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ABSTRACT

Sharing vast amounts of data to train powerful artificial intelligence (AI) mod-
els raises public interest concerns such as privacy and fairness. While reversible
anonymization techniques are very effective for privacy preservation and fairness
enhancement, these methods rely on heavy reversible generative models, making
them only suitable to run in the cloud or on a server independent from the image
source. For example, data transmission might be under the privacy threats such
as channel eavesdropping. Therefore, we propose a novel mutually collabora-
tive knowledge distillation strategy to train a tiny and reversible generative model.
This enables us to build a synthesis-based privacy and fairness protection system
in embedded devices for anonymizing privacy-sensitive data and thus improve
security protection capabilities from the source. The proposed mutually collab-
orative knowledge distillation method exploits the reversibility of the generative
model. By pairing the teacher encoder (decoder) with the student decoder (en-
coder), we train the student decoder (encoder) by reconstructing the image space
(latent space) from the prior image space (latent space). This results in tiny-size
student models that can be embedded into devices. We deploy and evaluate our
system on NVIDIA Jetson TX2 devices, which operate in real-time. Extensive
experiments demonstrate that our system effectively anonymizes face images and
thus protects privacy and also improves fairness while minimizing the impact on
downstream tasks. Our code will be publicly available on GitHub.

1 INTRODUCTION

The impact of sharing large volumes of data for training advanced artificial intelligence (AI) models
has been profound, transforming various aspects of human life. However, this progress has also
brought forth concerns regarding important societal values like fairness and privacy (Ribaric et al.,
2016; Elkoumy et al.l [2021). Instances of significant privacy breaches, such as the iCloud leakage
event (Wang et al.l 2018b)) and the ClearView Al incident (Marks, 2021), have prompted the es-
tablishment of privacy regulations like the California Consumer Privacy Act (Pardaul [2018) in the
United States. Notably, Italy recently became the first Western country to ban ChatGPT due to its
perceived threats to human privacy, subsequently inspiring the European Union to introduce the Al
ACT (Helberger & Diakopoulos| [2023) aimed at regulating Al ethics and morality. In answering
regulations such as General Data Protection Regulation (GDPR) (Regulation, 2018)), Trustworthy
Al (AL 2019) and the Social Principles of Human-Centric Al (Secretariat et al., |2019), this paper
seeks “privacy by design” principle (Article 25 of the GDPR, that is, integrate data protection from
the design stage right through the lifecycle) and “pseudonymization” (Article 32 of the GDPR, that
is, effectively pseudonymize/anonymize the face data by replacing the original face image with a
fake face image and saving a reversible key) to enhance visual privacy and fairness.

Among the aspects of visual privacy, preserving face identity is particularly crucial (Acquisti et al.,
2014} Meden et al.l 2021). The simplest anonymization method for face privacy protection is the
obfuscation-based approach, which involves blurring, masking, or pixelating the face region to con-
ceal facial information (McPherson et alJ, 2016)), however, leads to permanent loss of information
in the obscured image regions, which may not be ideal for downstream tasks (Ren et al., 2018} |Gu
et al.,|2020). To address these limitations, synthesis-based methods have emerged as a popular alter-
native for face anonymization/pseudonymization to hide the privacy (Mosaddegh et al. [2015; Ren
et al., 2018} Zhu et al., 2020; |Gu et al., |2020) (synthesis-based methods are more precisely called
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pseudonymization as they replace the original face with a fake one, while we follow the more gen-
eral parlance of calling it anonymization throughput this work). In particular, it replaces original
faces with new faces obtained from a pre-existing database or generated fake faces (e.g., human-like
faces) superimposed on the original face. State-of-the-art synthesis-based approaches are typically
designed based on three key properties: privacy preservation, reversibility, and data availability for
downstream tasks. They come with costs. Compared to simple blurring, existing synthesis-based
methods require substantial computational resources due to heavy generators, such as generative
adversarial networks (GANs) (Goodfellow et al.,|2014) or reversible flow-based generative models
(Dinh et al.| 2014). Consequently, most of these methods are deployed in the cloud or on servers,
posing a potential risk of privacy leakage during data transmission from the image sources (Ren
et al., 2018; |Gu et al., 2020). A recent attempt by Zhu et al. (Zhu et al., |2023) aims to mitigate
this risk by embedding part of the privacy protection system in the camera and anonymizing private
information with an embedded key. However, due to the large size of the flow-based generative
model (Baranchuk et al.,[2021), (Zhu et al., [2023)) still need to generate anonymized fake faces in
the cloud, leaving it vulnerable to internal cloud model attackers (Ye et al.,2022). This somehow
violates the principle of “privacy by design” at the early stage in the lifecycle.

