1

wt,hϕ
h
t − ϕ, ptℓ

⊤
t

〉

=

T∑
t=1

⟨wt − eh∗ , ℓwt ⟩+
T∑
t=1

〈
ϕh

∗

t − ϕ, ptℓ
⊤
t

〉
,

where ℓwt,h = p⊤t ϕ
h
t ℓt ∈ [0, 1] and h∗ ∈ [M ] is the index of an arbitrary base learner to be specified.

Regret of the meta MWU algorithm is bounded as
∑T
t=1 ⟨wt − eh∗ , ℓwt ⟩ ≤ O

(√
T log log d

)
from

Lemma B.1 since the prior is the uniform distribution over the 2⌈log2 d⌉ base algorithms.

Regret of the base MWU algorithm Bh∗ is
∑T
t=1

〈
ϕh

∗

t − ϕ, ptℓ
⊤
t

〉
≤ KL(q,π)

ηh∗
+ ηh∗T for any

q ∈ Qϕ based on Lemma B.1 and Algorithm 1. Choosing h∗ according to Lemma B.2, we
get

∑T
t=1

〈
ϕh

∗

t − ϕ, ptℓ
⊤
t

〉
≤ 3

√
TKL(q, π) + 2

√
2T . Thus, Algorithm 2 achieves Reg(ϕ) =

O
(√

TKL(q, π) +
√
T log log d

)
for all ϕ ∈ S and q ∈ Qϕ.

By selecting q to be a one-hot vector that puts all weights on ϕ, we obtain Eq. (3) with B =
O
(√
T log log d

)
for any ϕ ∈ Φb. Combining with Theorem 3.3, we prove the desired bound of

Reg(ϕ) = O
(√

(1 + cϕ log d)T +
√
T log log d

)
for all ϕ ∈ S.

B.2 Quantile Regret

In this section, we show the near-optimal ε-quantile regret bound promised by Algorithm 2. The
ε-quantile regret [Chaudhuri et al., 2009] is defined as the difference between the cumulative loss of
the learner and that of the ⌈εd⌉-th best expert, where ε ∈ [1/d, 1]. Let iε be the ⌈εd⌉-th best expert.
Then, the ε-quantile regret is calculated as:

Regε =

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,iε .

Negrea et al. [2021] prove the minimax bound for ε-quantile regret to be O
(√

T log 1
ε

)
. We show

that our Algorithm 2 achieves a near-optimal rate for quantile regret using Theorem 4.1 and ideas
similar to Remark 9.16 of [Orabona, 2019].
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Theorem B.3. For all ε ∈ [1/d, 1], Algorithm 2 guarantees

Regε ≤ O

(√
T log

1

ε
+
√
T log log d

)
.

Proof of Theorem B.3. We order the d experts in increasing order of their cumulative losses. Let
qε be the probability distribution over these d experts with probability mass 1

⌈εd⌉ on the first ⌈εd⌉
experts in the ordered list and 0 on the remaining experts. Let ϕε = 1q⊤ε , i.e., each row of ϕε is q⊤ε .
We can also express it as

∑d
i=1 qε,i(1e

⊤
i ), a convex combination of binary swap matrices. Therefore,

it can be regarded as a distribution over the set {1e⊤1 , . . . ,1e⊤d }.

Next, we consider the probability assigned by π to the swap matrices in this set. For all i ∈ [d],
π(1e⊤i ) ≥ 1

2dπψi(1e
⊤
i ) =

1
2d

(
1− 1

d

)d ≥ 1
8d for d ≥ 2. Now, we show that comparing against ϕε

gives us the desired bound for ε-quantile regret:

Regε =

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,iε

≤
T∑
t=1

⟨pt − qε, ℓt⟩

=

T∑
t=1

⟨ϕt(pt)− ϕε(pt), ℓt⟩ (since for all p ∈ ∆(d), ϕε(p) = qε)

≤ O
(√

TKL(qε, π) +
√
T log log d

)
(by Theorem 4.1)

= O


√√√√T

d∑
i=1

qε,i log
qε,i

π
(
1e⊤i

) +√T log log d


(only the elements in {1e⊤1 , . . . ,1e⊤d } have non-zero probability mass in qε)

≤ O

(√
T log

8d

⌈εd⌉
+
√
T log log d

)
(since qε,i = 1

⌈εd⌉ for all i ∈ [d])

≤ O

(√
T log

1

ε
+
√
T log log d

)
.

This completes the proof.

B.3 Kernelized MWU

In this section, we first prove Theorem 4.3, and then discuss how to further speed up Algorithm 3.

B.3.1 Proof of Theorem 4.3

Proof. The kernel function (Definition 4.2) used in Algorithm 3 can be computed as follows:

K(B,A) =
∑
ϕ∈Φb

π(ϕ)
∏

i,j∈[d]:ϕij=1

BijAij

=
1

2d

d∑
k=1

∑
ϕ∈Φb

∏
i,j∈[d]:ϕij=1

ψkijBijAij +
1

2

∑
ϕ∈Φb

∏
i,j∈[d]:ϕij=1

ψd+1
ij BijAij

(from Eq. (1))

=
1

2d

d∑
k=1

d∏
i=1

d∑
j=1

ψkijBijAij +
1

2

d∏
i=1

d∑
j=1

ψd+1
ij BijAij .
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Thus, it takes O(d3) time to evaluate it.

To prove the equivalence between Algorithm 1 and Algorithm 3, we denote J = 11⊤, J ij = J−eie⊤j ,
and lt,ϕ =

〈
ϕ, ptℓ

⊤
t

〉
. With some abuse in notation, for ϕ ∈ Φb and i ∈ [d], we denote by ϕ(i) the

unique index j ∈ [d] such that ϕij = 1.

According to MWU (Algorithm 1), qt(ϕ) =
π(ϕ) exp(−η

∑t−1
τ=1 lτ,ϕ)∑

ϕ′∈Φb
π(ϕ′) exp(−η

∑t−1
τ=1 lτ,ϕ′)

, for all ϕ ∈ Φb. From

Kernelized MWU (Algorithm 3), we have

K(Bt, J) =
∑
ϕ∈Φb

π(ϕ)
∏

i,j∈[d]:ϕij=1

(Bt)ijJij

=
∑
ϕ∈Φb

π(ϕ)
∏

i,j∈[d]:ϕij=1

exp

(
−η

t−1∑
τ=1

pτ,iℓτ,j

)

and

K(Bt, J ij) =
∑
ϕ∈Φb

π(ϕ)
∏

u,v∈[d]:ϕuv=1

(Bt)uv
(
J ij
)
uv

=
∑

ϕ∈Φb:ϕ(i)̸=j

π(ϕ)
∏

u,v∈[d]:ϕuv=1

exp

(
−η

t−1∑
τ=1

pτ,uℓτ,v

)
.

So, we have

K(Bt, J)−K(Bt, J ij) =
∑

ϕ∈Φb:ϕ(i)=j

π(ϕ)
∏

u,v∈[d]:ϕuv=1

exp

(
−η

t−1∑
τ=1

pτ,uℓτ,v

)

=
∑

ϕ∈Φb:ϕ(i)=j

π(ϕ) exp

(
−η

t−1∑
τ=1

lτ,ϕ

)

=
∑
ϕ∈Φb

π(ϕ) exp

(
−η

t−1∑
τ=1

lτ,ϕ

)
ϕij .

Therefore, for all i, j ∈ [d], we get,

(ϕt)ij =
K(Bt, J)−K(Bt, J ij)

K(Bt, J)

=

∑
ϕ∈Φb

π(ϕ) exp
(
−η
∑t−1
τ=1 lτ,ϕ

)
ϕij∑

ϕ∈Φb
π(ϕ) exp

(
−η
∑t−1
τ=1 lτ,ϕ

)
=
∑
ϕ∈Φb

qt(ϕ)ϕij ,

giving us the required equivalence: ϕt =
∑
ϕ∈Φb

qt(ϕ) · ϕ = Eϕ∼qt [ϕ].

