
DL4C Workshop paper at ICLR 2022

SCOTCH: A SEMANTIC CODE SEARCH ENGINE FOR
IDES

Samip Dahal Adyasha Maharana Mohit Bansal
Department of Computer Science
University of North Carolina at Chapel Hill
{sdpmas, adyasha, mbansal}@cs.unc.edu

ABSTRACT

Code search is the task of finding relevant code snippets given a natural language
query. In order to facilitate real time code search, we introduce Scotch, a semantic
code search tool that runs within an IDE. The semantic nature of code search in
Scotch allows us to leverage the semantic meaning of code via learned vector
representations, while the in-IDE nature helps to improve developers’ productivity
by eliminating the need to navigate to web-browsers to search for code. The query
used for code search is oftentimes ambiguous without the surrounding context
of the search. In direct contrast to traditional search engines tailored to take a
single line of input, the in-IDE nature of Scotch allows it to automatically infer
code context during search and utilize it for search results. Hence, we propose the
task ‘contextual code search’ and present an analysis of how this code context can
help improve the relevance of search results. Since no existing dataset could fit
our task of contextual code search, we collect and contribute a dataset of about
19M functions from GitHub repositories with permissive licenses, which is the
first large-scale dataset openly available for the task of contextual code search.1
We also present a manually-curated test set to assess the code ranking quality
for code search in four programming languages. We finetune the CodeBERT
model (Feng et al., 2020) to perform code search given a natural language query,
with and without surrounding code context. Results from automated as well as
human evaluation suggest that the inclusion of code context in search significantly
improves the retrieval of the correct code snippet but slightly impairs ranking
quality among code snippets. Our work provides motivation and resources for
future research into contextual code search. Our code and models are available at
https://github.com/sdpmas/Scotch.

1 INTRODUCTION

Programming has become increasingly prevalent with the rise of code utility in our lives. For example,
GitHub, the largest code repository, recorded more than 16M new users and 61M new repositories
in 2021.2 With the rise in code volume, code search has become an important problem and many
tools have been proposed to solve this problem. Most code search engines depend on keyword-based
search or pattern matching between the query, which is usually a short natural language intent or
regular expressions, and the database of code snippets to find relevant search results. Several semantic
code search approaches have also been proposed to perform code search, which leverage a deeper
understanding of code via learned vector representations (Husain et al., 2019; Heyman & Van Cutsem,
2020). However, in practice, there has been relatively less work on leveraging semantic code search
methods to improve and facilitate real-time code search for multiple programming languages. In
this work, we present Scotch, an in-IDE semantic code search tool that currently supports four
programming languages. Since Scotch is an in-IDE tool and thereby has access to user’s current
codebase, it offers additional flexibility in terms of search input compared to traditional search engines
tailored to take only a single line of query. Hence, we also explore this flexibility to improve code
search quality.

1Our dataset is available at https://huggingface.co/datasets/Samip/Scotch
2https://octoverse.github.com/

1

https://github.com/sdpmas/Scotch
https://huggingface.co/datasets/Samip/Scotch
https://octoverse.github.com/


DL4C Workshop paper at ICLR 2022

Figure 1: Example of an incomplete natural language query for code search (left). The query does
not specify what type of file to parse and format. However, code context provides hints about the
types of files to parse and APIs to use, thereby improving the search result from our contextual code
search model (center), as compared to the result from the baseline model (right) which only takes the
natural language query as input.

A comprehensive survey on code search tools by Liu et al. (2021) suggests that existing code
search tools likely return many irrelevant code snippets in response to the queries which are missing
complete and precise semantics. Husain et al. (2019) also discuss the presence of ambiguity in the
interpretations of search queries without appropriate context. The ambiguity/incompleteness in query
is not surprising given the highly contextual nature of code in terms of APIs and libraries being
used, data structures being referred to, etc. Multiple works have adopted query reformulation i.e.,
augmenting the query with related words from Stack Overflow (Sirres et al., 2018), relevant API
class names (Zhang et al., 2017), or synonyms (Lemos et al., 2014) to improve search results. Li et al.
(2016) expand the query with API usage patterns represented using method call relationship graphs
and demonstrate improved code retrieval for jQuery framework. In search of an easily extensible
and scalable framework to augment search queries, we study a simpler, language-agnostic method
for query augmentation i.e., providing the surrounding context of the natural language (NL) query,
which can be automatically inferred from an IDE, as input to the search algorithm and thus enabling
contextual code search. Here, code context refers to code from the same file that appears before the
NL query that contains the intent for the subsequent lines of code. We hypothesize that code context
contains rich supplementary information about user’s intent during search as shown in Figure 1 and
study how incorporating such code context affects search results using multiple evaluation settings.

