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ABSTRACT

Learning rate schedulers have been widely adopted in training deep neural net-
works. Despite their practical importance, there is a discrepancy between its prac-
tice and its theoretical analysis. For instance, it is not known what schedules
of SGD achieve best convergence, even for simple problems such as optimizing
quadratic objectives. In this paper, we propose Eigencurve, the first family of
learning rate schedules that can achieve minimax optimal convergence rates (up
to a constant) for SGD on quadratic objectives when the eigenvalue distribution
of the underlying Hessian matrix is skewed. The condition is quite common in
practice. Experimental results show that Eigencurve can significantly outperform
step decay in image classification tasks on CIFAR-10, especially when the num-
ber of epochs is small. Moreover, the theory inspires two simple learning rate
schedulers for practical applications that can approximate eigencurve. For some
problems, the optimal shape of the proposed schedulers resembles that of cosine
decay, which sheds light to the success of cosine decay for such situations. For
other situations, the proposed schedulers are superior to cosine decay.

1 INTRODUCTION

Many machine learning models can be represented as the following optimization problem:

min
w
f(w) ,

1

n

n∑
i=1

fi(w), (1.1)

such as logistic regression, deep neural networks. To solve the above problem, stochastic gradient
descent (SGD) (Robbins & Monro, 1951) has been widely adopted due to its computation efficiency
in large-scale learning problems (Bottou & Bousquet, 2008), especially for training deep neural
networks.

Given the popularity of SGD in this field, different learning rate schedules have been proposed to
further improve its convergence rates. Among them, the most famous and widely used ones are
inverse time decay, step decay (Goffin, 1977), and cosine scheduler (Loshchilov & Hutter, 2017).
The learning rates generated by the inverse time decay scheduler depends on the current iteration
number inversely. Such a scheduling strategy comes from the theory of SGD on strongly convex
functions, and is extended to non-convex objectives like neural networks while still achieving good
performance. Step decay scheduler keeps the learning rate piecewise constant and decreases it by
a factor after a given amount of epochs. It is theoretically proved in Ge et al. (2019) that when
the objective is quadratic, step decay scheduler outperforms inverse time decay. Empirical results
are also provided in the same work to demonstrate the better convergence property of step decay
in training neural networks when compared with inverse time decay. However, even step decay
∗Equal contribution.
†Corresponding author is Haishan Ye.
‡Jointly with Google Research.
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is proved to be near optimal on quadratic objectives, it is not truly optimal. There still exists a
log T gap away from the minimax optimal convergence rate, which turns out to be non-trivial in a
wide range of settings and may greatly impact step decay’s empirical performance. Cosine decay
scheduler (Loshchilov & Hutter, 2017) generates cosine-like learning rates in the range [0, T ], with
T being the maximum iteration. It is a heuristic scheduling strategy which relies on the observation
that good performance in practice can be achieved via slowly decreasing the learning rate in the
beginning and “refining” the solution in the end with a very small learning rate. Its convergence
property on smooth non-convex functions has been shown in Li et al. (2021), but the provided
bound is still not tight enough to explain its success in practice.

Except cosine decay scheduler, all aforementioned learning rate schedulers have (or will have) a
tight convergence bound on quadratic objectives. In fact, studying their convergence property on
quadratic objective functions is quite important for understanding their behaviors in general non-
convex problems. Recent studies in Neural Tangent Kernel (NTK) (Arora et al., 2019; Jacot et al.,
2020) suggest that when neural networks are sufficiently wide, the gradient descent dynamic of
neural networks can be approximated by NTK. In particular, when the loss function is least-square
loss, neural network’s inference is equivalent to kernel ridge regression with respect to the NTK
in expectation. In other words, for regression tasks, the non-convex objective in neural networks
resembles quadratic objectives when the network is wide enough.

The existence of log T gap in step decay’s convergence upper bound, which will be proven to be tight
in a wide range of settings, implies that there is still room for improvement in theory. Meanwhile, the
existence of cosine decay scheduler, which has no strong theoretical convergence guarantees but pos-
sesses good empirical performance in certain tasks, suggests that its convergence rate may depend on
some specific properties of the objective determined by the network and dataset in practice. Hence
it is natural to ask what those key properties may be, and whether it is possible to find theoretically-
optimal schedulers whose empirical performance are comparable to cosine decay if those properties
are available. In this paper, we offer an answer to these questions. We first derive a novel eigenvalue-
distribution-based learning rate scheduler called eigencurve for quadratic functions. Combining
with eigenvalue distributions of different types of networks, new neural-network-based learning rate
schedulers can be generated based on our proposed paradigm, which achieve better convergence
properties than step decay in Ge et al. (2019). Specifically, eigencurve closes the log T gap in
step decay and reaches minimax optimal convergence rates if the Hessian spectrum is skewed. We
summarize the main contributions of this paper as follows.

1. To the best of our knowledge, this is the first work that incorporates the eigenvalue distribu-
tion of objective function’s Hessian matrix into designing learning rate schedulers. Accord-
ingly, based on the eigenvalue distribution of the Hessian, we propose a novel eigenvalue
distribution based learning rate scheduler named eigencurve.

2. Theoretically, eigencurve can achieve optimal convergence rate (up to a constant) for
SGD on quadratic objectives when the eigenvalue distribution of the Hessian is skewed.
Furthermore, even when the Hessian is not skewed, eigencurve can still achieve no
worse convergence rate than the step decay schedule in Ge et al. (2019), whose convergence
rate are proven to be sub-optimal in a wide range of settings.

3. Empirically, on image classification tasks, eigencurve achieves optimal convergence
rate for several models on CIFAR-10 and ImageNet if the loss can be approximated by
quadratic objectives. Moreover, it obtains much better performance than step decay on
CIFAR-10, especially when the number of epochs is small.

4. Intuitively, our learning rate scheduler sheds light on the theoretical property of cosine
decay and provides a perspective of understanding the reason why it can achieve good
performance on image classification tasks. The same idea has been used to inspire and
discover several simple families of schedules that works in practice.

Problem Setup For the theoretical analysis and the aim to derive our eigenvalue-dependent learn-
ing rate schedulers, we mainly focus on the quadratic function, that is,

min
w
f(w) , Eξ [f(w, ξ)] , where f(w, ξ) =

1

2
w>H(ξ)w − b(ξ)>w, (1.2)

where ξ denotes the data sample. Hence, the Hessian of f(w) is
H = Eξ [H(ξ)] . (1.3)
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Letting us denote b = Eξ[b(ξ)], we can obtain the optima of problem (1.2)

w∗ = H−1b. (1.4)

Given an initial iterate w0 and the learning rate sequence {ηt}, the stochastic gradient update is

wt+1 = wt − ηt∇f(wt, ξ) = wt − ηt(H(ξ)wt − b(ξ)). (1.5)

We denote that

nt = Hwt − b− (H(ξ)wt − b(ξ)) , µ , λmin(H), L , λmax(H), and, κ , L/µ. (1.6)

In this paper, we assume that

Eξ
[
ntn
>
t

]
� σ2H. (1.7)

The reason for this assumption is presented in Appendix G.5.

Table 1: Convergence rate of SGD with common sched-
ulers on quadratic objectives.

Scheduler Convergence rate of SGD in
quadratic objectives

Constant Not guaranteed to converge

Inverse Time Decay Θ
(
dσ2

T · κ
)

Step Decay
Θ
(
dσ2

T · log T
)

(Ge et al. (2019); Wu et al. (2021);
This work - Theorem 4)

Eigencurve

O
(
dσ2

T

)
with skewed Hessian spectrums,

O
(
dσ2

T · log κ
)

in worst case
(This work - Theorem 1, Corollary 2, 3)

Related Work In convergence anal-
ysis, one key property that separates
SGD from vanilla gradient descent is
that in SGD, noise in gradients domi-
nates. In gradient descent (GD), con-
stant learning rate can achieve linear
convergence O(cT ) with 0 < c < 1 for
strongly convex objectives, i.e. obtain-
ing f(w(t)) − f(w∗) ≤ ε in O(log( 1

ε ))

iterations. However, in SGD, f(w(t))
cannot even be guaranteed to converge
to f(w∗) due to the existence of gra-
dient noise (Bottou et al., 2018). In-
tuitively, this noise leads to a variance
proportional to the learning rate size, so
constant learning rate will always intro-
duce a Ω(ηt) = Ω(η0) gap when com-
pared with the convergence rate of GD.
Fortunately, inverse time decay scheduler solves the problem by decaying the learning rate inversely
proportional to the iteration number t, which achieves O( 1

T ) convergence rate for strongly convex
objectives, specifically, O(dσ

2

T · κ). However, this is sub-optimal since the minimax optimal rate
for SGD is O(dσ

2

T ) (Ge et al., 2019; Jain et al., 2018). Moreover, in practice, κ can be very big
for large neural networks, which makes inverse time decay scheduler undesirable for those models.
This is when step decay (Goffin, 1977) comes to play. Empirically, it is widely adopted in tasks
such as image classification and serves as a baseline for a lot of models. Theoretically, it has been
proven that step decay can achieve nearly optimal convergence rateO(dσ

2

T · log T ) for strongly con-
vex least square regression (Ge et al., 2019). A tighter set of instance-dependent bounds in a recent
work (Wu et al., 2021), which is carried out independently from ours, also proves its near optimal-
ity. Nevertheless, step decay is not always the best choice for image classification tasks. In practice,
cosine decay (Loshchilov & Hutter, 2017) can achieve comparable or even better performance, but
the reason behind this superior performance is still unknown in theory (Gotmare et al., 2018). All
the aforementioned results are summarized in Table 1, along with our results in this paper. It is
worth mentioning that the minimax optimal rateO(dσ

2

T ) can be achieved by iterate averaging meth-
ods (Jain et al., 2018; Bach & Moulines, 2013; Défossez & Bach, 2015; Frostig et al., 2015; Jain
et al., 2016; Neu & Rosasco, 2018), but it is not a common practice to use them in training deep
neural networks, so only the final iterate (Shamir, 2012) behavior of SGD is analyzed in this paper,
i.e. the point right after the last iteration.

Paper organization: Section 2 describes the motivation of our eigencurve scheduler. Section 3
presents the exact form and convergence rate of the proposed eigencurve scheduler, along with
the lower bound of step decay. Section 4 shows the experimental results. Section 5 discusses the
discovery and limitation of eigencurve and Section 6 gives our conclusion.
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2 MOTIVATION

In this section, we will give the main motivation and intuition of our eigencurve learning rate
scheduler. We first give the scheduling strategy to achieve the optimal convergence rate in the case
that the Hessian is diagonal. Then, we show that the inverse time learning rate is sub-optimal in
most cases. Comparing these two scheduling methods brings up the reason why we should design
eigenvalue distribution dependent learning rate scheduler.

Letting H be a diagonal matrix diag(λ1, λ2, . . . , λd) and reformulating Eqn. (1.5), we have
wt+1 − w∗ =wt − w∗ − ηt(H(ξ)wt − b(ξ))

=wt − w∗ − ηt(Hwt − b) + ηt (Hwt − b− (H(ξ)wt − b(ξ)))
=wt − w∗ − ηt(Hwt − b− (Hw∗ − b)) + ηt (Hwt − b− (H(ξ)wt − b(ξ)))
= (I − ηtH) (wt − w∗) + ηtnt.

It follows,

E
[
λj (wt+1,j − w∗,j)2

] E[nt]=0
= λj

{
(1− ηtλj)2E

[
(wt,j − w∗,j)2

]
+ η2

tE ‖[nt]j‖
2
}

(1.7)
≤ (1− ηtλj)2 · λjE

[
(wt,j − w∗,j)2

]
+ η2

t λ
2
jσ

2.

(2.1)

Since H is diagonal, we can set step size scheduling for each dimension separately. Letting us
choose step size ηt coordinately with the step size ηt,j = 1

λj(t+1) being optimal for the j-th coordi-
nate, then we have the following proposition.
Proposition 1. Assume that H is diagonal matrix with eigenvalues λ1 ≥ λ2 ≥ . . . , λd ≥ 0 and
Eqn. (1.7) holds. If we set step size ηt,j = 1

λj(t+1) , it holds that

2E [f(wt+1)− f(w∗)] = E

 d∑
j=1

λj (wt+1,j − w∗,j)2

 ≤ ∑d
j=1 λj(w1,j − w∗,j)2

(t+ 1)2
+

t

(t+ 1)2
·dσ2.

(2.2)

The leading equality here is proved in Appendix G.1, with the followed inequality proved in Ap-
pendix E. From Eqn. (2.2), we can observe that choosing proper step sizes coordinately can achieve
the optimal convergence rate (Ge et al., 2019; Jain et al., 2018). Instead, if the widely used inverse
time scheduler ηt = 1/(L + µt) is chosen, we can show that only a sub-optimal convergence rate
can be obtained, especially when λj’s vary from each other.
Proposition 2. If we set the inverse time step size ηt = 1

(L+µt) , then we have

2E [f(wt+1)− f(w∗)] = E

 d∑
j=1

λj (wt+1,j − w∗,j)2


≤
(
L+ µ

L+ µt

)2
 d∑
j=1

λj(w1,j − w∗,j)2

+

d∑
j=1

(
λ2
j

2λj − µ
· 1

L+ µt
· σ2 +

λ2
jσ

2

(L+ µt)2

)
.

(2.3)

Remark 1. Eqn. (2.2) shows that if one can choose step size coordinate-wise with step size ηt,j =
1

λj(t+1) , then SGD can achieve a convergence rate

E [f(wT+1)− f(w∗)] ≤ O
(
d

T
· σ2

)
. (2.4)

which matches the lower bound (Ge et al., 2019; Jain et al., 2018). In contrast, replacing L = λ1

and µ = λd in Proposition 2, we can obtain that the convergence rate of SGD being

E [f(wT+1)− f(w∗)] ≤ O

 1

T

d∑
j=1

λj
λd
· σ2

 . (2.5)

Since it holds that λj ≥ λd, the convergence rate in Eqn. (2.4) is better than the one in Eqn. (2.5),
especially when the eigenvalues of the Hessian (H matrix) decay rapidly. In fact, the upper bound
in Eqn. (2.5) is tight for the inverse time decay scheduling, as proven in Ge et al. (2019).
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Main Intuition The diagonal case H = diag(λ1, λ2, . . . , λd) provides an important intuition for
designing eigenvalue dependent learning rate scheduling. In fact, for general non-diagonalH , letting
H = UΛU> be the spectral decomposition of the Hessian and setting w′ = U>w, then the Hessian
becomes a diagonal matrix from perspective of updating w′, with the variance of the stochastic
gradient being unchanged since U is a unitary matrix. This is also the core idea of Newton’s method
and many second-order methods (Huang et al., 2020). However, given our focus in this paper being
learning rate schedulers only, we move the relevant discussion of their relationship to Appendix H.

