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ABSTRACT

The ultimate goal of Dataset Distillation is to synthesize a small synthetic dataset
such that a model trained on this synthetic set will perform equally well as a model
trained on the full, real dataset. Until now, no method of Dataset Distillation has
reached this completely lossless goal, in part because they only remain effective
when the total number of synthetic samples is extremely small. Since only so much
information can be contained in such a small number of samples, it seems that to
achieve truly lossless dataset distillation, we must develop a distillation method that
remains effective as the size of the synthetic dataset grows. In this work, we present
such an algorithm and elucidate why existing methods fail to generate larger, high-
quality synthetic sets. Current state-of-the-art methods rely on trajectory-matching,
or optimizing the synthetic data to induce similar long-term training dynamics as the
real data. We empirically find that the training stage of the trajectories we choose
to match (i.e., early or late) greatly affects the effectiveness of the distilled dataset.
Specifically, early trajectories (where the teacher network learns easy patterns)
work well for a low-cardinality synthetic set since there are fewer examples wherein
to distribute the necessary information. Conversely, late trajectories (where the
teacher network learns hard patterns) provide better signals for larger synthetic sets
since there are now enough samples to represent the necessary complex patterns.
Based on our findings, we propose to align the difficulty of the generated patterns
with the size of the synthetic dataset. In doing so, we successfully scale trajectory
matching-based methods to larger synthetic datasets, achieving lossless dataset
distillation for the very first time. Code and distilled datasets are available at
https://github.com/NUS-HPC-AI-Lab/DATM.

1 INTRODUCTION

Dataset distillation (DD) aims at distilling a large dataset into a small synthetic one, such that models
trained on the distilled dataset will have similar performance as those trained on the original dataset.
In recent years, several algorithms have been proposed for this important topic, such as gradient
matching (Zhao et al., 2020; Kim et al., 2022; Zhang et al., 2023; Liu et al., 2023b), kernel inducing
points (Nguyen et al., 2020; 2021), distribution matching (Wang et al., 2022; Zhao & Bilen, 2023;
Zhao et al., 2023), and trajectory matching (Cazenavette et al., 2022; Cui et al., 2023; Du et al., 2023).
So far, dataset distillation has achieved great success in the regime of extremely small synthetic
sets. For example, MTT (Cazenavette et al., 2022) achieves 71.6% test accuracy on CIFAR-10 using
only 1% of the original data size. This impressive performance led to its application in a variety of
downstream tasks such as continual learning (Masarczyk & Tautkute, 2020; Rosasco et al., 2021),
privacy protection (Zhou et al., 2020; Sucholutsky & Schonlau, 2021a; Dong et al., 2022; Chen et al.,
2022; Xiong et al., 2023), and neural architecture search (Such et al., 2020; Wang et al., 2021).

However, although previous DD methods have achieved great success with very few IPC (images-per-
class), there still remains a significant gap between the performance of their distilled datasets and the
full, real counterparts. To minimize this gap, one would intuitively think to increase the size of the
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Figure 1: (a) Illustration of the objective of dataset distillation. (b) The optimization in dataset distillation can be
viewed as the process of generating informative patterns on the synthetic dataset. (c) We align the difficulty of
the synthetic patterns with the size of the distilled dataset, to enable our method to perform well in both small and
large IPC regimes. (d) Comparison of the performance of multiple dataset distillation methods on CIFAR-10 with
different IPC. As IPC increases, the performance of previous methods becomes worse than random selection.

synthetic dataset. Unfortunately, as IPC increases, previous distillation methods mysteriously become
less effective, even performing worse than random selection (Cui et al., 2022; Zhou et al., 2023). In
this paper, we offer an answer as to why previous dataset distillation methods become ineffective
as IPC increases and, in doing so, become the first to circumvent this issue, allowing us to achieve
lossless dataset distillation.

We start our work by observing the patterns learned by the synthetic data, taking trajectories matching
(TM) based distillation methods (Cazenavette et al., 2022; Du et al., 2023) as an example. Generally,
the process of dataset distillation can be viewed as the embedding of informative patterns into a set of
synthetic samples. For TM-based distillation methods, the synthetic data learns patterns by matching
the training trajectories of surrogate models optimized over the synthetic dataset and the real one.
According to (Arpit et al., 2017), deep neural networks (DNNs) typically learn to recognize easy
patterns early in training and hard patterns later on. As a result, we note that the properties of the
data generated by TM-based methods vary widely depending on from which teacher training stage
we sample our trajectories from (early or late). Specifically, matching early or late trajectories causes
the synthetic data to learn easy or hard patterns respectively.

We then empirically show that the effect of learning easy and hard patterns varies with the size of
the synthetic dataset (i.e., IPC). In low-IPC settings, easy patterns prove the most beneficial since
they explain a larger portion of the real data distribution than an equivalent number of hard samples.
However, with a sufficiently large synthetic set, learning hard samples becomes optimal since their
union covers both the easy and “long-tail” hard samples of the real data. In fact, learning easy
patterns in the high-IPC setting performs worse than random selection since the synthetic images
collapse towards the mean patterns of the distribution and can no longer capture the long-tail parts.
Previous distillation methods default toward distilling easy patterns, leading to their ineffectiveness
in high-IPC cases.