We collect a massive dataset of about 19M functions with code context from open-source code
repositories, with permissive licenses from GitHub, spanning four programming languages i.e.,
Python, Java, Javascript and Go. Out of those 19M functions, nearly 4M have corresponding
docstrings. Following Husain et al. (2019) and Miceli-Barone & Sennrich (2017), we assume that
the docstrings represent natural language queries. Next, we finetune CodeBERT (Feng et al., 2020),
a pretrained model trained on bimodal data of natural language and programming languages to
maximize similarity between the query encoding, which is concatenated with the context when
available, and the target code representation. We assume the dot product to represent similarity
between two representations, and maximize the dot product between them using cross entropy loss.

We study how code context affects code search in two settings. First, we evaluate the search models’
ability to rank the correct snippet among a set of distractors. Second, we provide a small, manually-
curated test set to evaluate our models’ ability to rank annotated code candidates (Husain et al., 2019).
We find that the inclusion of code context to the query significantly improves the accuracy for retrieval
of the best match code snippet and the model’s ability to select the correct candidate from a set of
distractors. We investigate the scenarios where code context complements natural language queries
to improve code search and find that the code context often helps by removing ambiguities primarily
involving libraries to be used, data structures or objects being referred to, etc. We also find that the
inclusion of code context slightly hinders the model’s ability to rank annotated code snippets.

Finally, we deploy Scotch as an extension for Visual Studio Code IDE.3 To the best of our knowledge,
Scotch is the first in-IDE tool that performs semantic code search in multiple programming languages

3https://visualstudio.microsoft.com/vs/

2

https://visualstudio.microsoft.com/vs/


DL4C Workshop paper at ICLR 2022

Features Scotch CSN PyTorrent
Total Functions 19.5M 6.4M 2.8M
Functions with docs 4.7M 2.3M 2.8M
No. of Programming Languages 4 6 1
Source GitHub GitHub Python libraries
Code Context ✓ ✗ ✗

Table 1: Comparison of the Scotch dataset with CSN (Husain et al., 2019) and PyTorrent (Bahrami
et al., 2021). Numbers are rounded-off.

and additionally leverages code context to complement search query. Importantly, Scotch can
automatically utilize code context from the IDE, allowing users to intentionally underspecify query
as shown in Figure 1. Currently, Scotch can perform semantic code search for four programming
languages (Python, Javascript, Java, and Go) from within the Visual Studio Code IDE. For each
search query, Scotch uses ScaNN (Guo et al., 2020b) to calculate dot products between query and
target vector representations efficiently in real-time. We implement separate ScaNN searchers for
each programming languages, thereby giving rise to modularity that makes it easy to add more
programming languages to Scotch going forward.

2 RELATED WORK

Natural Language Code Search. Natural language code search is the task of finding relevant code
from a collection of code based on a natural language query. Although code search engines that exploit
keyword or pattern matching exist, multiple recent attempts have explored deep learning methods
to perform code search (Gu et al., 2018; Sachdev et al., 2018; Cambronero et al., 2019; Heyman
& Van Cutsem, 2020). Shuai et al. (2020) employ a LSTM network and co-attention mechanisms
to embed code and query for search. Husain et al. (2019) introduce the CodeSearchNet corpus
which contains nearly 2M pairs of NL query and target code and an additional 4M code snippets
for pretraining. Feng et al. (2020) propose the bi-modal CodeBERT model which is pretrained on a
hybrid objective function of Masked Language Modelling (MLM) and Replaced Token Detection
(RTD), to support downstream applications involving code and NL queries. Gu et al. (2021) improve
the vector representation of code by introducing tree-serialization on Abstract Syntax Tree (AST) of
the code. Salza et al. (2021) leverage pretrained BERT (Devlin et al., 2019) to finetune on source
code for improved code search. Guo et al. (2020a) and Ling et al. (2021) perform structure-aware
encoding of code snippets with the use of graphs and ASTs. We finetune CodeBERT with context,
query and target code triples for the task of code search.