Proposition 1 and 2 imply that a good learning rate scheduler should decrease the error of each co-
ordinate. The inverse time decay scheduler is only optimal for the coordinate related to the smallest
eigenvalue. That’s the reason why it is sub-optimal overall. Thus, we should reduce the learning
rate gradually such that we can run a optimal learning rate associated to λj to sufficiently drop the
error of j-th coordinate. Furthermore, given the total iteration T and the eigenvalue distribution of
the Hessian, we should allocate the running time for each optimal learning rate associated to λj .

3 EIGENVALUE DEPENDENT STEP SCHEDULING

Figure 1: Eigencurve : piecewise in-
verse time decay scheduling.

Just as discussed in Section 2, to obtain better conver-
gence rate for SGD, we should consider Hessian’s eigen-
value distribution and schedule the learning rate based on
the distribution. In this section, we propose a novel learn-
ing rate scheduler for this task, which can be regarded as
piecewise inverse time decay (see Figure 1). The method
is very simple, we group eigenvalues according to their
value and denote si to be the number of eigenvalues lie in
the rangeRi = [µ · 2i, µ · 2i+1), that is,

si = #λj ∈ [µ · 2i, µ · 2i+1). (3.1)

Then, there are at most Imax = log2 κ such ranges. By the inverse time decay theory, the optimal
learning rate associated to eigenvalues in the rangeRi should be

ηt = O
(

1

2i−1µ · (t− ti)

)
, with 0 = t0 < t1 < t2 < · · · < tImax

= T. (3.2)

Our scheduling strategy is to run the optimal learning rate for eigenvalues in eachRi for a period to
sufficiently decrease the error associated to eigenvalues inRi.
To make the step size sequence {ηt}Tt=1 monotonely decreasing, we define the step sizes as

ηt =
1

L+ µ
∑i−1
j=1 ∆j2j−1 + 2i−1µ(t− ti−1)

if t ∈ [ti−1, ti) (3.3)

where

0 = t0 < t1 < t2 < · · · < tImax = T, ∆i = ti − ti−1, and Imax = log2 κ. (3.4)

To make the total error, that is the sum of error associated with Ri, to be small, we should allocate
∆i according to si−1’s. Intuitively, a large portion of eigenvalues lying in the range Ri should
allocate a large portion of iterations. Specifically, we propose to allocate ∆i as follows:

∆i =

√
si−1∑Imax−1

i′=0

√
si′
· T, with si = #λj ∈ [µ · 2i, µ · 2i+1). (3.5)

In the rest of this section, we will show that the step size scheduling according to Eqn. (3.3) and
(3.5) can achieve better convergence rate than the one in Ge et al. (2019) when si is non-uniformly
distributed. In fact, a better ∆i allocation can be calculated using numerical optimization.

3.1 THEORETICAL ANALYSIS

Lemma 1. Let objective function f(x) be quadratic and Assumption (1.7) hold. Running SGD for
T -steps starting fromw0 and a learning rate sequence {ηt}Tt=1 defined in Eqn. (3.3), the final iterate
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wT+1 satisfies

E [f(wT+1)− f(w∗)] ≤(f(w0)− f(w∗)) ·
κ2

∆2
1

+
15

2
· σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

.

(3.6)

Since the bias term is a high order term, the variance term in Eqn. (3.6) dominates the error for
wT+1. For simplicity, instead of using numerical methods to find the optimal {∆i}, we propose to
use ∆i defined in Eqn. (3.5). The value of ∆i is linear to square root of the number of eigenvalues
lying in the range [µ · 2i−1, µ · 2i). Using such ∆i, eigencurve has the following convergence
property.
Theorem 1. Let objective function f(x) be quadratic and Assumption (1.7) hold. Running SGD for
T -steps starting from w0, a learning rate sequence {ηt}Tt=1 defined in Eqn. (3.3) and ∆i defined in
Eqn. (3.5), the final iterate wT+1 satisfies

E [f(wT+1)− f(w∗)] ≤(f(w0)− f(w∗)) ·
κ2 ·

(∑Imax−1
i=0

√
si

)2

s0T 2
+

15
(∑Imax−1

i=0

√
si

)2

T
· σ2.

Please refer to Appendix D, F and G for the full proof of Lemma 1 and Theorem 1. The variance

term
15(
∑Imax−1
i=0

√
si)

2

T · σ2 in above theorem shows that when si’s vary largely from each other,
then the variance can be close to O

(
d
T · σ

2
)

which matches the lower bound (Ge et al., 2019). For
example, letting Imax = 100, s0 = 0.99d and si = 0.01

99 d, we can obtain that(∑99
i=0

√
si

)2

T
· σ2 = (

√
0.99 + 99×

√
0.01/99)2 · d

T
· σ2 <

4d

T
· σ2.

Figure 2: Power law observed in
ResNet-18 on ImageNet, both eigen-
value (x-axis) and density (y-axis) are
plotted in log scale.

We can observe that if the variance of si’s is large, the
variance term in Theorem 1 can be close to dσ2/T .
More generally, as rigorously stated in Corollary 2,
eigencurve achieves minimax optimal convergence
rate if the Hessian spectrum satisfies an extra assumption
of “power law”: the density of eigenvalue λ is exponen-
tially decaying with increasing value of λ in log scale, i.e.
ln(λ). This assumption comes from the observation of
estimated Hessian spectrums in practice (see Figure 2),
which will be further illustrated in Section 4.1.
Corollary 2. Given the same setting as in Theorem 1,
when Hessian H’s eigenvalue distribution p(λ) satisfies
“power law”, i.e.

p(λ) =
1

Z
· exp(−α(ln(λ)− ln(µ))) =

1

Z
·
(µ
λ

)α
(3.7)

for some α > 1, where Z =
∫ L
µ

(µ/λ)αdλ, there exists a
constant C(α) which only depends on α, such that the final iterate wT+1 satisfies

E [f(wT+1)− f(w∗)] ≤
(

(f(w0)− f(w∗)) ·
κ2

T 2
+
dσ2

T

)
· C(α).

Please refer to Appendix G.3 for the proof. As for the worst-case guarantee, it is easy to check that
only when si’s are equal to each other, that is, si = d/Imax = d/ log2(κ), the variance term reaches
its maximum.
Corollary 3. Given the same setting as in Theorem 1, when si = d/ log2(κ) for all 0 ≤ i ≤
Imax − 1, the variance term in Theorem 1 reaches its maximum and wT+1 satisfies

E [f(wT+1)− f(w∗)] ≤ (f(w0)− f(w∗)) ·
κ2 log2 κ

T 2
+

15d · log κ

T
σ2.
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Remark 2. When si’s vary from each other, our eigenvalue dependent learning rate scheduler can
achieve faster convergence rate than eigenvalue independent scheduler such as step decay which
suffers from an extra log(T ) term (Ge et al., 2019). Only when si’s are equal to each other, Corol-
lary 3 shows that the bound of variance matches to lower bound up to log κ which is same to the
one in Proposition 3 of Ge et al. (2019).

Furthermore, we show that this log T gap between step decay and eigencurve certainly exists
for problem instances of skewed Hessian spectrums. For simplicity, we only discuss the case where
H is diagonal.
Theorem 4. Let objective function f(x) be quadratic. We run SGD for T -steps starting fromw0 and
a step decay learning rate sequence {ηt}Tt=1 defined in Algorithm 1 of Ge et al. (2019) with η1 ≤
1/L. As long as (1) H is diagonal, (2) The equality in Assumption (1.7) holds, i.e. Eξ

[
ntn
>
t

]
=

σ2H and (3) λj (w0,j − w∗,j)2 6= 0 for ∀j = 1, 2, . . . , d, the final iterate wT+1 satisfies,

E [f(wT+1)− f(w∗)] = Ω

(
dσ2

T
· log T

)
The proof is provided in Appendix G.4. Removing this extra log T term may not seem to be a big
deal in theory, but experimental results suggest the opposite.

4 EXPERIMENTS

To demonstrate eigencurve ’s practical value, empirical experiments are conducted on the task
of image classification 1. Two well-known dataset are used: CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet (Deng et al., 2009). For full experimental results on more datasets, please refer to
Appendix A.

4.1 HESSIAN SPECTRUM’S SKEWNESS IN PRACTICE

According to estimated2 eigenvalue distributions of Hessian on CIFAR-10 and ImageNet, as shown
in Figure 3, it can be observed that all of them are highly skewed and share a similar tendency: A
large portion of small eigenvalues and a tiny portion of large eigenvalues. This phenomenon has also
been observed and explained by other researchers in the past(Sagun et al., 2017; Arjevani & Field,
2020). On top of that, when we plot both eigenvalues and density in log scale, the “power law” arises.
Therefore, if the loss surface can be approximated by quadratic objectives, then eigencurve has
already achieved optimal convergence rate for those practical settings. The exact values of the extra
constant terms are presented in Appendix A.2.

4.2 IMAGE CLASSIFICATION ON CIFAR-10 WITH EIGENCURVE SCHEDULING

This optimality in theory induces eigencurve ’s superior performance in practice, which is
demonstrated in Table 2 and Figure 4. The full set of figures are available in Appendix A.8. All mod-
els are trained with stochastic gradient descent (SGD), no momentum, batch size 128 and weight
decay wd = 0.0005. For full details of the experiment setup, please refer to Appendix B.

4.3 INSPIRED PRACTICAL SCHEDULES WITH SIMPLE FORMS

By simplifying the form of eigencurve and capturing some of its key properties, two simple and
practical schedules are proposed: Elastic Step Decay and Cosine-power Decay, whose empirical
performance are better than or at least comparable to cosine decay. Due to page limit, we leave all
the experimental results in Appendix A.5, A.6, A.7.

Elastic Step Decay: ηt = η0/2
k , if t ∈

[
(1− rk)T, (1− rk+1)T

)
(4.1)

Cosine-power Decay: ηt = ηmin + (η0 − ηmin)

[
1

2
(1 + cos(

t

tmax
π))

]α
(4.2)

1Code: https://github.com/opensource12345678/why_cosine_works/tree/main
2Please refer to Appendix B.2 for details of the estimation and preprocessing procedure.

7

https://github.com/opensource12345678/why_cosine_works/tree/main


Published as a conference paper at ICLR 2022

0 25 50 75 100 125 150 175
Eigenvlaue

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

0 50 100 150 200 250
Eigenvlaue

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

0 200 400 600 800 1000 1200
Eigenvlaue

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

De
ns

ity
 (L

og
 S

ca
le

)

Figure 3: The estimated eigenvalue distribution of Hessian for ResNet-18 on CIFAR-10, GoogLeNet
on CIFAR-10 and ResNet-18 on ImageNet respectively. Notice that the density here is all shown
in log scale. First row: original scale for eigenvalues. Second row: log scale for preprocessed
eigenvalues.

Table 2: CIFAR-10: training losses and test accuracy of different schedules. Step Decay denotes the
scheduler proposed in Ge et al. (2019) and General Step Decay means the same type of scheduler
with searched interval numbers and decay rates. “*” before a number means at least one occurrence
of loss explosion among all 5 trial experiments.

#Epoch Schedule ResNet-18 GoogLeNet VGG16
Loss Acc(%) Loss Acc(%) Loss Acc(%)

=10

Inverse Time Decay 1.58±0.02 79.45±1.00 2.61±0.00 86.54±0.94 2.26±0.00 84.47±0.74
Step Decay 1.82±0.04 73.77±1.48 2.59±0.02 87.04±0.48 2.42±0.45 82.98±0.27

General Step Decay 1.52±0.02 81.99±0.35 1.93±0.03 88.32±1.32 2.14±0.42 86.79±0.36
Cosine Decay 1.42±0.01 84.23±0.07 1.94±0.00 90.56±0.31 2.03±0.00 87.99±0.13
Eigencurve 1.36±0.01 85.62±0.28 1.33±0.00 90.65±0.15 1.87±0.00 88.73±0.11

=100

Inverse Time Decay 0.73±0.00 90.82±0.43 0.62±0.02 92.05±0.69 1.32±0.62 *76.24±13.77
Step Decay 0.26±0.01 91.39±1.03 0.28±0.00 92.83±0.15 0.59±0.00 91.37±0.20

General Step Decay 0.17±0.00 93.97±0.21 0.13±0.00 94.18±0.18 0.20±0.00 *92.36±0.46
Cosine Decay 0.17±0.00 94.04±0.21 0.12±0.00 94.62±0.11 0.20±0.00 93.17±0.05
Eigencurve 0.14±0.00 94.05±0.18 0.12±0.00 94.75±0.15 0.18±0.00 92.88±0.24

Figure 4: Example: CIFAR-10 results for ResNet-18, with #Epoch = 100. Left: training losses.
Right: test accuracy. For full figures of this experiment, please refer to Appendix A.8.
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5 DISCUSSION

Cosine Decay and Eigencurve For ResNet-18 on CIFAR-10 dataset, eigencurve scheduler
presents an extremely similar learning rate curve to cosine decay, especially when the number of
training epochs is set to 100, as shown in Figure 5. This directly links cosine decay to our theory:
the empirically superior performance of cosine decay is very likely to stem from the utilization of the
“skewness” among Hessian matrix’s eigenvalues. For other situations, especially when the number
of iterations is small, as shown in Table 2, eigencurve presents a better performance than cosine
decay .

Figure 5: Eigencurve ’s learning rate curve generated by the estimated eigenvalue distribution for
ResNet-18 on CIFAR-18 after training 50/100/200 epochs. The cosine decay’s learning rate curve
(green) is also provided for comparison.