B.3.2 More Efficient Implementation of Algorithm 3

Based on Theorem B.4, each iteration of Algorithm 3 can be implemented in O(d5) time. However,
we show below that by reusing intermediate statistics and expanding the terms ψk using Eq. (2), this
can be improved to O(d2).
Theorem B.4. Algorithm 6 outputs the same ϕt as Algorithm 3 for all t ∈ [T ] and has a time
complexity of O

(
d2
)

per iteration.

Proof. Similarly, we denote J = 11⊤ and J ij = J − eie⊤j . With some abuse in notation, for ϕ ∈ Φb
and i ∈ [d], we denote by ϕ(i) the unique index j ∈ [d] such that ϕij = 1. Direct calculation shows
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Algorithm 6 Faster Kernelized MWU with non-uniform prior
Input: learning rate η > 0.
Initialize: L0 ∈ Rd×d as the all-zero matrix.
for t = 1, 2, · · · , T do

Compute the quantities Vt ∈ Rd×d, ct ∈ R, Ct ∈ Rd×(d+1), and St ∈ Rd as follows:

(Vt)ik =
exp(−η(Lt−1)ik)∑d
j=1 exp(−η(Lt−1)ij)

, ∀ i, k ∈ [d]

ct =
1

d

d∑
k=1

d∏
i=1

(
(Vt)ik +

1

d(d− 2)

)
+

d∏
i=1

(
(Vt)ii +

1

d(d− 2)

)

(Ct)ik =


∏
u̸=i

(
(Vt)uk +

1

d(d− 2)

)
, k ∈ [d],

∏
u̸=i

(
(Vt)uu +

1

d(d− 2)

)
, k = d+ 1,

∀ i ∈ [d].

(St)i =

d∑
k=1

(Ct)ik, ∀ i ∈ [d]

(9)

Compute ϕt as:

(ϕt)ij =
(Vt)ij(Ct)ij

ctd
+

(Vt)ij(St)i
ctd2(d− 2)

+

(
1

d(d− 2)
+ 1 {i = j}

)
(Vt)ij(Ct)i,d+1

ct
, ∀ i, j ∈ [d]

(10)
Receive loss matrix ptℓ⊤t , and update Lt = Lt−1 + ptℓ

⊤
t .

that

K(Bt, J) =
∑
ϕ∈Φb

π(ϕ)
∏

i,j∈[d]:ϕij=1

(Bt)ij(J)ij

=
∑
ϕ∈Φb

 1

2d

d∑
k=1

∏
i,j∈[d]:ϕij=1

ψkij +
1

2

∏
i,j∈[d]:ϕij=1

ψd+1
ij

 ∏
i,j∈[d]:ϕij=1

exp (−η(Lt−1)ij)

=
1

2d

d∑
k=1

d∏
i=1

d∑
j=1

ψkij exp (−η(Lt−1)ij) +
1

2

d∏
i=1

d∑
j=1

ψd+1
ij exp (−η(Lt−1)ij) ,

where Lt−1 is defined in Algorithm 6.

Using the definition of ψk in Eq. (2), for i, k ∈ [d], we have

d∑
j=1

ψkij exp(−η(Lt−1)ij) =

(
1− 1

d

)
exp(−η(Lt−1)ik) +

1

d(d− 1)

∑
j ̸=k

exp(−η(Lt−1)ij)

=

(
d− 2

d− 1

)
exp(−η(Lt−1)ik) +

1

d(d− 1)

d∑
j=1

exp(−η(Lt−1)ij)

=

 d∑
j=1

exp(−η(Lt−1)ij)

((d− 2

d− 1

)
exp(−η(Lt−1)ik)∑d
j=1 exp(−η(Lt−1)ij)

+
1

d(d− 1)

)

=

(
d− 2

d− 1

) d∑
j=1

exp(−η(Lt−1)ij)

((Vt)ik + 1

d(d− 2)

)
.

(11)
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Similarly using the definition of ψd+1 in Eq. (2), we have

d∑
j=1

ψd+1
ij exp(−η(Lt−1)ij) =

(
d− 2

d− 1

) d∑
j=1

exp(−η(Lt−1)ij)

((Vt)ii + 1

d(d− 2)

)
. (12)

Thus,

K(Bt, J) =
1

2d

d∑
k=1

(
d− 2

d− 1

)d d∏
i=1

 d∑
j=1

exp(−η(Lt−1)ij)

 d∏
i=1

(
(Vt)ik +

1

d(d− 2)

)

+
1

2

(
d− 2

d− 1

)d d∏
i=1

 d∑
j=1

exp(−η(Lt−1)ij)

 d∏
i=1

(
(Vt)ii +

1

d(d− 2)

)

=
1

2

(
d− 2

d− 1

)d
ct

d∏
i=1

 d∑
j=1

exp(−η(Lt−1)ij)

 .

Similarly, we have

K(Bt, J ij) =
∑
ϕ∈Φb

π(ϕ)
∏

u,v∈[d]:ϕuv=1

(Bt)uv(J ij)uv

=
∑
ϕ∈Φb

 1

2d

d∑
k=1

∏
u,v∈[d]:ϕuv=1

ψkuv +
1

2

∏
u,v∈[d]:ϕuv=1

ψd+1
uv

 ∏
u,v∈[d]:ϕuv=1

(Bt)uv(J ij)uv

=
∑

ϕ:ϕ(i) ̸=j

 1

2d

d∑
k=1

∏
u,v∈[d]:ϕuv=1

ψkuv +
1

2

∏
u,v∈[d]:ϕuv=1

ψd+1
uv

 ∏
u,v∈[d]:ϕuv=1

exp (−η(Lt−1)uv) .

This implies:

K(Bt, J)−K(Bt, J ij)

=
∑

ϕ:ϕ(i)=j

 1

2d

d∑
k=1

∏
u,v∈[d]:ϕuv=1

ψkuv +
1

2

∏
u,v∈[d]:ϕuv=1

ψd+1
uv

 ∏
u,v∈[d]:ϕuv=1

exp (−η(Lt−1)uv)

=
1

2d

d∑
k=1

ψkij exp (−η(Lt−1)ij)
∑

ϕ:ϕ(i)=j

∏
u ̸=i:ϕuv=1

ψkuv exp (−η(Lt−1)uv)

+
1

2
ψd+1
ij exp (−η(Lt−1)ij)

∑
ϕ:ϕ(i)=j

∏
u̸=i:ϕuv=1

ψd+1
uv exp (−η(Lt−1)uv)

=
1

2d

d∑
k=1

ψkij exp (−η(Lt−1)ij)
∏
u̸=i

d∑
v=1

ψkuv exp (−η(Lt−1)uv)

+
1

2
ψd+1
ij exp (−η(Lt−1)ij)

∏
u̸=i

d∑
v=1

ψd+1
uv exp (−η(Lt−1)uv)

=
1

2d

d∑
k=1

ψkij exp (−η(Lt−1)ij)
∏
u̸=i

(
d− 2

d− 1

)( d∑
v=1

exp(−η(Lt−1)uv)

)(
(Vt)uk +

1

d(d− 2)

)

+
1

2
ψd+1
ij exp (−η(Lt−1)ij)

∏
u̸=i

(
d− 2

d− 1

)( d∑
v=1

exp(−η(Lt−1)uv)

)(
(Vt)uu +

1

d(d− 2)

)
(from Eq. (11) and Eq. (12))
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=
1

2d

d∑
k=1

ψkij
exp (−η(Lt−1)ij)∑d
v=1 exp (−η(Lt−1)iv)

(
d− 2

d− 1

)d−1
(

d∏
u=1

d∑
v=1

exp(−η(Lt−1)uv)

)
(Ct)ik

+
1

2
ψd+1
ij

exp (−η(Lt−1)ij)∑d
v=1 exp (−η(Lt−1)iv)

(
d− 2

d− 1

)d−1
(

d∏
u=1

d∑
v=1

exp(−η(Lt−1)uv)

)
(Ct)i,d+1

(from Eq. (9))

=
1

2

(
d− 2

d− 1

)d−1
(

d∏
u=1

d∑
v=1

exp(−η(Lt−1)uv)

)
(Vt)ij

(
1

d

d∑
k=1

ψkij(Ct)ik + ψd+1
ij (Ct)i,d+1

)
(from Eq. (9))

Therefore, we get

K(Bt, J)−K(Bt, J ij)

K(Bt, J)
=

d− 1

ct(d− 2)
(Vt)ij

(
1

d

d∑
k=1

ψkij(Ct)ik + ψd+1
ij (Ct)i,d+1

)
where the left-hand side is how (ϕt)ij is defined in Algorithm 3.

