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Abstract

Label aggregation such as majority voting is
commonly used to resolve annotator disagree-
ment in dataset creation. However, this may
disregard minority values and opinions. Recent
studies indicate that learning from individual
annotations outperforms learning from aggre-
gated labels, though they require a consider-
able amount of annotation. Active learning,
as an annotation cost-saving strategy, has not
been fully explored in the context of learning
from disagreement. We show that in the active
learning setting, a multi-head model performs
significantly better than a single-head model
in terms of uncertainty estimation. By design-
ing and evaluating acquisition functions with
annotator-specific heads on two datasets, we
show that group-level entropy works generally
well on both datasets. Importantly, it achieves
performance in terms of both prediction and
uncertainty estimation comparable to full-scale
training from disagreement, while saving 70%
of the annotation budget.

1 Introduction

An important aspect of creating a dataset is asking
for multiple annotations and aggregating them in or-
der to derive a single ground truth label. Aggregat-
ing annotations, however, implies a single golden
ground truth, which is not applicable to many sub-
jective tasks such as hate speech detection (Oves-
dotter Alm, 2011). A human’s judgement on sub-
jective tasks can be influenced by their perspective
and beliefs or cultural background (Waseem et al.,
2021; Sap et al., 2022). When addressing disagree-
ment in annotation, aggregating them by majority
vote could result in the viewpoints of the minority
being overlooked (Suresh and Guttag, 2019).

In order to address this issue, many works have
been proposed to directly learn from the annotation
disagreements in subjective tasks. There are two
major approaches to achieving that: learning from
the soft label (Peterson et al., 2019; Uma et al.,
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Figure 1: For each sample that needs to be labelled, our
model actively selects specific annotators for annota-
tions to learn from the label variation.

2020; Fornaciari et al., 2021) and learning from
the hard label of individual annotators (Cohn and
Specia, 2013; Rodrigues and Pereira, 2018; Davani
et al., 2022).

In a recent work, Davani et al. (2022) shows
that modelling the individual annotators by adding
annotator-specific classification heads in a multi-
task setup outperforms the traditional approach that
learns from a majority vote. However, training such
a model needs a huge amount of data with multiple
annotations to model the opinions and beliefs of
the individual annotators.

On another line, Active Learning (AL) is a frame-
work that allows learning from limited labelled data
by querying the data to be annotated. In this paper,
we propose to take the best of both worlds: active
learning and human label variation, to mitigate the
high cost of the annotation budget needed for train-
ing the model. In particular, we propose a novel
active learning setting, where the multi-head model
actively selects the annotator and the sample to be
labelled. Our results show this effectively reduces
annotation costs while at the same time allowing
for modelling individual perspectives.



Key Findings We made several key observations:

• The multi-head model works significantly bet-
ter than the single-head model on uncertainty
estimation.

• The use of group-level entropy is generally
recommended. Individual-level entropy meth-
ods perform differently depending on the
dataset properties.

• The multi-head model achieves a performance
comparable to full-scale training with only
around 30% annotation budget.

2 Related Work

2.1 Learning from Disagreement
There is a growing body of work that studies irrec-
oncilable differences between annotations (Plank
et al., 2014; Aroyo and Welty, 2015; Pavlick and
Kwiatkowski, 2019; Uma et al., 2021). One line
of research aims at resolving the variation by ag-
gregation or filtering (Reidsma and Carletta, 2008;
Beigman Klebanov et al., 2008; Hovy et al., 2013;
Gordon et al., 2021). Another line of research tries
to embrace the variance by directly learning from
the raw annotations (Rodrigues and Pereira, 2018;
Peterson et al., 2019; Fornaciari et al., 2021; Da-
vani et al., 2022), which is the focus of our paper.

2.2 Active Learning
In active learning, many different methods for se-
lecting data have been proposed to save annotation
cost, such as uncertainty sampling (Lewis, 1995)
based on entropy (Dagan and Engelson, 1995) or
approximate Bayesian inference (Gal and Ghahra-
mani, 2016). Other approaches focus on the diver-
sity and informativeness of the sampled data (Sener
and Savarese, 2017; Gissin and Shalev-Shwartz,
2019; Zhang and Plank, 2021). Herde et al. (2021)
proposed a probabilistic active learning framework
in a multi-annotator setting, where the disagree-
ment is attributed to errors. Recent work by Baum-
ler et al. (2023) accepted the disagreement in the
active learning setting, and they showed improve-
ment over the passive learning setting using single-
head model. Our work shows the advantage of the
multi-head model and compares it with traditional
single-head active learning methods.

3 Method

Multi-head Model We use a multi-head model
where each head corresponds to one unique annota-

tor, following Davani et al., 2022. In the fine-tuning
stage, annotations are fed to the corresponding an-
notator heads, adding their losses to the overall loss.
During testing, the F1 score is calculated by com-
paring the majority votes of the annotator-specific
heads with the majority votes of the annotations.

3.1 Multi-head Acquisition Functions

We study five acquisition functions for the multi-
head model. Since our model learns directly from
the annotation, we care about which annotator
should give the label. So we query the instance-
annotation pair (xi, yai ) with its annotator ID a. In
this way, our data is duplicated by the number of
annotations available.

