
Decomposing and Editing Predictions by Modeling Model Computation

Harshay Shah 1 Andrew Ilyas 1 Aleksander Mądry 1

Abstract
How does the internal computation of a ma-
chine learning model transform inputs into pre-
dictions? To tackle this question, we intro-
duce a framework called component modeling
for decomposing a model prediction in terms of
its components—architectural “building blocks”
such as convolution filters or attention heads. We
focus on a special case of this framework, com-
ponent attribution, where the goal is to estimate
the counterfactual impact of individual compo-
nents on a given prediction. We then present
COAR, a scalable algorithm for estimating com-
ponent attributions, and demonstrate its effec-
tiveness across models, datasets and modalities.
Finally, we show that COAR directly enables ef-
fective model editing. Our code is available at
github.com/MadryLab/modelcomponents.

1. Introduction
Despite their predictive power, machine learning models
remain black boxes. In particular, the internal computation
that these models perform to transform inputs into predic-
tions makes it difficult to understand model behavior and,
as a result, detect failure modes prior to deployment (Beery
et al., 2018; Sheng et al., 2019; Geirhos et al., 2020).

In response to this difficulty, a line of work in ML inter-
pretability aims to shed light on model computation by an-
alyzing model components—intuitively “grouped” model
parameters such as convolutional filters or attention heads.
For example, feature visualization methods (Simonyan
et al., 2013; Zeiler & Fergus, 2014; Ghiasi et al., 2022)
identify components in vision models that detect visual
concepts such as curves (Olah et al., 2020a) and objects
(Bau et al., 2020b). Representation-based probes (Alain &
Bengio, 2016) identify groups of components in language
models that encode sentiment (Radford et al., 2017), part-
of-speech tags (Blevins et al., 2018), and syntactic struc-

1MIT. Correspondence to: Harshay Shah <harshay@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

ture (Hewitt & Liang, 2019). Finally, mechanistic inter-
pretability analyses (Wang et al., 2022; Nanda et al., 2023)
uncover specific components that encode a model behav-
ior of interest, e.g., “knowledge neurons” (Dai et al., 2021)
and “induction heads” (Olsson et al., 2022). Broadly, these
works leverage different tools to answer the question: How
do individual model components shape model behavior?

In this work, we propose a new (and complementary) ap-
proach to studying this question. Our point of start is to
rephrase the question, instead asking:

How do changes to model components collectively
change individual model predictions?

We turn this rephrased question into a concrete framework
called component modeling. In this framework, the goal is
to build an interpretable counterfactual estimator of how a
model’s output would change in response to interventions
made to its components. In the rest of the paper, we present
a general approach to building such estimators, which turn
out to be highly predictive in large-scale settings. Beyond
shedding light on how model components collectively con-
tribute to a given prediction, these estimators enable effec-
tive model editing, allowing us to design targeted interven-
tions that induce a desired change in model behavior.

Roadmap and contributions. The main contribution of
our work is a framework for decomposing model predic-
tions in terms of model components, which we show has
direct applications to model editing. Figure 1 summarizes
these contributions. Specifically, in this paper we:

1. Introduce the component modeling framework: We
formalize our goal of understanding how model com-
ponents shape predictions through a framework called
component modeling (Definition 1). The objective is to
learn a counterfactual estimator, or component model,
that predicts the effect of ablating a subset of compo-
nents on a model prediction (Equation 1). Intuitively,
this framework operationalizes the idea that if we can
“understand” how model components shape a predic-
tion, we should be able to estimate how the prediction
would change if we were to ablate a set of components.

2. Instantiate the framework via component attribu-
tion: We focus our attention on a special “linear” case
of component modeling called component attribution,

1

https://github.com/MadryLab/modelcomponents

Decomposing and Editing Predictions by Modeling Model Computation

Figure 1: A summary of the component modeling framework.

where we assign a score to each component, and esti-
mate the counterfactual effect of ablating a set of com-
ponents as the sum of their corresponding scores (Defi-
nition 2). Component attributions surface the “contribu-
tion” of every component to a prediction while abstract-
ing away the complexity of the model’s computation.

3. Propose an algorithm for efficient component attri-
bution: We develop COAR (component attribution via
regression), a scalable way to estimate component at-
tributions (Section 3). Through experiments on both
image classifiers and language models, we show that
COAR yields component attributions that can accurately
predict how model predictions change in response to
component-level ablations (Section 4).

4. Edit model behavior via component attribution:
COAR attributions can directly enable edits to large-
scale classifiers without additional training (Section 5).
In Section 5, we outline COAR-EDIT, an editing method
that uses COAR attributions as counterfactual estimators
to design component ablations that change model be-
havior as targeted. Then, we apply COAR-EDIT to five
editing tasks: fixing model errors (§ 5.1), boosting sub-
population robustness (§ 5.2), improving CLIP robust-
ness to typographic attacks (§ 5.3), “forgetting” classes
(§ D.1), and localizing backdoor attacks (§ D.2).