Finally, we consider the following two cases.
Case 1: for j ̸= i, we have

(ϕt)ij =
d− 1

ctd(d− 2)
(Vt)ij

((
1− 1

d

)
(Ct)ij +

1

d(d− 1)

∑
k ̸=j

(Ct)ik

)
+

d− 1

ct(d− 2)
(Vt)ij

1

d(d− 1)
(Ct)i,d+1 (from Eq. (2))

=
(Vt)ij(Ct)ij

ctd
+

(Vt)ij(St)i
ctd2(d− 2)

+
1

d(d− 2)

(Vt)ij(Ct)i,d+1

ct
. (from Eq. (9))

Case 2: for j = i, we have

(ϕt)ij =
d− 1

ctd(d− 2)
(Vt)ij

((
1− 1

d

)
(Ct)ij +

1

d(d− 1)

∑
k ̸=j

(Ct)ik

)
+

d− 1

ct(d− 2)
(Vt)ij

(d− 1

d

)
(Ct)i,d+1 (from Eq. (2))

=
(Vt)ij(Ct)ij

ctd
+

(Vt)ij(St)i
ctd2(d− 2)

+
(d− 1)2

d(d− 2)
· (Vt)ij(Ct)i,d+1

ct
. (from Eq. (9))

Combining the cases above gives us how (ϕt)ij is defined in Algorithm 6, establishing the claimed
equivalence.

To calculate the time complexity of computing ϕt, note that Vt can be calculated in O
(
d2
)

time. Given Vt, computing ct takes another O
(
d2
)

time. To compute Ct, we can first compute∏d
u=1

(
(Vt)uk +

1
d(d−2)

)
, ∀ k ∈ [d] and

∏d
u=1

(
(Vt)uu +

1
d(d−2)

)
in O

(
d2
)

time. Then, these

values can be used to calculate the matrix Ct in O
(
d2
)

time because we can compute each entry of
Ct in constant time. With Ct, St can also be computed in O

(
d2
)

time. Therefore, computing ϕt
takes O

(
d2
)

time.

C Omitted Details in Section 5

First, we include the meta MWU algorithm discussed in Section 5 in Algorithm 7, which uses a
base algorithm shown in Algorithm 8. We use U ≜ [d + 1] × [M ] for notational convenience,
where M = 2⌈log2 d⌉. We now show the guarantee for our proposed prior-aware BM-reduction
(Algorithm 8).
Theorem C.1. Suppose that πψ is a ψ-induced distribution as defined in Definition 3.1. Then
Algorithm 8 with prior πψ , learning rate η > 0, and SubAlg being MWU (Algorithm 5 with A = [d])

guarantees
∑T
t=1

〈
ϕt − ϕ, ptℓ

⊤
t

〉
≤

log 1
πψ(ϕ)

η + ηT for all ϕ ∈ Φb.
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Algorithm 7 Meta MWU Algorithm for Learning Multiple BM-Reductions

1 Initialization: Set learning rate η =
√

log((d+1)·2⌈log2 d⌉)
T and w1 = 1

|U|1 ∈ ∆(U), where U =

[d+ 1]× [M ]; initialize |U| base-learner Bk,h, (k, h) ∈ U , where Bk,h is an instance of Algorithm 8
with prior ψk, learning rate ηh =

√
2h/T , and subroutine SubAlg being MWU (Algorithm 5 with

A = [d]).
for t = 1, 2, · · · , T do

2 Receive ϕk,ht ∈ S from Bk,h for each (k, h) ∈ U and compute ϕt =
∑

(k,h)∈U wt,k,hϕ
k,h
t .

3 Play the stationary distribution pt of ϕt (that is, pt = ϕt(pt)) and receive loss ℓt.
4 Update wt+1 such that wt+1,k,h ∝ wt,k,h exp(−ηℓwt,k,h) where ℓwt,k,h = ⟨ϕk,ht , ptℓ

⊤
t ⟩.

5 Send loss matrix ptℓ⊤t to Bk,h for each (k, h) ∈ U .

Algorithm 8 Prior-Aware BM-Reduction
Input: a prior ψ ∈ S , a learning rate η > 0, and an external regret minimization subroutine SubAlg.

1 Initialize: d instances of SubAlg, denoted by SubAlg1, . . . ,SubAlgd, where SubAlgk uses learning
rate η and prior distribution ψk: ∈ ∆(d).

for t = 1, 2 . . . , T do
2 Propose ϕt ∈ S where the k-th row ϕt,k: ∈ ∆(d) is the output of SubAlgk.
3 Receive a loss matrix ptℓ⊤t and send the k-th row to SubAlgk for each k ∈ [d].

Proof of Theorem C.1. First we decompose
∑T
t=1⟨ϕt − ϕ, ptℓ

⊤
t ⟩ as

∑T
t=1

∑d
i=1⟨ϕt,i: − ϕi:, pt,iℓt⟩.

For each i, based on the algorithm and Lemma B.1, we have

d∑
i=1

⟨ϕt,i: − ϕi:, pt,iℓt⟩ ≤
log 1

ψi,ϕ(i)

η
+ η

T∑
t=1

pt,i

where ϕ(i) denotes the unique index j such that ϕij = 1. Noting that
∑d
i=1 ψi,ϕ(i) is exactly πψ(ϕ)

by definition, we have thus proven

T∑
t=1

⟨ϕt − ϕ, ptℓ
⊤
t ⟩ ≤

d∑
i=1

(
log 1

ψi,ϕ(i)

η
+ η

T∑
t=1

pt,i

)
=

log 1
πψ(ϕ)

η
+ ηT.

Next, we provide the proof for the adaptive Φ-regret achieved by Algorithm 7.

Proof of Theorem 5.1. Since pt is a stationary distribution of ϕt, we have Reg(ϕ) =∑T
t=1 ⟨pt − ϕ(pt), ℓt⟩ =

∑T
t=1 ⟨ϕt(pt)− ϕ(pt), ℓt⟩ =

∑T
t=1

〈
ϕt − ϕ, ptℓ

⊤
t

〉
. Using the definition

of ϕt and ℓwt from Algorithm 7, for any (k, h) ∈ U , we decompose Reg(ϕ) as

Reg(ϕ) =

T∑
t=1

⟨ϕt − ϕ, ptℓ
⊤
t ⟩

=

T∑
t=1

〈 ∑
(k,h)∈U

wt,k,hϕ
k,h
t − ϕ, ptℓ

⊤
t

〉

=

T∑
t=1

⟨wt − ek,h, ℓ
w
t ⟩+

T∑
t=1

〈
ϕk,ht − ϕ, ptℓ

⊤
t

〉
.