Code-to-Code Search. Mukherjee et al. (2020) proposed the task of code search without any
explicit query. They used code context as the input and the query is inferred from the context. To the
best of our knowledge, there have not been any further works exploring this direction.

Code Search User Interfaces. Most existing code search tools are browser-based. Prominent
examples include Sourcegraph4 and GitHub Code Search5. In contrast, Xu et al. (2021) built a code
retrieval plugin for PyCharm, which utilizes the Bing6 Search Engine to search for relevant code in
Stack Overflow in response to a query. Stack Overflow also provides an internal search engine. We
present the first contextual semantic code search tool that functions from within an IDE.

3 SCOTCH DATASET

Existing code corpora, notably Husain et al. (2019), do not contain code context that can be lever-
aged to improve code search. Hence, we collect the Scotch dataset, which is a large dataset of
functions along with their code context. Scotch contains about 19.5 million functions spanning

4https://sourcegraph.com/search
5https://cs.github.com/
6https://www.bing.com/

3

https://sourcegraph.com/search
https://cs.github.com/
https://www.bing.com/


DL4C Workshop paper at ICLR 2022

Programming Language Train Validation Test
Python 1,438,036 179,754 179,755
Javascript 609,814 76,227 76,227
Java 604,892 75,611 75,612
Go 547,884 68,485 68,486
Total 3,200,626 400,077 400,080

Table 2: Number of natural language query and code pairs for various programming languages in
each split of the Scotch dataset.

Language Total R=0 R=1 R=2 R=3
Python 230 31 57 53 89
Javascript 248 136 44 19 49
Java 242 39 104 64 35
Go 237 20 82 101 34
Total 957 226 287 237 207

Table 3: The distribution of annotations in the manually curated test set of Scotch for various
programming languages and each rating in the relevance (R) scale 0-3.

four programming languages: Python, Javascript, Java, and Go. To the best of our knowledge, it is
the largest openly available corpus of functions code. Table 1 presents detailed comparison of the
Scotch dataset with existing datasets. The functions are collected from open-source repositories from
GitHub. We use the SEART GitHub search engine (Dabic et al., 2021) to obtain a list of open-source
repositories fulfilling our selection criteria. To ensure quality, we only list repositories with a license,
5 or more stars, and exclude forks. We clone those repositories using helper scripts from Coooper
et al. (2021) and extract functions, along with their detailed information including identifier name,
URL, docstring and code context, from raw code files using our lightweight parser built on top of
function_parser (Husain et al., 2019). The parser allows us to extract functions from code files.
We add the capability to extract appropriate code context for each function. Additionally, our parser
extracts both, named functions and anonymous functions, and also method definitions inside classes
for Javascript. On top of this, we use the following filtering criteria:

• Exclude functions without explicitly permissive licenses i.e. Includes licenses: MIT License,
Apache License 2.0, BSD 3-Clause “New” or “Revised” License, BSD 2-Clause “Simplified”
License, and ISC License.

• Exclude single-lined functions.
• Exclude functions whose docstrings contain non-Engligh characters.
• Files containing multiple same functions are excluded.

We perform de-duplication on the resulting functions to avoid multiple copies of the same function.
Following Coooper et al. (2021), we remove duplicate functions by obtaining a list of alphanumeric
characters in a function and filtering out functions with the same sequence of alphanumeric characters.
By doing so, we retain 19.5M functions in the final dataset. About 4.7M of these functions contain
corresponding docstrings. To obtain a NL-to-code dataset, we use the following filtering criteria:

• Following Husain et al. (2019), functions with ‘test’ keyword in function identifier are
excluded.

• Functions with no docstring or docstrings less than 3 tokens separated by white-space are
excluded.

• Comments are removed from function code and corresponding code context.

Finally, we obtain a dataset of 4M functions with corresponding docstrings and code context. We use
80/10/10 split to get the train, validation and test sets respectively. Detailed statistics of the resulting
dataset for various programming languages is presented in Table 2.