Random Sampling (Rand.) We conduct random
sampling as a baseline acquisition method where
we randomly sample K (data, annotation, anno-
tator ID) pairs from the unlabeled data pool U at
each active learning iteration.

Individual-level Entropy (Indi.) Intuitively,
the annotator-specific heads model the corre-
sponding annotators. Therefore, we can cal-
culate the entropy of the classification head
to measure the specific annotator’s uncertainty.
Given the logits za = [za1 , ..., z

a
n] of the

head a, the entropy is calculated as following:
Hindi(p

a|x) = −
∑n

i=1 p
a
i (x) log(p

a
i (x)), where

pai (x) = softmax(zai (x)). Then we choose the (in-
stance, annotator) pair with the highest entropy:
argmaxx∈U,a∈AHindi(p

a|x), where U denotes the
unlabeled set and A denotes the annotator pool. We
compute entropy only for the remaining annotators
who have not provided annotations for the instance.

Group-level Entropy (Group) Instead of look-
ing at the individual’s uncertainty, we can also
query the data by considering the group-level un-
certainty. One way to represent the uncertainty
of the group on a sample is to calculate the en-
tropy based on the aggregate of each annotator-
specific head’s output. Therefore, we normal-
ize and sum the logits of each head at the group
level: zgroup = [z1, ..., zn] =

∑H
h=1 z

h
norm,

and calculate the group-level entropy as follows:
Hgroup(x) = −

∑n
i=1 pi(x) log(pi(x)), where

pi(x) = softmax(zi(x)). We then query the data
with the highest uncertainty.

Vote Variance (Vote) Another way to measure
the uncertainty among a group is by measuring
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Figure 2: Comparsion of the Multi-head model and Single-Majority (upper row) and Single-Annotation (bottom
row). Results are averaged over 4 runs. All the methods have the same annotation cost of the seed dataset and the
queried batch at each round.

the variance of the votes. Given the prediction
yh of classification head h, we calculate the vote
variance: Var = 1

H

∑H
i=1(y

h − µ)2, where µ =
1
H

∑H
h=1 y

h. This approach can be applied to bi-
nary classification or regression problems.

Mixture of Group and Indi. Entropy (Mix.)
We also consider a variant which combines the
group-level and individual-level entropy by simply
adding the two: Hmix = Hindi +Hgroup.

4 Experiments

Dataset We selected two distinct hate speech
datasets for our experiments: Hate Speech on
Brexit (HS-Brexit) (Akhtar et al., 2021) and Gab
Hate Corpus (GHC) (Kennedy et al., 2022). We
split the raw annotation dataset according to the
split of the aggregated version dataset provided.
The HS-Brexit dataset includes 1,120 English
tweets relating to Brexit and immigration, where
a total of six individuals were involved in anno-
tating each tweet. As each tweet contains all six
annotations, we refer to HS-Brexit as densely anno-
tated. In GHC, 27,665 social-media posts were col-
lected from the public corpus of Gab.com (Gaffney,
2018). From a set of 18 annotators, each instance
gets at least three annotations. Therefore, GHC is
sparsely annotated. Both datasets contain binary
labels y ∈ [0, 1] and have almost the same posi-
tive/negative raw annotation ratio (0.15).

Single-head Model Baselines We implement
four acquisition methods for single-head model
active learning for comparison: Random sampling

(Rand.), Max-Entropy (Ent.; Dagan and Engel-
son, 1995), Bayesian Active Learning by Disagree-
ment (BALD; Houlsby et al., 2011) and Discrimi-
native Active Learning (DAL; Gissin and Shalev-
Shwartz, 2019). We compare them with the multi-
head approach with random sampling which has
an average performance among the five multi-head
acquisition methods we investigated.

Two different single-head model approaches
are considered: Learning from the Majority Vote
(Single-Majority) and Learning from Raw annota-
tions (Single-Annotation). In the first setting, all
annotators’ annotations are queried, and the major-
ity vote is used to train the model. In the second
setting, we train the model with individual annota-
tions without aggregation, following the repeated
labelling approach by Sheng et al. (2008).

Experimental Setup We follow the setup of Da-
vani et al. (2022) for modelling and evaluation. We
initialize the layers before the heads with a BERT-
base model (Devlin et al., 2019). To balance train-
ing data, we do oversampling following Kennedy
et al. (2022). Moreover, we use class weights on
the loss function for multi-head model training,
which makes it more stable. It is not used for the
single-head model as it degrades performance.

To evaluate the model, we first report the F1
score against the majority vote. Secondly, we also
compute individual F1 scores, measuring annotator-
specific heads against annotator labels. Thirdly
and importantly, we are interested to gauge how
well the model can predict the data uncertainty
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Figure 3: Comparison of multi-head acquisition functions. Results are averaged over 4 runs. Group-level entropy
method (Group) performs generally well on both datasets on all three metrics. Individual-level uncertainty (Indi.)
only performs well on GHC.

by calculating the Pearson correlation between the
model’s uncertainty and the annotation disagree-
ment measured by the variance of the annotations
on the same instance. For the single-head model,
we use Prediction Softmax Probability proposed
by Hendrycks and Gimpel (2017) as the uncer-
tainty estimation of the model. For the multi-head
model, we follow Davani et al. (2022) and calculate
the variance of the prediction of the heads as the
model’s uncertainty.