Applying Lemma B.1, the first term can be bounded as

T∑
t=1

⟨wt − ek,h, ℓ
w
t ⟩ ≤ 2

√
T log ((d+ 1) · 2⌈log2 d⌉) ≤ 4

√
T log d. (13)
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For the second term, by Theorem C.1, it holds that

T∑
t=1

⟨ϕk,ht − ϕ, ptℓ
⊤
t ⟩ ≤

log 1
π
ψk

(ϕ)

ηh
+ ηhT. (14)

Summing up Eq. (13) and Eq. (14), we can bound Reg(ϕ) as

Reg(ϕ) ≤
log 1

π
ψk

(ϕ)

ηh
+ ηhT + 4

√
T log d.

Since the above inequality holds for all k ∈ [d+ 1], we have

Reg(ϕ) ≤ min
k∈[d+1]

log 1
π
ψk

(ϕ)

ηh
+ ηhT + 4

√
T log d

=
log 1

maxk∈[d+1] πψk (ϕ)

ηh
+ ηhT + 4

√
T log d

≤
log 1

π(ϕ)

ηh
+ ηhT + 4

√
T log d, (15)

by the definition of π (Definition 3.2). It is clear that Eq. (15) attains its minimum when ηh is√
log 1

π(ϕ)

T . Similar to Lemma B.2, we now show that there exists h⋆ such that ηh⋆ is close to this
optimum. Since ψkij ≥ 1

d2 for all k ∈ [d+ 1] and i, j ∈ [d], it holds that

min
h

2h = 2 ≤ max

{
log

1

π(ϕ)
, 2

}
≤ d2 = 22 log2 d ≤ max

h
2h

Therefore, there exists h⋆ such that

2h
⋆

≤ max

{
log

1

π(ϕ)
, 2

}
≤ 2h

⋆+1,

and thus

log 1
π(ϕ)

ηh⋆
+ ηh⋆T = log

1

π(ϕ)
·
√

T

2h⋆
+

√
2h⋆

T
T ≤ 3

√
T log

1

π(ϕ)
+ 2

√
T .

Substituting it into Eq. (15) (by picking h = h⋆), we have Reg(ϕ) ≤ 3
√
T log 1

π(ϕ) + 2
√
T +

4
√
T log d = O

(√
T log 1

π(ϕ) +
√
T log d

)
. Therefore, Eq. (3) is satisfied with B =

√
T log d.

The second statement of the theorem then follows directly from Theorem 3.3.

D Omitted Details in Section 6

In this section, we provide the omitted details and proofs for our results in Section 6. The section is
organized as follows. In Appendix D.1, we include the pseudocode for OMWU. In Appendix D.2,
we introduce several important lemmas that will be useful in our analysis. Then, in Appendix D.3,
we provide the full proof for Theorem 6.4. Specifically, we start with a proof sketch, showing how
we utilize the nonnegative-social-external-regret property to show that the path-length of the entire
learning dynamic is bounded by O(N log d), followed by a full proof of Theorem 6.4. Importantly,
following the notation convention introduced in Section 6, we use superscript (n) to denote
variables associated with agent/player n.

D.1 Pseudocode for OMWU

Here, we include the pseudocode for OMWU (Algorithm 9) that is used in Algorithm 4. There are
two possible outputs for Algorithm 9 at each round t. For base learner Bd+2 in Algorithm 4, the
output in round t is ϕt ∈ Rd×d, while for subroutines used by Bk for k ∈ [d + 1], the output is
pt ∈ ∆(d).
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Algorithm 9 OMWU
Input: learning rate η > 0; a prior distribution p̂1 ∈ ∆(d).

1 Initialize: ℓ0 = 0 ∈ Rd.
for t = 1, 2 . . . , T do

2 Compute pt such that pt,i ∝ p̂t,i exp(−ηℓt−1,i) for i ∈ [d] and ϕt = 1p⊤t ∈ Rd×d.
3 Receive ℓt and compute p̂t+1 such that p̂t+1,i ∝ p̂t,i exp(−ηℓt,i) for i ∈ [d].

D.2 Auxiliary Lemmas

To analyze the performance of OMWU, we use following lemma from Syrgkanis et al. [2015].
Lemma D.1 (Theorem 18 in [Syrgkanis et al., 2015]). OMWU (Algorithm 9) with learning rate
η > 0 guarantees that

T∑
t=1

⟨pt − u, ℓt⟩ ≤
KL(u, p1)

η
+ η

T∑
t=2

∥ℓt − ℓt−1∥2∞ − 1

8η

T∑
t=2

∥pt − pt−1∥21.

The next lemma shows that the loss vector difference between consecutive rounds for each agent n is
bounded by the sum of the strategy differences over all other agents.
Lemma D.2. For any t ∈ [T ], n ∈ [N ], we have

∥ℓ(n)t − ℓ
(n)
t−1∥2∞ ≤ (N − 1)

∑
j ̸=n

∥p(j)t − p
(j)
t−1∥21.

Proof. For any action a ∈ [d]:

|ℓ(n)t,a − ℓ
(n)
t−1,a| =

∣∣∣∣∣∣
∑
a(−n)

∏
j ̸=n

p
(j)
t,aj −

∏
j ̸=n

p
(j)
t−1,aj

 · ℓ(n)(a,a(−n))

∣∣∣∣∣∣
≤
∑
a(−n)

∣∣∣∣∣∣
∏
j ̸=n

p
(j)
t,aj −

∏
j ̸=n

p
(j)
t−1,aj

∣∣∣∣∣∣ (since |ℓ(n)(a)| ≤ 1)

≤
∑
j ̸=n

d∑
i=1

|p(j)t,i − p
(j)
t−1,i|

=
∑
j ̸=n

∥p(j)t − p
(j)
t−1∥1.

Taking square on both sides, we know that

∥ℓ(n)t − ℓ
(n)
t−1∥2∞ ≤

∑
j ̸=n

∥p(j)t − p
(j)
t−1∥1

2

≤ (N − 1)
∑
j ̸=n

∥p(j)t − p
(j)
t−1∥21.

The next lemma shows how the difference between strategies in consecutive rounds is related to the
stability of both the base learners and the meta learner.
Lemma D.3. Suppose that every agent n ∈ [N ] applies Algorithm 4, then for all t ≥ 2, n ∈ [N ], we
have ∥∥∥p(n)t − p

(n)
t−1

∥∥∥2
1
≤ 2

d+2∑
k=1

w
(n)
t,k

∥∥∥p̃(n),kt − p̃
(n),k
t−1

∥∥∥2
1
+ 2

∥∥∥w(n)
t − w

(n)
t−1

∥∥∥2
1
,

where p̃(n),kt = ϕ
(n),k
t (p

(n)
t ) for each k ∈ [d+ 2].
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Proof. Direct calculation shows that∥∥∥p(n)t − p
(n)
t−1

∥∥∥2
1

=

∥∥∥∥(ϕ(n)t

)⊤
p
(n)
t −

(
ϕ
(n)
t−1

)⊤
p
(n)
t−1

∥∥∥∥2
1

(p(n)t is stationary distribution of ϕ(n)t )

=

∥∥∥∥∥∥
(
d+2∑
k=1

w
(n)
t,k ϕ

(n),k
t

)⊤

p
(n)
t −

(
d+2∑
k=1

w
(n)
t−1,kϕ

(n),k
t−1

)⊤

p
(n)
t−1

∥∥∥∥∥∥
2

1

(definition of ϕ(n)t )

=

∥∥∥∥∥
(
d+2∑
k=1

w
(n)
t,k p̃

(n),k
t

)
−

(
d+2∑
k=1

w
(n)
t−1,kp̃

(n),k
t−1

)∥∥∥∥∥
2

1

(definition of p̃(n),kt )

≤ 2

∥∥∥∥∥
(
d+2∑
k=1

w
(n)
t,k p̃

(n),k
t

)
−

(
d+2∑
k=1

w
(n)
t,k p̃

(n),k
t−1

)∥∥∥∥∥
2

1

+ 2

∥∥∥∥∥
(
d+2∑
k=1

w
(n)
t,k p̃

(n),k
t−1

)
−

(
d+2∑
k=1

w
(n)
t−1,kp̃

(n),k
t−1

)∥∥∥∥∥
2

1

≤ 2

d+2∑
k=1

w
(n)
t,k

∥∥∥p̃(n),kt − p̃
(n),k
t−1

∥∥∥2
1
+ 2

∥∥∥w(n)
t − w

(n)
t−1

∥∥∥2
1
. (Jensen’s inequality)

The next lemma further bounds the scale of ∥p̃(n),kt −p̃(n),kt−1 ∥21 with respect to the stationary distribution
difference ∥p(n)t − p

(n)
t−1∥21 and the base learner’s decision differences.