Additionally, we curate a small test set to assess the ranking quality of our search models. For each
of the four programming languages, we choose 50 random queries from the automatically curated

4



DL4C Workshop paper at ICLR 2022

test set. For each query, we collect the top-5 search results from an ensemble of our models with and
without access to code context (see Section 4) and remove duplicate code candidates for all search
results. We then ask programmers proficient in the respective languages to rate the relevance of
each search result given the natural language query and code context. We follow the same relevance
scale as Husain et al. (2019) i.e. a scale of 0-3 where higher score represents more relevance to the
query and context. We collect 957 annotations in total. Table 3 provides a summary of the collected
annotations and relevance scores for each programming language.

4 OUR MODELS

In this section, we describe the two models used in our experiment i.e. CodeBERT for code search
with context and without context (baseline).

4.1 CODEBERT (BASELINE)

CodeBERT (Feng et al., 2020), a bimodal pretrained model trained on code and natural language,
achieves superior performance compared to neural baselines reported in Husain et al. (2019). Hence,
we use CodeBERT model as encoder and use the representation of the [CLS] token as the high-
dimensional representations of code and query. We prepend each NL query with a token to indicate
the programming language it deals with. The target code snippet is also concatenated with the
identifier of the function that includes the name of the parent class whenever applicable. We use
separate encoders for NL query and code, although same encoders are used for all programming
languages. For each query qi and corresponding code ci, we use cross entropy loss to maximize
the inner product of correct NL-code pair i.e. (qi, ci) and minimize the inner product of distractor
NL-code pairs i.e. (qi, cj) ∀ j ̸= i. Formally, for each batch with batch size of N , the loss is given by

1/N

N∑
i=1

− log
exp(I(qi, ci))∑
j exp(I(qi, cj))

where I(qi, cj) is the inner product of vector representations of qi and cj obtained from the encoders.

4.2 CODEBERT WITH CODE CONTEXT

In order to adapt CodeBERT for contextual code search, we finetune the CodeBERT model as
explained in Section 4.1, however, code context is prepended to the query and passed into the
CodeBERT encoder to get the representation for the [CLS] token. For a triple of context, query and
code (xi, qi, ci), [x; q] is the code context concatenated with natural language query, which is passed
into the encoder as input. Code is encoded in an identical fashion as Section 4.1. The loss is given by,

1/N

N∑
i=1

− log
exp(I([xi; qi], ci))∑
j exp(I([xi; qi], cj))

,

where I([xi; qi], cj) is the inner product of vector representations of [xi; qi] and cj from the encoders.

4.3 IMPLEMENTATION

Each of our models are trained on a single NVIDIA A100 GPU for 5 epochs with a learning rate of
1e-5. The total number of trainable parameters is 125M for both, the natural language encoder and
code encoder.

5 SYSTEM DESCRIPTION

In this section, we describe the Scotch tool, the model and search algorithm deployed for code search,
and the features of the tool.

5



DL4C Workshop paper at ICLR 2022

Figure 2: Annotated user interface of the Scotch Visual Studio Code extension. Scotch identifies a
query when the user beings a comment with the token ‘search’ in their current working file (left) and
automatically grabs the preceding code context. In response, Scotch displays a file (right) containing
the search results. In this example, the user’s query load a file is ambiguous but Scotch resolves the
ambiguity using contextual code search.

5.1 CODE SEARCH MODEL

We use the CodeBERT model as described in Section 4.2 for contextual code search in Scotch. The
model is finetuned on 4M samples from the Scotch dataset containing context, query and target code.
However, the search is conducted over the entire Scotch dataset i.e. nearly 19M functions. The vector
representations for these functions are precomputed using the finetuned CodeBERT model.

5.2 DEPLOYMENT

Every incoming query (along with the context) is encoded in real-time using the CodeBERT model
and used for a similarity-based search from the database of functions. In practice, it is not feasible
to calculate inner product between query vector and each of the function vectors due to the large
number of functions in our database. Hence, we use ScaNN (Guo et al., 2020b), an Approximate
Nearest Neighbor (ANN) search algorithm. With ScaNN, we can query approximate neighbors in
sub-linear time. We build separate ScaNN searchers for each programming languages. We normalize
all function vectors and query vector to keep the inner product between 0 and 1. The functions with
highest inner product scores (similarity) are returned as ranked search result.