This paper aims to address the challenge of embedding a synthesis-based privacy protection system
with reversible generators into embedded devices like surveillance cameras or mobile terminals
to enhance data security. The key challenge lies in reducing the size of the reversible generator
model, and to tackle this, we propose a novel knowledge distillation (KD) strategy. In the literature,
existing KD methods are mostly designed for high-level tasks such as image classification (Romero
et al., 2014; |Ahn et al., 2019), object detection (Chen et al., 2017} [Dai et al.| [2021]), and semantic
segmentation (Liu et al., 2019; |Qin et al.| |2021)), while others focus on low-level tasks like image
generation (Chen et al. [2020; [Li et al., 2020) and style transfer (Wang et al.| [2020). In this work,
we bridge the gap by proposing a mutually collaborative knowledge distillation strategy specifically
tailored for generators with encoder-decoder architectures. This strategy is inspired by (Wang et al.,
2020) where a collaborative KD method is proposed for style transfer. Different from collaborative
KD which only distills the decoder from the encoder, the proposed KD process mutually distills
the student encoder (decoder) from the teacher decoder (encoder), which ensures the reversibility
between the encoder and decoder. It is worth noting that reversibility ensures privacy-sensitive data
can be restored if needed, which is important in the anonymization/pseudonymization process.

In particular, we choose the flow-based generator (Zhu et al., 2023) as the teacher model which
exhibits inherent reversibility property. For the generators with an encoder-decoder pair, traditional
KD usually transfers knowledge from the teacher encoder (decoder) to the student encoder (decoder)
by minimizing a loss function defined on the output space of the teacher model as shown in Figure
[Ia). The teacher encoder may surrogate some performance degradation due to its training process,
which may induce a distorted output space and degrade the performance of the student encoder.
This performance degradation also happened to the student decoder. In Figure[T[b), the reversibility
of the encoder-decoder pair enables the student decoder to reconstruct the image space from the
input of the teacher encoder. Hence, we can distill the student decoder from the teacher encoder
by minimizing the distance between the reconstructed image space and the prior image space; and
distill the student encoder from the teacher decoder by minimizing the distance between the recon-
structed latent space and the prior latent space. Armed by this mutually collaborative KD method,
the compressed student encoder and decoder are both tiny-size and thus can be put into the embed-
ded system, thereby replacing the original face with a generated fake face to protect face privacy.
As shown in Figure[2] with different de-anonymization orders, our embedded protection system can
support users with different privacy needs. For example, it sends the face-aimed users the original
face; sends obfuscation-tolerant users the anonymized latent-variance face (ALF) which is obtained
by putting the original face into the student encoder and then rotating by an anonymization key;
sends the privacy-aimed users the fake face (FF) which is obtained by putting the original face into
the student encoder, rotating by an anonymization key and passing through the student decoder. The
model reversibility ensures that the original face can be restored if needed.

In many CV tasks, the performance of deep learning models may deviate for people of different
genders or races due to bias in training data, leading to unfairness [Karkkainen & Joo| (2021); Das
et al.| (2018); Zhang et al.| (2018a); Hardt et al. (2016); Zemel et al.| (2013). To address bias in
Al models, several efforts have been devoted to building fair training datasets (Karkkainen & Joo,
2021; [Harvey), [2021; Whitelam et al., 2017). Another line of work aims to improve the algorithms
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Figure 1: Comparison with the classic KD strategy and reversibility-based KD strategy.

themselves, making AI models more fair through various debiasing techniques during training (Park
et al., 2022; Zietlow et al., 2022} Hirota et al.l 2022; |Das et al., 2018; [Zhang et al.| [2018aj; |Hardt
et al.| 2016). Both the above approaches involve re-training the AI models, which incurs significant
costs and is not dependent on the users. In this work, our privacy protection model can process
the test dataset to achieve fairness results on already-trained biased Al models. Our goal here for
fairness is to let people of different races or genders have similar accuracy when using various Al
predictors after we replace the original faces with our generated fake faces. The main contributions
of this work are:

1. We present a novel KD method that effectively distills lightweight reversible flow-based gener-
ative models. Our approach focuses on mutually transferring knowledge between the encoder and
decoder components while maintaining model reversibility.

