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Abstract

Representation learning is a cornerstone of contemporary artificial intelligence,
significantly boosting performance across diverse downstream tasks. Notably, do-
mains like computer vision and NLP have witnessed transformative advancements
owing to self-supervised contrastive learning techniques. Yet, the translation of
these techniques to tabular data remains an intricate challenge. Traditional ap-
proaches, especially within the tabular arena, tend to explore model architecture
and loss function design, often overlooking the nuanced creation of positive and
negative sample pairs. These pairs are vital, shaping the quality of the learned
representations and the overall model efficacy. Recognizing this imperative, our
paper probes the specificities of tabular data and the unique challenges it presents.
As a solution, we introduce "TabContrast". This method adopts a local-global
contrast approach, segmenting features into subsets and subsequently performing
tailored clustering to unveil inherent data patterns. By aligning samples with clus-
ter centroids and emphasizing clear semantic distinctions, TabContrast promises
enhanced representation efficacy. Preliminary evaluations highlight its potential,
particularly in tabular datasets with more features available.

1 Introduction

Representation learning has become the backbone of most modern AI systems. Effective pretrained
representations are crucial for enhancing downstream task performance. With the challenges of
obtaining labeled data, self-supervised learning, particularly contrastive learning, has gained traction.
This method has often demonstrated performance on par with or superior to supervised methods in
domains like computer vision [1–3] and natural language processing (NLP)[4].

The essence of contrastive learning lies in crafting a discriminative embedding space. This is pre-
dominantly achieved by amplifying the similarity of positive pairs and emphasizing the dissimilarity
of negative pairs. Positive pairs are usually different augmented views of the same sample, while
negative pairs consist of distinct samples. However, the construction of different views involves
domain-specific augmentation techniques, for example, rotating, jigsaw puzzle in image domain [3],
and token masking in NLP [4], which contribute to learning perturbation-invariant representations.

While there is significant research on contrastive learning in the tabular domain, the focus has
largely been on model architecture and loss function design. The generation of positive and negative
samples has received less attention. Current methods typically take a local-local level contrast [5, 6]:
corrupting some features of a sample to create a positive pair and using distinct samples as negatives,
often neglecting the interplay between different samples.

In this paper, we introduce TabContrast, a method that employs a local-global level contrast approach
for tabular contrastive learning. We segment features into random subsets and then cluster within
each subset to identify feature-aligned groupings. Positive pairs are obtained by aligning a sample
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with the centroids of its groups across all partitions, while negative pairs differentiate the sample from
those outside its affiliated clusters. By harnessing inter-sample relationships based on shared feature
subsets, TabContrast not only enhances the robustness of representations but effectively reduces
false negatives. Our evaluations on three tabular datasets highlight its advantages, especially when
handling a larger number of features.

2 Related Work

Self-supervised Tabular Representation Learning. Self-supervised learning aims at utilizing unla-
belled data and learning the invariant information to generate discriminative embeddings. Recently,
SSL has been adopted in the tabular domain. VIME [7] uses another sample to perturb the original
sample and proposes to use reconstruction loss for recovering perturbed features and estimating the
mask vector. SubTab [8] reconstructs input in an autoencoder using a subset of its features, and
it corrupts the input by adding noise, randomly masking, or randomly replacing the feature with
another sample. SCARF [5] is a contrastive learning method that takes the InfoNCE loss, where the
positive sample is obtained by the same method as VIME. STab [9] proposes not to implement data
augmentation on the features, and apply augmentation to each layer of the encoders. SAINT [6] not
only mixes the original feature but also implements the mix-up operation in the latent space to get the
augmented embeddings. TransTab [10] is a method that can fit tables with different features, and it
regards different feature subsets of a single sample as positive pairs and others as negatives. Most
works focus more on designing the loss function or the model framework, and the positive pairs are
always constructed by the local-local method. None of the current methods consider the interplay
between samples for the construction of positive and negative pairs, which motivates us to propose
TabContrast.

3 Local-Global Method for Positive and Negative Pair Construction

In this section, we lay down the foundational notations and preliminaries and then delve deep into the
specifics of our method: TabContrast.

Given a tabular dataset represented as D = {xi, yi}Ni=1, each xi stands as a d-dimensional feature
vector with yi as its associated label, and N as the total sample count. The feature set is expressed as
F = {f1, · · · , fd}.

In this work, our goal is to generate positive and negative pairs taking advantage of the interaction
between samples. Drawing inspiration from the image domain, where positive pairs should be
semantically similar and invariant to perturbations like rotations or cropping, our method translates
these principles to the tabular domain. In the context of tabular data, this invariance translates to
ensuring that positive pairs, despite perturbations or modifications in features, still fundamentally
convey the same semantic information.

Our method, TabContrast, employs a strategy of segmenting features into random subsets and
subsequently clustering within these subsets. This process is aimed at unveiling inherent groupings
or patterns in the data, akin to creating perturbation-invariant views of the data in the image domain.
Positive pairs are devised by aligning individual samples with the centroids of their respective
clusters, preserving the core semantic relationship even amidst variations in specific feature values.
For negatives, rather than random pairings, we specifically pair samples with those from different
clusters, ensuring true semantic distinctions.

We now describe our method, which is illustrated in Figure 1. For each batch of samples, we first
randomly partition the feature set F into k non-overlapped subsets F1, · · · , Fk, such that F = ∪k

j=1Fj

and Fj1 ∩ Fj2 = ∅ for each pair of (j1, j2). Then, we perform clustering according to each feature
subset Fj , and will obtain clustering groups G = {G1, · · · , Gk}, where Gj is the set clustering
results from j-th feature subset. We denote the i-th group in Gj as gij , and denote the clustering
center of gij as cij = MEAN(x) for all x ∈ gij .