5.3 EXTENSION

We build a Visual Studio Code extension named Scotch to facilitate in-built contextual code search for
IDE users. To the best of our knowledge, this is the first in-IDE semantic code search tool supporting
multiple languages and contextual search. Due to its in-IDE nature, a developer can search for
code without leaving the IDE. Moreover, it demonstrates that we can utilize code context easily to
improve code search from inside an IDE, in a similar fashion to code auto-completion. This feature
is not available in traditional search engines tailored to take only query as input. Figure 2 shows a
screenshot of the user interface of our extension. The major features are highlighted below:

Query: Users can write query in any commented line in the current working file (left panel in
Figure 2). Each query should be prepended with the prompt ‘search:’.

Code Snippets: Given a query and the programming language of current user’s document, Scotch
uses ScaNN searcher of the corresponding language to retrieve relevant code snippets. Resulting
code snippets are displayed in a separate document on the right hand side. For each query, Scotch
returns the top 15 relevant code snippets.

6



DL4C Workshop paper at ICLR 2022

Model Python Javascript Java Go MRRAvg MRRAll

CodeBERT (baseline) 0.8828 0.7673 0.8872 0.9079 0.8613 0.9168

CodeBERT + code context (ours) 0.9535 0.9069 0.9726 0.9716 0.9511 0.9739

Table 4: Results on the test set of the Scotch dataset using MRR metric.

Model Python Javascript Java Go NDCGAvg

CodeBERT (baseline) 0.8537 0.6898 0.7542 0.8977 0.7988

CodeBERT + code context (ours) 0.8374 0.6283 0.8107 0.8463 0.7807

Table 5: Comparative results using NDCG metric on manually annotated test set.

Source Code URL: For each code snippet, we provide the URL where the source code is located.
This feature can help developers understand the context of the source code and further explore the
source if useful.

License: We provide the license of the repository the source code belongs to. This is crucial because
many licenses impose certain restrictions in use cases. However, all the code snippets in the Scotch
dataset belong to GitHub repositories with explicitly permissive licenses as mentioned in Section 3.

Search Quality: We provide the search score for each code snippet to help users assess the quality
and relevance of search result. Our search score is the inner product between the normalized query
vector and code vectors, and ranges between 0 and 1.

User Feedback: A user feedback form is linked at the top of each search document. We hope to
improve future versions of Scotch based on the information collected through this form.

Installation: The extension can be installed free of cost either from VS Code Marketplace7 or VS
Code itself. It is compatible with VS Code 1.59.0 and up.

6 EVALUATION

Following (Husain et al., 2019), we use Mean Reciprocal Rank (MRR) computed as 1
N

∑N
i=1

1
ranki

,
where N is the total number of queries, as our automatic evaluation metric. During evaluation,
we use a batch size of 5000 for each query i.e. there are 4999 distractors for each query in our
implementation of MRR. The ranking is done based on the inner product of vector representation of
query and target code snippets. We calculate MRR scores for all languages independently, where all
the distractor snippets belong to the same programming language. Following (Feng et al., 2020), we
use macro-average MRR of all languages, represented by MRRAvg, as an overall evaluation metric.
We also calculate MRRAll, where the distractors are sampled from all programming languages.

We also perform a comparative human evaluation of the predictions from the two models described
in Section 4.8 For each sample, annotators are presented with the NL query, code context and the top
predictions from the two models in a randomized order. They are asked to indicate the prediction that
is more relevant to the given query and context.

In addition, we use normalized discounted cumulative gain (NDCG) score as the metric to evaluate
models on the manually-curated test set described in Section 3. In contrast to MRR, NDCG deals
with multiple relevant snippets and is position-sensitive, which makes it an appropriate metric to
evaluate ranking quality. We use the NDCG metric to evaluate the ability of our models to rank
annotated code snippets in the test set.

7https://marketplace.visualstudio.com/items?itemName=samipdahal.Scotch
8Our annotators are computer science students and software developers with a sound knowledge of the

respective programming languages.

7

https://marketplace.visualstudio.com/items?itemName=samipdahal.Scotch


DL4C Workshop paper at ICLR 2022

Programming Language Win% Lose% Tie%
Java 20.45 9.09 70.45
Javascript 57.49 10.0 32.5
Go 22.44 8.16 69.38
Python 13.04 17.39 69.56

Table 6: Human Evaluation. Win% represents the % times predictions from contextual CodeBERT
were chosen over the baseline model without code context and Lose% represents vice-versa. Tie%
represents % times both model predictions were found to be correct.