Paper organization. We begin by introducing the compo-
nent modeling framework and its special case, component
attribution, in Section 2. We then describe COAR, our com-
ponent attribution estimator in Section 3, and showcase its
effectiveness on large-scale models in Section 4. Finally,
we apply COAR to model editing in Section 5.

2. Setup and Problem Statement
Consider a typical supervised learning setup. We have a
set S of input-label pairs (or examples) zi = (xi, yi), and
a trained model M that maps inputs x to predicted labels
M(x). We define the model output function fM (z) ∈ R as
any statistic that quantifies the correctness of model M on
the example z e.g., the cross-entropy loss in a classification
task, or the squared loss in a regression task.

In this work, we will think of the model M not as a black
box, but instead as the output of a computation graph GM

(Bauer, 1974). Each parameterized node of this graph—
which we call a component—is a function mapping its
incoming edges to an outgoing edge. For example, a
d-dimensional linear model M naturally admits a com-
putation graph GM with d components—one component
Ci(z) = wi · z for each parameter wi—followed by a sum-
mation that combines the components into an output.

2

Decomposing and Editing Predictions by Modeling Model Computation

For more complex models, there are often multiple valid
computation graphs GM we could consider. For example,
if M is a Transformer (Vaswani et al., 2017), the compo-
nents might be multi-head attention blocks, individual at-
tention heads, or even individual parameters. In general,
the component set depends on the model architecture and
the level of granularity that we wish to study.

Component modeling. Our goal in this work is to under-
stand the behavior of the model M in terms of its compo-
nents. By viewing the model M as a computation graph
GM over a set of components C, we can restate our goal:

Given a model M and example z, how do individual
components c ∈ C combine to yield the output fM (z)?

Of course, there is a trivial answer to this question: the
components c ∈ C combine through the very computation
graph used to define C. This answer is correct but not sat-
isfying, as it does not get us closer to our conceptual goal
of understanding model behavior in terms of components.

What we are truly after is a simple, interpretable function
capturing how components in C impact fM (z). To make
this more precise, we define the component counterfactual
function fM (z, C ′) as

fM (z, C ′) := model output fM (z) on example z

after ablating components C ′ ⊆ C, (1)

where “ablating” here corresponds to any intervention that
overrides or patches the parameters corresponding to com-
ponents c ∈ C ′ (e.g., by setting them to zero (Olsson et al.,
2022) or by adding random noise (Meng et al., 2022)).

Equation (1) allows us to operationalize our goal as a coun-
terfactual estimation task. In this task, we want to estimate
component counterfactuals fM (z, C ′) using a much sim-
pler function, which we call a component model.

Definition 1 (Component modeling). Fix a model M with
computation graph GM , component set C = {c1, . . . , cN},
and model output function fM . For any subset of model
components C ′ ⊆ C, let 0C′ be the corresponding ablation
vector of C ′, defined as a N -dimensional vector where

(0C′)i =

{
0 if ci ∈ C ′

1 otherwise.

Given an example z, a component model for z is a function
g(z) : {0, 1}N → R that maps ablation vectors of subsets
C ′ to estimates of the counterfactual fM (z, C ′).

In other words, the high-level goal of component modeling
is to build an estimator that can directly answer counterfac-
tual questions like “what would happen to my classifier’s
prediction on a given image if I ablated a specific set of

components C ′ ⊆ C?” without having to intervene on the
computation graph GM and ablate components in C ′.

Component attribution. In this work, we consider a sub-
case of component modeling—which we call component
attribution—where the function g(z) is linear in its input.
That is, a component attribution for example z assigns a
score w

(z)
i to each component ci ∈ C, and predicts the

effect of ablating C ′ ⊂ C as the sum of the scores corre-
sponding to components in C \ C ′.

Definition 2 (Component attribution). Fix a model M with
output function fM and component set C = {c1, . . . , cN}.
A component attribution for example z is a set of param-
eters θ(z) := {w(z)

1 , . . . ,w
(z)
N , b(z)} which parameterize a

linear component model, i.e., a function g(z) such that

fM (z;C ′) ≈ g(z)(0C′) := 0⊤
C′w(z) + b(z)

Component attribution satisfies our goal of finding a sim-
ple, interpretable account of how model components com-
bine to form predictions. In particular, a component attri-
bution for example z decomposes a model’s output on z
into the contributions w(z)

i of each component ci.