2. We analyze the vulnerability of the proposed privacy defender, based on the distilled reversible
generator, in three different scenarios, under the premise that the intruder obtains different levels of
prior information.

3. We implemented a real-time privacy protection system on embedded devices. This system offers
efficient privacy preservation while also improving fairness. We deployed and thoroughly evaluated
the system on NVIDIA Jetson TX?2 devices, demonstrating its effectiveness in real-world scenarios.

2 RELATED WORK

Privacy protection: In visual privacy, face privacy is a significant part as the face is the most
direct identity information. Therein, obfuscation-based methods (McPherson et al. [2016; [Yang
et al., 2022) are usually adopted for anonymization and synthesis-based methods (Zhu et al.| 2020;
Ren et all 2018; Hukkelas et al.l 2019; Maximov et al.| [2020; |Gu et al., [2020; |Cao et al. 2021}
Zhu et al.| 2023)) can be used for face anonymization/pseudonymization. This series of synthesis-
based methods replace original faces with new faces selected from a pre-described database or fake
faces generated based on the original faces through a generative model. In (Zhu et al.,|2020), face-
swapping technology is used to protect the privacy of patients in medical datasets. It protects privacy
by replacing original faces with faces from open-source datasets. In (Ren et al., 2018; |Hukkelas
et al.|[2019; Maximov et al., 2020)), GANSs are used to generate fake faces while ensuring the reality
of the images. However, their methods only consider the anonymization process and cannot recover
the original face. (Gu et al., |2020; (Cao et al., [2021)) combine GANs with passwords to recover
the original face when the user inputs the correct password and generate fake faces with different
identities when different passwords are used. In (Zhu et al., [2023), the flow-based model is used
to anonymize faces by manipulating the latent space to generate different fake faces. Most existing
anonymization methods are hard to deploy on devices as they involve complex generative models.

Knowledge distillation: KD has been widely applied to various computer vision tasks such as
image classification (Romero et al.,[2014; /Ahn et al.,|2019), object detection (Chen et al.| [2017} |Dai
et al.| [2021)), and semantic segmentation (Liu et al.| 2019; |Qin et al.},|2021). However, KDs for these
high-level tasks are often not directly applicable to generative models due to several reasons (Wang
et al.,|2020; |Chen et al.;, 20205 L1 et al.,|2022). First, generative models require a more complex and
high-dimensional mapping. Second, unlike high-level tasks, generative tasks usually do not have
ground-truth (GT) to evaluate outputs. Third, the architectures of generative models are often more
sophisticated and have more parameters compared to the models used for high-level tasks. There are
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Figure 2: Framework of visual privacy protection.

several works dedicated to the distillation of generative models. (Chen et al.| [2020; [Li et al.l 2020;
2021}, Ren et al. Zhang et al., [2022)) proposed a series of distilling methods for
GANSs. In (Luhman & Luhman, 2021} Salimans & Hol [2022; [Meng et al., 2022)), several distillation
methods for DMs are proposed to increase their sampling speed. Currently, very little work has been
done to distill flow-based models. (Baranchuk et al [2021)) proposed a distillation method for the
flow-based models, but they only distilled the decoders.

3 BACKGROUND ON THE PRIVACY-PRESERVING STRATEGY

In this section, we first introduce a general framework for visual privacy preservation. We will see
how to adopt flow-based models in this framework. At the same time, we will explain why the
strong reversibility of the flow model will make it bulky and difficult to embed in local devices.