7 RESULTS

Quantitative Results. Table 4 shows results from the CodeBERT models with and without code
context on the test set of Scotch dataset, using MRR metric as evaluation. The model with access
to code context (row 2 in Table 4) significantly outperforms the baseline model (row 1 in Table 4)
without access to code context across all programming languages. The largest improvements come
for Javascript, followed by Java, Python, and Go programming languages. The macro-average score
MRRAvg is nearly 9% higher for contextual code search. We also see 6% improvement with the
MRRAll metric. This suggests the code context can provide the code search model with important
clues about the task in hand.

Results on the manually collected test set using NDCG metric as evaluation are shown in Table 5.
The inclusion of code context results in a slight degradation in the contextual code search model’s
ability to rank annotated code snippets from our manually-curated test set (see row 2 in Table 5). On
average, the NDCG score for the model without code context is 1.8% higher than the model with
code context. See Section 8 for discussion.

Human Evaluation. We select 50 random queries for each programming languages from the
validation set and build ScaNN searchers with all the functions in our validation set for both of our
models. Then, we query respective ScaNN searchers to obtain top prediction for each model. These
samples are presented to our annotators as outlined in Section 6. Annotators are also allowed to tag
queries as incoherent wherever applicable, since these samples are drawn from the automatically
collected dataset. Approximately 10% of the samples were tagged as incoherent and discarded;
results on remaining samples are presented in Table 6. We see that the model with code context
significantly outperforms our baseline model in three out of four programming languages, further
strengthening the case for contextual code search.

Overall, we find that our contextual code search model improves the quality of search results in two
out of three evaluation settings and shows promise as a worthwhile research direction.

8 ANALYSIS OF SEARCH QUALITY

Figure 3: Comparison of recall@k
scores of CodeBERT models with and
without context on the validation set of
the Scotch dataset.

We analyzed predictions from our models on the valida-
tion set of the Scotch dataset to assess their search quality.
We calculate the Recall@k metric for both of our models
within a set of distractors (N = 5000) in our validation
set. Figure 3 shows the recall@k scores for different val-
ues of k. As we can see, the model with code context
consistently outperforms the baseline model without code
context, and by especially large margins for lower values of
k. We find many instances where the code context improves
search when the keywords and function names present in
the code context also occur in the target code. In such cases,
the model essentially mirrors keyword matching. More
interestingly, we find that the code context also helps the
model when the query is ambiguous or incomplete. Fig-
ure 2 shows an example of an incomplete and ambiguous

8



DL4C Workshop paper at ICLR 2022

query i.e. “load a file”. When provided with the code context, the contextual code search model is
able to infer that the file in question is saved in the pickle format, and finds the code snippet that
makes correct library calls to implement the load functionality. See Appendix for more examples of
search results.

We further analyzed the NDCG score trends to understand why code context affects ranking quality
negatively. Specifically, we studied the change in NDCG score with respect to ranks of the annotations
and length of code context. However, we could not find any consistent patterns that would explain
the decrease in NDCG score. We hypothesize that selectively including only the important aspects of
code context might improve the ranking ability and leave it to future works to study this in detail.

9 CONCLUSION

In this paper, we present Scotch, a semantic code search tool that operates within an IDE. We
experiment with the use of code context to supplement natural language query. We collect a dataset
of about 19M functions with code context and experiment with models that do and do not utilize
code context for code search. We found that code context supplements natural language query with
additional information about the search and improves search results. In addition, the use of code
context allows users to underspecify queries during search. Hence, we add the functionality to
conduct real-time contextual and semantic code search automatically using Scotch.

10 ETHICS

Dataset. In the course of preparing the Scotch dataset, we have made sure to understand the legal
implications before using and/or redistributing open-source code. Code under certain restrictive
licenses have limited use cases. Hence, as mentioned in Section 3, we collected code from repositories
with permissive licenses. Moreover, for each search result, we also display the permissive license
the code is under and include a link to the URL of original source code to ensure attribution to the
original authors.

Models. We do not anticipate any unintended effects of deploying our code retrieval model through
a freely available IDE extension.

REFERENCES

Mehdi Bahrami, NC Shrikanth, Shade Ruangwan, Lei Liu, Yuji Mizobuchi, Masahiro Fukuyori,
Wei-Peng Chen, Kazuki Munakata, and Tim Menzies. Pytorrent: A python library corpus for
large-scale language models. arXiv preprint arXiv:2110.01710, 2021.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. When deep learning
met code search. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 964–974,
2019.