The above findings motivate us to manage to align the difficulty of the learned patterns with the
size of the distilled dataset, in order to keep our method effective in both low and high IPC cases.
Our experiments show that, for TM-based methods, we can control the difficulty of the generated
patterns by only matching the trajectories of a specified training phase. By doing so, our method
is able to work well in both low and high IPC settings. Furthermore, we propose to learn easy
and hard patterns sequentially, making the optimization stable enough for learning soft labels
during the distillation, bringing further significant improvement. Our method achieves state-of-the-art
performance in both low and high IPC cases. Notably, we distill CIFAR-10 and CIFAR-100 to 1/5
and Tiny ImageNet to 1/10 of their original sizes without any performance loss on ConvNet, offering
the first lossless method of dataset distillation.

2 PRELIMINARY

For a given large, real dataset Dreal, dataset distillation aims to synthesize a smaller dataset Dsyn

such that models trained on Dsyn will have similar test performance as models trained on Dreal.
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Figure 2: We train expert models on CIFAR-10 for 40 epochs. Then the distillation is performed under different
IPC settings by matching either early trajectories {θ∗t |0 ≤ t ≤ 20}, late trajectories {θ∗t |20 ≤ t ≤ 40}, or all
trajectories {θ∗t |0 ≤ t ≤ 40}. As IPC increases, matching late trajectories becomes beneficial while matching
early trajectories tends to be harmful.

For trajectory matching (TM) based methods, the distillation is performed by matching the training
trajectories of the surrogate models optimized over Dreal and Dsyn. Specifically, let τ∗ denote the
expert training trajectories, which is the time sequence of parameters {θ∗t }n0 obtained during the
training of a network on the real dataset Dreal. Similarly, θ̂t denotes the parameters of the network
trained on the synthetic dataset Dsyn at training step t.

In each iteration of the distillation, θ∗t and θ∗t+M are randomly sampled from a set of expert trajectories
{τ∗} as the start parameters and target parameters used for the matching, where M is a preset hyper-
parameter. Then TM-based distillation methods optimize the synthetic dataset Dsyn by minimizing
the following loss:

L =
∥θ̂t+N − θ∗t+M∥22
∥θ∗t − θ∗t+M∥22

, (1)

where N is a preset hyper-parameter and θ̂t+N is obtained in the inner optimization with cross-entropy
(CE) loss ℓ and the trainable learning rate α:

θ̂t+i+1 = θ̂t+i − α∇ℓ(θ̂t+i,Dsyn),where θ̂t := θ∗t . (2)

3 METHOD

In this section, we first analyze the influence of matching trajectories from different training stages.
Then, we introduce our method and its carefully designed modules.

3.1 EXPLORATION

TM-based methods generate patterns on the synthetic data by matching training trajectories. Ac-
cording to Arpit et al. (2017), DNNs tend to learn easy patterns early in training, then the harder
ones later on. Motivated by this, we start our work by exploring the effect of matching trajectories
from different training phases. Specifically, we train expert models for 40 epochs and roughly divide
their training trajectories into two parts: the early trajectories {θ∗t |0 ≤ t ≤ 20} and the latter ones
{θ∗t |20 ≤ t ≤ 40}. Then we perform the distillation by matching these two sets of trajectories under
various IPC settings. Experimental results are reported in Figure 2. Our observations and relevant
analyses are presented as follows.

Observation 1. As shown in Figure 2, matching early trajectories works better with small synthetic
datasets, but matching late trajectories performs better as the size of the synthetic set grows larger.

Analysis 1. Since DNNs learn to recognize easy patterns early in training and hard patterns later
on, we infer that matching early trajectories yields distilled data with easy patterns while matching
late trajectories produces hard ones. Combined with the empirical results from Figure 2, we can
conclude that distilled data with easy patterns perform well for small synthetic sets while data with
hard features work better with larger sets. Perhaps unsurprisingly, this highly coincides with a
common observation in the area of dataset pruning: preserving easy samples works better when very
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few samples are kept, while keeping hard samples works better when the pruned dataset is larger
(Sorscher et al., 2022).

Observation 2. As can be observed in Figure 2 (a), matching late trajectories leads to poor perfor-
mance in the low IPC setting. When IPC is high, matching early trajectories will consistently under-
mine the performance of the synthetic dataset as the distillation goes on, as can be observed in Figure 2
(d). Also, as reflected in Figure 2, simply choosing to match all trajectories is not a good strategy.

Analysis 2. In low IPC settings, due to distilled data’s limited capacity, it is challenging to learn data
that models the outliers (hard samples) without neglecting the more plentiful easy samples; since
easy samples make up most of the real data distribution, modeling these samples is more efficient
performance-wise when IPC is low. Therefore, matching early trajectories (which will generate
easy patterns) performs better than matching later ones (for low IPC). Conversely, in high IPC
settings, distilling data that models only the easy samples is no longer necessary, and will even
perform worse than a random subset of real samples. Thus, we must now consider the less-common
hard samples by matching late trajectories (Figure 4). Since previous distillation methods focus on
extremely small IPC cases, they tend to be biased towards generating easy patterns, leading to their
ineffective in large IPC cases.

Based on the above analyses, to keep dataset distillation effective in both low and high IPC cases, we
must calibrate the difficulty of the generated patterns (i.e., avoid generating patterns that are too easy or
too difficult). To this end, we propose our method: Difficulty-Aligned Trajectory Matching, or DATM.