Sensitiveness to Hessian’s Eigenvalue Distributions One limitation of eigencurve is that it
requires a precomputed eigenvalue distribution of objective functions’s Hessian matrix, which can
be time-consuming for large models. This issue can be overcome by reusing the estimated eigen-
value distribution from similar settings. Further experiments on CIFAR-10 suggest the effective-
ness of this approach. Please refer to Appendix A.3 for more details. This evidence suggests that
eigencurve’s performance is not very sensitive to estimated eigenvalue distributions.

Relationship with Numerically Near-optimal Schedulers In Zhang et al. (2019), a dynamic
programming algorithm was proposed to find almost optimal schedulers if the exact loss of the
quadratic objective is accessible. While it is certainly the case, eigencurve still possesses several
additional advantages over this type of approaches. First, eigencurve can be used to find simple-
formed schedulers. Compared with schedulers numerically computed by dynamic programming,
eigencurve provides an analytic framework, so it is able to bypass the Hessian spectrum estima-
tion process if some useful assumptions of the Hessian spectrum can be obtained, such as ”power
law”. Second, eigencurve has a clear theoretical convergence guarantee. Dynamic programming
can find almost optimal schedulers, but the convergence property of the computed scheduler is still
unclear. Our work fills this gap.

6 CONCLUSION

In this paper, a novel learning rate schedule named eigencurve is proposed, which utilizes the
“skewness” of objective’s Hessian matrix’s eigenvalue distribution and reaches minimax optimal
convergence rates for SGD on quadratic objectives with skewed Hessian spectrums. This condition
of skewed Hessian spectrums is observed and indeed satisfied in practical settings of image classifi-
cation. Theoretically, eigencurve achieves no worse convergence guarantee than step decay for
quadratic functions and reaches minimax optimal convergence rate (up to a constant) with skewed
Hessian spectrums, e.g. under “power law”. Empirically, experimental results on CIFAR-10 show
that eigencurve significantly outperforms step decay, especially when the number of epochs is
small. The idea of eigencurve offers a possible explanation for cosine decay’s effectiveness in
practice and inspires two practical families of schedules with simple forms.
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A MORE EXPERIMENTAL RESULTS

A.1 RIDGE REGRESSION

We compare different types of schedulings on ridge regression

f(w) =
1

n
||Xw − Y ||22 + α||w||22.

This experiment is only an empirical proof of our theory. In fact, the optima of ridge regression has
a closed form and can be directly computed with

w∗ =
(
X>X + nαI

)−1
XTY.

Thus the optimal training loss f(w∗) can be calculated accordingly. In all experiments, we use the
loss gap f(wT )− f(w∗) as our performance metric.

Experiments are conducted on a4a datasets (Chang & Lin, 2011; Dua & Graff, 2017) (https://
www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html#a4a/),
which contains 4, 781 samples and 123 features. This dataset is chosen majorly because it has a
moderate number of samples and features, which enables us to compute the exact Hessian matrix
H = 2(X>X/n + αI) and its corresponding eigenvalue distribution in acceptable time and space
consumption.

In all of our experiments, we set α = 10−3. The model is optimized via SGD without momentum,
with batch size 1, initial learning rate η0 ∈ {0.1, 0.06, 0.03, 0.02, 0.01, 0.006, 0.003, 0.002, 0.001,
0.0006, 0.0003, 0.0002, 0.0001} and learning rate of last iteration ηmin ∈ {0.1, 0.01, 0.001, 0.0001,
0.00001, 0, “UNRESTRICTED”}. Here “UNRESTRICTED” denotes the case where ηmin is not
set, which is useful for eigencurve, who can decide the learning rate curve without setting ηmin.
Given η0 and ηmin, we adjust all schedulers as follows. For inverse time decay ηt = η0/(1 + γη0t)
and exponential decay ηt = γtη0, the hyperparameter γ is computed accordingly based on η0 and
ηmin. For cosine decay, η0 and ηmin is directly used, with no restart adopted. For eigencurve,
the learning rate curve is linearly scaled to match the given ηmin.

In addition, for eigencurve, we use the eigenvalue distribution of the Hessian matrix, which is
directly computed via eigenvalue decomposition, as shown in Figure 6.

Figure 6: The eigenvalue distribution of Hessian for ridge regression on a4a. Left: original scale for
eigenvalues. Right: log scale for eigenvalues. Notice that the density here is shown in log scale.

All experimental results demonstrate that eigencurve can obtain similar or better training losses
when compared with other schedulers, as shown in Table 3.
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Table 3: Ridge regression: training loss gaps of different schedules over 5 trials.

Training loss - optimal training loss: f(wT )− f(w∗)

Schedule #Epoch = 1 #Epoch = 5

Constant 0.014963±0.001369 0.004787±0.000175
Inverse Time Decay 0.007284±0.000190 0.002098±0.000160
Exponetial Decay 0.008351±0.000360 0.000931±0.000100

Cosine Decay 0.007767±0.000006 0.001167±0.000142
Eigencurve 0.006977±0.000197 0.000676±0.000069

Schedule #Epoch = 25 #Epoch = 250

Constant 0.001351±0.000179 0.000122±0.000009
Inverse Time Decay 0.000637±0.000143 0.000011±0.000001
Exponetial Decay 0.000048±0.000007 0.000000±0.000000

Cosine Decay 0.000054±0.000005 0.000000±0.000000
Eigencurve 0.000045±0.000008 0.000000±0.000000

A.2 EXACT VALUE OF THE EXTRA TERM ON CIFAR-10 EXPERIMENTS

In Section 4.1, we have already given the qualitative evidence that shows eigencurve ’s op-
timality for practical settings on CIFAR-10. Here we strengthen this argument by providing the
quantitative evidence as well. The exact value of the extra term is presented in Table 4, where we
assume CIFAR-10 has batch size 128, number of epochs 200 and weight decay 5 × 10−4, while
ImageNet has batch size 256, number of epochs 90 and weight decay 10−4.

Table 4: Convergence rate of SGD with common schedulers given the estimated eigenvalue distri-
bution of Hessian, assuming the objective is quadratic.

Value of the extra term

Scheduler

Convergence
rate of SGD in

quadratic
functions

CIFAR-10
+ ResNet18

CIFAR-10
+ GoogLeNet

CIFAR-10
+ VGG16

ImageNet
+ ResNet18

Inverse Time
Decay Θ

(
dσ2

T · κ
)

3.39× 105 4.92× 105 6.50× 105 6.80× 106

Step Decay Θ
(
dσ2

T · log T
)

16.25 16.25 16.25 18.78

Eigencurve

O
(
dσ2

T ·
(∑Imax−1

i=0
√
si

)2
d

)

where Imax = log2 κ,

si = #λj ∈ [µ · 2i, µ · 2i+1)

8.15 5.97 7.12 12.61

Minimax optimal rate Ω
(
dσ2

T

)
1 1 1 1

It is worth noticing that the extra term’s value of eigencurve is independent from the number of
iterations T , since the value (

∑Imax−1
i=0

√
si)

2/d only depends on the Hessian spectrum. So basically
eigencurve has already achieved the minimax optimal rate (up to a constant) for models and
datasets listed in Table 4, if the loss landscape around the optima can be approximated by quadratic
functions. For full details of the estimation process, please refer to Appendix B.

A.3 REUSING EIGENCURVE FOR DIFFERENT MODELS ON CIFAR-10

For image classification tasks on CIFAR-10, we check the performance of reusing ResNet-18’s
eigenvalue distribution for other models. As shown in Table 5, experimental results demonstrate that
Hessian’s eigenvalue distribution of Resnet-18 on CIFAR-10 can be applied to GoogLeNet/VGG16
and still achieves good peformance. Here the experiment settings are exactly the same as Section 4.2
in main paper.
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Table 5: CIFAR-10: training losses and test accuracy of different schedules over 5 trials. Here
all eigencurve schedules are generated based on ResNet-18’s Hessian spectrums. “*” before a
number means at least one occurrence of loss explosion among all 5 trial experiments.

#Epoch Schedule GoogLeNet VGG16
Loss Acc(%) Loss Acc(%)

=10

Inverse Time Decay 2.61±0.00 86.54±0.94 2.26±0.00 84.47±0.74
Step Decay 2.59±0.02 87.04±0.48 2.42±0.45 82.98±0.27

General Step Decay 1.93±0.03 88.32±1.32 2.14±0.42 86.79±0.36
Cosine Decay 1.94±0.00 90.56±0.31 2.03±0.00 87.99±0.13

Eigencurve (transferred) 1.65±0.00 91.17±0.20 1.89±0.00 88.17±0.32

=100

Inverse Time Decay 0.62±0.02 92.05±0.69 1.32±0.62 *76.24±13.77
Step Decay 0.28±0.00 92.83±0.15 0.59±0.00 91.37±0.20

General Step Decay 0.13±0.00 94.18±0.18 0.20±0.00 *92.36±0.46
Cosine Decay 0.12±0.00 94.62±0.11 0.20±0.00 93.17±0.05

Eigencurve (transferred) 0.11±0.00 94.81±0.19 0.20±0.00 93.17±0.09

A.4 COMPARISON WITH EXPONENTIAL MOVING AVERAGE ON CIFAR-10

Besides learning rate schedules, Exponential Moving Averaging (EMA) method

wt = α

t∑
k=0

(1− α)t−kwk ⇐⇒ wt = αwt + (1− α)wt−1

is another competitive practical method that is commonly adopted in training neural networks with
SGD. Thus, it is natural to ask whether eigencurve can beat this method as well. The answer
is yes. In Table 6, we present additional experimental results on CIFAR-10 to compare the perfor-
mance of eigencurve and exponential moving averaging. It can be observed that there is a large
performance gap between those two methods.

Table 6: CIFAR-10: training losses and test accuracy of Exponential Moving Average (EMA) and
eigencurve with #Epoch = 100 over 5 trials. For EMA, we search its constant learning rate
ηt = η0 ∈ {1.0, 0.6, 0.3, 0.2, 0.1} and decay α ∈ {0.9, 0.95, 0.99, 0.995, 0.999}. Other settings
remain the same as Section 4.2.

Method/Schedule ResNet-18 GoogLeNet VGG16
Loss Acc(%) Loss Acc(%) Loss Acc(%)

EMA 0.30±0.01 90.09±0.82 0.33±0.01 93.42±0.26 0.49±0.00 91.87±0.82
Eigencurve 0.14±0.00 94.05±0.18 0.12±0.00 94.75±0.15 0.18±0.00 92.88±0.24

A.5 IMAGENET CLASSIFICATION WITH ELASTIC STEP DECAY

One key observation in CIFAR-10 experiments is the existence of “power law” shown in Figure 3.
Also, notice that in the form of eigencurve , specifically Eqn. (3.5), iteration interval length ∆i

is proportional to the square root of eigenvalue density si in range [µ ·2i, µ ·2i+1). Combining those
two facts together, it suggests the length of “learning rate interval” should have lengths exponentially
decreasing.

Based on this idea, Elastic Step Decay (ESD) is proposed, which has the following form,

ηt = η0/2
k , if t ∈

[
(1− rk)T, (1− rk+1)T

)
Compared to general step decay with adjustable interval lengths, elastic step decay does not require
manual adjustment for the length of each interval. Instead, they are all controlled by one hyper-
parameter r ∈ (0, 1), which decides the “shrinking speed” of interval lengths. Experiments on
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CIFAR-10, CIFAR-100 and ImageNet demonstrate its superiority in practice, as shown in Table 7,
Table 8.

For experiments on CIFAR-10/CIFAR-100, we adopt the same settings as eigencurve , except
we only use common step decay with three same-length intervals + decay factor 10.

Table 7: Elastic Step Decay on CIFAR-10/CIFAR-100: test accuracy(%) of different schedules over
5 trials. “*” before a number means at least one occurrence of loss explosion among all 5 trial
experiments.

#Epoch Schedule ResNet-18 GoogLeNet VGG16
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

=10

Inverse Time Decay 79.45±1.00 48.73±1.66 86.54±0.94 57.90±1.27 84.47±0.74 50.04±0.83
Step Decay 79.67±0.74 54.54±0.26 88.37±0.13 63.05±0.35 85.18±0.06 45.86±0.31

Cosine Decay 84.23±0.07 61.26±1.11 90.56±0.31 69.09±0.27 87.99±0.13 55.42±0.28
ESD 85.38±0.38 64.17±0.57 91.23±0.33 70.46±0.41 88.67±0.21 57.23±0.39

=100

Inverse Time Decay 90.82±0.43 69.82±0.37 92.05±0.69 73.54±0.28 *76.24±13.77 67.70±0.49
Step Decay 93.68±0.07 73.13±0.12 94.13±0.32 76.80±0.16 92.62±0.15 70.02±0.41

Cosine Decay 94.04±0.21 74.65±0.41 94.62±0.11 78.13±0.54 93.17±0.05 72.47±0.28
ESD 94.06±0.11 74.76±0.33 94.65±0.11 78.23±0.20 93.25±0.12 72.50±0.26

For experiments on ImageNet, we use ResNet-50 trained via SGD without momentum, batch size
256 and weight decay wd = 10−4. Since no momentum is used, the initial learning rate is set to
η0 = 1.0 instead of η0 = 0.1. Two step decay baselines are adopted. “Step Decay [30-60]” is the
common choice that decays the learning rate 10 folds at the end of epoch 30 and epoch 60. “Step
Decay [30-60-80]” is another popular choice for the ImageNet setting (Goyal et al., 2018), which
further decays learning rate 10 folds at epoch 80. For cosine decay scheduler, the hyperparameter
ηmin is set to be 0. As for the dataset, we use the common ILSVRC 2012 dataset, which contains
1000 classes, around 1.2M images for training and 50,000 images for validation. For all experiments,
we search r ∈ {1/2, 1/

√
2} for ESD, with other hyperparameter search and selection process being

the same as eigencurve .

Table 8: Elastic Step Decay on ImageNet-1k: Losses and validation accuracy of different schedul-
ings for ResNet-50 with #Epoch=90 over 3 trials.

Schedule Training loss Top-1 validation
acc(%)

Top-5 validation
acc(%)

#Epoch=90

Step Decay [30-60] 1.4726±0.0057 75.55±0.13 92.63±0.08
Step Decay [30-60-80] 1.4738±0.0080 76.05±0.33 92.83±0.15

Cosine Decay 1.4697±0.0049 76.57±0.07 93.25±0.05
ESD (r = 1/

√
2) 1.4317±0.0027 76.79±0.10 93.31±0.05

A.6 LANGUAGE MODELING WITH ELASTIC STEP DECAY

More experiments on language modeling are conducted to further demonstrate Elastic Step Decay’s
superiority over other schedulers.