3.1 THE PRIVACY-PRESERVING FRAMEWORK

The proposed anonymization framework for privacy protection is shown in Figure 2] Assume that
X ~ T is the visual content related to personal privacy in an image, such as a face or license plate,
where 7 is the image space. Our goal is to hide private information by replacing the original image
with a generated fake image. To achieve this goal, we use an encoder € to map X to a Gaussian latent
space N'(0,I) by Z = £(X), Z ~ N(0,I), where Z is the latent variable of X. We then use a
key to rotate Z by Zene = AZ, where Zen could be seen as the anonymized feature and A is an
orthogonal matrix that serves as the key. This process can be seen as rotating the encoded feature in
the latent Gaussian space and Zey can be sent to obfuscation-tolerant users. Meanwhile, we define
a decoder D such that: X’ = D(Z), that maps the latent variable Z back to the image space Z. The
similarity between the original faces X and de-anonymized faces X’ depends on the reversibility
of the encoder-decoder pair. With reversible £ and D, privacy-aimed users without the key will
decode a fake substitute Xgaxe = D(Zenc), While face-aimed users holding the correct rotation ke
A, Zene will restore the visual content by X' = D(A"1Zepe) = D(Z). As shown in Figure
with different de-anonymization orders, the proposed privacy protection system can support users
with different privacy needs. The fake face method (FF) uses the fake face as anonymized data for
privacy-aimed users, and the anonymized latent-variable face method (ALF) uses the latent-variable
face as anonymized data for obfuscation-tolerant users.

We can also decrease the variance of Zenc to less the variance of the generated fake face Xf,, . =
D(aZenc), where « is a control parameter. The variance of the latent Gaussian will affect the
diversity of the generated images, that is, the closer « is to 0, the less diverse the faces. This means
that the decoder D will produce a more “average” face than the original faces. In some cases, we
might achieve some kind of “fairness” from a visual perspective if we replace the original faces with
generated faces that are less diverse. See Appendix [A.3.2]for images generated under different cv.

3.2 THE FLOW-BASED PRIVACY-PRESERVING METHOD

In the above privacy-preserving framework, the encoder-decoder pair £ ~ D could be any model
that maps the image space Z to the Gaussian latent space N. A possible choice could be the flow-
based model in (Zhu et al.,|2023)). The flow-based model is bijective, that is, its encoder and decoder
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Figure 3: The distillation framework of our method.

are actually the forward process and reverse process of the same model, thereby sharing the same
parameters: & = D! = Fy(-), where Fp(z) is a bijection function such that z = F, ' (Fy(z)).
We collect a discrete i.i.d. dataset D = {x1, 29, ...,2,} C Z, where n is the number of samples.
Let ; ~ p(zx) follow the unknown distribution of the real image data and py(x) be the distribution
of the generated image with model parameter 6, which is also the distribution of the flow decoder
output. The goal of training a flow-based model is to learn the parameter 6 such that py(x) can
approximate p(x) well, which is equivalent to minimizing the log-likelihood function: L(D) =
LS —logpe(z;), with pg(z) = q(2) - |det (52)|, where z ~ g(2) is a prior multivariate
Gaussian distribution and % is the Jacobian matrix of F, .

3.3 STRONG REVERSIBILITY AND COMPLEXITY OF FLOW

The flow-based models employ multiple layers of reversible transformations to map the prior data
distribution to a simple Gaussian latent distribution, where each layer must satisfy two constraints
of reversibility and tractable Jacobian determinants. This makes flow equipped with a large number
of parameters, slowing down the inference speed of the model. Therefore, flow-based models are
difficult to deploy on devices with low computing resources and limited memory.

4  DISTILLATION FOR GENERATIVE MODELS WITH ENCODER AND DECODERS

This section elaborates on the details of the reversibility-based mutually collaborative KD strategy
and we will utilize it to compress the generators with an encoder-decoder architecture.

4.1 DISTILLATION SCHEME BASED ON ENCODER-DECODER RELATION

Most existing KD methods involve optimizing a loss function defined on the output of the teacher
model to transfer knowledge to the student model, as depicted in Figure [T(a). However, for gen-
erators that use an encoder-decoder pair, the training process of the teacher encoder can lead to a
distorted output space and result in reduced performance for the student encoder if the classic method
of distilling the student encoder from the teacher encoder is adopted. In this work, we propose to
exploit the encoder-decoder pair’s reversibility to allow the student decoder to reconstruct the image
space from the input of the teacher encoder by minimizing the distance between the reconstructed
and prior image space; as depicted in Figure[T{b). Similarly, we can also distill the student encoder
from the teacher decoder by minimizing the distance between the reconstructed latent space and
the prior latent space. Our method is then divided into two parts, namely decoder distillation and
encoder distillation, and these two parts are mutually collaborative and can be performed in parallel.