Lemma D.4. For all k ∈ [d + 2] and n ∈ [N ], ∥p̃(n),kt − p̃
(n),k
t−1 ∥21 ≤ 2∥p(n)t − p

(n)
t−1∥21 +

2
∑d
j=1

∥∥∥ϕ(n),kt,j: − ϕ
(n),k
t−1,j:

∥∥∥2
1
.

Proof. By definition of p̃(n),kt , we can bound ∥p̃(n),kt − p̃
(n),k
t−1 ∥21 as follows:

∥p̃(n),kt − p̃
(n),k
t−1 ∥21

=
∥∥∥(ϕ(n),kt )⊤p

(n)
t − (ϕ

(n),k
t−1 )⊤p

(n)
t−1

∥∥∥2
1

≤ 2
∥∥∥(ϕ(n),kt )⊤(p

(n)
t − p

(n)
t−1)

∥∥∥2
1
+ 2

∥∥∥(ϕ(n),kt − ϕ
(n),k
t−1 )⊤p

(n)
t−1

∥∥∥2
1

= 2

 d∑
j=1

∣∣∣〈ϕ(n),kt,:j , p
(n)
t − p

(n)
t−1

〉∣∣∣
2

+ 2

 d∑
j=1

∣∣∣〈ϕ(n),kt,:j − ϕ
(n),k
t−1,:j), p

(n)
t−1

〉∣∣∣
2

= 2

 d∑
j=1

∣∣∣∣∣
d∑
i=1

ϕ
(n),k
t,ij (p

(n)
t,i − p

(n)
t−1,i)

∣∣∣∣∣
2

+ 2

 d∑
j=1

∣∣∣∣∣
d∑
i=1

p
(n)
t−1,i(ϕ

(n),k
t,ij − ϕ

(n),k
t−1,ij)

∣∣∣∣∣
2

≤ 2

 d∑
j=1

d∑
i=1

ϕ
(n),k
t,ij

∣∣∣p(n)t,i − p
(n)
t−1,i

∣∣∣
2

+ 2

 d∑
j=1

d∑
i=1

p
(n)
t−1,i

∣∣∣ϕ(n),kt,ij − ϕ
(n),k
t−1,ij

∣∣∣
2

= 2

 d∑
i=1

∣∣∣p(n)t,i − p
(n)
t−1,i

∣∣∣ d∑
j=1

ϕ
(n),k
t,ij

2

+ 2

(
d∑
i=1

p
(n)
t−1,i

∥∥∥ϕ(n),kt,i: − ϕ
(n),k
t−1,i:

∥∥∥
1

)2

= 2
∥∥∥p(n)t − p

(n)
t−1

∥∥∥2
1
+ 2

(
d∑
i=1

p
(n)
t−1,i

∥∥∥ϕ(n),kt,i: − ϕ
(n),k
t−1,i:

∥∥∥
1

)2

(since ϕ(n),kt ∈ S)

≤ 2∥p(n)t − p
(n)
t−1∥21 + 2

d∑
i=1

p
(n)
t−1,i

∥∥∥ϕ(n),kt,i: − ϕ
(n),k
t−1,i:

∥∥∥2
1

(Cauchy-Schwarz inequality)
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≤ 2∥p(n)t − p
(n)
t−1∥21 + 2

d∑
i=1

∥∥∥ϕ(n),kt,i: − ϕ
(n),k
t−1,i:

∥∥∥2
1
,

which finishes the proof.

The next lemma shows the multiplicative stability of the meta learner’s strategy.
Lemma D.5 (Multiplicative stability lemma). Suppose that each player runs Algorithm 4 with
ηm ≤ 1

8(1+4λ) , we have for all t ∈ [T ], n ∈ [N ], and k ∈ [d+ 2], w(n)
t,k ∈ [ 12w

(n)
t−1,k, 2w

(n)
t−1,k].

Proof. We omit the superscript (n) for conciseness. By definition of ℓwt , mw
t , and ct, we know that

max{∥ℓwt + ct∥∞, ∥mw
t + ct∥∞} ≤ 1 + 4λ for all t ∈ [T ]. Therefore, according to the update rule

of wt and ŵt, we know that

exp(−1/8)wt,k ≤ ŵt,k =
wt,k exp(ηm(mw

t,k + ct,k))∑d+2
i=1 wt,i exp(ηm(mw

t,i + ct,i))
≤ exp(1/8) · wt,k,

exp(−1/8)ŵt−1,k ≤ ŵt,k =
ŵt−1,k exp(−ηm(ℓwt−1,k + ct−1,k))∑d+2
i=1 ŵt−1,i exp(−ηm(mw

t−1,i + ct−1,i))
≤ exp(1/8) · ŵt−1,k.

Therefore, we know that wt,k ≤ exp(3/8)wt−1,k ≤ 2wt−1,k and wt,k ≥ exp(−3/8)wt−1,k ≥
1
2wt−1,k.

The next lemma bounds the external regret for the meta learner with respect to an arbitrary distribution
over the d+ 2 base learners.
Lemma D.6 (Meta Regret Bound). Suppose that all players apply Algorithm 4 with λ ≤ 1

4ηm
. Then,

we have
T∑
t=1

〈
w

(n)
t − u, ℓ

(n),w
t

〉
≤ O(λ) +

KL(u,w(n)
1 )

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21

+ λ

T−1∑
t=2

d+2∑
k=1

uk∥p̃(n),kt − p̃
(n),k
t−1 ∥21 −

λ

4

T∑
t=2

∥p(n)t − p
(n)
t−1∥21,

for all agent n ∈ [N ] and u ∈ ∆(d+ 2).

Proof. According to Lemma D.1, we know that for each u ∈ ∆(d+ 2) and n ∈ [N ],
T∑
t=1

〈
w

(n)
t − u, ℓ

(n),w
t + c

(n)
t

〉
≤ KL(u,w(n)

1 )

ηm
+ ηm

T∑
t=2

∥ℓ(n),wt −m
(n),w
t ∥2∞ − 1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21 (Lemma D.1)

=
KL(u,w(n)

1 )

ηm
+ ηm

T∑
t=2

max
i∈[d+2]

∣∣∣p(n)⊤t ϕ
(n),i
t ℓ

(n)
t − p

(n)⊤

t−1 ϕ
(n),i
t ℓ

(n)
t−1

∣∣∣2 − 1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21

≤ KL(u,w(n)
1 )

ηm
− 1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21

+ 2ηm

T∑
t=2

max
k∈[d+2]

(∣∣∣〈p(n)t − p
(n)
t−1, ϕ

(n),k
t ℓ

(n)
t

〉∣∣∣2 + 2
∣∣∣p(n)⊤t−1 ϕ

(n),k
t ℓ

(n)
t − p

(n)⊤

t−1 ϕ
(n),k
t ℓ

(n)
t−1

∣∣∣2)

≤ KL(u,w(n)
1 )

ηm
+ ηm

T∑
t=2

max
i∈[d+2]

(
2
∥∥∥p(n)⊤t ϕ

(n),i
t − p

(n)⊤

t−1 ϕ
(n),i
t

∥∥∥2
1
+ 2

∥∥∥ℓ(n)t − ℓ
(n)
t−1

∥∥∥2
∞

)