Remark 1 (Linearity and misspecification). ML models
can comprise computation graphs with highly non-linear
interactions among model components. For such models,
it is a prior unclear why the effect of ablating (1) should
be well-approximated by linear component attributions (2).
Despite this evident misspecification, our results on vision
and language models in Section 4 show that linear attribu-
tions can accurately predict component counterfactuals.

3. Component attribution with COAR

In Section 2, we formalized our goal of understanding how
models internally process examples into a counterfactual
estimation task via component modeling (Definition 1), of
which we study a special (linear) case called component
attribution (Definition 2). Now, we estimate component at-
tributions θ(z) by casting the task as a regression problem.
Specifically, we describe COAR (component attribution via
regression), a general component attribution method for
models ranging from random forests to deep networks.

Approach. Consider a fixed model output fM (·) of inter-
est, and a computation graph GM that encodes the model
components C at the desired level of granularity. Addi-
tionally, we fix an ablation method, i.e., a procedure for
“overriding” or patching any given subset C ′ ⊂ C of the
model components in the computation graph GM .

Our method COAR takes in an example z and outputs a
component attribution vector θ(z) ∈ R|C|+1 (Definition 2)
by casting the task of predicting component counterfactuals
as a supervised learning problem in two steps:

3

Decomposing and Editing Predictions by Modeling Model Computation

1. Construct a component dataset. We construct a
dataset D(z) of component counterfactuals for the ex-
ample z. Each “datapoint” in D(z) consists of a com-
ponent subset Ci ⊆ C and its counterfactual fM (z, Ci)
(see (1))—we compute the latter by simply ablating the
components in Ci and evaluating the model on example
z. In this work, we choose the component subsets Ci

to be random αtrain-fraction subsets of the component
set C, for a ablation fraction hyperparameter αtrain > 0.1

The output of this step is a component dataset

D(z)={(C1,fM(z, C1)), ..., (Cm, fM(z, Cm))} (2)

where Ci ∼ Uniform({C ′ ⊂ C : |C ′| = αtrain|C|}).
We study the effect of varying the ablation fraction αtrain
on COAR in Appendix I.1.

2. Fit a linear estimator. We then use the dataset D(z) to
fit component attribution θ(z) for each example z (see
Definition 2). Specifically, for each example z, we min-
imize the squared loss between the component counter-
factuals from Step 1 and their corresponding attribution-
based predictions by solving a linear regression prob-
lem:

θ(z) := arg min
b∈R,w∈R|C|

∑
D(z)

(b+1⊤
Ci
w−fM (z, Ci))

2, (3)

where again 0Ci is the ablation vector of Ci (Defini-
tion 1). Our component model is then

g(z)(0C′) := 0⊤
C′w(z) + b(z). (4)

We provide pseudocode for COAR in Appendix E.1. The
resulting component attribution θ(z) := (w(z), b(z)) is in-
terpretable in that the coefficient w(z)

j estimates how the
output on example z would change if we were to ablate
component cj . We can thus view this coefficient as the (es-
timated) contribution of component cj to the model output.

The above two-step approach is simple and highly
scalable—we can construct the dataset D(z) with forward
passes on the given model to compute component counter-
factuals, and optimize the linear regression problem (eq. 3)
with off-the-shelf GPU-based solvers—see Appendix E.4
for details. This enables us to apply COAR to large-scale
models and datasets, as shown in the next section.

Instantiating COAR for classifiers. Our method COAR is
general in that we can use it to study any machine learn-
ing model M that has a corresponding output function fM
and computation graph GM . In this work, we primar-
ily use COAR to analyze models trained on classification

1We opt for this random α-fraction sampling method for
simplicity—it may be possible to make COAR more statistically
efficient by choosing the subsets Ci more carefully.

tasks. Although the computation graph GM will vary based
on the specific model architecture we are studying, across
all models we use the standard correct-class margin (Ilyas
et al., 2022) as the model output fM , i.e.,

fM (z) := (logit for correct class)
− (highest logit for incorrect class), (5)

a quantity whose sign indicates the correctness of model M
on the example z. We choose to ablate component subsets
C ′ ⊂ S by simply setting the parameters of the compo-
nents in C ′ to zero (Wang et al., 2022; Olsson et al., 2022).
We use COAR with alternative model output functions and
ablation methods in Appendices I.3 and I.2 respectively.
Remark 2 (Ablation is not removal). As noted in prior
work (Chan et al., 2022), ablation methods (e.g., setting
weights or activations to zero) do not “remove” model
components from the computation graph. Instead, such ab-
lations shift the activations off-distribution in a systematic
way—the goal of component attribution (definition 2) is to
predict the change in model outputs induced by this shift.
We use zero ablations as it is a common choice in the lit-
erature (Olsson et al., 2022; Wang et al., 2022). In Ap-
pendix I.2, we show that COAR can estimate component
attributions with alternative ablation methods as well.