3.2 DIFFICULTY-ALIGNED TRAJECTORY MATCHING

Since patterns learned by matching earlier trajectories are easier than the later ones, we can control
the difficulty of the generated patterns by restricting the trajectory-matching range. Specifically, let
τ∗ = {θ∗t |0 ≤ t ≤ n} denote an expert trajectory. To control the matching range flexibly, we set a
lower bound T− and an upper bound T+ on the sample range of t, such that only parameters within
{θ∗t |T− ≤ t ≤ T+} can be sampled for the matching. Then the trajectory segment used for the
matching can be formulated as:

τ∗ = {θ∗0 , θ∗1 , · · ·︸ ︷︷ ︸
too easy

, θ∗T− , · · · , θ∗T+︸ ︷︷ ︸
matching range

, · · · , θ∗n︸ ︷︷ ︸
too hard

}. (3)

To further enrich the information contained in the synthetic dataset, an intuitive choice is using soft
labels (Hinton et al., 2015). Recently, Cui et al. (2023) show that using soft labels to guide the
distillation can bring non-trivial improvement for the performance. However, their soft labels are not
optimized during the distillation, leading to poor consistency between synthetic data and soft labels.
To enable learning labels, we find the following challenges need to be solved:

Mislabeling. We use logits Li = fθ∗(xi) to initialize soft labels, which are generated by the pre-
trained model fθ∗ sampled from expert trajectories. However, labels initialized in this way might be
incorrect (i.e., target class doesn’t have the highest logit score). To avoid mislabeling, we sift through
Dreal to find samples that can be correctly classified by model fθ∗ and use them to construct the subset
Dsub. Then we randomly select samples from Dsub to initialize Dsyn = {(xi, ŷi = softmax(Li))},
such that we can avoid the distillation being misguided by the wrong label.

Instability. During the experiments, we found that optimizing soft labels will increase the instability
of the distillation when the IPC is low. In low IPC settings, the distillation loss tends to be higher
and less stable overall since the smaller synthetic set struggles to induce a proper training trajectory.
This issue becomes fatal when labels are optimized during the distillation, as the labels are too fragile
to take the wrong guidance brought by the mismatch, leading to increased instability. To alleviate
this, we propose to generate only easy patterns in the early distillation phase. After enough easy
patterns are embedded into the synthetic data for surrogate models to learn them well, we then
gradually generate harder ones. By applying this sequential generation (SG) strategy, the surrogate
model can match the expert trajectories better. Accordingly, the distillation becomes more stable.

In practice, to generate only easy patterns at the early distillation stage, we set a floating upper
bound T on the sample range of t, which is set to be relatively small in the beginning and will be
gradually increased as the distillation progresses until it reaches its upper bound T+. Overall, the
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we
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Figure 3: (a): (CIFAR-100, IPC=10) Synthetic datasets are initialized by randomly sampling data from the
original dataset (random selection) or a subset of data that can be correctly classified (ours). Our strategy makes
the optimization converge faster. (b): (CIFAR-10, IPC=50) Ablation on learning soft labels, where soft labels are
initialized with expert models trained after different epochs. Learning labels relieves us from carefully selecting
the labeling expert. (c): (CIFAR-10) The optimization with higher IPC converges in fewer iterations.

Method ConvNet ResNet18 VGG AlexNet

Random 33.46 31.95 32.18 26.65
MTT 45.68 42.56 41.22 40.29
FTD 48.90 46.65 43.24 42.20

DATM 55.03 51.71 45.38 45.74

(a) CIFAR-100, IPC=50

Soft Label Difficulty Alignment Acc

48.50
✓ 50.79

✓ 52.96
✓ ✓ 55.03

(b) CIFAR-100, IPC=50

Label Learning Sequential Gen. Acc

72.8
✓ 75.0

✓ 75.6
✓ ✓ 76.1

(c) CIFAR-10, IPC=50

Table 2: (a): Cross-Architecture evaluation. Our distilled dataset performs well across various unseen networks.
(b): Ablation studies on the components of our method; all bring non-trivial improvement. (c): Ablation on
learning soft labels and our sequential generation (SG) strategy.

successfully distill CIFAR-10 and CIFAR-100 to 1/5, and Tiny ImageNet to 1/10 their original size
without causing any performance drop.

Cross-architecture generalization. Here we evaluate the generalizability of our distilled datasets in
various IPC settings. As the results reported in Table 2 (Left), our distilled dataset performs best on
unseen networks when IPC is small, reflecting the good generalizability of the data and labels distilled
by our method. Furthermore, we evaluate the generalizability in high IPC settings and compare the
performance with two representative coreset selection methods including Glister (Killamsetty et al.,
2021) and Forgetting (Toneva et al., 2018). As shown in Table 4, although coreset selection methods
are applied case by case, they are not universally beneficial for all networks. Notably, although our
synthetic dataset is distilled with ConvNet, it generalizes well on all networks, bringing non-trivial
improvement. Furthermore, on CIFAR-100, the improvement of AlexNet is even higher than that
of ConvNet. This reflects the overfitting problem of synthetic datasets to distillation networks is
somewhat alleviated in higher IPC situations.

4.3 ABLATION

Ablation on components of our method. We perform ablation studies by adding the components
of our methods one by one to measure their effect. As the results reported in Table 2 (b,c), all the
components of our method bring non-trivial improvement. Especially, when soft labels are utilized,
the distillation becomes unstable if our proposed sequential generation strategy is not applied, leading
to poor performance and sometimes program crashes.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 1 10 50 1 10 50

FTD 46.0 65.3 73.2 24.4 42.5 48.5 10.5 23.4 28.2
FTD+ASL 45.5 66.1 72.8 24.2 44.5 51.2 12.4 26.7 30.9

DATM 46.9 66.8 76.1 27.9 47.2 53.0 17.1 29.0 33.7

Table 3: We assign soft labels (ASL) for datasets distilled by FTD.
For fairness, our difficult alignment strategy is not utilized here.
Results in red indicate the case when ASL is harmful.