For all experiments, we follow almost the same setting in Zaremba et al. (2015), where a large
regularized LSTM recurrent neural network (Hochreiter & Schmidhuber, 1997) is trained on Penn
Treebank (Marcus et al., 1993) for language modeling task. The Penn Treebank dataset has a training
set of 929k words, a validation set of 73k words and a test set of 82k words. SGD without momentum
is adopted for training, with batch size 20 and 35 unrolling steps in LSTM.

Other details are exactly the same, except for the number of training epochs. In Zaremba et al.
(2015), it uses 55 epochs to train the large regularized LSTM, which is changed to 30 epochs in our
setting, since we found that the model starts overfitting after 30 epochs. We conducted hyperparam-
eter search for all schedules, as shown in Table 9.
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Table 9: Hyperparameter search for schedulers.

Scheduler Form Hyperparameter choices

Inverse Time Decay ηt =
η0

1+λ·η0·t

η0 ∈ {100, 10−1, 10−2, 10−3},
and set λ, so that

ηmin ∈ {10−2, 10−3, 10−4, 10−5, 10−6}

General Step Decay ηt = η0 · γk ,
if t ∈ [k, k + 1) · TK

η0 = 1,
K ∈ {3, 4, 5, blog Tc}, blog Tc+ 1},

γ ∈ { 1
2 ,

1
5 ,

1
10}

Cosine Decay ηt = ηmin + 1
2 (η0 − ηmin)

(
1 + cos

(
tπ
T

)) η0 ∈ {100, 10−1, 10−2, 10−3},
ηmin ∈ {10−2, 10−3, 10−4, 0}

Elastic Step Decay
ηt = η0/2

k,

if t ∈
[
(1− rk)T, (1− rk+1)T

) η0 = 1,
r ∈ {2−1, 2−1/2, 2−1/3, 2−1/5, 2−1/20},

Baseline ηt =

{
η0 for first 14 epochs
η0

1.15k
for epoch k + 14

η0 = 1

Experimental results show that Elastic Step Decay significantly outperforms other schedulers, as
shown in Table 10.

Table 10: Scheduler performance on LSTM + Penn Treebank over 5 trials.

Scheduler Validation perplexity Test perplexity

Inverse Time Decay 114.9±1.1 112.7±1.1
General Step Decay 82.4±0.1 79.1±0.2

Baseline (Zaremba et al., 2015) 82.2 78.4
Cosine Decay 82.4±0.4 78.5±0.4

Elastic Step Decay 81.1±0.2 77.4±0.3
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A.7 IMAGE CLASSIFICATION ON IMAGENET WITH COSINE-POWER SCHEDULING

Another key observation in CIFAR-10 experiments is that eigencurve ’s learning rate curve
shape changes in a fixed tendency: more “concave” learning rate curves for less training epochs,
which inspire the cosine-power schedule in following form.

Cosine-power : ηt = ηmin + (η0 − ηmin)

[
1

2
(1 + cos(

t

tmax
π))

]α

Results in Table 11 show the schedulings’ performance with α = 0.5/1/2, which are denoted as√
Cosine/Cosine/Cosine2 respectively. Notice that the best scheduler gradually moves from small α

to larger α when the number of epochs increases. For #epoch=270, since the number of epochs is
large enough to make model converge, it is reasonable that the accuracy gap between all schedulers
is small.

For experiments on ImageNet, we use ResNet-18 trained via SGD without momentum, batch size
256 and weight decay wd = 10−4. Since no momentum is used, the initial learning rate is set to
η0 = 1.0 instead of η0 = 0.1. The hyperparameters ηmin is set to be 0 for all cosine-power scheduler.
As for the dataset, we use the common ILSVRC 2012 dataset, which contains 1000 classes, around
1.2M images for training and 50,000 images for validation.

Table 11: Cosine-power Decay on ImageNet: training losses and validation accuracy (%) of different
schedulings for ResNet-18 over 3 trials. Settings #Epoch≥ 90 only have 1 trial due to constraints of
resource and time.

#Epoch Schedule Training
loss

Top-1
validation acc (%)

Top-5
validation acc (%)

1

√
Cosine 5.4085±0.0080 30.01±0.21 55.26±0.33

Cosine 5.4330±0.0106 26.43±0.31 50.85±0.43
Cosine2 5.4939±0.0157 21.81±0.21 44.53±0.09

5

√
Cosine 2.9515±0.0057 57.27±0.15 80.71±0.12

Cosine 2.8389±0.0061 55.67±0.08 79.46±0.16
Cosine2 2.9160±0.0099 52.75±0.20 77.11±0.08

30

√
Cosine 2.1739±0.0046 67.56±0.03 87.82±0.09

Cosine 2.0402±0.0031 67.97±0.10 88.12±0.03
Cosine2 2.0525±0.0032 67.41±0.05 87.70±0.10

90

√
Cosine 1.9056 69.85 89.46

Cosine 1.7676 70.46 89.75
Cosine2 1.7403 70.42 89.69

270

√
Cosine 1.7178 71.37 90.31

Cosine 1.5756 71.93 90.33
Cosine2 1.5250 71.69 90.37

Figure 7: Learning rate curve of three cosine-power schedulers. Top: original scale; Bottom: log
scale.
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A.8 FULL FIGURES FOR EIGENCURVE EXPERIMENTS IN SECTION 4.2

Please refer to Figure 8, 9, 10, 11, 12 and 13.

Figure 8: CIFAR-10 results for ResNet-18, with #Epoch = 10. Left: training losses. Right: test
accuracy.

Figure 9: CIFAR-10 results for GoogLeNet, with #Epoch = 10. Left: training losses. Right: test
accuracy.

Figure 10: CIFAR-10 results for VGG16, with #Epoch = 10. Left: training losses. Right: test
accuracy.
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Figure 11: CIFAR-10 results for ResNet-18, with #Epoch = 100. Left: training losses. Right: test
accuracy.

Figure 12: CIFAR-10 results for GoogLeNet, with #Epoch = 100. Left: training losses. Right: test
accuracy.

Figure 13: CIFAR-10 results for VGG16, with #Epoch = 100. Left: training losses. Right: test
accuracy.

B DETAILED EXPERIMENTAL SETTINGS FOR IMAGE CLASSIFICATION ON
CIFAR-10/CIFAR-100

B.1 BASIC SETTINGS

As mentioned in the main paper, all models are trained with stochastic gradient descent (SGD),
no momentum, batch size 128 and weight decay wd = 0.0005. Furthermore, we perform a grid
search to choose the best hyperparameters of all schedulers, with a validation set created from 5, 000
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samples in the training set, i.e. one-tenth of the training set. The remaining 45, 000 samples are then
used for training the model. After obtaining hyperparameters with the best validation accuracy, we
train the model again with the full training set and test the trained model on test set, where 5 trials
of experiments are conducted. The mean and standard deviation of the test results are reported.

Here the grid search explores hyperparameters η0 ∈ {1.0, 0.6, 0.3, 0.2, 0.1} and ηmin ∈
{0.01, 0.001, 0.0001, 0, “UNRESTRICTED”}, where η0 denotes the initial learning rate and ηmin

stands for the learning rate of last iteration. “UNRESTRICTED” denotes the case where ηmin is
not set, which is useful for eigencurve, who can decide the learning rate curve without setting
ηmin. Given η0 and ηmin, we adjust all schedulers as follows. For inverse time decay, the hy-
perparameter γ is computed accordingly based on η0 and ηmin. For cosine decay, η0 and ηmin is
directly used, with no restart adopted. For general step decay, we search the interval number in
{3, 4, 5, blog T c, blog T c + 1} and decay factor in {2, 5, 10}. For step decay proposed in Ge et al.
(2019), the interval number is fixed to be blog T c, along with a decay factor 2. For eigencurve,
two major modifications are made to make it more suitable for practical settings:

ηt =
1/L

1 + 1
κ

∑i−1
j=1 ∆j2j−1 + 2i−1

κ (t− ti−1)
=

η0

1 + 1
κ

∑i−1
j=1 ∆jβj−1 + βi−1

κ (t− ti−1)
.

Here we change 1/L to η0 so that it is possible to adjust the initial learning rate of eigencurve.
We also change the fixed constant 2 to a general constant β > 1, which is aimed at making the
learning rate curve smoother. The learning rate curve of eigencurve is then linearly scaled to
match the given ηmin.

Notice that the learning rate η0 can be larger than 1/L, while the loss still does not explode. There
are several explanations for this phenomenon. First, in basic non-smooth analysis of GD and SGD
with inverse time decay scheduler, the learning rate can be larger than 1/L if the gradient norm is
bounded (Shamir & Zhang, 2012). Second, deep learning has a non-convex loss landscape, espe-
cially when the parameter is far away from the optima. Hence it is common to use larger learning
rate at first. As long as the loss does not explode, it is okay. So we still include large learning rate
η0 in our grid search process.

B.2 SETTINGS FOR EIGENCURVE

In addition, for our eigencurve scheduler, we use PyHessian (Yao et al., 2020) to generate Hes-
sian matrix’s eigenvalue distribution for all models. The whole process consists of three phases,
which are illustrated as follows.

1) Training the model Almost all CNN models on CIFAR-10 have non-convex objectives, thus
the Hessian’s eigenvalue distributions are different for different parameters. Normally, we want the
this distribution to reflect the overall tendency of most parts of the training process. According to
the phenomenon demonstrated in Appendix E, figure A.11-A.17 of Yao et al. (2020), the eigenvalue
distribution of ResNet’s Hessian presents similar tendency after training 30 epochs, which suggests
that the Hessian’s eigenvalue distribution can be used after sufficient training.

In all CIFAR-10 experiments, we use the Hessian’s eigenvalue distribution of models after train-
ing 180 epochs. Since the goal here is to sufficiently train the model, not to obtain good perfor-
mance, common baseline settings are adopted for training. For all models used for eigenvalue
distribution estimation, we adopt SGD with momentum = 0.9, batch size 128, weight decay
wd = 0.0005 and initial learning rate 0.1. On top of that, we use step decay, which decays the
learning rate by a factor of 10 at epoch 80 and 120. All of them are default settings of the PyHessian
code (https://github.com/amirgholami/PyHessian/blob/master/training.
py, commit: f4c3f77).

ImageNet adopts a similar setting, with training epochs being 90, SGD with momentum = 0.9,
batch size 256, weight decay wd = 0.0001, inital learning rate 0.1 and step decay schedule decays
learning rate by a factor of 10 at epoch 30 and 60.

2) Estimating Hessian matrix’s eigenvalue distribution for the trained model After obtaining
the checkpoint of a sufficiently trained model, we then run PyHessian to estimate the Hessian’s
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eigenvalue distribution for that checkpoint. The goal here is to obtain the Hessian’s eigenvalue
distribution with sufficient precision. To be more specific, the length of intervals around each esti-
mated eigenvalue. PyHessian estimates the eigenvalue spectral density (ESD) of a model’s Hessian,
in other words, the output is a list of eigenvalue intervals, along with the density of each interval,
where the whole density adds up to 1. Precision means the interval length here.

It is natural that the estimation precision is related to the complexity of the PyHessian algorithm, e.g.
the better precision it yields, the more time and space it consumes. More specifically, the algorithm
has a time complexity of O(Nn2

vd) and space complexity O(Bd+ nvd), where d is the number of
model parameters, N is the number of samples used for estimating the ESD, B is the batch size and
nv is the iteration number of Stochastic Lanczos Quadrature used in PyHessian, which controls the
estimation precision (see Algorithm 1 of Yao et al. (2020)).

In our experiments, we use nv = 5000 for ResNet-18 and nv = 3000 for GoogLeNet/VGG16,
which gives an eigenvalue distribution estimation with precision around 10−5 to 10−4. N and B are
both set to 200 due to GPU memory constraint, i.e. we use one mini-batch to estimate the eigenvalue
distribution. It turns out that this one-batch estimation is good enough and yields similar results to
full dataset settings shown in Yao et al. (2020).

However, space complexity is still a bottleneck here. Due to the large number of nv and space
complexity O(Bd + nvd) of PyHessian, the value of d cannot be very large. In practice, with a
NVIDIA GeForce 2080 Ti GPU, which has around 11GB memory, the maximum acceptable pa-
rameter number d is around 200K − 400K. This implies that the model has to be compressed. In
our experiments, we reduce the number of channels by a factor of C for all models. For ResNet-18,
C = 16. For GoogLeNet, C = 4. For VGG16, C = 8. Notice that those compressed models are
only used for eigenvalue distribution estimation. In experiments of comparing different scheduling,
we still use the original model with no compression.

One may refer to https://github.com/opensource12345678/why_cosine_
works/tree/main/eigenvalue_distribution for generated eigenvalue distributions.

3) Generating eigencurve scheduler with the estimated eigenvalue distribution After ob-
taining the eigenvalue distribution, we do a preprocessing before plug it into our eigencurve
scheduler.

First, we notice that there are negative eigenvalues in the final distribution. Theoretically, if the
parameter is right at the optimal point, no negative eigenvalues should exist for Hessian matrix.
Thus we conjecture that those negative eigenvalues are caused by the fact that the model is closed to
optima w∗, but not exactly at that point. Furthermore, the estimation precision loss can be another
cause. In fact, most of those negative eigenvalues are small, e.g. 98.6% of those negative eigenvalues
lie in [−0.1, 0), and can be generally ignored without much loss. In our case, we set them to their
absolute values.

Second, for a given weight decay value wd, we need to take the implicit L2 regularization into
account, since it affects the Hessian matrix as well. Therefore, for all eigenvalues after the first step,
we add wd to them.

After preprocessing, we plug the eigenvalue distribution into our eigencurve scheduler and gen-
erates the exact form of eigencurve.