5 Result

Single-head vs Multi-head Model Figure 2
shows the comparison of the multi-head model and
the single-head during the active learning process
In the upper row, we compare the multi-head ap-
proach with single-majority approach on majority
F1 score and uncertainty estimation. In terms of
predicting the majority vote, the multi-head model
performs on par with the best-performing single-
head method on both datasets, such as BALD. For
uncertainty estimation measured against annotator
disagreement, the multi-head model outperforms
the single-head model by a large margin.

We have the same observation when comparing
with single-annotation model, shown in the bottom
row. Therefore, we recommend using a multi-head
model in a subjective task where humans may dis-
agree and uncertainty estimation is important.

Label Diversity vs. Sample Diversity When
it comes to group-level uncertainty based acquisi-
tion functions (Group and Vote), we tested two
approaches to determine which annotator to query

from: Label Diversity First and Sample Diversity
First. In Label Diversity First, we query from all
the available annotators to prioritize the label diver-
sity of a single sample. In Sample Diversity Fisrat
approach, we only randomly choose one of the an-
notators for annotation. Given the same annotation
budget for each annotation round, Label Diversity
First would query fewer samples but more anno-
tations than Sample Diversity First approach. In
our preliminary result, Label Diversity First shows
stronger performance in general. Therefore, we
adopt this approach for the following experiments.

Comparison of Multi-head acquisition functions
To compare different strategies to query for anno-
tations, we compare the five proposed acquisition
functions from Section 3.1 in Fig 3. Group per-
forms generally well on both datasets. We also
see a trend here that HS-Brexit favours acquisition
function based on group-level uncertainty (Vote),
while individual-level uncertainty (Indi.) works
better on GHC dataset. For HS-Brexit, Group is
the best-performing method based on the major-
ity F1 score. When evaluated on raw annotation
(F1 indi. score), both vote variant and group-level
entropy perform well. For uncertainty estimation,
random sampling is slightly better than group-level
entropy approach. On the GHC dataset, both Indi.
and Group perform well on uncertainty estimation
and raw annotation prediction. However, we don’t
see an obvious difference between all the acquisi-
tion functions on the majority vote F1 score.

Annotation Cost In terms of saving annotation
cost, we see that the F1 score slowly goes into a



plateau after around 25 rounds on both datasets in
Fig 3, which is around 30% usage of the overall
dataset (both datasets are fully labelled at around 90
rounds). For example, Vote achieves the majority
F1 score of 52.3, which is 94% of the performance
(55.8) of the full-scale training (round 90).

6 Conclusion

We presented an active learning framework that em-
braces human label variation by modelling the an-
notator with annotator-specific classification heads,
which are used to estimate the uncertainty at the
individual annotator level and the group level. We
first showed that a multi-head model is a better
choice over a single-head model in the active learn-
ing setting, especially for uncertainty estimation.
We then designed and tested five acquisition func-
tions for the annotator-heads model on two datasets.
We found that group-level entropy works generally
well on both datasets and is recommended. Depend-
ing on the dataset properties, the individual-level
entropy method performs differently.

Limitations

The multi-head approach is only viable when the
annotator IDs are available during the active learn-
ing process since we need to ask the specific an-
notator for labelling. Furthermore, the annotators
should remain available for a period of time in or-
der to provide enough annotations to be modelled
by the specific head successfully. Note that we here
simulate the AL setup. The multi-head approach
is good at estimating the uncertainty based on the
annotators it trains on, however, whether the uncer-
tainty can still align with yet another pool of people
is still an open question.

Further analysis is needed to understand why
GHC and HS-Brexit favour different acquisition
functions. Besides the difference between dense
and sparse annotation, factors such as diversity of
the topics covered and annotator-specific annota-
tion statics are also important, which we leave as
future work.
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A Data Preparation

In contrast to the traditional active learning ap-
proach, which only selects instances from the unla-
beled data pool, our approach also considers which
annotator should give the annotation since the anno-
tation should be fed to the annotator-specific heads.
To address this issue, we reform the dataset by split-
ting one instance with N annotations into N (data,
annotation) pairs with its annotator ID. When se-
lecting the batch from the populated data pool, the
(data, annotation) pair is given to the classification
head corresponding to its annotator ID.

B Active Learning Setting

Since our work focus on raw annotation, we set the
seed dataset size and the query batch size based
on the annotation budget. We set the annotation
budget for HS-Brexit as (60, 60) for both seed data
size and query data size respectively. For GHC, we
set it as (200, 200).

C Training Setup

We list our training parameter in Table 1. We halve
the learning rate when the F1 score decreases at
evaluation.

Parameter Value

Weight Decay 0.01
Optimizer AdamW
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.99
Gradient Clipping 0.0
Peak Learning Rate 2e-5
Batch size 32
Early stopping 5

Table 1: Parameter used for training.
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