Soft label. In our method, we use
logits generated by the pre-trained
model to initialize soft labels, since
having an appropriate distribution
before the softmax is critical for
the optimization of the soft label
(Section A.2). However, using logits
will introduce additional information
to the distilled dataset (Hinton et al.,
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Dataset Ratio Method ConvNet ConvNet-BN ResNet18 ResNet18-BN VGG11 AlexNet LeNet MLP Avg.

CIFAR-10 20%

Random 78.38 80.25 84.58 87.21 80.81 80.75 61.85 50.98 75.60
Glister 62.46 70.52 81.10 74.59 78.07 70.55 56.56 40.59 66.81

Forgetting 76.27 80.06 85.67 87.18 82.04 81.35 64.59 52.21 76.17
DATM 85.50 85.23 87.22 88.13 84.65 85.14 66.70 52.40 79.37
↑ +7.12 +4.98 +2.64 +0.92 +3.84 +4.39 +4.85 +1.42 +3.77

CIFAR-100 20%

Random 42.80 46.38 47.48 55.62 42.69 38.05 25.91 20.66 39.95
Glister 35.45 37.13 42.49 46.14 43.06 28.58 23.33 17.08 34.16

Forgetting 45.52 49.99 51.44 54.65 43.28 43.47 27.22 22.90 42.30
DATM 57.50 57.75 57.98 63.34 55.10 55.69 33.57 26.39 50.92
↑ +14.70 +11.37 +10.50 +7.72 +12.41 +17.64 +7.66 +5.73 +10.97

TI 10%

Random 15.00 24.21 17.73 28.07 22.51 14.03 9.25 5.85 17.08
Glister 17.32 19.77 18.84 23.12 19.10 11.68 8.84 3.86 15.32

Forgetting 20.04 23.83 19.38 28.88 23.77 12.13 12.06 5.54 18.20
DATM 39.68 40.32 36.12 43.14 38.35 35.10 12.41 9.02 31.76
↑ +24.68 +16.11 +18.39 +15.07 +15.84 +21.07 +3.16 +3.17 +14.68

Table 4: We evaluate our distilled lossless datasets on unseen networks and compare them with two coreset
selection methods. Results worse than random selection are indicated with red color. ↑ denotes the performance
improvement brought by our method compared with random selection. TI denotes Tiny ImageNet.

2015). To see if this information can be directly integrated into the distilled datasets, we assign soft
labels for datasets distilled by FTD (Du et al., 2023).

As shown in Table 3, directly assigning soft labels for the distilled datasets will even hurt its
performance when the number of categories in the classification problem is small. For CIFAR-100
and Tiny ImageNet, although assigning soft labels slightly improves the performance of FTD, there
is still a huge gap between its performance and ours. This is because the soft labels synthesized by
our method are optimized constantly during the distillation, leading to better consistency between the
synthetic data and their labels.

Furthermore, the information contained in logits varies with the capacity of the teacher model (Zong
et al., 2023; Cui et al., 2023). In the experiments reported in Figure 3 (b), we use models trained after
different epochs to initialize the soft labels. In the beginning, this difference has non-trivial influences
on the performance of the synthetic datasets. However, the performance gaps soon disappear as
the distillation goes on if labels are optimized during the distillation. This indicates learning labels
relieves us from carefully selecting models to initialize soft labels. Moreover, as can be observed
in Figure 3 (b), when soft labels are not optimized, the distillation becomes less stable, leading to
the poor performance of the distilled dataset. Because using unoptimized soft labels will enlarge
the discrepancy between the training trajectories over the synthetic dataset and the original one,
considering the experts are trained with one-hot labels. More analyses are attached in Section A.2.2.

Synthetic data initialization. To avoid mislabeling, we initialize the synthetic dataset by randomly
sampling data from a subset of the original dataset, which only contains samples that can be correctly
classified by the model used for initializing soft labels. The process of constructing the subset can be
viewed as a simple coreset selection. Here we perform an ablation study to see its effect. Specifically,
synthetic datasets are either initialized by randomly sampling data from the original dataset (random
selection) or a subset of data that can be correctly classified by a pre-trained ConvNet (ours).

As shown in Fig 3 (a), our initialization strategy can significantly speed up the convergence of the
optimization. This is because data selected by our strategy are relatively easier for DNNs to learn.
Thus, models trained on these easier samples will perform better when only limited training data are
provided (Sorscher et al., 2022). Although this gap is gradually bridged as the distillation goes on,
our initialization strategy can be utilized as a distillation speed-up technique.

5 EXTENSION

5.1 VISUALIZATION

For a better understanding of easy patterns and hard patterns, we visualize the distilled images
and discuss their properties. In Figure 4, we visualize the images synthesized by matching early
trajectories and late trajectories under the same IPC setting, where easy patterns and hard ones are
learned respectively. In Figure 5, we visualize the images distilled under different IPC settings.
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Original Images Match Late TrajectoriesMatch Early Trajectories

Figure 4: We perform the distillation on CIFAR-10 with IPC=50 by matching either early trajectories
{θt|0 ≤ t ≤ 10} or late trajectories {θt|30 ≤ t ≤ 40}. All synthetic images are optimized 1000 times.
Matching earlier trajectories will blur the details of the target object and change the color more drastically.