Decoder distillation: In Figure |§|, to distill the teacher decoder, we match the teacher encoder &;
and the student decoder DY to reconstruct the image space. By sampling an image x following the
prior image distribution p(x), we use & to map x ~ p(x) to a latent space ¢;(z), and then use DY
to reconstruct the image from the latent distribution ¢;(z). The training process is to minimize the
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distance between the original image and the reconstructed image spaces with the pixel-level loss:
Lyize = Enpin) [[x = D2 (€0 | |- (M

As using only pixel-level loss will result in blurry generated images (Isola et al., |2017; |Chen et al.,
2020; Liu et al., |2021), we also incorporate perceptual loss to ensure the student produces percep-
tually desirable outputs. The perceptual loss is then defined on the learned perceptual image patch
similarity (LPIPS) (Zhang et al.,|2018b) between the original image and the reconstructed image:
Lpercept = E [LPIPS (x,D¥ (& (x)))] . 2)

x~p(x)

Therefore, the total training objective of our decoder distillation is Lgecoder = Lpizel + A - Lpercept
with \ being the hyperparameter that balances the losses.

Encoder distillation: Similarly, to distill the teacher encoder, we match the teacher decoder D; and
the student encoder £ to reconstruct the latent space. Letting v be a hyperparameter for tuning the
model, the training loss is defined to minimize the distance between ¢(z) and ¢;(z):

Lencoder = IEz~q (z) l:H’Y z — 59 Dt H :| 3)

where D, is used to map z ~ ¢(z) to the image space with distribution p;(x), from which we
reconstruct a latent variable with distribution ¢4 (z) by the student encoder £°.

It is worth noting that the flow-based model is reversible by nature, which minimizes the distortion
between the prior image (latent) space and reconstructed image (latent) space due to the mismatch
of the encoder and decoder. Hence, distilling the flow-based model can well show the performance
of the proposed mutually collaborative KD strategy. It is expected that the proposed method also
has the potential to be extended to other generators without strict reversibility.

4.2 THE CNN-BASED STUDENT MODEL

In general, during distillation, one favors homogeneous model architectures for students and teach-
ers. In this work, given that the teacher is flow-based, instead of the flow-based model, we judi-
ciously design a CNN-based student model to achieve a better distillation performance. Due to the
page limit, we put the details of the student structure and the training process in Appendix

5 VULNERABILITY ANALYSIS OF THE PRIVACY-PRESERVING METHODS

In this section, we provide a vulnerability analysis of our privacy-preserving model. The setting is to
assume that there is an attacker who aims to recover the original image from the anonymized image.
Specifically, we consider three types of scenarios:

Scenario 1: In this scenario, the attacker only knows the distribution of the original privacy-sensitive
image X and the distribution of anonymized image X}, . such that X}, . = D(AE(X)) £ v(X).
It attempts to crack the anonymization system +(-). Apparently, this is generally impossible as it
is well-known that one can not compute joint distribution from marginals without any other prior
information (Gelman & Speed,|1993).

Scenario 2: In this scenario, the attacker 1) knows the distributions of the original data and the
anonymized data; 2) knows the £ ~ D pair of the flow-based model; 3) does not possess anonymiza-
tion key A. Apparently, in this case, if the attacker can crack the key A, it can immediately recover
the original image through the decoder D. The difficulty in tackling this problem has been studied
in (Wu et al.,[2020) and we summarize it as Lemma 1.

Lemma 1 (Wu et al., 2020; | Wainwright, 2019; [Hoeffding & Wolfowitz, 1958). Let the standard
Gaussian distribution be Hy and the distribution of the anonymized latent variables be H,. The
likelihood of the attacker recovering the key A does not exceed § (Hly, HY') + 6, where 6 (H, H})
is the total variation distance (see definitions in Appendix [A.2.1) between H}' and HY, n is the
number of samples, and 6 is the tolerance during the recovery of key A.

Lemma 1 tells that the probability that the attacker recovers key A depends on the distance between
the distribution H7" of the anonymized latent variables and the standard Gaussian distribution Hy.
When H7T' is also a standard Gaussian distribution, this upper limit is the smallest, that is, it is most
difficult for the attacker to recover the key A. More details can be found in Appendix
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Table 1: Distillation result on face datasets and CIFAR10. On these two datasets, we can compress
the model to 14.7M and 16.1 M parameters respectively and maintain satisfactory performance.