Nathan Coooper, Artashes Arutiunian, Santiago Hincapié-Potes, Ben Trevett, Arun Raja, Erfan
Hossami, Mrinal Mathur, and contributors. Code Clippy Data: A large dataset of code data
from Github for research into code language models, July 2021. URL https://github.com/
ncoop57/gpt-code-clippy.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in github for MSR studies.
In 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021, pp.
560–564. IEEE, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

9

https://github.com/ncoop57/gpt-code-clippy
https://github.com/ncoop57/gpt-code-clippy
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423


DL4C Workshop paper at ICLR 2022

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming and
natural languages. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
1536–1547, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.findings-emnlp.139. URL https://aclanthology.org/2020.findings-emnlp.139.

Jian Gu, Zimin Chen, and Martin Monperrus. Multimodal representation for neural code search.
In 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp.
483–494. IEEE, 2021.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 933–944. IEEE, 2018.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. arXiv preprint arXiv:2009.08366, 2020a.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In International Conference
on Machine Learning, 2020b. URL https://arxiv.org/abs/1908.10396.

Geert Heyman and Tom Van Cutsem. Neural code search revisited: Enhancing code snippet retrieval
through natural language intent. arXiv preprint arXiv:2008.12193, 2020.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436,
2019.

Otávio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and Cristina V Lopes. Thesaurus-based
automatic query expansion for interface-driven code search. In Proceedings of the 11th working
conference on mining software repositories, pp. 212–221, 2014.

Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei. Relationship-
aware code search for javascript frameworks. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 690–701, 2016.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu, Alex X Liu, Chunming
Wu, and Shouling Ji. Deep graph matching and searching for semantic code retrieval. ACM
Transactions on Knowledge Discovery from Data (TKDD), 15(5):1–21, 2021.

Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. Opportunities and
challenges in code search tools. ACM Computing Surveys (CSUR), 54(9):1–40, 2021.

Antonio Valerio Miceli-Barone and Rico Sennrich. A parallel corpus of python functions and
documentation strings for automated code documentation and code generation. In Proceedings
of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), pp. 314–319, 2017.

Rohan Mukherjee, Swarat Chaudhuri, and Chris Jermaine. Searching a database of source codes
using contextualized code search. arXiv preprint arXiv:2001.03277, 2020.

Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. Retrieval
on source code: a neural code search. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 31–41, 2018.

Pasquale Salza, Christoph Schwizer, Jian Gu, and Harald C Gall. On the effectiveness of transfer
learning for code search. arXiv preprint arXiv:2108.05890, 2021.

Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. Improving code search
with co-attentive representation learning. In Proceedings of the 28th International Conference on
Program Comprehension, pp. 196–207, 2020.

10

https://aclanthology.org/2020.findings-emnlp.139
https://arxiv.org/abs/1908.10396


DL4C Workshop paper at ICLR 2022

Raphael Sirres, Tegawendé F Bissyandé, Dongsun Kim, David Lo, Jacques Klein, Kisub Kim, and
Yves Le Traon. Augmenting and structuring user queries to support efficient free-form code search.
Empirical Software Engineering, 23(5):2622–2654, 2018.

Frank F Xu, Bogdan Vasilescu, and Graham Neubig. In-ide code generation from natural language:
Promise and challenges. arXiv preprint arXiv:2101.11149, 2021.

Feng Zhang, Haoran Niu, Iman Keivanloo, and Ying Zou. Expanding queries for code search
using semantically related api class-names. IEEE Transactions on Software Engineering, 44(11):
1070–1082, 2017.

A SEARCH RESULTS

See Figures 4 and 5 for examples of search results from both of our models for queries and code
contexts from the validation set of the Scotch dataset.

Figure 4: Example of search result from Scotch.

11



DL4C Workshop paper at ICLR 2022

Figure 5: Example of search result from Scotch.

12


	Introduction
	Related Work
	Scotch Dataset
	Our Models
	CodeBERT (Baseline)
	CodeBERT with Code Context
	Implementation

	System Description
	Code Search Model
	Deployment
	Extension

	Evaluation
	Results
	Analysis of Search Quality
	Conclusion
	Ethics
	Search Results