4. Does COAR learn accurate attributions?
We now evaluate whether COAR-estimated attributions
predict component counterfactuals (1) for deep networks
trained on image classification and language modeling.

Datasets, models, and components. We apply COAR to
compute component attributions in three different setups
(see Appendix E.2 for details):

• Setup A: A ResNet-18 (He et al., 2015) trained on the
CIFAR-10 dataset (Krizhevsky, 2009), with a compu-
tation graph GA comprising |C| = 2, 306 components.
Specifically, each model component ci ∈ C corresponds
to a convolutional filter in the model, and ablating a set
of components C ′ ⊂ C means setting all the weights in
the corresponding filters to zero.

• Setup B: A ResNet-50 trained on the ImageNet
dataset (Deng et al., 2009), with a computation graph
GB comprising |C| = 22, 720 components. Again, each
component here corresponds to a convolutional filter in
one of the 49 convolution layers of the ResNet-50.

• Setup C: A Vision Transformer (ViT-B/16) (Dosovitskiy
et al., 2021) trained on ImageNet, whose computation
graph GC comprises 82, 944 components. Each compo-
nent here corresponds to a row of a weight matrix in one
of 12 ViT transformer blocks, and ablating a set of com-
ponents means setting the corresponding rows to zero.

4

Decomposing and Editing Predictions by Modeling Model Computation

4 2 0 2 4
True counterfactuals fM(z, C) on example z

4

2

0

2

4

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup A: ResNet-18 trained on CIFAR-10

Example z

Corr. (z) = 0.80

2 0 2 4
True counterfactuals fM(z, C) on example z

2

0

2

4

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup B: ResNet-50 trained on ImageNet

Example z

Corr. (z) = 0.70

4 2 0 2
True counterfactuals fM(z, C) on example z

4

2

0

2

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup C: ViT-B/16 trained on ImageNet

Example z

Corr. (z) = 0.81

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.00
.06

.15

.38

.68

.01

.09

.18

.42

.71

.01

.11

.24

.52

.75

Fraction of components ablated

0.15 0.125 0.1*

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.01 .00
.04

.10

.48

.00 .00

.08

.18

.57

.00 .00

.17

.34

.65

Fraction of components ablated

0.1 0.075 0.05*

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.01
.05

.31
.39

.58

.02
.06

.42

.52

.69

.02
.07

.54

.65

.76

Fraction of components ablated

0.1 0.075 0.05*

Figure 2: Evaluating COAR. We evaluate whether component attributions computed using our procedure COAR accu-
rately predict component counterfactuals (1). We compare COAR to four baselines (described in Section 4) on three image
classification setups (one per row). The subfigures on the left each focus on a single example z (visualized in the bottom-
right corner of each plot), and show that for each setup, the ground-truth component counterfactuals fM (z, ·) (x-axis) and
attribution-based estimates g(z)(·) (y-axis) exhibit high correlation ρ(z). On the right, we observe that COAR attributions
exhibit high average correlation Ez[ρ(z)] over test examples, outperforming all baselines in each task and for all ablation
fractions αtest. The asterisk (*) in each legend denotes αtrain, the ablation fraction used to fit the component attributions.

Applying COAR. We use COAR to obtain component attri-
butions (one for each test example) in each setup. Specif-
ically, for a given model, we first construct a component
dataset D(z) for each example z (as in Step 1 of Section 3)
by randomly ablating αtrain fraction of all components and
evaluating the resulting margin (5) on z, where αtrain =
{10%, 5%, 5%} for setup {A,B,C} above. We repeat this
m times, yielding a component dataset D(z) of size m for
each example z—we use m = {50000, 100000, 200000}
for setup {A,B,C} above. We then run linear regressions
on these datasets (as in Step 2 of Section 3) to yield the
component attributions. We defer details to Appendix E.4
and study the effect of the dataset size m and ablation frac-
tion αtrain on the attributions in Appendices G.4 and G.5.

Evaluation metric. We evaluate component attributions
based on their ability to estimate unseen component coun-
terfactuals (see (1)), i.e., the result of ablating component
sets C ′ not collected in D(z). Specifically, we sample a
new collection of k component subsets

D(z) := {C ′
1, C

′
2, . . . , Ck},

where C ′
i ∼ Unif({C ′ ⊂ C : |C ′| = αtest|C|}).

where αtest is a hyperparameter. Setting αtest=αtrain (αtest ̸=
αtrain) corresponds to evaluating the in-distribution (out-of-
distribution) performance of COAR.