E\D Random ConvNet ResNet18

ConvNet 31.00 68.28 44.54
ResNet18 26.70 48.66 45.28
VGG11 31.63 45.93 39.68

MLP 26.86 33.39 29.17

IPC=10

E\D Random ConvNet ResNet18

ConvNet 55.55 76.08 59.08
ResNet18 54.96 66.27 61.18
VGG11 48.72 59.43 50.72

MLP 36.66 33.29 34.41

IPC=50

E\D Random ConvNet ResNet18

ConvNet 78.38 85.50 84.64
ResNet18 84.58 87.22 87.70
VGG11 80.81 84.65 84.85

MLP 50.98 52.40 54.01

IPC=1000

Table 5: We use ConvNet and ResNet18 to perform the distillation (D) on CIFAR-10 with various IPC settings.
Then evaluations (E) are performed using networks with various architectures. As IPC increases, datasets
distilled using ResNet18 perform relatively better.

As can be observed in Figure 4, compared with hard patterns, the learned easy patterns drive the
synthetic images to move farther from their initialization and tend to blend the target object into the
background. Although this process seems to make the image more informative, it blurs the texture
and fine geometric details of the target object, making it harder for networks to learn to identify
non-typical samples. This helps explain why generating easy patterns turned out to be harmful in
high IPC cases. However, generating easy patterns performs well in the regime of low IPC, where
the optimal solution is to model the most dense areas of the target category’s distribution given the
limited data budget. For example, as shown in Figure 5, the synthetic images collapse to almost only
contain color and vague shape information when IPC is extremely low, which helps networks learn to
identify easy samples from this basic property.

Furthermore, we find matching late trajectories yields distilled images that contain more fine details.
For example, as can be observed in Figure 4, matching late trajectories transforms the simple
background in the dog images into a more informative one and gives more texture details to the
dog and horse. This transformation helps networks learn to identify outlier (hard) samples; hence,
matching late trajectories is a better choice in high IPC cases.

5.2 DISTILLATION COST

In this work, we scale dataset distillation to high IPC cases. Surprisingly, we find the distillation
cost does not increase linearly with IPC, since the optimization converges faster in large IPC cases.
This is because we match only late trajectories in high IPC cases, where the learned hard patterns
only make a few changes on the images, as we have analyzed in Section 5.1 and can be observed in
Figure 5. In practice, as reflected in Figure 3 (c), although the distillation with IPC=1000 needs to
optimize 20x more data than the case with IPC=50, the former one’s cost is only 1.05 times higher.

5.3 DISTILLATION BACKBONE NETWORKS

So far, almost all representative distillation methods choose to use ConvNet to perform the distillation
(Zhao & Bilen, 2021; Cazenavette et al., 2022; Loo et al., 2023). Using other networks as the
distillation backbone will result in non-trivial performance degradation (Liu et al., 2023b). What
makes ConvNet so effective for distillation remains an open question.

Here we offer an answer from our perspective: part of the specialness of ConvNet comes from its low
capacity. In general, networks with more capacity can learn more complex patterns. Accordingly,
when used as distilling networks, their generated patterns are relatively harder for DNNs to learn.
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Original Image IPC=1 IPC=10 IPC=100 IPC=1 IPC=10 IPC=50

CIFAR-100 Tiny ImageNet

Original Image

Figure 5: Visualization of the synthetic datasets distilled with different IPC settings. As IPC increases, synthetic
images move less far from their initialization.

As we have analyzed in section 3.1, in small IPC cases (where previous distillation methods focus
their attention), most improvement comes from the easy patterns generated on the synthetic data.
Thus networks with more capacity such as ResNet will perform worse than ConvNet when IPC is low
because their generated patterns are harder for DNNs to learn. However, in high IPC cases, where
hard patterns play an important role, using stronger networks should perform relatively better. To
verify this, we use ResNet18 and ConvNet to perform distillation on CIFAR-10 with different IPC
settings. As shown in Table 5, when IPC is low, ConvNet performs much better than ResNet18 as the
distillation network. However, when IPC reaches 1000, ResNet18 has a comparable or even better
performance compared with ConvNet.

6 RELATED WORK

Dataset distillation introduced by Wang et al. (2018) is naturally a bi-level optimization problem,
which aims at distilling a large dataset into a small one without causing performance drops. The
following works can be divided into two types according to their mechanism:

Kernel-based distillation methods use kernel ridge-regression with NTK (Lee et al., 2019) to
obtain a closed-form solution for the inner optimization (Nguyen et al., 2020). By doing so, dataset
distillation can be formulated as a single-level optimization problem. The following works have
significantly reduced the training cost (Zhou et al., 2022) and improved the performance (Loo et al.,
2022; 2023). However, since the heavy resource consumption of inversing matrix operation, it is hard
to scale kernel-based methods to larger IPC.

Matching-based methods minimize defined metrics of surrogate models learned from the synthetic
dataset and the original one. According to the definition of the metric, they can be divided into
four categories: based on matching gradients (Zhao et al., 2020; Kim et al., 2022; Zhang et al.,
2023), features (Wang et al., 2022), distribution (Zhao & Bilen, 2023; Zhao et al., 2023), and training
trajectories (Cazenavette et al., 2022; Cui et al., 2023; Du et al., 2023). So far, trajectory matching-
based methods have shown impressive performance on every benchmark with low IPC (Cui et al.,
2022; Yu et al., 2023). In this work, we further explore and show its great power in higher IPC cases.

7 CONCLUSION AND DISCUSSION

In this work, we find the difficulty of patterns generated by dataset distillation algorithms should be
aligned with the size of the synthetic dataset, which is the key to keeping them effective in both low-
and high-IPC cases. Building upon this insight, our method excels not only in low IPC cases but also
maintains its efficacy in high IPC scenarios, achieving lossless dataset distillation for the first time.