CelebA & FFHQ CIFARIO

Scheme Param (M) FLOPs (B) FID| LPIPS| PSNRT? |Param (M) FLOPs(B) FID| LPIPS| PSNR{
Teacher 37.0 16.52 35.79 0.000 oo 37.0 16.52 77.07 0.000 oo
MSE 49.26  0.206 19.90 104.04 0.257 17.97
LPIPS 47.65 0.145 18.06 93.15 0.257 17.22
Baranchuk 18.1 2.71 45.85 0.157 19.69 18.1 2.71 92.04 0.264 17.68
OMGD 50.59 0.176  19.49 107.59 0.247 17.48
WKD 49.38 0.201 20.03 103.04 0.230 17.96

18.1 2.71 22.47 0.136 20.03 18.1 2.71 69.55 0.213 18.10
Ours 16.1 2.38 27.82 0.146 19.96 16.1 2.38 72.27 0.226 17.76

14.7 2.68 30.53 0.164 19.31 - - - - -

Scenario 3: In this case, the attacker can access our terminal privacy-preserving device to obtain a
batch of paired original and anonymized data. This is the strongest attacking case as the attacker can
train a neural network in a supervised manner to learn the proposed system (Salem et al.,|2020; [Yang
et al., 2019} (Cunningham et al.,|2008). We simulated this scenario in our experiments in Section @C.

6 EXPERIMENTS

In this section, we first evaluate the effectiveness of the proposed distillation method by comparing
it with several existing distillation methods designed for generative models and then test the models’
privacy-preserving ability, reversibility, data usability, as well as the ability of fairness enhancement.

Models and datasets: Our experiments have been conducted on the CelebA (Liu et al., |2015),
FFHQ (Karras et al.|, [2019), CIFAR10 (Krizhevsky et al.| |2009), LFW (Huang & Learned-Miller,
2014)), UTK-face (Zhang et al., 2017) and HMDBS51 (Kuehne et al.,|2011). For CelebA and FFHQ,
we mixed them, detected the faces using YOLOS5Face (Q1 et al.,[2023)), and cropped them to achieve
better generalization and stronger face-generation performance. We used 90% of the resulting data
as the training set and 10% as the test set. The teacher model adopted is Glow (Kingma & Dhariwal,
2018)) and it is trained on CelebA & FFHQ, which has been also used in (Zhu et al., [2023)). The
student model is obtained from the teacher by the proposed KD method according to Appendix[A.1]

A. DISTILLATION RESULTS

Evaluation metrics: We evaluate the proposed distillation method from three aspects: 1) Im-
age generation quality: lower Fréchet Inception Distance (FID) (Heusel et al., 2017) indicates
higher image quality and diversity; 2) Model reversibility: LPIPS (Zhang et al., 2018b) and PSNR
are metrics for measuring image similarity, higher PSNR, and lower LPIPS indicating stronger re-
versibility; 3) Model size: parameter count (Param) and floating point of operations (FLOPs).

Baselines: The baseline KDs include: (1) MSE: directly using mean squared error (MSE) to align
the outputs of the teacher and student models, which is the simplest method to distill generative
model as shown in (Aguinaldo et al.,|2019; |[Luhman & Luhman, 2021). (2) LPIPS: using LPIPS
(Zhang et al., 2018b)) to align the outputs of the teacher and student models. (3) Baranchuk: the
only method we found for distilling conditional flow-based model (Baranchuk et al.| 2021)). (4)
OMGD: a distillation method for GAN (Ren et al., 2021). (5) WKD: a response-based KD for
GAN (Zhang et al.} [2022), but can also be used for flow-based models.

Comparisons: The KD experimental results are as shown in Table |I} Regarding the quality of
the generated images, our method achieves lower FID scores than counterpart distillation methods.
Moreover, the counterpart methods harm the performance of the student’s generated images (with
higher FID than the teacher), while our method enables the student to have better image generation
ability than the teacher (with lower FID than the teacher) although the size of the student is much
smaller. In terms of model reversibility, our method achieves lower LPIPS and higher PSNR com-
pared to other methods. This indicates that our method can result in a student model with better
reversibility. The cost of the KD process is provided in Appendix

B. STUDENT PERFORMANCE FOR PRIVACY-PRESERVING

We organize our experiments by testing the effectiveness of privacy-preserving ability, the utility of
anonymized data, and fairness. We verify the two privacy-preserving methods: the fake face method
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(FF) (using the fake face in Figure [2] as anonymized data) and the anonymized latent-variable face
method (ALF) (using the anonymized latent-variable face in Figure [2| as anonymized data). The
difference between ALF and FF is whether we rotate the latent-variable face or not.