− 1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21 (using Hölder’s inequality)

33



≤ KL(u,w(n)
1 )

ηm
+ 2ηm(N − 1)

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 −

1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21,

where the last inequality uses Lemma D.2. Recall the definition c
(n)
t,k = λ∥(ϕ(n),kt−1 )⊤p

(n)
t−1 −

(ϕ
(n),k
t−2 )⊤p

(n)
t−2∥21 = λ∥p̃(n),kt−1 − p̃

(n),k
t−2 ∥21 for t ≥ 3 and c(n)t,k = 0 for t ∈ {1, 2}, we can further

upper bound the meta regret as follows:

T∑
t=1

〈
w

(n)
t − u, ℓ

(n),w
t

〉
≤ KL(u,w(n)

1 )

ηm
+ 2ηm(N − 1)

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 −

1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21

− λ

T∑
t=3

d+2∑
k=1

w
(n)
t,k ∥p̃

(n),k
t−1 − p̃

(n),k
t−2 ∥21 + λ

T∑
t=3

d+2∑
k=1

uk∥p̃(n),kt−1 − p̃
(n),k
t−2 ∥21

≤ KL(u,w(n)
1 )

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + λ

T∑
t=3

d+2∑
k=1

uk∥p̃(n),kt−1 − p̃
(n),k
t−2 ∥21

− 1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21 −

λ

2

T∑
t=3

d+2∑
k=1

w
(n)
t−1,k∥p̃

(n),k
t−1 − p̃

(n),k
t−2 ∥21

(w(n)
t−1,k ≤ 2w

(n)
t,k using Lemma D.5)

= O(λ) +
KL(u,w(n)

1 )

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + λ

T∑
t=3

d+2∑
k=1

uk∥p̃(n),kt−1 − p̃
(n),k
t−2 ∥21

− 1

8ηm

T∑
t=2

∥w(n)
t − w

(n)
t−1∥21 −

λ

2

T∑
t=2

d+2∑
k=1

w
(n)
t,k ∥p̃

(n),k
t − p̃

(n),k
t−1 ∥21

≤ O(λ) +
KL(u,w(n)

1 )

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + λ

T∑
t=3

d+2∑
k=1

uk∥p̃(n),kt−1 − p̃
(n),k
t−2 ∥21

−min

{
1

16ηm
,
λ

4

} T∑
t=2

∥p(n)t − p
(n)
t−1∥21 (using Lemma D.3)

≤ O(λ) +
KL(u,w(n)

1 )

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21

+ λ

T−1∑
t=2

d+2∑
k=1

uk∥p̃(n),kt − p̃
(n),k
t−1 ∥21 −

λ

4

T∑
t=2

∥p(n)t − p
(n)
t−1∥21, (16)

where the last inequality uses the condition that λ ≤ 1
4ηm

.

D.3 Main Proofs in Section 6

In this section, we provide the proof for Theorem 6.4. Before showing the proof, we first provide an
outline to highlight the technical novelties in proving Theorem 6.4.

D.3.1 Proof Outline

As shown in previous literature (e.g. Anagnostides et al. [2022b], Zhang et al. [2022]), in order to
show fast convergence, the key is to control the stability of the strategies between consecutive rounds.
Anagnostides et al. [2022b] use log-barrier regularized online mirror descent to control the sum of
the squared path-length between consecutive rounds over the horizon and all the players. However,
due to the use of log-barrier regularizer, the obtained bound O(Nd3 log T ) suffers from a larger
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polynomial dependency of d and log T . Somewhat surprisingly, we show in the following theorem
that if the game satisfies Definition 6.3, Algorithm 4 (with entropy regularizer) achieves a tighter
O(N log d) bound.

Theorem D.7. If each player n ∈ [N ] applies Algorithm 4 with ηm = 1
64N and λ = N , then we

have
T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 ≤ O(N log d).

We provide a proof sketch for Theorem D.7 (with full proof deferred to Appendix D.3.2) and see why
our modifications to both the meta learner and the base earners are crucial to achieve this. To prove
Theorem D.7, we consider the each player n’s external regret, which can be decomposed as the meta
learner regret with respect to Bd+2 plus Bd+2’s external regret:

RegExtn (u) =

T∑
t=1

〈
w

(n)
t − ed+2, ℓ

(n),w
t

〉
︸ ︷︷ ︸

META-REGRET

+

T∑
t=1

〈
ϕ
(n),d+2
t − 1u⊤, p

(n)
t ℓ

(n)⊤

t

〉
︸ ︷︷ ︸

BASE-REGRET

.

Applying Lemma D.1, Lemma D.6, and some direct calculations, we can show that META-
REGRET and BASE-REGRET are bounded as follows:

META-REGRET ≤ O(λ) +
KL(ed+2, w

(n)
1 )

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21

+ λ

T−1∑
t=2

∥p̃(n),d+2
t − p̃

(n),d+2
t−1 ∥21 −

λ

4

T∑
t=2

∥p(n)t − p
(n)
t−1∥21 (17)

BASE-REGRET ≤ log d

η
+ η

T∑
t=2

∥ℓ(n)t − ℓ
(n)
t−1∥2∞ − 1

8η

T∑
t=2

∥p̃(n),d+2
t − p̃

(n),d+2
t−1 ∥21, (18)

where Eq. (18) uses the fact that ϕ(n),d+2
t = 1p̃

(n),d+2⊤

t . According to Lemma D.2, we can further
upper bound both ∥ℓ(n)t − ℓ

(n)
t−1∥2∞ by O(N

∑N
n=1 ∥p

(n)
t − p

(n)
t−1∥21). Now, we see the importance of

including correction terms in the meta-algorithm. Without c(n)t , the two negative term in Eq. (18)
is not enough to cancel the above positive term. Thanks to the correction term, we are able to
cancel the positive term O((ηm + η)N

∑T
t=2

∑N
n=1 ∥p

(n)
t − p

(n)
t−1∥21) by using half of the negative

term −λ
8

∑T
t=1 ∥p

(n)
t − p

(n)
t−1∥21, taking a summation over n ∈ [N ], and picking λ, ηm, and η

appropriately. Moreover, the positive term induced by the correction can be canceled by the negative
term in Eq. (18). Therefore, summing over BASE-REGRET and META-REGRET for all n ∈ [N ] with
ηm = Θ(1/N), η = Θ(1/N), and λ = N , we can obtain that

∑N
n=1 Reg

Ext
n ≤ O(N2 log d) −

Ω(N
∑N
n=1

∑T
t=2 ∥p

(n)
t − p

(n)
t−1∥21). Further using the property that

∑N
n=1 Reg

Ext
n ≥ 0 finish the

proof.

Note that the above proof sketch indeed also proves an O(N log d) external regret for each individual
player. To obtain comparator-adaptive Φ-regret, we first consider ϕ ∈ Φb and obtain O(cϕ log d+
N2 log d) by picking the meta learner’s comparator u ∈ ∆(d + 2) to be a distribution based on ϕ.
Then, the final result is achieved by taking a convex combination of the bound.

D.3.2 Proof of Theorem D.7

In this section, we provide a detailed proof for Theorem D.7.

Proof of Theorem D.7. Fix n ∈ [N ] and consider the base-regret and the meta-regret for agent n with
respect to the base algorithm Ad+2, which is Algorithm 9 handling the external regret. According
to the construction of ϕ(n),d+2

t , we have ϕ(n),d+2
t,i: = p̃

(n),d+2
t for all i ∈ [d], meaning that p̃(n),d+2

t

equals to the decision made by Ad+2 at round t. Therefore, using Lemma D.1, the base regret of
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Ad+2 with respect to u ∈ ∆(d) is bounded as follows:

T∑
t=1

〈
p̃
(n)
t,1 − u, ℓ

(n)
t

〉
≤ log d

η
+ η

T∑
t=2

∥ℓ(n)t − ℓ
(n)
t−1∥2∞ − 1

8η

T∑
t=2

∥p̃(n)t,1 − p̃
(n)
t−1,1∥21

≤ log d

η
+ η(N − 1)

T∑
t=2

∑
j ̸=n

∥p(j)t − p
(j)
t−1∥21 −

1

8η

T∑
t=2

∥p̃(n)t,1 − p̃
(n)
t−1,1∥21.