Then we introduce the construction of positive and negative pairs. For a given sample xi, suppose
the groups it belongs to are denoted as {gpj }kj=1. Formulating positive pairs for a given sample xi

is achieved by local-global matching: maximizing its alignment with the clustering centers of its
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Figure 1: An overview of the TabContrast Framework. Given a table with rows representing samples
and columns representing features, randomly implement feature partition. Then clustering on the
selected features. Using the mean value to represent the embedding of the cluster center the current
sample belongs to. Finally, construct positive pairs using local and global views.

affiliated clusters, thus deriving k positive pairs per sample, denoted as:

P = {(xi, c
p
j )|j ∈ (1, k), xi ∈ gpj }. (1)

To construct negative pairs, in order to avoid including false negatives, we propose to exclude the
samples that are highly correlated with the sample xi instead of using all samples in the batch.
Given the possible variation in clustering outcomes across feature subsets, samples cohabitating in at
least ⌊k

2 ⌋ groups with xi are considered highly correlated. Denote the set of these highly correlated
samples as Xp and the entire samples in the current batch as Xb, the negative pairs are represented as:

N = {(xi, xn)|xn ∈ Xb\Xp}. (2)

Our method of constructing positive and negative pairs is flexible to any contrastive learning method
in the tabular domain. Currently, we follow the framework of SCARF [5] and use the same InfoNCE
loss.

4 Experiment

In this section, we present experiments on two public datasets as well as one local dataset to
demonstrate the effectiveness of TabContrast.

4.1 Datasets, Setup, and Baselines

Datasets. We conducted our experiments on three tabular benchmark datasets: UCI adult income
(Income) [11], MNIST, and an electronic health record (EHR) dataset from a local hospital. The
Income dataset includes 32,561 samples with 14 features; the MNIST dataset includes 60,000 samples
with 784 features. For the EHR dataset, we regard mortality in thirty days as a binary label, and this
dataset has 89,246 samples with 190 columns.

Baselines. To evaluate the performance of using TabContrast to generate positive and negative pairs,
we substitute the corresponding part in SCARF with our method and compare it with several baselines.
We include some traditional machine learning baselines, such as Logistic Regression (LR), XGBoost,
and Random Forest. We also include self-supervised baselines including VIME-self [7], SCARF [5],
and SubTab [8].

3



Table 1: Results on Income, MNIST, EHR datasets. (Top rows) Traditional Machine Learning.
(Middle rows) Self-supervised Learning. (Bottom row) TabContrast (our method) and the improve-
ment ratio over SCARF. Evaluation metrics were scaled to 100 for readability purposes. In bold are
methods with the best results for each task. In blue are methods with the best results in each group.

Dataset Income (Acc↑) MNIST (Acc↑) EHR (AUC↑)

Maching Learning

Logistic Regression 83.57 ± 0.06 92.45 ± 0.06 93.13 ± 0.09
Random Forest 83.51 ± 0.04 93.18 ± 0.11 92.45 ± 0.13
XGBoost 84.67 ± 0.17 96.07 ± 0.09 93.58 ± 0.18

Self-supervised Learning

VIME [7] 84.83 ± 0.18 93.69 ± 0.25 92.47 ± 0.21
SubTab [8] 85.06 ± 0.12 95.74 ± 0.18 94.56 ± 0.23
SCARF [5] 85.24 ± 0.14 95.17 ± 0.22 92.30 ± 0.16

TabContrast (ours) 85.33 ± 0.19 95.91 ± 0.27 94.25 ± 0.08
improv. over SCARF 0.11% 0.78% 2.11%

Implementation Details. We utilized a four-layer multilayer perception (MLP) encoder, and a
two-layer MLP as the projection head. We report mean accuracy over ten experiments for Income
and MNIST datasets and report AUC for the EHR dataset due to imbalanced labels. We use k-means
as the clustering method and set the number of clusters to be 3, 10, and 5 for each dataset. For the
number of feature subsets k, we set k as 3, 10, and 5 for these three datasets respectively.

4.2 Main Results

We present the results in Table 1. From the results, we can conclude that XGBoost always achieves the
best performance in the traditional machine learning group. Methods from self-supervised learning
group can achieve comparable or better performance than XGBoost. Our method TabContrast,
compared with SCARF, has improvement in all three tasks, indicating the proposed method of
generating positive and negative samples is effective. Segmenting features into random subsets
and clustering within the subsets might help the model understand intrinsic relationships between
samples. The improvement is more significant in MNIST and EHR datasets. One reason might be
the dimensions of features on these two datasets are larger than those of the Income dataset, thus the
clustering results will be more diverse and the inherent representation of each different feature subset
can be more robust.

5 Conclusion

In this study, we delved into the challenges of representation learning for tabular data, which stands
in contrast to more structured domains such as images and language. We pay attention to the
underexplored direction of constructing positive and negative samples. Through our global-local
level TabContrast method, we have demonstrated that by segmenting features and implementing
strategic clustering, contrastive learning models can be effectively trained to understand the intricate
relationships among samples in a tabular dataset. Notably, our approach surpassed the performance
of most baseline models, shedding light on the potential benefits of our positive and negative sample
generation techniques.

Looking ahead, several promising avenues emerge for further refining and expanding upon our work:
1) exploring the implementation on many other tabular contrastive learning works (rather than only
on SCARF) would provide a more comprehensive evaluation of our method 2) the current approach
relies on randomly segmenting features, and investigating feature segmentation potentially based on
feature correlation or importance could lead to more nuanced representations.
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