ηt =
1/L

1 + 1
κ

∑i−1
j=1 ∆j2j−1 + 2i−1

κ (t− ti−1)
=

η0

1 + 1
κ

∑i−1
j=1 ∆jβj−1 + βi−1

κ (t− ti−1)

For experiments with 100 epochs, we set β = 1.000005, so that the learning rate curve is much
smoother. For experiments with 10 epochs, we set β = 2.0. In our experiments, β serves as a fixed
constant, not hyperparameters. So no hyperparameter search is conducted on β. One can do that in
practice though, if computation resource allows.
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B.3 COMPUTE RESOURCE AND IMPLEMENTATION DETAILS

All the code for results in main paper can be found in https://github.com/
opensource12345678/why_cosine_works/tree/main, which is released under the
MIT license.

All experiments on CIFAR-10/CIFAR-100 are conducted on a single NVIDIA GeForce 2080
Ti GPU, where ResNet-18/GoogLeNet/VGG16 takes around 20mins/90mins/40mins to train 100
epochs, respectively. High-precision eigenvalue distribution estimation, e.g. nv ≥ 3000, requires
around 1-2 days to complete, but this is no longer necessary given the released results.

The ResNet-18 model is implemented in Tensorflow 2.0. We use tensorflow-gpu 2.3.1 in our code.
The GoogLeNet and VGG16 model is implemented in Pytorch, specifically, 1.7.0+cu101.

B.4 LICENSE OF PYHESSIAN

According to https://github.com/amirgholami/PyHessian/blob/master/
LICENSE, PyHessian (Yao et al., 2020) is released under the MIT License.

C DETAILED EXPERIMENTAL SETTINGS FOR IMAGE CLASSIFICATION ON
IMAGENET

One may refer to https://www.image-net.org/download for specific terms of access for
ImageNet. The dataset can be downloaded from https://image-net.org/challenges/
LSVRC/2012/2012-downloads.php, with training set being “Training images (Task 1 & 2)”
and validation set being “Validation images (all tasks)”. Notice that registration and verification of
institute is required for successful download.

ResNet-18 experiments on ImageNet are conducted on two NVIDIA GeForce 2080 Ti GPUs with
data parallelism, while ResNet-50 experiments are conducted on 4 GPUs in a similar fashion. Both
models take around 2 days to train 90 epochs, about 20mins-30mins per epoch. Those ResNet
models on ImageNet are implemented in Pytorch, specifically, 1.7.0+cu101.

D IMPORTANT PROPOSITIONS AND LEMMAS

Proposition 3. Letting f(x) be a monotonically increasing function in the range [t0, t̃], then it holds
that

t̃−1∑
k=t0

f(k) ≤
∫ t̃

t0

f(x) dx. (D.1)

If f(x) is monotonically decreasing in the range [t0, t̃], then it holds that∫ t̃

t0

f(x) dx ≤
t̃−1∑
k=t0

f(k) ≤
t̃∑

k=t0

f(k) ≤ f(t0) +

∫ t̃

t0

f(x) dx. (D.2)

Lemma 2. Function f(x) = exp(−αx)x2 with 0 < α and x ∈ (0, 1] is monotone decreasing in
the range x ∈ ( 2

α ,+∞) and monotone increasing in the range x ∈ [0, 2
α ].

Proof. We can obtain the derivative of f(x) as

∇f(x) = x exp(−αx)(2− αx).

Thus, it holds that∇f(x) ≥ 0 when x ∈ [0, 2
α ]. This implies that f(x) is monotone increasing when

x ∈ [0, 2
α ]. Similarly, we can obtain that f(x) is monotone decreasing when x ∈ ( 2

α ,+∞).

Lemma 3. It holds that∫
exp(−αx)x dx = −α−1(x exp(−αx) + α−1 exp(−αx)). (D.3)
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Proof.∫
exp(−αx)x dx =− α−1

∫
x d exp(−αx) = −α−1(x exp(−αx)−

∫
exp(−αx)dx)

=− α−1(x exp(−αx) + α−1 exp(−αx)).

E PROOF OF SECTION 2

Proof of Proposition 1. By iteratively applying Eqn. (2.1), we can obtain that

E
[
λj (wt+1,j − w∗,j)2

] (2.1)
≤

t∏
i=1

(1− ηi,jλj)2 · λj(w1,j − w∗,j)2

+ λ2
jσ

2 ·
t∑

k=1

t∏
i=k+1

(1− ηi,jλj)2η2
k,j

=
λj(w1,j − w∗,j)2

(t+ 1)2
+ σ2 ·

t∑
k=1

(k + 1)2

(t+ 1)2
· 1

(k + 1)2

=
λj(w1,j − w∗,j)2

(t+ 1)2
+

t

(t+ 1)2
· σ2.

Summing up each coordinate, we can obtain the result.

Proof of Proposition 2. Let us denote σ2
j = λ2

jσ
2. By Eqn. (2.1), we can obtain that

E
[
λj (wt+1,j − w∗,j)2

]
≤Πt

i=1(1− ηi,jλj)2 · λj(w1,j − w∗,j)2 +

t∑
k=1

Πi=k(1− ηi,jλj)η2
k,jσ

2
j

≤ exp

(
−2

t∑
i=1

ηi,jλj

)
· λj(w1,j − w∗,j)2 +

t∑
k=1

exp

(
−2

t∑
i=k

ηi,jλj

)
η2
k,jσ

2
j

= exp

(
−2λj

t∑
i=1

1

L+ µi

)
· λj(w1,j − w∗,j)2 +

t∑
k=1

exp

(
−2λj

t∑
i=k

1

L+ µi

)
η2
k,jσ

2
j

≤ exp

(
2λj
µ

ln

(
L+ µ

L+ µt

))
· λj(w1,j − w∗,j)2 +

t∑
k=1

exp

(
2λj
µ

ln

(
L+ µk

L+ µt

))
·

σ2
j

(L+ µk)2

=

(
L+ µ

L+ µt

) 2λj
µ

· λj(w1,j − w∗,j)2 +

t∑
k=1

(L+ µk)

(
2λj
µ −2

)
(L+ µt)

2λj
µ

· σ2
j

≤
(
L+ µ

L+ µt

) 2λj
µ

· λj(w1,j − w∗,j)2 +
σ2
j

2λj − µ
(L+ µt)

2λj
µ −1

(L+ µt)
2λj
µ

+
σ2
j

(L+ µt)2

=

(
L+ µ

L+ µt

) 2λj
µ

· λj(w1,j − w∗,j)2 +
1

2λj − µ
· 1

L+ µt
· σ2

j +
σ2
j

(L+ µt)2
.

The third inequality is because function F (x) = 1/(L + µx) is monotone decreasing in the range
[1,∞), and it holds that

t∑
i=k

1

L+ µi
≥
∫ t

i=k

1

L+ µi
di =

1

µ
ln

(
L+ µt

L+ µk

)
.
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The last inequality is because function F (x) = (L + µx)2λj/µ−2 is monotone increasing in the
range [0,∞), and it holds that

t∑
k=1

(L+ µk)
2λj
µ −2 ≤

∫ t

k=1

(L+ µk)
2λj
µ −2dk + (L+ µt)

2λj
µ −2

=
1

µ
(

2λj
µ − 1

) · ((L+ µt)
2λj
µ −1 − (L+ µ)

2λj
µ −1

)
+ (L+ µt)

2λj
µ −2

<
1

2λj − µ
(L+ µt)

2λj
µ −1 + (L+ µt)

2λj
µ −2.

By µ ≤ λj , σ2
j = λ2

jσ
2, and summing up from i = 1 to d, we can obtain the result.

F PRELIMINARIES

Lemma 4. Let objective function f(x) be quadratic. Running SGD for T -steps starting from w0

and a learning rate sequence {ηt}Tt=1, the final iterate wT+1 satisfies

E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
=E

[
(w0 − w∗)> · PT . . . P0HP0 . . . PT · (w0 − w∗)

]
+

T∑
τ=0

E
[
η2
τn
>
τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ

]
,

(F.1)

where Pt = I − ηtH .

Proof. Reformulating Eqn. (1.5), we have

wt+1 − w∗ =wt − w∗ − ηt(H(ξ)wt − b(ξ))
=wt − w∗ − ηt(Hwt − b) + ηt (Hwt − b− (H(ξ)wt − b(ξ)))
=wt − w∗ − ηt(Hwt − b− (Hw∗ − b)) + ηt (Hwt − b− (H(ξ)wt − b(ξ)))
= (I − ηtH) (wt − w∗) + ηtnt

=Pt(wt − w∗) + ηtnt.

Thus, we can obtain that

wt+1 − w∗ = Pt . . . P0(w0 − w∗) +

t∑
τ=0

Pt . . . Pτ+1ητnτ . (F.2)

We can decompose above stochastic process associated with SGD’s update into two simpler pro-
cesses as follows:

wbt+1 − w∗ = Pt(w
b
t − w∗), and wvt+1 − w∗ = Pt(w

v
t − w∗) + ηtnt, with wv0 = w∗, (F.3)

which entails that

wbt+1 − w∗ = Pt . . . P0(wb0 − w∗) = P0 . . . Pt(w
b
0 − w∗) (F.4)

wvt+1 − w∗ =

t∑
τ=0

Pt . . . Pτ+1ητnτ =

t∑
τ=0

Pτ+1 . . . Ptητnτ (F.5)

(F.2)⇒wt+1 − w∗ =
(
wbt+1 − w∗

)
+
(
wvt+1 − w∗

)
(F.6)

where the last equality in Eqn. (F.4) and Eqn. (F.5) is because the commutative property PtPt′ =
(I − ηtH)(I − ηt′H) = (I − ηt′H)(I − ηtH) = Pt′Pt holds for ∀t, t′.
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Thus, we have

E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
(F.6)
= E

[
(wbT+1 − w∗)>H(wbT+1 − w∗) + 2(wvT+1 − w∗)>H(wbT+1 − w∗)

+(wvT+1 − w∗)>H(wvT+1 − w∗)
]

(F.4)
= E

[
(wb0 − w∗)>PT . . . P0HP0 . . . PT (wb0 − w∗) + 2(wvT+1 − w∗)>HP0 . . . PT (wb0 − w∗)

+(wvT+1 − w∗)>H(wvT+1 − w∗)
]

(F.5)
= E

[
(wb0 − w∗)>PT . . . P0HP0 . . . PT (wb0 − w∗)

+ 2

(
T∑
τ=0

PT . . . Pτ+1ητnτ

)>
HP0 . . . PT (wb0 − w∗)

+

(
T∑
τ=0

PT . . . Pτ+1ητnτ

)>
H

(
T∑
τ=0

PT . . . Pτ+1ητnτ

)
E[nτ ]=0

= E
[
(wb0 − w∗)>PT . . . P0HP0 . . . PT (wb0 − w∗)

]
+ E

 T∑
τ=0,τ ′=0

ητητ ′ · n>τ PT . . . Pτ+1 ·H · Pτ ′+1 . . . PTnτ ′


=E

[
(wb0 − w∗)>PT . . . P0HP0 . . . PT (wb0 − w∗)

]
+

T∑
τ=0

E
[
η2
τn
>
τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ

]
,

where the last equality is because when τ and τ ′ are different, it holds that

E[n>τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ ′ ] = 0

due to independence between nτ and nτ ′ .

Lemma 5. Given the assumption that Eξ
[
ntn
>
t

]
� σ2H , then the variance term satisfies that

T∑
τ=0

E
[
η2
τn
>
τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ

]
≤ σ2

d∑
j=1

λ2
j

T∑
k=0

η2
k

T∏
i=k+1

(1− ηiλj)2
, (F.7)

where Pt = I − ηtH .

Proof. Denote Aτ , PT . . . Pτ+1H
1
2 , then

A>τ =
(
PT . . . Pτ+1H

1
2

)>
=
(
H

1
2

)>
P>τ+1 . . . P

>
T = H

1
2Pτ+1 . . . PT , (F.8)

where the second equality is entailed by the fact that H
1
2 , Pτ+1, . . . , PT are symmetric matrices.
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Therefore, we have,
T∑
τ=0

E
[
η2
τn
>
τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ

]
(F.8)
=

T∑
τ=0

E
[
η2
τn
>
τ AτA

>
τ nτ

]
=

T∑
τ=0

η2
τE
[
tr
(
n>τ AτA

>
τ nτ

)]
=

T∑
τ=0

η2
τE
[
tr
(
A>τ nτn

>
τ Aτ

)]
=

T∑
τ=0

η2
τ tr
(
E
[
A>τ nτn

>
τ Aτ

])
=

T∑
τ=0

η2
τ tr
(
A>τ E

[
nτn

>
τ

]
Aτ
)

≤σ2 ·
T∑
τ=0

η2
τ tr
(
A>τ HAτ

)
= σ2 ·

T∑
τ=0

η2
τ tr
(
AτA

>
τ H

)
=σ2 ·

T∑
τ=0

η2
τ tr (PT . . . Pτ+1HPτ+1 . . . PTH)

=σ2
d∑
j=1

λ2
j

T∑
k=0

η2
k

T∏
i=k+1

(1− ηiλj)2
,

where the third and sixth equality come from the cyclic property of trace, while the first inequality
is because of the condition Eξ

[
ntn
>
t

]
� σ2H , where

∀x, x>E[nτn
>
τ ]x ≤ σ2x>Hx

⇒ ∀z, z>A>τ E[nτn
>
τ ]Aτz = (Aτz)

>E[nτn
>
τ ](Aτz) ≤ σ2(Aτz)

>H(Aτz) = σ2z>A>τ HAτz

⇒ A>τ E[nτn
>
τ ]Aτ � σ2A>τ HAτ

⇒ tr
(
A>τ E[nτn

>
τ ]Aτ

)
≤ σ2tr

(
A>τ HAτ

)
.

Lemma 6. Letting λj̃ be the smallest positive eigenvalue of H , then the bias term satisfies that

E
[
(w0 − w∗)> · PT . . . P0HP0 . . . PT · (w0 − w∗)

]
≤(w0 − w∗)>H(w0 − w∗) · exp

(
−2λj̃

T∑
k=0

ηk

)
. (F.9)

Proof. Letting H = UΛU> be the spectral decomposition of H and uj be j-th column of U , we
can obtain that

E
[
(w0 − w∗)> · PT . . . P0HP0 . . . PT · (w0 − w∗)

]
=

d∑
j=1

λj · (u>j (w0 − w∗))2 ·
T∏
k=0

(1− ηkλj)2

≤
d∑
j=1

λj · (u>j (w0 − w∗))2 · exp

(
−2λj

T∑
k=0

ηk

)
.