To quantify the predictiveness of component attributions,
we use D

(z)
test to measure the Pearson correlation be-

tween component counterfactuals fM (z, C ′
i) and their cor-

responding attribution-based estimates g(z)(0C′
i
), i.e.,

ρ(z) := ρp

(
{fM (z, C ′

i)}ki=1︸ ︷︷ ︸
true counterfactuals

, {g(z)(0C′
i
)}ki=1︸ ︷︷ ︸

attribution estimates

)
(6)

Baselines. We compare COAR attributions with four base-
lines, two adapted from related work and two natural base-
lines. We defer implementation details to Appendix E.3.

• Adapted baselines (NC, II): We adapt neuron conduc-
tance (NC) (Dhamdhere et al., 2018) and internal influ-
ence (II) (Leino et al., 2018) to the our setting. Both
methods use integrated gradients (Sundararajan et al.,
2017) to compute importance scores for each component
ci. To compare these methods to COAR, we apply NC
and II to model outputs on example z, and interpret the
resulting scores as the attribution coefficients w(z)

i .

• Specialized baselines (LOO, GP): We consider two
more baselines. Leave-one-out (LOO) ablates indi-
vidual components ci and estimates the correspond-
ing coefficient based on the effect of the ablation, set-
ting w

(z)
i = fM (z, {ci})− fM (z, ∅). Gradient-times-

parameter (GP), which approximates the leave-one-out
effect of each component using a first-order Taylor ap-
proximation, setting w

(z)
i = ∇cifM (z, ∅) · δci , where

δci is the parameter-space change in ci induced by the
ablation method of choice.

5

Decomposing and Editing Predictions by Modeling Model Computation

4.1. Results

We use the setup described above to test whether
COAR learns accurate component attributions for setups
{A,B,C}. For each setup, we use COAR to estimate a com-
ponent attribution for every example z in the corresponding
test set. We then evaluate these attributions using the cor-
relation metric ρ(z) (6). Figure 2 depicts our results.

Example-level analysis. The first row of Figure 2 cor-
responds to an individual test example z from each task.
For each example z, we ablate random component subsets
C ′ ⊂ C of size αtest · |C| (for αtest = αtrain) from the model
computation graph and estimate the correlation ρ(z) using
Equation 6. Across all tasks, we observe that COAR learns
accurate component attributions for the selected test exam-
ples. In Appendix G.6, we provide additional example-
specific correlation plots for COAR and the baselines.

Aggregate analysis. The second row of Figure 2 shows the
average correlation between the ground-truth counterfactu-
als and attribution-based estimates over test examples, i.e.,
Ez[ρ(z)]. We also analyze the effect of subsampling frac-
tion αtest on the average correlation, finding that:

(a) COAR outperforms all baselines by a large margin
across datasets, models, and subsampling fractions αtest.
For example, when randomly ablating αtest = 5%
of the components in the ImageNet ResNet50 (setup
B), COAR estimators exhibit 66% correlation with the
ground-truth component counterfactuals, whereas the
estimates of the best-performing baseline, leave-one-out
(LOO), exhibit 33% correlation.

(b) The correlation between ground-truth counterfactuals
and their estimates for all attribution methods (including
COAR) decays gracefully as α increases. For example,
increasing αtest from 10% (equal to αtrain) to 12.5% and
15% on CIFAR-10 (setup A) only decreases the average
correlation of COAR estimators from 0.74 to 0.70 and
0.68 respectively. See Appendix I.1 for details.

Applying COAR to language models. Although we focus
on vision models in this work, COAR is modality-agnostic.
In Appendix F, we show that COAR, without any modifica-
tion, yields predictive component attributions for language
models. GPT-2 (Radford et al., 2019) evaluated on TinyS-
tories (Eldan & Li, 2023) and Phi-2 (Javaheripi & Bubeck,
2023) evaluated on BoolQ (Clark et al., 2019).

Additional evaluation. In Appendix G, we show that
COAR attributions are predictive for out-of-distribution
inputs (§G.1), additional architectures (§G.2), additional
tasks (§G.3), and different train-time ablation fractions
(§G.4). We also show that COAR outperform baselines
when trained with 2-5× fewer samples in Appendix G.5,
and provide qualitative analysis in Appendix G.7.

5. Do COAR Attributions Enable Editing?
We now evaluate the practical utility of COAR by applying
it to the problem of model editing. That is, we ask:

Is ablating model components identified via COAR
attributions an effective way to edit models?

To answer this question, we first define model editing in
our context and provide a simple method, COAR-EDIT, for
translating component attributions into model edits. We ap-
ply this approach to edit model behavior on individual ex-
amples (§5.1), subpopulations (§5.2), and concepts (§5.3).
Our findings show that COAR directly enables editing.