However, our distilled data are only lossless for the distillation backbone network: when evaluating
them with other networks, the performance drops still exist. We think this is because models with
different capacities need varying amounts of training data. How to overcome this issue is still a
challenging problem. Moreover, it is hard to scale TM-based methods to large datasets due to its high
distillation cost. How to improve its efficiency would be the goal of our future work.
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A APPENDIX

A.1 SOFT LABEL DISTRIBUTION

To observe the changes in soft labels’ distribution during the distillation, we record the standard
deviation (std) of soft labels (after softmax) for each synthetic image, and report the average value of
their std in Figure 6. As can be observed, for all datasets, their labels’ std tends to increase as the
distillation goes on. However, this increase does not arise due to the diversity between the values of
soft labels becoming larger, but the values of non-target categories’ labels are suppressed. Since the
value of the target category is much higher than others, to facilitate observation, we only report the
values of non-target categories in Figure 7. As can be observed, after the distillation, the values of
non-target categories’ labels are suppressed more drastically when IPC is smaller. This is because, in
low IPC cases, basic patterns of target category are embedded into the synthetic data since only early
expert trajectories are used for the matching. Accordingly, the model becomes more confident that
the generated sample belongs to the target category.

A.2 SOFT LABEL INITIALIZATION

We have tried to initialize soft labels with the original one-hot labels and directly optimize their
values during the distillation, but the distillation soon crashed. We also have tried to add a softmax
layer on it. However, the distillation is still not stable. After initializing labels with class probabilities
calculated using softmax and logits output by a pre-trained model, finally, soft labels can be optimized
stably during the distillation.

For labels with a given distribution, their values before softmax can be different. In this case, due
to the utilization of softmax, when performing backpropagation, the gradients of pre-softmax logits
will also be different even if their values after softmax are the same. Through experiments, we find
using an appropriate distribution before softmax to initialize soft labels is crucial to maintaining the
stability of the distillation. We have also tried to modify the distribution of logits without changing
their values after softmax. However, we see this operation will greatly increase the instability of
distillation. Moreover, we have tried to scale the values of logits during the initialization, which also
leads to the degradation of performance.

A.2.1 STABABILITY

In the manuscript, we propose to generate easy and hard patterns sequentially to make the
distillation stable enough for learning soft labels. The insight here is enabling the surrogate model to
learn more easy patterns through the finite training steps and limited samples in inner optimization,
such that the model can match the expert trajectories better. We find that simply increasing the update
times in inner optimization can also stabilize the distillation. Because the surrogate model can learn
easy patterns better through a longer learning process. However, increasing the update times in
inner optimization will increase the memory requirement and the training cost. Thus we use the
method introduced in the manuscript by default.

A.2.2 SOFT LABEL OPTIMIZATION

We can choose to only replace original one-hot labels with soft labels but don’t optimize them
during the distillation. However, this will make the surrogate model harder to match the expert
training trajectories, because the expert trajectories are trained with one-hot labels. As reflected in
Figure 8 (Left), when soft labels are not optimized, the matching loss is higher than using one-hot
labels. Although using unoptimized soft labels still performs better than one-hot labels because
of the additional information contained in the soft labels, its performance is undermined by the
under-matching.

The under-matching issue can be alleviated by optimizing soft labels during the distillation. As can
be observed in Figure 8 (Left), when soft labels are optimized during the distillation, the matching
loss becomes lower than using one-hot labels. Accordingly, the performance is improved, as can be
observed in Figure 8 (Right).

13



Published as a conference paper at ICLR 2024

Figure 6: Visualization of the changing of soft labels in various datasets where IPC=50. The average standard
deviation of soft labels tends to increase as the distillation goes on.

Figure 7: Visualization of the distribution of non-target soft labels of a synthetic image initialized with the same
soft labels and image but distilled with different IPC settings. The values of non-target categories are suppressed
more drastically when IPC is smaller.

A.3 ABLATION ON SYNTHETIC STEPS

We find increasing the synthetic steps N (Algorithm 1) will bring more performance gain when soft
labels are utilized, as reflected in Figure 9 (Left). This is because the optimization of the surrogate
model in the inner optimization affects how well it can match the expert trajectories. When soft
labels are not utilized, the information contained in the synthetic dataset is relatively limited, thus
the surrogate barely benefits from a longer learning process. Moreover, we find increasing the
synthetic steps N can also bring improvement in high IPC cases. As shown in Figure 9 (middle),
setting N=80 performs best in the case with IPC=1000, where the batch size is set to 1000. In this
case, in every iteration, the parameters of the surrogate model are optimized over 80K images (10K
unduplicated images) contained in the synthetic dataset, while the target parameters are obtained
by the optimization over 100k images (50k unduplicated images) contained in the original datasets.
In this case, although the length of the training trajectory over the synthetic dataset Dsyn and the
original dataset Dreal are similar, matching trajectories still can improve the training performance of
the synthetic datasets. Based on this observation, we conjecture that the key to keeping TM-based
methods effective is to ensure the number of unduplicated images contained in Dsyn is smaller than
that of Dreal, rather than use the short trajectory trained on Dsyn to match the longer one optimized
over Dreal.