(19)

As for meta-regret, applying Lemma D.6 with u = ed+2 and noticing that w(n)
1,d+2 = 1

4 , we have

T∑
t=1

〈
w

(n)
t − ed+2, ℓ

(n),w
t

〉
≤ O(λ) +

log 4

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21

+ λ

T−1∑
t=2

∥p̃(n)t,1 − p̃
(n)
t−1,1∥21 −

λ

4

T∑
t=2

∥p(n)t − p
(n)
t−1∥21. (20)

Summing up Eq. (19) and Eq. (20), we can bound the external regret for player n as follows:

RegExtn =

T∑
t=1

〈
p
(n)
t − u, ℓ

(n)
t

〉
≤ O(λ) +

log 4

ηm
+

log d

η
+ (2ηm + η)N

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21

+ λ

T−1∑
t=2

∥p̃(n),d+2
t − p̃

(n),d+2
t−1 ∥21 −

1

8η

T∑
t=2

∥p̃(n),d+2
t − p̃

(n),d+2
t−1 ∥21 −

λ

4

T∑
t=2

∥p(n)t − p
(n)
t−1∥21

≤ O(λ) +
log 4

ηm
+

log d

η
+ (2ηm + η)N

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 −

λ

4

T∑
t=2

∥p(n)t − p
(n)
t−1∥21,

(21)

where the last inequality uses λ = N ≤ 1
8η = 2N . Taking summation over n ∈ [N ] and using

Definition 6.3 that
∑N
n=1 Reg

Ext
n ≥ 0, we know that

0 ≤
N∑
n=1

RegExtn

≤ O(Nλ) +
N log 4

ηm
+
N log d

η
+

(
(2ηm + η)N2 − λ

4

) T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21.

According to the choice of λ, we know that λ8 = N
8 ≥ 3N

32 = (2ηm + η)N2. Rearranging the terms
gives

N

8

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 ≤ O(N2 log d),

which finishes the proof.

D.3.3 Proof of Theorem 6.4

Now we prove our main results Theorem 6.4 for multi-agent games. Specifically, we split the proof
into three parts and first prove the external regret guarantee.

Theorem D.8. Suppose that all agents run Algorithm 4 with λ = N , ηm = 1
64N . Then, we have

RegExtn ≤ O(N log d).
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Proof. According to Eq. (21), we know that

Regn ≤ O(λ) +
log 4

ηm
+

log d

η
+ (2ηm + η)N

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21

≤ O(N +N log d) +O

(
T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21

)
≤ O(N log d),

where the second inequality is due to the choice of ηm, η, and the final inequality is due to Theo-
rem D.7.

Next, we prove our results for Φ-regret. As we sketched in Appendix D.3.1, we first prove our results
for binary transformation matrices ϕ ∈ Φb. First, the following theorem shows that our algorithm
achieves Regn(ϕ) = O(N(d− dself

ϕ ) log d+N2 log d) for all ϕ ∈ Φb.

Theorem D.9. Suppose that all agents run Algorithm 4 with λ = N , ηm = 1
64N . Then, we have

Regn(ϕ) ≤ O((d− dself
ϕ )N log d+N2 log d) for all ϕ ∈ Φb.

Proof. To achieve Regn(ϕ) ≤ O(N(d− dself
ϕ ) log d+N2 log d), we consider the regret with respect

to base algorithm Ad+1. According to Lemma D.6 and Lemma D.4, we bound the meta-regret as
follows:
T∑
t=1

〈
w

(n)
t − ed+1, ℓ

(n),w
t

〉
≤ O(λ) +

log 4

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + λ

T−1∑
t=2

∥p̃(n)t,i − p̃
(n)
t−1,i∥

2
1 −

λ

4

T∑
t=1

∥p(n)t − p
(n)
t−1∥21

≤ O(λ) +
log 4

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + 2λ

T−1∑
t=2

∥p(n)t − p
(n)
t−1∥21

+ 2λ

d∑
j=1

T−1∑
t=2

∥ϕ(n),d+1
t,j: − ϕ

(n),d+1
t−1,j: ∥21,

where the second inequality uses Lemma D.4. According to the analysis similar to Theorem C.1, we
know that base-regret of Ad+1 can be bounded as follows:

T∑
t=1

〈
ϕ
(n),d+1
t − ϕ, p

(n)
t ℓ

(n)⊤

t

〉
=

T∑
t=1

d∑
i=1

〈
ϕ
(n),d+2
t,i: − ϕ(ei), p

(n)
t,i · ℓ(n)t

〉
≤

d∑
i=1

(
KL(ϕ(ei), ψd+1

i: )

η
+ η

T∑
t=1

∥∥∥p(n)t,i · ℓ(n)t − p
(n)
t−1,i · ℓ

(n)
t−1

∥∥∥2
∞

− 1

8η

T∑
t=1

∥∥∥ϕ(n),d+1
t,i: − ϕ

(n),d+1
t−1,i:

∥∥∥2
1

)
(using Lemma D.1)

=
log 1

π
ψd+1 (ϕ)

η
− 1

8η

d∑
i=1

T∑
t=1

∥∥∥ϕ(n),d+1
t,i: − ϕ

(n),d+1
t−1,i:

∥∥∥2
1

+ η

d∑
i=1

T∑
t=1

∥∥∥p(n)t,i · ℓ(n)t − p
(n)
t−1,i · ℓ

(n)
t−1

∥∥∥2
∞

≤
2(d− dself

ϕ ) log d+ 1

η
− 1

8η

T∑
t=1

d∑
i=1

∥∥∥ϕ(n),d+1
t,i: − ϕ

(n),d+1
t−1,i:

∥∥∥2
1

(according to Eq. (4))
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+ 2η

T∑
t=1

d∑
i=1

(∥∥∥p(n)t,i · ℓ(n)t − p
(n)
t,i · ℓ(n)t−1

∥∥∥2
∞

+
∥∥∥p(n)t,i · ℓ(n)t−1 − p

(n)
t−1,i · ℓ

(n)
t−1

∥∥∥2
∞

)

≤
2(d− dself

ϕ ) log d+ 1

η
− 1

8η

T∑
t=1

d∑
i=1

∥∥∥ϕ(n),d+1
t,i: − ϕ

(n),d+1
t−1,i:

∥∥∥2
1

+ 2η

T∑
t=1

d∑
i=1

(
p
(n)2

t,i

∥∥∥ℓ(n)t − ℓ
(n)
t−1

∥∥∥2
∞

+
∣∣∣p(n)t,i − p

(n)
t−1,i

∣∣∣2)

≤
2(d− dself

ϕ ) log d+ 1

η
− 1

8η

T∑
t=1

d∑
i=1

∥∥∥ϕ(n),d+1
t,i: − ϕ

(n),d+1
t−1,i:

∥∥∥2
1

+ 2η

T∑
t=1

(∥∥∥ℓ(n)t − ℓ
(n)
t−1

∥∥∥2
∞

+
∥∥∥p(n)t − p

(n)
t−1

∥∥∥2
1

)

≤
2(d− dself

ϕ ) log d+ 1

η
− 1

8η

T∑
t=1

d∑
i=1

∥∥∥ϕ(n),d+1
t,i: − ϕ

(n),d+1
t−1,i:

∥∥∥2
1

+ 2η(N − 1)

T∑
t=2

∑
j ̸=n

∥∥∥p(j)t − p
(j)
t−1

∥∥∥2
1
+ 2η

T∑
t=1

∥∥∥p(n)t − p
(n)
t−1

∥∥∥2
1
. (using Lemma D.2)