Problem setup. Consider a model M , a target distribution
DT , and a reference distribution DR. A model edit on M
is an intervention that aims to modify performance on the
target examples z ∼ DT in a specific way, while leaving
behavior on reference examples z ∼ DR unchanged. In its
most general version, model edits can involve fine-tuning
(Zhu et al., 2020), parameter updates (Bau et al., 2020a), or
even architectural changes (Huang et al., 2023b).

Since our goal is to study model components, we restrict
model edits to ablation-based interventions in this work.
That is, we only consider interventions whose output can
be expressed as component counterfactuals (see (1)). The
goal of an editing method, then, is to identify components
whose ablation changes performance on a given target set
of examples ST , without impacting behavior on a reference
set of examples SR. We turn this intuition into a precise
definition of the ablation-based editing problem below.
Definition 3 (Editing models by ablating components).
Consider a model M with computation graph GM , com-
ponent set C = {c1, . . . , cN}, and model output function
fM . Let DT and DR denote target and reference distribu-
tions over examples, respectively. An (ϵ, δ)-effective model
edit for DR and DT is an intervention that ablates a subset
of components Cedit ∈ 2C such that

EDR [|fM (z, Cedit)− fM (z, ∅)|]︸ ︷︷ ︸
Effect of edit on reference examples is small

≤ ϵ, and

EDT [|fM (z, Cedit)− fM (z, ∅)|]︸ ︷︷ ︸
Effect of edit on target examples is large

≥ δ, (7)

where fM (z, C ′) denotes the model output function fM
evaluated on example z after ablating components C ′.

As per Definition 3, every component subset C ′ ⊂ 2C de-
fines a potential model edit. Effectively editing the model
(as in (7)), however, requires identifying a subset C ′ that,
when ablated, significantly changes outputs on the target
distribution but not on the reference distribution.

An attribution-based approach to model editing. In this
section, we show that an effective component attribution

6

Decomposing and Editing Predictions by Modeling Model Computation

0 1 2 3 4 5 6 7 8

Number of model components ablated

3

2

1

0

1

2

3

4

C
or

re
ct

-c
la

ss
 m

ar
gi

n
f M

()

(a) Editing a misclassified ImageNet example

Before: "Keyboard"
After: "Ballpoint Pen"

Train example z

Train set (avg) Val set (avg) Example z

80 81 82 83 84 85 86

Accuracy on train set

D
en

si
ty

(c) Effect of edits on overall performance

Model accuracy

Before edit: 86.09%

After edit: 85.93% (median)

70 71 72 73 74 75

Accuracy on val set

D
en

si
ty

Model accuracy

Before edit: 75.36%

After edit: 75.18% (median)

(b) Effect of edit on ImageNet val examples

0.0 0.0
Examples on which margin does not change

0.0

+3.59 +3.49
Examples on which margin increases

+2.70

-5.44 -5.32
Examples on which margin decreases

-5.09

Figure 3: Editing individual model predictions with COAR-EDIT. We edit a ResNet50 model to correct a misclassified
ImageNet example z shown on the left. Ablating a few components via COAR-EDIT (see (9)) increases the correct-class
margin (5) on example z (red) without changing the average margin on the train set (light blue) or validation set (dark blue).
In the middle, we observe that the examples on which model outputs change the least (top row) due to the edit are visually
dissimilar to example z as well as examples on which model outputs change most positively (middle row) and negatively
(bottom row). On the right, we find that individually performing model edits to correct every misclassified example in the
validation set incurs a median accuracy drop of at most 0.2% on the train set (top row) and validation set (bottom row).

method (like COAR) can directly identify effective model
edits. Key to this utility is a fundamental connection be-
tween component attribution and model editing. In partic-
ular, the former answers questions of the form, “how would
the model outputs change if we were to ablate a subset of
components?” while the latter inverts this question to ask
“which components, when ablated, would change model
outputs in a specific way?” By identifying the components
that are most “important” to the desired model outputs, an
attribution method can thus identify the right set of compo-
nents to target via ablation-based editing (Definition 3).

To make this concrete, we propose COAR-EDIT, a simple
three-step editing approach based on COAR attributions.
Specifically, given a model M with a set of model compo-
nents C, a set of target examples ST sampled from DT , and
a set of reference examples SR sampled from DR, COAR-
EDIT identifies a model edit (7) in three steps:

1. Estimate COAR attributions θ(z) := (w(z), b(z))
where w(z) ∈ R|C| and b(z) ∈ R for every target and
reference example z ∈ ST ∪ SR.

2. For each component ci ∈ C, use a t-test in order to
quantify the “importance” of component ci to set of
target examples ST relative to reference examples SR:

τ(ci) :=
µ(ST)− µ(SR)√
σ2(ST)
|ST | + σ2(SR)

|SR|

, (8)

where

{
µ(S) = 1

|S|
∑

z∈S w
(z)
i

σ2(S) = 1
|S|

∑
z∈S(w

(z)
i − µ(S))2.