Effectiveness of face privacy-preserving: In the field of computer vision, two indicators are usually
adopted to measure whether face privacy is protected well. One is how well the original human face
is seen by human visions (HV) (Zhao et al., |2023), and the other is whether information closely
related to the original faces, such as identity, race, and gender, will be recognized by computer vision
(CV) machines (Maximov et al., 2020; Zhu et al., 2023} /Gu et al., [2020; [Zhao et al., [2023)). From
an HV perspective, we show the similarity between original and anonymized images, compared
with some traditional methods (e.g., blacked out, pixelation, random fake face), and differential
privacy with given e (Dwork, 2006). Higher MSE and LPIPS indicate lower image similarity and
better privacy protection. We randomly sample 90k original images from the CelebA and FFHQ
datasets and anonymize them. Table[2]shows that, compared with the traditional and commonly used
anonymization method, the image anonymized by the ALF method of student and teacher leaks the
least private information. The similarity between the anonymized face obtained by the student FF
method and the original face is also significantly worse, which shows that the anonymized face by
the student model protects private information. From a CV perspective, we evaluate the effectiveness
of privacy protection against four commonly employed third-party “black-box” FR models, namely
FaceNet (Schroff et al., [2015), SphereFace (Liu et al., [2017), CosFace (Wang et al., 2018a), and
ArcFace (Deng et al.l [2019). Following the setting in (Yang et al., |2021; |Zhu et al.l [2023)), we
randomly select 500 faces with different identities from the LFW dataset as probe images, while
using the remaining images as the gallery. The aforementioned FR models are utilized to perform
identity recognition on the probe images. For recognition, if the correct identity is included in the
top IV identities ranked by similarity, it is recorded as correct. The results are shown in Table[3] All
four FR models achieve an accuracy of over 89.4% in identifying the original faces. However, the
accuracy of identifying anonymized faces is almost 0% for all FR models, regardless of whether the
teacher or student model is used for privacy preservation. This indicates that privacy protection can
be achieved by utilizing the student in our system.

We also show the anonymization and de-anonymization faces of the student and teacher in Appendix
[A.2.2] and the data usability for downstream high-level tasks in Appendix [A.2.3] The results show
that using our student model does not affect the effectiveness of downstream high-level tasks.

Table 2: The similarity between the original image and the anonymized image.

. . Tea. Stu.
Blacked out Pixelation Random face DP (e = 5) DP (e = 2) ALF FF ALF FF
MSET 0.302 0.034 0.084 0.080 0.500 1.316 0.129 0.557 0.126
LPIPST 0.794 0.665 0.438 0.702 0.819 0.860 0.738 0.837 0.727

Table 3: Top-N accuracy of face recognition.

FaceNet CosFace ArcFace SphereFace

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Original 934%  978% 954% 97.8% 96.0%  982% 89.4%  93.4%
Tea. ALF 0% 0% 0% 0.6% 0% 0.2% 0% 0%

FF 0% 0% 0% 0.6% 0% 0% 0% 0.2%

Stu ALF 0% 0.4% 0% 0% 0% 0% 0.2% 0.6%
" FF 0% 0% 0% 0.2% 0% 0.4% 0% 0%

Fairness enhancement: In this part, we will show that if we process the test dataset with our
privacy-preserving system, general Al predictors will provide more unbiased results on different
groups. To proceed, we first use YOLOSFace (Qi et al.l [2023)) to perform face detection on UTK-
face and consider the results as ground truth (GT). Then, we utilize the face detection model in
the OpenCV library (Bradski & Kaehler, 2008) to perform face detection on the original images
and anonymized images and calculate the intersection over union (IoU) between the results and
the GT. For gender and race attributes, we counted the mean IoU of the OpenCV detector in each
group and calculated the difference between each group as metrics of fairness, similar to the pre-
vious work (Karkkainen & Joo, [2021)). See Appendix for details of the experiment. The
fairness results in Table {| show that the OpenCV detector is biased on the original images, and
after anonymization by either the teacher or the student models, this bias is alleviated. This result
indicates that using the student model to anonymize face images does enhance fairness.
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Table 4: Face detection results for different groups and fairness among different groups. “Ori.”,
“Tea.” and “Stu.” denote the results of the original images, the images anonymized by the teacher,
and the images anonymized by the student, respectively. Regarding the results for “Gender”, we
don’t report D,,cq, and STD since there are only two groups.