Summing up the base-regret and meta-regret, we can obtain that

T∑
t=1

〈
ϕt − ϕ, p

(n)
t ℓ

(n)⊤

t

〉
≤ O(λ) +

log 4

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + 2λ

T−1∑
t=2

∥p(n)t − p
(n)
t−1∥21

+ 2λ

d∑
j=1

T−1∑
t=2

∥ϕ(n),d+1
t,j: − ϕ

(n),d+1
t−1,j: ∥21

+
2(d− dself

ϕ ) log d+ 1

η
− 1

8η

T∑
t=2

d∑
i=1

∥∥∥ϕ(n),d+1
t,i: − ϕ

(n),d+1
t−1,i:

∥∥∥2
1

+ 2η(N − 1)

T∑
t=2

∑
j ̸=n

∥∥∥p(j)t − p
(j)
t−1

∥∥∥2
1
+ 2η

T∑
t=2

∥∥∥p(n)t − p
(n)
t−1

∥∥∥2
1

≤ O(λ) +
log 4

ηm
+

2(d− dself
ϕ ) log d+ 1

η

+ (2ηmN + 2ηN + λ)

T∑
t=2

N∑
j=1

∥p(j)t − p
(j)
t−1∥21. (since 2λ = 2N ≤ 1

8η )

Since λ = N , ηm = 1
64N and η = 1

16N and using Theorem D.7, we know that

T∑
t=1

〈
ϕt − ϕ, p

(n)
t ℓ

(n)⊤

t

〉
≤ O

(
N(d− dself

ϕ ) log d+N2 log d
)
.

Next, we prove our second bound with respect to d− dunif
ϕ + 1.

Theorem D.10. Suppose that all agents run Algorithm 4 with λ = N , ηm = 1
64N . Then, we have

Regn(ϕ) ≤ O((d− dunif
ϕ + 1)N log d+N2 log d) for all ϕ ∈ Φb.
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Proof. Given ϕ ∈ Φb, suppose that the most frequent element in {ϕ(e1), . . . , ϕ(ed)} is ei0 for some
i0 ∈ [d]. According to the definition of dunif

ϕ , we know that there exists dunif
ϕ number of i ∈ [d] such

that ϕ(ei) = ei0 . To bound Regn(ϕ), we compare to the base-learner Ai0 . Applying Lemma D.6
gives us

T∑
t=1

〈
w

(n)
t − ei0 , ℓ

(n),w
t

〉
≤ O(λ) +

log 4d

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + λ

T−1∑
t=2

∥p̃(n),i0t − p̃
(n),i0
t−1 ∥21

− λ

4

T∑
t=1

∥p(n)t − p
(n)
t−1∥21

≤ O(λ) +
log 4d

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + 2λ

T−1∑
t=2

∥p(n)t − p
(n)
t−1∥21

+ 2λ

d∑
j=1

T−1∑
t=2

∥ϕ(n),i0t,j: − ϕ
(n),i0
t−1,j:∥

2
1,

where the second inequality is because Lemma D.4. Now we analyze the base-algorithm performance
of Algi0 against ϕ:
T∑
t=1

〈
ϕ
(n),i0
t − ϕ, p

(n)
t ℓ

(n)⊤

t

〉
=

T∑
t=1

d∑
i=1

〈
ϕ
(n),i0
t,i: − ϕ(ei), p

(n)
t,i · ℓ(n)t

〉
≤

d∑
i=1

(
KL(ϕ(ei), ψi0i: )

η
+ η

T∑
t=1

∥∥∥p(n)t,i · ℓ(n)t − p
(n)
t−1,i · ℓ

(n)
t−1

∥∥∥2
∞

− 1

8η

T∑
t=1

∥∥∥ϕ(n),i0t,i: − ϕ
(n),i0
t−1,i:

∥∥∥2
1

)

≤
log 1

π
ψi0

(ϕ)

η
− 1

8η

T∑
t=1

d∑
i=1

∥∥∥ϕ(n),i0t,i: − ϕ
(n),i0
t−1,i:

∥∥∥2
1
+ 2η

T∑
t=1

(∥∥∥ℓ(n)t − ℓ
(n)
t−1

∥∥∥2
∞

+
∥∥∥p(n)t − p

(n)
t−1

∥∥∥2
1

)

≤
2(d− dunif

ϕ ) log d+ 1

η
− 1

8η

T∑
t=1

d∑
i=1

∥∥∥ϕ(n),i0t,i: − ϕ
(n),i0
t−1,i:

∥∥∥2
1

(according to Eq. (5))

+ 2η

T∑
t=1

(∥∥∥ℓ(n)t − ℓ
(n)
t−1

∥∥∥2
∞

+
∥∥∥p(n)t − p

(n)
t−1

∥∥∥2
1

)

≤
2(d− dunif

ϕ ) log d+ 1

η
− 1

8η

T∑
t=1

d∑
i=1

∥∥∥ϕ(n),i0t,i: − ϕ
(n),i0
t−1,i:

∥∥∥2
1

+ 2η(N − 1)

T∑
t=2

∑
i ̸=n

∥∥∥p(i)t − p
(i)
t−1

∥∥∥2
1
+ 2η

T∑
t=1

∥∥∥p(n)t − p
(n)
t−1

∥∥∥2
1
. (using Lemma D.2)

Summing up the meta-regret and the base-regret, we can obtain that

Regn(ϕ) =

T∑
t=1

〈
w

(n)
t − u, ℓ

(n),w
t

〉
+

T∑
t=1

〈
ϕ
(n),i0
t − ϕ, p

(n)
t ℓ

(n)⊤

t

〉
≤ O(λ) +

log 4d

ηm
+ 2ηmN

T∑
t=2

N∑
n=1

∥p(n)t − p
(n)
t−1∥21 + 2λ

T−1∑
t=2

∥p(n)t − p
(n)
t−1∥21

+ 2λ

d∑
i=1

T−1∑
t=2

∥ϕ(n),i0t,i: − ϕ
(n),i0
t−1,i:∥

2
1
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+
2(d− dunif

ϕ ) log d+ 1

η
− 1

8η

T∑
t=2

d∑
i=1

∥∥∥ϕ(n),i0t,i: − ϕ
(n),i0
t−1,i:

∥∥∥2
1

+ 2η(N − 1)

T∑
t=2

∑
j ̸=n

∥∥∥p(j)t − p
(j)
t−1

∥∥∥2
1
+ 2η

T∑
t=2

∥∥∥p(n)t − p
(n)
t−1

∥∥∥2
1

= O(λ) +
log 4

ηm
+

2(d− dunif
ϕ ) log d+ 1

η

+ (2ηmN + 2ηN + λ)

T∑
t=2

N∑
j=1

∥p(j)t − p
(j)
t−1∥21. (since 2λ = 2N ≤ 1

8η )

≤ O
(
N(d− dunif

ϕ + 1) log d+N2 log d
)
,

where the last inequality is by picking η = 1
16N and using Theorem D.7.

Finally, we are ready to prove Theorem 6.4 by combining Theorem D.9 and Theorem D.10.

Proof of Theorem 6.4. Combining Theorem D.9 and Theorem D.10, we know that for any ϕ ∈ Φb,

Regn(ϕ) ≤ (cϕN log d+N2 log d).

Then, for ϕ ∈ S, define qϕ = argminq∈Qϕ Eϕ′∼q[cϕ′ ]. Then, we know that cϕ = Eϕ′∼qϕ [cϕ′ ] and

Regn(ϕ) = Eϕ′∼qϕ [Regn(ϕ
′)] ≤ O

(
Eϕ′∼qϕ [cϕ′ ]N log d+N2 log d

)
≤ O(cϕN log d+N2 log d).

Combining the above with Theorem D.8 finishes the proof.
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