A.4 PREVIOUS TM-BASED METHODS IN LARGE IPC SETTINGS

We have tried to use previous TM-based methods to perform the distillation in larger IPC settings.
The distillation logs of FTD (Du et al., 2023) are reported in Figure 9. As can be observed, FTD will
undermine the training performance of the datasets in larger IPC cases. We have tried to tune its
hyper-parameters including the learning rate, batch size, synthetic steps, and the upper bound of the
sample range, but the effort can only slow down the rate of performance degradation it arose. Without
aligning the difficulty of the generated patterns with the size of the synthetic datasets, previous
TM-based methods can not keep being effective in high IPC settings.
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Figure 8: Left: Logs of the matching loss (smoothed with EMA), where the labels of the synthetic dataset are
either one-hot labels, unoptimized soft labels, or soft labels that are optimized during the distillation. Right:
Logs of performance of the distilled datasets. Learning soft labels during the distillation enables surrogate
models to match expert trajectories better. Accordingly, its synthetic datasets have a better performance.

Figure 9: Left: (CIFAR-100, IPC=10) Ablation on synthetic step N , distillation with soft labels benefits more
from a larger N . Middle: (CIFAR-10) Distillation in larger IPC settings can still benefit from a higher larger N .
Right: Distillation log of FTD on CIFAR-10 with larger IPC. The performance of the synthetic datasets keeps
being degraded as the distillation goes on.

A.5 MORE DETAILED ANALYSIS ON MATCHING LOSS

Here we provide more results and additional analysis about the matching loss over expert trajectories.
As can be observed in Figure 10, initially, the matching loss over the former part of the trajectories is
always lower than the one over the later part. This indicates earlier trajectories are relatively easier to
match compared with the later ones. In other words, the patterns that surrogate models need to learn
to match the early trajectories are relatively easier.

Moreover, it is interesting to observe that matching later trajectories can also reduce the matching
loss over early trajectories in high IPC cases. We hypothesize that this is because, in the late training
phases, DNNs just prefer to learn hard patterns to help identify the outliers, while a few easy
patterns are also learned in late training phases. From this perspective, TM-based methods might not
be the most efficient way to distill datasets with large IPC, since matching later trajectories still will
generate a few easy patterns.

We can also find that when IPC is small, matching late trajectories will raise the matching loss over
the early trajectories. This indicates generating hard patterns is harmful for the model to learn basic
(easy) patterns to obtain the basic capacity to perform the classification when data is limited. This
coincide with the observation in the dataset pruning area: preserving hard samples perform worse
when only limited samples are kept (Sorscher et al., 2022).

A.6 GUIDANCE FOR ALIGNING DIFFICULTY

Our difficulty alignment aims at letting the models trained on the synthetic dataset learn as many
hard patterns as possible, without compromising their capacity to classify easy patterns. For
TM-based methods, this can be quantified by the matching loss over a distillation-uninvolved expert
trajectory, as we have analyzed in section A.5. Specifically, we want to add patterns that can help to
reduce the matching loss over the latter part of the expert trajectory without increasing the matching
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Algorithm 1: Pipeline of our method
Input: {τ∗}: set of expert parameter trajectories. N : update times of the surrogate network in
each inner optimization. M : update times between the start and target expert parameters.
T−, T, T+: lower, current upper, final upper bound of the sample range of t. Dreal: original
dataset. I: interval for expanding the sampling range.

Sample a model fθ∗ from {τ∗}.
Construct Dsub = {(xi, softmax(Li))|(xi, yi) ∈ Dreal and argmax(Li) == yi}, where
Li = fθ∗(xi).

Randomly sample data from Dsub to initialize synthetic dataset Dsyn.
for iteration← 0 to max_iteration do

Randomly sample an expert training trajectory τ∗ ∈ {τ∗} with τ∗ = {θ∗i }n0
Select random start timestamp t, where T− ≤ t ≤ T

Sample θ∗t , θ∗t+M from τ∗, initialize θ̂t = θ∗t
for i← 0 to N-1 do

bt+i ∼ Dsyn ▷ sample a mini-batch of distilled dataset
θ̂t+i+1 = θ̂t+i − α∇ℓ(θ̂t+i, bt+i) ▷ update surrogate model with CE loss

Compute matching loss between θ̂t+N and θ∗t+M with Eq. 1
Update (xi, softmax(Li)) ∈ {b}t+N−1

t and α with respect to the matching loss
if (iteration % I == 0 ) and (T < T+) then

T = T + 1

Output: distilled dataset Dsyn and learning rate α

loss over the former part. In practice, we realize it by only matching a certain part of the expert
trajectories during the distillation.

Here we introduce how to tune the values of T−, T , and T+ (Algorithm 1). For an initialized
synthetic dataset Dsyn, we first set T− = 0 and T+ = T− + 10 to perform the distillation for
50 iterations, where the matching loss over a distillation-uninvolved expert trajectory is recorded.
Then we simultaneously increase the values of T− and T+ until the distillation will not increase the
matching loss over the latter part of the expert trajectory. Subsequently, we increase the value of
T+ until the distillation will increase the matching loss over the former part of the expert trajectory.
After deciding the values of T− and T+, we let them respectively be the lower- and upper-bound
of the sample range and perform the distillation. During the distillation, we record the value of t
if the matching loss is larger than 1, which denotes the surrogate model can not match the expert
trajectory. Then T is set as the minimum recorded value, to avoid matching too hard trajectories in
the beginning.

A.7 MORE RELATED WORK

Two early works (Bohdal et al., 2020; Sucholutsky & Schonlau, 2021b) in the dataset distillation
area also focus on optimizing the labels of the datasets. Specifically, based on the dataset distillation
algorithm proposed by Wang et al. (2018), Sucholutsky & Schonlau (2021b) propose to optimize
labels during the distillation, while Bohdal et al. (2020) choose to only distill soft labels without
optimizing the training data. Different from them, we use the pre-trained model to initialize soft
labels, which contain more information. Furthermore, our method is based on matching training
trajectories (Cazenavette et al., 2022) rather than the method proposed by Wang et al. (2018).