3. Increase the model outputs on target examples, ablate
a set of components Cedit comprising the k most neg-
ative scores τi, i.e., set

Cedit = arg bottom-k({τ(ci) : ci ∈ C}), (9)

where the number of ablated components k is a hyper-
parameter that one can tune by cross-validation. Sim-
ilarly, if the goal is to decrease model outputs on ST ,
we replace bottom-k with top-k in Equation 9.

To make sense of the approach above, note that for every
component ci and a set of examples S, µ(S) in Equation 8
leverages attributions to directly estimate µi(S), the aver-
age effect of ablating ci on model predictions for samples
in set S. Similarly, the term σ2

i (S) captures the variation
(across examples) of this effect. As a result, the score τ(ci)
in Equation 8 exactly corresponds to the two-sample t-test
statistic, with a null hypothesis that the component ci has
an equal average effect on the target distribution DT and
the reference distribution DR. We then use these scores
{τ(ci) : ci ∈ C} in Equation 9 to identify components that,
if ablated, would change the target outputs the most relative
to the change in the reference outputs.

5.1. Editing individual model predictions

In this section, we test whether COAR-EDIT can modify
individual predictions of an ImageNet ResNet50 classifier
(Setup B in Section 4) without impacting its overall per-
formance. Specifically, we study the case where the target
distribution DT is a singleton example on which we want

7

Decomposing and Editing Predictions by Modeling Model Computation

to improve performance. An effective model edit (defini-
tion 3) here would increase the model margin (5) on z to be
greater than zero without degrading overall performance.

Results. We apply COAR-EDIT to edit individual mis-
classified examples z, setting ST = {z} and SR to be a
small set of random samples from the ImageNet dataset.
We present our findings in Figure 3. Figure 3a illustrates
a single such edit, where we correct the model’s predic-
tion on a specific ImageNet example from “keyboard” to
“ballpoint pen” by ablating k = 3 components (0.01% of
all components). Specifically, increasing the number of ab-
lated components k consistently improves the correct-class
margin on target example z (red) without changing the av-
erage margin over the training set (light blue) or validation
set (dark blue). Figure 3b then visualizes (again, for the
specific example being edited in Figure 3a) the examples
on which model outputs changes most (and least) drasti-
cally. Finally, Figure 3c shows that we can individually fix
every misclassification in the ImageNet validation set while
incurring a median accuracy drop of 0.2% on the training
set (top row) and validation set (bottom row). We defer
additional details and results to Appendix H.1.

5.2. Improving subpopulation robustness

Machine learning models often latch onto spurious corre-
lations in the training dataset (Geirhos et al., 2019; Shah
et al., 2020; Hermann et al., 2023), resulting in subpar
performance on subpopulations where these correlations
do not hold (Buolamwini & Gebru, 2018; Oakden-Rayner
et al., 2020). In this section, we test whether our editing
approach can boost performance on such underperforming
subpopulations without degrading overall performance.

In particular, we evaluate COAR-EDIT on two benchmarks
—Waterbirds (Sagawa et al., 2020) and CelebA (Liu et al.,
2015)—where models fare poorly on subpopulations that
are underrepresented in the training data. On both datasets,
our goal is to improve a given model’s worst-subpopulation
accuracy—we defer details to Appendix H.3.

Results. On both datasets, COAR successfully identifies
component subsets that correspond to effective model ed-
its. On Waterbirds (Figure 4a), ablating 0.9% of all com-
ponents improves worst-subpopulation accuracy from 64%
to 83% (red) without degrading its accuracy uniformly av-
eraged over examples and subpopulations. On CelebA,
Figure 4b shows that zeroing out 26 of 22, 720 compo-
nents improves worst-subpopulation accuracy from 47%
to 85% and average-subpopulation accuracy from 84% to
90% while only incurring a 5% drop in test set accuracy.

Before continuing, we make two observations. First,
COAR-EDIT is sample-efficient—it does not require
subpopulation-level annotations for the training set; only

0 30 60 90 120 150 180 210

Number of model components ablated

60
65
70
75
80
85
90

Te
st

 a
cc

ur
ac

y
(%

)

64%

83%

(a) Waterbirds dataset

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of model components ablated

45

55

65

75

85

95

Te
st

 a
cc

ur
ac

y
(%

)

47%

85%

(b) CelebA dataset

Avg over examples Avg over subpops. On worst subpop.