Gender Race
mloU mloU
Male Female Dmazd el White Black Asian Indian Others Dmazl Dmeanl el STDI
Ori. [0.665 0.613 | 0.052 0.081]0.623 0.596 0.643 0.669 0.617 | 0.073 0.034 0.115 0.028
Tea.[0.686 0.665 | 0.021 0.031|0.666 0.659 0.668 0.690 0.643 | 0.047 0.020 0.070 0.017
Stu. |0.695 0.670 | 0.025 0.037|0.674 0.673 0.678 0.696 0.673 | 0.022 0.010  0.033 0.010

Table 5:  Similarity between various Table 6: Inference time and energy consumption
faces and the original face. on embedded devices.
MSE LPIPS . Energy (J)
Random face 0.084T 0.438 ! Method fime(m) —GPU_ CPU_ Board
Tea. ALF 57.88 0.416 _0.000 0.770
Fake face 0.126  0.727 ALF 10.46 0.075 _0.002 0.143
Attacked face | 0.055 0.710 Stu. FF 12.67 0.088 0.002 0.172

C. VULNERABILITY EXPERIMENT

We simulate the vulnerability experiment for Scenario 3 in Section[5] The attacker tries to reverse
the proposed anonymization model by using supervised learning. That is, the input of the learning
network is the anonymized image, and the learning target of the output is the corresponding original
image. We may choose any suitable neural network to learn the anonymization model. Herein, we
choose to adopt the same architecture as the anonymization model to achieve a better attack result.
The training dataset is 100k images randomly selected from the face datasets CelebA and FFHQ,
and then anonymized with our student model (by encoding, rotating and decoding process) to obtain
the anonymized images. Herein, “Random face”, “Fake face”, and “Attacked face” respectively
represent faces randomly selected from the dataset, fake faces anonymized by the student model,
and faces obtained by attacking the student model. Table [5|shows that even if an attacker can obtain
a large number of original-anonymized image pairs, it is still difficult to restore the original image.

D. EMBEDDED DEVICES DEPLOYMENT

To demonstrate that the compressed model can run on an embedded system and achieve real-
time performance, we deploy our system on the NVIDIA Jetson TX2, which is an embedded sys-
tem module designed and produced by NVIDIA. It utilizes NVIDIA’s Tegra X2 processor, which
has 256 CUDA cores and 8 ARM CPU cores and comes with 8GB LPDDR4 memory. To re-
duce memory usage and optimize inference performance, we deploy our models with TensorRT
(https://developer.nvidia.com/tensorrt) a high-performance deep learning infer-
ence optimizer and runtime library. We test the inference time and required energy for ALF using
the teacher model and student model separately. Moreover, we deploy FF on embedded devices us-
ing our student model, which is not achieved in FFEM. We anonymized 10k images on the embedded
system and obtained average inference time and energy consumption. The results are shown in Ta-
ble @ For ALF, the inference speed of the student is 10.46 ms, which is 5.53 times faster than that
of the teacher, achieving much faster real-time inference speed. And the student only needs 0.143J
to anonymize one image, which is much lower than the teacher. For FF, students can anonymize an
image using only 12.67ms and 0.172J of energy, enabling real-time inference on embedded devices.

7 CONCLUSIONS AND LIMITATIONS

Conclusions: We propose a novel reversibility-based knowledge distillation method for flow-based
generative models. This method leverages the relation between the encoder and decoder to effec-
tively preserve the reversibility. Based on the lightweight and reversible generative model, we embed
our privacy protection and fairness enhancement system on a real NVIDIA Jetson TX2 device.

Limitations: Although using our method to obtain the student model results in stronger reversibility
compared to other methods, the reversibility still decreases compared to the teacher model, which
results in some differences between the recovered image and the original image. We believe that
this is a worthwhile trade-off between reversibility and privacy-preserving capability.
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