Since λj̃ is the smallest positive eigenvalue of H , it holds that

d∑
j=1

λj · (u>j (w0 − w∗))2 · exp

(
−2λj

T∑
k=0

ηk

)
≤

d∑
j=1

λj · (u>j (w0 − w∗))2 · exp

(
−2λj̃

T∑
k=0

ηk

)

=(w0 − w∗)>H(w0 − w∗) · exp

(
−2λj̃

T∑
k=0

ηk

)
.
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G PROOF OF THEOREMS

Lemma 7. Let learning rate ηt is defined in Eqn. (3.3). Assuming k ∈ [ti′−1, ti′ ] with 1 ≤ i′ ≤ ĩ ≤
T , the sequence {ηt}Tt=0 satisfies that

tĩ+1−1∑
t=k

ηt ≥
ĩ+1∑

i=i′+1

1

2i−1µ
ln

αi
αi−1

+
1

2i′−1µ
ln

αi′

αi′−1 + 2i′−1µ(k − ti′−1)
, (G.1)

where αi is defined as

αi , L+ µ

i∑
j=1

∆j2
j−1 =

1

ηti
. (G.2)

Proof. First, we divide learning rates into two groups: those who are guaranteed to cover a full
interval and those who may not.

tĩ+1−1∑
t=k

ηt =

tĩ+1−1∑
t=ti′

ηt +

ti′−1∑
t=k

ηt =

ĩ+1∑
i=i′+1

ti−1∑
t=ti−1

ηt +

ti′−1∑
t=k

ηt

Furthermore, because ηt is monotonically decreasing with respect to t, by Proposition 3, we have

tĩ+1−1∑
t=k

ηt
(D.2)
≥

ĩ+1∑
i=i′+1

∫ ti

ti−1

ηtdt+

∫ ti′

k

ηtdt

(3.3)
=

ĩ+1∑
i=i′+1

∫ ti

ti−1

1

L+ µ
∑i−1
j=1 ∆j2j−1 + 2i−1µ(t− ti−1)

dt

+

∫ ti′

k

1

L+ µ
∑i′−1
j=1 ∆j2j−1 + 2i′−1µ(t− ti′−1)

dt

=

ĩ+1∑
i=i′+1

1

2i−1µ
ln
L+ µ

∑i−1
j=1 ∆j2

j−1 + 2i−1µ(ti − ti−1)

L+ µ
∑i−1
j=1 ∆j2j−1

+
1

2i′−1µ
ln
L+ µ

∑i′−1
j=1 ∆j2

j−1 + 2i
′−1µ(ti′ − ti′−1)

L+ µ
∑i′−1
j=1 ∆j2j−1 + 2i′−1µ(k − ti′−1)

=

ĩ+1∑
i=i′+1

1

2i−1µ
ln
L+ µ

∑i
j=1 ∆j2

j−1

L+ µ
∑i−1
j=1 ∆j2j−1

+
1

2i′−1µ
ln

L+ µ
∑i′

j=1 ∆j2
j−1

L+ µ
∑i′−1
j=1 ∆j2j−1 + 2i′−1µ(k − ti′−1)

=

ĩ+1∑
i=i′+1

1

2i−1µ
ln

αi
αi−1

+
1

2i′−1µ
ln

αi′

αi′−1 + 2i′−1µ(k − ti′−1)
.

Lemma 8. Letting sequence {αi} be defined in Eqn. (G.2), given 1 ≤ ĩ, it holds that

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

ti−1∑
k=ti−1

(αi−1 + 2i−1µ(k − ti−1))2ĩ−i+2−2

≤2 · 1

2ĩ+1µ
·
ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
(α2ĩ−i+2−1

i − α2ĩ−i+2−1
i−1

)
α−2ĩ−i+2

i .

(G.3)
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Proof. Notice that g(k) := (αi−1 + 2i−1µ(k − ti−1))2ĩ−i+2−2 is a monotonically increasing func-
tion, we have,

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

ti−1∑
k=ti−1

(αi−1 + 2i−1µ(k − ti−1))2ĩ−i+2−2

(D.1)
≤

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

∫ ti

ti−1

(αi−1 + 2i−1µ(t− ti−1))2ĩ−i+2−2dt

=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i ((2ĩ−i+2 − 1) · 2i−1µ)−1
(
α2ĩ−i+2−1
i − α2ĩ−i+2−1

i−1

)

=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

1

(2ĩ+1 − 2i−1)µ

(
α2ĩ−i+2−1
i − α2ĩ−i+2−1

i−1

)

≤
ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

1

(2ĩ+1 − 2ĩ)µ

(
α2ĩ−i+2−1
i − α2ĩ−i+2−1

i−1

)

=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

1

2ĩ+1µ

1

1− 1
2

(
α2ĩ−i+2−1
i − α2ĩ−i+2−1

i−1

)

=2 · 1

2ĩ+1µ

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

(
α2ĩ−i+2−1
i − α2ĩ−i+2−1

i−1

)

=2 · 1

2ĩ+1µ

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
(α2ĩ−i+2−1

i − α2ĩ−i+2−1
i−1

)
α−2ĩ−i+2

i .

Lemma 9. Letting {αi} be a positive sequence, given 1 ≤ ĩ, it holds that

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
(α2ĩ−i+2−1

i − α2ĩ−i+2−1
i−1

)
α−2ĩ−i+2

i ≤ α−1

ĩ+1
. (G.4)

Proof. First, we have

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
(α2ĩ−i+2−1

i − α2ĩ−i+2−1
i−1

)
α−2ĩ−i+2

i

=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−1

i −
α2ĩ−i+2−1
i−1

α2ĩ−i+2

i


=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−1

i −
ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α2ĩ−i+2−1

i−1

α2ĩ−i+2

i


=α−1

ĩ+1
+

ĩ∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−1

i −
ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α2ĩ−i+2−1

i−1

α2ĩ−i+2

i

 .
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Furthermore, we reformulate the term
∑ĩ
i=1

[∏ĩ+1
j=i+1

(
αj−1

αj

)2ĩ−j+2
]
α−1
i as follows

ĩ∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−1

i =

ĩ∑
i=1

 ĩ+1∏
j=i+2

(
αj−1

αj

)2ĩ−j+2
( αi

αi+1

)2ĩ−i+1

α−1
i (G.5)

=

ĩ∑
i=1

 ĩ+1∏
j=i+2

(
αj−1

αj

)2ĩ−j+2
(α2ĩ−i+1−1

i

α2ĩ−i+1

i+1

)
(G.6)

i′′=i+1
=

ĩ+1∑
i′′=2

 ĩ+1∏
j=i′′+1

(
αj−1

αj

)2ĩ−j+2
α2ĩ−i

′′+2−1
i′′−1

α2ĩ−i′′+2

i′′

 (G.7)

i=i′′
=

ĩ+1∑
i=2

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α2ĩ−i+2−1

i−1

α2ĩ−i+2

i

 . (G.8)

Combining above results, we can obtain that

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
(α2ĩ−i+2−1

i − α2ĩ−i+2−1
i−1

)
α−2ĩ−i+2

i

=α−1

ĩ+1
+

ĩ+1∑
i=2

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α2ĩ−i+2−1

i−1

α2ĩ−i+2

i


−

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α2ĩ−i+2−1

i−1

α2ĩ−i+2

i


=α−1

ĩ+1
−

 ĩ+1∏
j=2

(
αj−1

αj

)2ĩ−j+2
(α2ĩ+1−1

0

α2ĩ+1

1

)
≤α−1

ĩ+1
.

Lemma 10. Letting us denote vt+1,j ,
∑t
k=0 η

2
k

∏t
i=k+1 (1− ηiλj)2 with ηi defined in Eqn. (3.3),

for 1 ≤ t ≤ t′, it holds that

vt′,j ≤ max(vt,j , ηt/λj). (G.9)

Proof. If vt+1,j ≤ max(vt,j , ηt/λj) holds for ∀t ≥ 1, then it naturally follows that

vt′,j ≤max

(
vt′−1,j ,

ηt′−1

λj

)
≤ max

(
vt′−2,j ,

ηt′−2

λj
,
ηt′−1

λj
)

)
≤ . . .

≤max

(
vt,j ,

ηt
λj
, . . .

ηt′−2

λj
,
ηt′−1

λj

)
= max

(
vt,j ,

ηt
λj

)
where the last equality is entailed by the fact that t ≤ t′ and ηt defined in Eqn. (3.3) is monotonically
decreasing. We then prove vt+1,j ≤ max(vt,j , ηt/λj) holds for ∀t ≥ 1.
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For ∀t ≥ 1, we have

vt+1,j =

t∑
k=0

η2
k

t∏
i=k+1

(1− ηiλj)2

=η2
t +

t−1∑
k=0

η2
k

t∏
i=k+1

(1− ηiλj)2

=η2
t + (1− ηtλj)2

t−1∑
k=0

η2
k

t−1∏
i=k+1

(1− ηiλj)2

=η2
t + (1− ηtλj)2vt,j

(G.10)

1) If vt+1,j ≤ vt,j , then it naturally follows vt+1,j ≤ max(vt,j , ηt/λj).

2) If vt+1,j > vt,j , denote a , (1 − ηtλj)2, b , η2
t , we have vt+1,j = avt,j + b, where a ∈ [0, 1)

and b ≥ 0. It follows,

vt+1,j > vt,j

⇒ avt,j + b > vt,j

⇒ vt,j <
b

1− a

⇒ vt+1,j = avt,j + b < a · b

1− a
+ b =

b

1− a

Therefore,

vt+1,j <
b

1− a
=

η2
t

1− (1− ηtλj)2
<

η2
t

1− (1− ηtλj)
=
ηt
λj
≤ max

(
vt,j ,

ηt
λj

)
,

where the second inequality is entailed by the fact that 1− ηtλj ∈ [0, 1).

Lemma 11. Letting vt,j be defined as Lemma 10 and index ĩ satisfy λj ∈ [µ · 2ĩ, µ · 2ĩ+1), then
vĩ+1,j has the following property

vtĩ+1,j
≤ 15 ·

ηtĩ+1

λj
. (G.11)

Proof. By the fact that (1− x) ≤ exp(−x), we have

vt+1,j ≤
t∑

k=0

exp

(
−2

t∑
t′=k+1

ηt′λj

)
η2
k.

Setting t = t̃i+1 − 1 in above equation, we have

vtĩ+1,j
≤
tĩ+1−1∑
k=0

exp

−2

tĩ+1−1∑
t′=k+1

ηt′λj

 η2
k. (G.12)
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Now we bound the variance term. First, we have
tĩ+1−1∑
k=0

exp

−2

tĩ+1−1∑
t=k+1

ηtλj

 η2
k =

tĩ+1−1∑
k=0

exp

−2

tĩ+1−1∑
t=k

ηtλj

 exp(2ηkλj)η
2
k

≤
tĩ+1−1∑
k=0

exp

−2

tĩ+1−1∑
t=k

ηtλj

 exp

(
2λj
L

)
η2
k

≤ exp(2) ·
tĩ+1−1∑
k=0

exp

−2

tĩ+1−1∑
t=k

ηtλj

 η2
k,

where the first inequality is because ηk ≤ 1/L. Hence, we can obtain
tĩ+1−1∑
k=0

exp

−2

tĩ+1−1∑
t=k+1

ηtλj

 η2
k

≤ exp(2) ·
tĩ+1−1∑
k=0

exp

−2

tĩ+1−1∑
t=k

ηtλj

 η2
k

= exp(2) ·
ĩ+1∑
i=1

ti−1∑
k=ti−1

exp

−2

tĩ+1−1∑
t=k

ηtλj

 η2
k.

Furthermore, combining with Eqn. (G.1) and the condition λj ∈ [µ · 2ĩ, µ · 2ĩ+1), we can obtain

ĩ+1∑
i=1

ti−1∑
k=ti−1

exp

−2

tĩ+1−1∑
t=k

ηtλj

 η2
k ≤

ĩ+1∑
i=1

ti−1∑
k=ti−1

exp

−2

tĩ+1−1∑
t=k

ηtµ · 2ĩ
 η2

k

(G.1)
≤

ĩ+1∑
i=1

ti−1∑
k=ti−1

exp

−2

ĩ+1∑
j=i+1

2ĩ−j+1 ln
αj
αj−1

− 2 · 2ĩ−i+1 ln
αi

αi−1 + 2i−1µ(k − ti−1)

 η2
k

=

ĩ+1∑
i=1

ti−1∑
k=ti−1

exp

 ĩ+1∑
j=i+1

2ĩ−j+2 ln
αj−1

αj
+ 2ĩ−i+2 ln

αi−1 + 2i−1µ(k − ti−1)

αi

 η2
k

=

ĩ+1∑
i=1

ti−1∑
k=ti−1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
 · (αi−1 + 2i−1µ(k − ti−1)

αi

)2ĩ−i+2

η2
k

=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
 ti−1∑
k=ti−1

(
αi−1 + 2i−1µ(k − ti−1)

αi

)2ĩ−i+2

η2
k

(3.3)
=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2


·
ti−1∑
k=ti−1

(
αi−1 + 2i−1µ(k − ti−1)

αi

)2ĩ−i+2
L+ µ

i−1∑
j=1

∆j2
j−1 + 2i−1µ(k − ti−1)

−2

(G.2)
=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2


·
ti−1∑
k=ti−1

(
αi−1 + 2i−1µ(k − ti−1)

αi

)2ĩ−i+2 (
αi−1 + 2i−1µ(k − ti−1)

)−2
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=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

·
ti−1∑
k=ti−1

(αi−1 + 2i−1µ(k − ti−1))2ĩ−i+2 (
αi−1 + 2i−1µ(k − ti−1)

)−2

=

ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
α−2ĩ−i+2

i

ti−1∑
k=ti−1

(αi−1 + 2i−1µ(k − ti−1))2ĩ−i+2−2

(G.3)
≤ 2 · 1

2ĩ+1µ
·
ĩ+1∑
i=1

 ĩ+1∏
j=i+1

(
αj−1

αj

)2ĩ−j+2
(α2ĩ−i+2−1

i − α2ĩ−i+2−1
i−1

)
α−2ĩ−i+2

i

(G.4)
≤ 2 · 1

2ĩ+1µ
· α−1

ĩ+1
≤ 2 ·

ηtĩ+1

λj
,

where the last inequality is because of the condition λj ∈ [µ · 2ĩ, µ · 2ĩ+1) and the definition of αi.