Recently, several methods are proposed to improve the performance, efficiency and suitability of
dataset distillation. For example, Liu et al. (2022) proposed to use hallucinations to enlarge the
synthetic datasets in the deployment stage. Subsequently, Wang et al. (2023) achieved this goal by
distilling the target dataset into a generative model. Moreover, (Zhang et al., 2023; Liu et al., 2023b)
were proposed to accelerate the distillation and Liu et al. (2023a) proposed a method that allows
adjusting the size of the distilled dataset during the deployment stage. Recently, Chen et al. (2024)
proposed to improve the quality of the synthetic dataset with a carefully designed distillation schedule.
Moreover, dataset distillation has also been successfully applied in condensing gragh data (Jin et al.,
2022; Yang et al., 2023; Zhang et al., 2024a;b) and multi-modality data (Wu et al., 2023).
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Figure 10: More detailed results of experiments reported in Figure 2. We train the expert models on CIFAR-10 for
40 epochs. Then we distill datasets with two strategies: (1) matching the early part of expert training trajectories,
where θ∗t ∈ {θ∗0 ...θ∗20}. (2) matching the latter part of expert training trajectories, where θ∗t ∈ {θ∗20...θ∗40}.
The first row shows the matching loss over a distillation-uninvolved expert trajectory, where the distillation is
performed with strategy 1, and the second row shows the loss of strategy 2. In the first two rows, lines with
darker color indicates the matching loss over more later part of the trajectories. t denotes the timestamp of the
start parameters used for matching (Algorithm 1). The last row shows the performance of the datasets distilled
by different strategies with various IPC settings.

A.8 SETTINGS

Distillation. Consistent with previous works (Cazenavette et al., 2022; Du et al., 2023), we perform
the distillation for 10000 iterations to make sure the optimization is fully converged. We use ZCA
whitening in all the involved experiments by default.

Evaluation. We keep our evaluation process consistent with previous works (Cazenavette et al., 2022;
Du et al., 2023). Specifically, we train a randomly initialized network on the distilled dataset and
then evaluate its performance on the entire validation set of the original dataset. Following previous
works (Cazenavette et al., 2022; Du et al., 2023), the evaluation networks are trained for 1000 epochs
to make sure the optimization is fully converged. All the results are the average over five trials. For
fairness, experimental results of previous distillation methods in low IPC settings are obtained from
(Du et al., 2023), while their results in high IPC cases come from (Cui et al., 2022).

Since the exponential moving average (EMA) used in FTD (Du et al., 2023) is a plug-and-play
technique that hasn’t been utilized by previous matching-based methods, for a fair comparison, we
reproduce FTD with the official released code without using EMA. Accordingly, we do not use EMA
in our method.

Network. We use various networks to evaluate the generalizability of our distilled datasets. Specifi-
cally, to scale ResNet, LeNet, and AlexNet to Tiny-ImageNet, we increase the stride of their first
convolution layer from 1 to 2. For VGG, we increase the stride of its last max pooling layer from 1 to
2. The MLP utilized in our evaluation has one hidden layer with 128 units.
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Hyper-parameters. We report the hyper-parameters of our method in Table 6. Additionally, for all
the experiments with optimizing soft labels, we set its momentum to 0.9. We find learning labels
with a low momentum will somewhat increase the instability of the distillation. We conjecture this is
because the optimized soft labels are easy to overfit the expert trajectories considering we only match
one trajectory in each iteration.

Compute resources. Our experiments are run on 4 NVIDIA A100 GPUs, each with 80 GB of
memory. The heavy reliance on GPU memory can be alleviated by TESLA (Cui et al., 2023) or
simply reducing the synthetic steps N , which will not cause too much performance degradation.
For example, reducing the synthetic steps N from 80 to 40 saves about half the GPU memory,
while it only makes the performance drop by around 0.8% for CIFAR-10 with IPC=1000, 0.7% for
CIFAR-100 with IPC=100, and 0.4% for TinyImageNet with IPC=50.

Dataset IPC N M T− T T+ Interval
Synthetic

Batch Size
Learning Rate

(Label)
Learning Rate

(Pixels)

CIFAR-10

1 80 2 0 4 4 - 10 5 100
10 80 2 0 10 20 100 100 2 100
50 80 2 0 20 40 100 500 2 1000
500 80 2 40 60 60 - 1000 10 50

1000 80 2 40 60 60 - 1000 10 50

CIFAR-100

1 40 3 0 10 20 100 100 10 1000
10 80 2 0 30 50 100 1000 10 1000
50 80 2 20 70 70 - 1000 10 1000
100 80 2 30 70 70 - 1000 10 50

TI
1 60 2 0 15 20 400 200 10 10000

10 60 2 10 50 50 - 250 10 100
50 80 2 40 70 70 - 250 10 100

Table 6: Hyper-parameters for different datasets.
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Figure 11: (Tiny ImageNet, IPC=1) Visualization of distilled images (1/2).
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Figure 12: (Tiny ImageNet, IPC=1) Visualization of distilled images (2/2).
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Figure 13: (Tiny ImageNet, IPC=50) Visualization of distilled images (1/2).
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Figure 14: (Tiny ImageNet, IPC=50) Visualization of distilled images (2/2).
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