Therefore, we have

vtĩ+1,j
≤ 2 exp(2) ·

ηtĩ+1

λj
≤ 15 ·

ηtĩ+1

λj
.

Lemma 12. Let objective function f(x) be quadratic and Assumption (1.7) hold. Running SGD
for T -steps starting from w0 and a learning rate sequence {ηt}Tt=1 defined in Eqn. (3.3), the final
iterate wT+1 satisfies

E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
≤(w0 − w∗)>H(w0 − w∗) · exp

(
−2µ

T∑
k=0

ηk

)

+ 15σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

.

Proof. The target of this lemma is to obtain the explicit form to bound the variance term. By the
definition of vt+1,j in Lemma 10, we can obtain that

T∑
τ=0

E
[
η2
τn
>
τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ

]
(F.7)
≤ σ2

d∑
j=1

λ2
j · vT+1,j

(G.9)
≤ σ2

d∑
j=1

λ2
j ·max

(
vtĩ+1+1,j ,

ηtĩ+1+1

λj

)
(G.11)
≤ σ2

d∑
j=1

λ2
j ·max

(
15 ·

ηtĩ+1+1

λj
,
ηtĩ+1+1

λj

)

=15σ2
d∑
j=1

λj · ηtĩ+1+1 ≤ 15σ2
d∑
j=1

λj · ηtĩ+1
≤ 15σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ · ηtĩ+1
,

where the last inequality is because λj ∈ [2ĩµ, 2ĩ+1µ) and there are sĩ such λj’s lie in this range.
By Eqn. (3.3), we have

ηtĩ+1
=

1

L+ µ
∑ĩ+1
j=1 ∆j2j−1

. (G.13)
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Therefore, we have

T∑
τ=0

E
[
η2
τn
>
τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ

]
≤ 15σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

. (G.14)

Combining with Lemma 4 and Lemma 6, we can obtain that

E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
≤(w0 − w∗)>H(w0 − w∗) · exp

(
−2µ

T∑
k=0

ηk

)

+ 15σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

.

Lemma 13. For ∀t ≥ 0, the learning rate sequence {ηt}Tt=1 defined in Eqn. (3.3) satisfies

ηt ≤
1

L+ µt
(G.15)

Proof. For ∀t ≥ 0, there ∃i ≥ 1, where t ∈ [ti−1, ti). Given the form defined in Eqn. (3.3), we
have,

ηt =
1

L+ µ
∑i−1
j=1 ∆j2j−1 + 2i−1µ(t− ti−1)

≤ 1

L+ µ
∑i−1
j=1 ∆j + µ(t− ti−1)

(3.4)
=

1

L+ µ
∑i−1
j=1(tj − tj−1) + µ(t− ti−1)

=
1

L+ µ(ti−1 − t0) + µ(t− ti−1)

=
1

L+ µ(t− t0)

=
1

L+ µt

Lemma 14. Let objective function f(x) be quadratic and Assumption (1.7) hold. Running SGD
for T -steps starting from w0 and a learning rate sequence {ηt}Tt=1 defined in Eqn. (3.3), the final
iterate wT+1 satisfies

E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
≤(w0 − w∗)>H(w0 − w∗) ·

κ2

∆2
1

+ 15σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

.

Proof. The target of this lemma is to obtain the explicit form to bound the bias term.
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First, by Eqn. (G.1) and the condition λj ∈ [µ · 2ĩ, µ · 2ĩ+1), we have

exp

(
−2λj

T∑
k=0

ηk

)
≤ exp

−2

tĩ+1−1∑
k=0

ηkλj

 ≤ exp

−2

ĩ+1∑
i=1

1

2i−1µ
ln

αi
αi−1

λj


≤ exp

− ĩ+1∑
i=1

2ĩ−i+2 ln
αi
αi−1

 =

ĩ+1∏
i=1

(
αi−1

αi

)2ĩ−i+2

≤
ĩ+1∏
i=1

(
αi−1

αi

)2

=

(
α1

αĩ+1

)2

= L2 · η2
tĩ+1

(G.16)

For λj = µ, since µ ∈ [µ · 2ĩ, µ · 2ĩ+1) for ĩ = 0, it follows,

exp

(
−2µ

T∑
k=0

ηk

)
≤ L2 · η2

t1

(G.15)
≤

(
L

L+ µt1

)2
(3.4)
=

(
L

L+ µ∆1

)2

≤
(

L

µ∆1

)2

=
κ2

∆2
1

(G.17)

Combining with Lemma 12, we obtain that,

E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
≤(w0 − w∗)>H(w0 − w∗) ·

κ2

∆2
1

+ 15σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

.

G.1 PROOF OF LEMMA 1

Lemma 1. Let objective function f(x) be quadratic and Assumption (1.7) hold. Running SGD for
T -steps starting fromw0 and a learning rate sequence {ηt}Tt=1 defined in Eqn. (3.3), the final iterate
wT+1 satisfies

E [f(wT+1)− f(w∗)] ≤(f(w0)− f(w∗)) ·
κ2

∆2
1

+
15

2
· σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

.

(3.6)

Proof. For ∀t ≥ 0, we have

f(wt)− f(w∗)
(1.2)
= E

[
1

2
w>t H(ξ)wt − b(ξ)>wt

]
− E

[
1

2
w>∗ H(ξ)w∗ − b(ξ)>w∗

]
=

(
1

2
w>t E[H(ξ)]wt − E[b(ξ)]>wt

)
−
(

1

2
w>∗ E[H(ξ)]w∗ − E[b(ξ)]>w∗

)
=

(
1

2
w>t Hwt − b>wt

)
−
(

1

2
w>∗ Hw∗ − b>w∗

)
(1.4)
=

(
1

2
w>t Hwt − b>wt

)
−
(

1

2
b>
(
H>

)−1
b− b>H−1b

)
=

(
1

2
w>t Hwt − b>wt

)
−
(

1

2
b>H−1b− b>H−1b

)
=

1

2
w>t Hwt − b>wt +

1

2
b>H−1b

=
1

2
w>t Hwt −

1

2
b>wt −

1

2
b>wt +

1

2
b>H−1b
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=
1

2
w>t Hwt −

1

2
w>t b−

1

2
b>wt +

1

2
b>H−1b

=
1

2
w>t Hwt −

1

2
w>t Hw∗ −

1

2
w>∗ Hwt +

1

2
w>∗ Hw∗

=
1

2
(wt − w∗)>H(wt − w∗),

where the 5th equality is entailed by the fact that H> = H is a symmetric matrix, and the 9th
equality uses both H> = H and Eqn 1.4.

Combine the above result with Lemma 14, we obtain that

E [f(wT+1)− f(w∗)] ≤(f(w0)− f(w∗)) ·
κ2

∆2
1

+
15

2
· σ2µ

Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

.

G.2 PROOF OF THEOREM 1

Theorem 1. Let objective function f(x) be quadratic and Assumption (1.7) hold. Running SGD for
T -steps starting from w0, a learning rate sequence {ηt}Tt=1 defined in Eqn. (3.3) and ∆i defined in
Eqn. (3.5), the final iterate wT+1 satisfies

E [f(wT+1)− f(w∗)] ≤(f(w0)− f(w∗)) ·
κ2 ·

(∑Imax−1
i=0

√
si

)2

s0T 2
+

15
(∑Imax−1

i=0

√
si

)2

T
· σ2.

Proof. We have

µ ·
Imax−1∑
ĩ=0

2ĩ+1sĩ

L+ µ
∑ĩ+1
j=1 ∆j2j−1

<µ ·
Imax−1∑
ĩ=0

2ĩ+1sĩ
µ2ĩ∆ĩ+1

(3.5)
= 2

Imax−1∑
ĩ=0

sĩ√
sĩ∑Imax−1

i=0

√
si
· T

=
2

T
·
Imax−1∑
i=0

√
si ·

Imax−1∑
ĩ=0

√
sĩ =

2
(∑Imax−1

i=0

√
si

)2

T
.

Combining with Lemma 1 and the definition of ∆1, we can obtain that

E [f(wT+1)− f(w∗)] ≤(f(w0)− f(w∗)) ·
κ2 ·

(∑Imax−1
i=0

√
si

)2

s0T 2
+

15
(∑Imax−1

i=0

√
si

)2

T
· σ2.

G.3 PROOF OF COROLLARY 2

Corollary 2. Given the same setting as in Theorem 1, when Hessian H’s eigenvalue distribution
p(λ) satisfies “power law”, i.e.

p(λ) =
1

Z
· exp(−α(ln(λ)− ln(µ))) =

1

Z
·
(µ
λ

)α
(3.7)

for some α > 1, where Z =
∫ L
µ

(µ/λ)αdλ, there exists a constant C(α) which only depends on α,
such that the final iterate wT+1 satisfies

E [f(wT+1)− f(w∗)] ≤
(

(f(w0)− f(w∗)) ·
κ2

T 2
+
dσ2

T

)
· C(α).
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Proof. According to Theorem 1,

E [f(wT+1)− f(w∗)]

≤(f(w0)− f(w∗)) ·
κ2 ·

(∑Imax−1
i=0

√
si

)2

s0T 2
+

15
(∑Imax−1

i=0

√
si

)2

T
· σ2

=(f(w0)− f(w∗)) ·
κ2

T 2
·

(∑Imax−1
i=0

√
si

)2

s0
+
dσ2

T
·

15
(∑Imax−1

i=0

√
si

)2

d
.

The key terms here are C1 ,
(∑Imax−1

i=0

√
si

)2

/s0 and C2 , 15
(∑Imax−1

i=0

√
si

)2

/d. As long as
we can bound both terms with a constant C(α), the corollary will be directly proved.

1) If κ < 2, then there is only one interval with s0 = d. By setting C(α) = max(C1, C2) = 15, this
completes the proof.

2) If κ ≥ 2, then bounding C1 and C2 be done by computing the value of si under power law. For
all interval i except the last interval, we have,

si
d

(3.1)
= #λj ∈ [µ · 2i, µ · 2i+1) =

∫ µ·2i+1

µ·2i
p(λ)dλ

(3.7)
=

∫ µ·2i+1

µ·2i

1

Z
·
(µ
λ

)α
dλ =

1

Z
· µα ·

∫ µ·2i+1

µ·2i
λ−αdλ

=

(∫ L

µ

(µ
λ

)α
dλ

)−1

· µα ·
∫ µ·2i+1

µ·2i
λ−αdλ =

(∫ L

µ

λ−αdλ

)−1

·
∫ µ·2i+1

µ·2i
λ−αdλ

=

(
λ1−α

1− α

∣∣∣L
µ

)−1

·
(
λ1−α

1− α

∣∣∣µ·2i+1

µ·2i

)
=

(
λ1−α

∣∣∣L
µ

)−1

·
(
λ1−α

∣∣∣µ·2i+1

µ·2i

)
=
(
L1−α − µ1−α)−1 ·

(
µ1−α ·

(
2i+1

)1−α − µ1−α ·
(
2i
)1−α)

=
µ1−α ·

(
2i+1

)1−α − µ1−α ·
(
2i
)1−α

L1−α − µ1−α =

(
2i+1

)1−α − (2i)1−α
κ1−α − 1

=2i(1−α) · 21−α − 1

κ1−α − 1

Therefore, we have

si = d · 2i(1−α) · 21−α − 1

κ1−α − 1
= d · 21−α − 1

κ1−α − 1
· 2i(1−α) (G.18)

holds for all interval i except the last interval i′ = Imax − 1 = log2 κ − 1 > 0. This last interval
may not completely covers [µ · 2i′ , µ · 2i′+1) due to the boundary truncated by L, but we still have

si′ ≤ d ·
21−α − 1

κ1−α − 1
· 2i
′(1−α)
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It follows,(
Imax−1∑
i=0

√
si

)2

≤d · 21−α − 1

κ1−α − 1
·

(
Imax−1∑
i=0

√
2i(1−α)

)2

= d · 21−α − 1

κ1−α − 1
·

(
Imax−1∑
i=0

2i(1−α)/2

)2

=d · 21−α − 1

κ1−α − 1
·

(
Imax−1∑
i=0

(
1

2

)i(α−1)/2
)2

≤d · 21−α − 1

κ1−α − 1
·

( ∞∑
i=0

(
1

2

)i(α−1)/2
)2

= d · 21−α − 1

κ1−α − 1
·

( ∞∑
i=0

(
1

2(α−1)/2

)i)2

=d · 21−α − 1

κ1−α − 1
·

(
1

1− 1
2(α−1)/2

)2

= d · 21−α − 1

κ1−α − 1
·
(

1

1− 2(1−α)/2

)2

.

Thus,

C1 =

(∑Imax−1
i=0

√
si

)2

s0
≤
d · 21−α−1

κ1−α−1 ·
(

1
1−2(1−α)/2

)2

d · 21−α−1
κ1−α−1 · 20(1−α)

=

(
1

1− 2(1−α)/2

)2

C2 =
15
(∑Imax−1

i=0

√
si

)2

d
≤ 15

d
· d · 21−α − 1

κ1−α − 1
·
(

1

1− 2(1−α)/2

)2

=15 ·
1−

(
1
2

)α−1

1−
(

1
κ

)α−1 ·
(

1

1− 2(1−α)/2

)2

≤15 ·
(

1

1− 2(1−α)/2

)2

.

Here the last inequality for C2 is entailed by κ ≥ 2 and α > 1.

By setting C(α) = max(C1, C2) = 15 ·
(

1
1−2(1−α)/2

)2

, we obtain

E [f(wT+1)− f(w∗)]

≤(f(w0)− f(w∗)) ·
κ2

T 2
·

(∑Imax−1
i=0

√
si

)2

s0
+
dσ2

T
·

15
(∑Imax−1

i=0

√
si

)2

d
.

=(f(w0)− f(w∗)) ·
κ2

T 2
· C1 +

dσ2

T
· C2

≤
(

(f(w0)− f(w∗)) ·
κ2

T 2
+
dσ2

T

)
· C(α).

G.4 PROOF OF THEOREM 4

Theorem 4. Let objective function f(x) be quadratic. We run SGD for T -steps starting fromw0 and
a step decay learning rate sequence {ηt}Tt=1 defined in Algorithm 1 of Ge et al. (2019) with η1 ≤
1/L. As long as (1) H is diagonal, (2) The equality in Assumption (1.7) holds, i.e. Eξ

[
ntn
>
t

]
=

σ2H and (3) λj (w0,j − w∗,j)2 6= 0 for ∀j = 1, 2, . . . , d, the final iterate wT+1 satisfies,

E [f(wT+1)− f(w∗)] = Ω

(
dσ2

T
· log T

)
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Proof. The lower bound here is an asymptotic bound. Specifically, we require

T

log T
≥ max

(
216, 16,

1

256
· σ2

minj λj (w0,j − w∗,j)2

)
. (G.19)

In Ge et al. (2019), step decay has following learning rate sequence:

ηt =
η1

2`
if t ∈

[
1 +

T

log T
· `, T

log T
· (`+ 1)

]
, (G.20)

where ` = 0, 1, . . . , log T − 1. Notice that the index start from t = 1 instead of t = 0. For
consistency with our framework, we set η0 = 0, which produces the exact same step decay scheduler
while only adding one extra iteration, thus does not affect the overall asymptotic bound.

We first translate the general notations to diagonal cases so that the idea of the proof can be clearer.

Since f(x) is quadratic, according to the proof of Lemma 1 in Appendix G.1,

f(wT+1)− f(w∗) =
1

2
(wT+1 − w∗)>H(wT+1 − w∗).

Furthermore, according to Lemma 4, where Pt = I − ηtH ,

E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
=E

[
(w0 − w∗)> · PT . . . P0HP0 . . . PT · (w0 − w∗)

]
+

T∑
τ=0

E
[
η2
τn
>
τ · PT . . . Pτ+1HPτ+1 . . . PT · nτ

]
=

d∑
j=1

λj (w0,j − w∗,j)2
T∏
k=0

(1− ηkλj)2 +

T∑
τ=0

η2
τ

d∑
j=1

T∏
k=τ+1

λj(1− ηkλj)2E
[
n2
τ,j

]
=

d∑
j=1

λj (w0,j − w∗,j)2
T∏
k=0

(1− ηkλj)2 +

T∑
τ=0

η2
τ

d∑
j=1

T∏
k=τ+1

λj(1− ηkλj)2 · λjσ2

=

d∑
j=1

λj (w0,j − w∗,j)2
T∏
k=0

(1− ηkλj)2 + σ2
d∑
j=1

λ2
j

T∑
τ=0

η2
τ

T∏
k=τ+1

(1− ηkλj)2.

Here the second equality is entailed by the fact that H and Pt are diagonal, and the third equality
comes from Eξ

[
ntn
>
t

]
= σ2H . Thus, by denoting bj , λj (w0,j − w∗,j)2∏T

k=0(1 − ηkλj)2 and
vj ,

∑T
τ=0 η

2
τ

∏T
k=τ+1(1− ηkλj)2, we have,

E [f(wT+1 − f(w∗)] =
1

2
E
[
(wT+1 − w∗)>H(wT+1 − w∗)

]
=

1

2

 d∑
j=1

bj

+

σ2
d∑
j=1

λ2
jvj

 . (G.21)

To proceed the analysis, we divide all eigenvalues {λj} into two groups:

A =

{
j

∣∣∣∣λj > log T

8η1T

}
, B =

{
j

∣∣∣∣λj ≤ log T

8η1T

}
, (G.22)

where groupA are those large eigenvalues that the variance term vj will finally dominate, and group
B are those small eigenvalues that the bias term bj will finally dominate. Rigorously speaking,

a) For ∀j ∈ A:

Step decay’s bottleneck in variance term actually occurs at the first interval ` that satisfies

2` ≥ λjη1 ·
8T

log T
(G.23)
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We first show that interval ` is well-defined for any dimension j ∈ A. Since j ∈ A, it follows from
the definition of A in Eqn. (G.22),

λj >
log T

8η1T
=⇒ λjη1 ·

8T

log T
> 1 = 20

On the other hand, since we assume T/ log T ≥ 216 in Eqn. (G.19), which implies T ≥ 216 ⇒
log T ≥ 16, it follows

λjη1 ·
8T

log T
≤ λjη1 ·

T

2
≤ λj

L
· T

2
≤ T

2
= 2log T−1,

where the second inequality comes from η1 ≤ 1/L in assumption (1), and the third inequality is
entailed by λj ≤ L given the definition of L in Eqn. (1.6).

As a result, we have

λjη1 ·
8T

log T
∈
(
20, 2log T−1

]
thus

2` ≥ λjη1 ·
8T

log T

will guaranteed be satisified for some interval ` = 1, . . . , log T − 1. Since interval ` is the first
interval satisifies Eqn. (G.23), we also have

2`−1 < λjη1 ·
8T

log T
=⇒ 2` < λjη1 ·

16T

log T
(G.24)

Back to our analysis for the lower bound, by focusing on the variance produced by interval ` only,
we have,

vj =

T∑
τ=0

η2
τ

T∏
k=τ+1

(1− ηkλj)2 ≥
(`+1)· T

log T∑
τ=`· T

log T +1

η2
τ

T∏
k=τ+1

(1− ηkλj)2

≥
(`+1)· T

log T∑
τ=`· T

log T +1

η2
τ

T∏
k=`· T

log T +1

(1− ηkλj)2 =

(`+1)· T
log T∑

τ=`· T
log T +1

(η1

2`

)2 T∏
k=`· T

log T +1

(1− ηkλj)2

=
T

log T
·
(η1

2`

)2 T∏
k=`· T

log T +1

(1− ηkλj)2

(G.24)
>

T

log T
·

(
η1

λjη1 · 16T
log T

)2 T∏
k=`· T

log T +1

(1− ηkλj)2

=
1

256
· log T

T
· 1

λ2
j

·
T∏

k=`· T
log T +1

(1− ηkλj)2

≥ 1

256
· log T

T
· 1

λ2
j

·

1−
T∑

k=`· T
log T +1

2ηkλj

 =
1

256
· log T

T
· 1

λ2
j

·

1− 2λj

T∑
k=`· T

log T +1

ηk


=

1

256
· log T

T
· 1

λ2
j

·

1− 2λj

log T−1∑
i=`

(i+1)· T
log T∑

k=i· T
log T +1

ηk


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=
1

256
· log T

T
· 1

λ2
j

·

1− 2λj

log T−1∑
i=`

(i+1)· T
log T∑

k=i· T
log T +1

η1

2i


=

1

256
· log T

T
· 1

λ2
j

·

(
1− 2λj

log T−1∑
i=`

T

log T
· η1

2i

)

≥ 1

256
· log T

T
· 1

λ2
j

·
(

1− 2λj ·
T

log T
· η1

2`−1

)
(G.23)
≥ 1

256
· log T

T
· 1

λ2
j

·

(
1− 4λj ·

T

log T
· η1

λjη1 · 8T
log T

)

=
1

256
· log T

T
· 1

λ2
j

· 1

2

=
1

512
· log T

T
· 1

λ2
j

Here the first inequality is obtained by focusing variance generated in interval ` only. The second
inequality utilizes τ ≥ ` · T/ log T . The fourth inequality is entailed by (1 − a1)(1 − a2) =
1 − a1 − a2 + a1a2 ≥ 1 − a1 − a2 for ∀a1, a2 ∈ [0, 1], where by mathematical induction, we can
extend this inequality for more terms

∏n
i=1(1 − ai) ≥ 1 −

∑n
i=1 ai as long as

∑n
i=1 ai ≤ 1. The

fifth inequality comes from
∑log T−1
i=` 1/2i ≤

∑∞
i=` 1/2i = 1/2`−1.

b) For ∀j ∈ B:

Step decay’s bottleneck will occur in the bias term. Since j ∈ B, it follows from the definition of B
in Eqn.(G.22),

λj ≤
log T

8η1T
=⇒ η1λj ≤

log T

8T
,

we have

bj =λj (w0,j − w∗,j)2
T∏
k=0

(1− ηkλj)2

≥λj (w0,j − w∗,j)2 ·

(
1−

T∑
k=0

2ηkλj

)
= λj (w0,j − w∗,j)2 ·

(
1−

T∑
k=1

2ηkλj

)

=λj (w0,j − w∗,j)2 ·

1−
log T−1∑
i=0

(i+1)· T
log T∑

k=i· T
log T +1

2ηkλj


=λj (w0,j − w∗,j)2 ·

1−
log T−1∑
i=0

(i+1)· T
log T∑

k=i· T
log T +1

η1λj
2i−1


=λj (w0,j − w∗,j)2 ·

(
1− η1λj

log T−1∑
i=0

T

log T
· 1

2i−1

)

≥λj (w0,j − w∗,j)2 ·
(

1− 4η1λj ·
T

log T

)
≥λj (w0,j − w∗,j)2 ·

(
1− 4 · log T

8T
· T

log T

)
=λj (w0,j − w∗,j)2 · 1

2
,

where the first inequality is caused by (1 − a1)(1 − a2) = 1 − a1 − a2 + a1a2 ≥ 1 − a1 − a2

for ∀a1, a2 ∈ [0, 1] and applying mathematical induction for {an} to obtain
∏n
i=1(1 − ai) ≥
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1 −
∑n
i=1 ai as long as

∑n
i=1 ai ≤ 1. The second equality is because η0 = 0. The sec-

ond inequality comes from
∑log T−1
i=0 1/2i−1 ≤

∑∞
i=0 1/2i−1 = 4. The last inequality follows

η1λj ≤ log T/(8T ).

From assumption (3), we know λj (w0,j − w∗,j)2
> 0. Furthermore, as we require

T

log T
≥ 1

256
· σ2

minj λj (w0,j − w∗,j)2

in Eqn. (G.19),

bj ≥λj (w0,j − w∗,j)2 · 1

2
≥ min

j
λj (w0,j − w∗,j)2 · 1

2
≥ 1

512
· σ

2

T
· log T.

In sum, we have obtained

∀j ∈ A, vj ≥
1

512
· log T

T
· 1

λ2
j

∀j ∈ B, bj ≥
1

512
· σ

2

T
· log T

By combining with Eqn. (G.21), we have

E [f(wT+1 − f(w∗)] =
1

2

 d∑
j=1

bj

+

σ2
d∑
j=1

λ2
jvj


≥1

2

∑
j∈B

bj

+

σ2
∑
j∈A

λ2
jvj


≥|B| ·

(
1

1024
· σ

2

T
· log T

)
+
∑
j∈A

σ2 · λ2
j ·

1

1024
· log T

T
· 1

λ2
j

=|B| ·
(

1

1024
· σ

2

T
· log T

)
+ |A| ·

(
1

1024
· σ

2

T
· log T

)
= (|A|+ |B|) ·

(
1

1024
· σ

2

T
· log T

)
=d · 1

1024
· σ

2

T
· log T

=Ω

(
dσ2

T
· log T

)
,

where the first inequality is because both the bias and variance terms are non-negative, given bj =

λj (w0,j − w∗,j)2∏T
k=0(1− ηkλj)2 ≥ 0 and vj =

∑T
τ=0 η

2
τ

∏T
k=τ+1(1− ηkλj)2 ≥ 0.

Remark 3. The requirement T/ log T ≥ 1/256 · σ2/
(

minj λj (w0,j − w∗,j)2
)

and assumption

λj (w0,j − w∗,j)2 6= 0 for ∀j = 1, 2, . . . , d can be replaced with T/ log T > 1/(8η1µ), since in
that case j ∈ A holds for ∀j = 1, 2, . . . , d and B = ∅. In particular, if η1 = 1/L, this requirement
on T becomes T/ log T ≥ κ/8.

G.5 THE REASON OF USING ASSUMPTION (1.7)

In all of our analysis, we employ assumption (1.7)

Eξ
[
ntn
>
t

]
� σ2H where nt = Hwt − b− (H(ξ)wt − b(ξ))

42



Published as a conference paper at ICLR 2022

which is the same as the one in Appendix C, Theorem 13 of Ge et al. (2019). This key theorem is
the major difference between our work and Ge et al. (2019), which directly entails its main theorem
by instantiating σ with specific values in its assumptions.

On the other hand, it is possible to use the assumptions in Ge et al. (2019); Bach & Moulines (2013);
Jain et al. (2016) instead of our assumption (1.7) for least square regression:

min
w
f(w) where f(w) ,

1

2
E(x,y)∼D

[
(y − w>x)2

]
(G.25)

y = w>∗ x+ ε with ε satisfying E(x,y)∼D
[
ε2xx>

]
� σ2H for ∀(x, y) ∼ D (G.26)

E
[
||x||2xx>

]
� R2H (G.27)

By combining our Lemma 1 and assumption (1.7) with Lemma 5, Lemma 8 and Lemma 9 in Ge
et al. (2019), one can obtain similar results in this paper with their assumptions. For simplicity, we
just use assumption (1.7) here.

H RELATIONSHIP WITH (STOCHASTIC) NEWTON’S METHOD

Our motivation in Proposition 1 shares a similar idea with (stochastic) Newton’s method on quadratic
objectives

wt+1 =wt − ηtH−1∇f(wt, ξ),

where the parameters are also updated coordinately in the “rotated space”, i.e. given H = UΛU>

and w′ = U>w. In particular, when the Hessian H is diagonal and ηt = 1/(t + 1), the update
formula is exactly the same as the one for Proposition 1.

Despite of this similarity, our method differ from Newton method’s and its practical variants in sev-
eral aspects. First of all, our method focuses on learning rate schedulers and is a first-order method.
This property is especially salient when we consider eigencurve’s derivatives in Section 4.3:
only hyperparameter search is needed, just like other common learning rate schedulers. In addition,
most second-order methods, e.g. Schraudolph (2002); Erdogdu & Montanari (2015); Grosse &
Martens (2016); Byrd et al. (2016); Botev et al. (2017); Huang et al. (2020); Yang et al. (2021), ap-
proximates the Hessian matrix or the Hessian inverse and exploits the curvature information, while
eigencurve only utilizes the rough estimation of the Hessian spectrum. On top of that, this es-
timation is only an one-time effect and can be even further removed for similar models. These key
differences highlight eigencurve’s advantages over most second-order methods in practice.
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