Figure 4: Improving subpopulation robustness with
COAR-EDIT. We edit pre-trained ResNet-50 models to
improve their worst-subpopulation accuracy on Waterbirds
(Sagawa et al., 2020) and CelebA (Liu et al., 2015). Be-
fore editing, Waterbirds and CelebA models attain 87%
and 96% test accuracy but only 64% and 47% accuracy
on their worst-performing subpopulations, respectively. On
the left, applying COAR-EDIT by ablating 210 of 22, 720
components in the Waterbirds model increases its worst-
subpopulation accuracy from 64% to 83% without degrad-
ing its accuracy on examples (light blue) and subpopu-
lations (dark blue). On the right, editing the CelebA
model by ablating just 26 components improves worst-
subpopulation accuracy from 47% to 85%.

20 random examples from each subpopulation suffice. Sec-
ond, our results show that simply ablating a few compo-
nents from models trained via “standard” empirical risk
minimization (ERM) can lead to worst-subpopulation ac-
curacy improvements comparable to gains from special-
ized methods (e.g., via robust optimization (Sagawa et al.,
2020), dataset selection (Idrissi et al., 2022))

5.3. Improving robustness to typographic attacks

Zero-shot CLIP classifiers (Radford et al., 2021) are vul-
nerable to typographic attacks (Goh et al., 2021) that
simply overlay text on images to induce misclassifica-
tions. We evaluate whether COAR-EDIT can improve the
zero-shot robustness of a CLIP ViT-B/16 classifier using
data (Materzyńska et al., 2022) comprising 180 images
with and without multiple typographic attacks. Specifi-
cally, we use COAR-EDIT to identify component subset
that, when ablated, fix the misclassifications induced by
synthetic attacks without impacting predictions on images
without attacks. We defer details to Appendix H.5.

8

Decomposing and Editing Predictions by Modeling Model Computation

(a) Effect of attacks on model predictions

 heater

Test data

 books hat

 taxi

+ synthetic typographic attacks

 twitter EU

 taxi

+ real typographic attacks

 twitter EU

(b) Improving robustness to synthetic attacks

0 50 100 150 200 250 300

Number of model components ablated

45

55

65

75

85

95

M
od

el
 a

cc
ur

ac
y

(%
)

(c) Robustness transfers to real attacks

0 50 100 150 200 250 300

Number of model components ablated

45

55

65

75

85

95

M
od

el
 a

cc
ur

ac
y

(%
)

Model accuracy on
Test data

+ all attacks (averaged)

+ "twitter" attack

+ "taxi" attack

+ "EU" attack

+ "iPad" attack

Figure 5: Improving robustness to typographic attacks with COAR-EDIT. We edit a zero-shot CLIP ViT-B/16 classifier
to improve its robustness to typographic attacks (Goh et al., 2021). On the left, we find that predictions on images of
household objects (top row) can be manipulated to “taxi”, “twitter”, or “EU” via synthetic (middle row) and real (last row)
attacks. In the center panel, we use COAR-EDIT to identify components that, when ablated, improve average accuracy on
examples with synthetic attacks (red) from 51% to 89% while maintaining accuracy on examples without attacks (blue).
On the right, we find that the edit transfers robustness to real attacks too, improving accuracy from 54% to 86% on average.

Results. Figure 5 summarizes our findings. In Figure 5a,
we show that the predictions of a zero-shot CLIP ViT-
B/16 classifier on images of household objects (top row)
can be manipulated to “taxi”, “twitter”, or “EU” via syn-
thetic (middle row) or real (last row) typographic attacks.
More quantitatively, we find that the zero-shot accuracy on
images with synthetic and real typographic attacks drops
from 95% to 51% and 54%, respectively. Figure 5b shows
that ablating a subset of 300 components (0.4%) identified
via COAR-EDIT improves the accuracy on held-out images
with synthetic typographic attacks from 51% to 89% on av-
erage (red), without impacting accuracy on images without
attacks (dark blue). Furthermore, in Figure 5c, we find that
our edit transfers robustness to real typographic attacks as
well, improving accuracy on held-out images from 54% to
86% on average. Similar to previous experiments, our ap-
proach is sample-efficient in that it only requires 15 pairs
of target and reference examples with and without synthetic
attacks to identify the edit described above.

Additional experiments. We also apply COAR-EDIT to
two additional settings in Appendix D: selectively “forget-
ting” a class (§D.1) and localizing backdoor attacks (§D.2).

To summarize, simply ablating targeted subsets of com-
ponents identified via COAR-EDIT can induce specific
model behavior without requiring additional training. More
broadly, our findings highlight how accurate component at-
tribution alone can directly inform model editing.

6. Related work
In addition to the bottom-up approaches for studying model
components discussed in Section 1, component modeling
connects to prior work in interpretability and model editing.

Localizing model behavior. For one, COAR connects to a
line of work in mechanistic interpretability on identifying
“circuits” or “subnetworks” within neural networks that are
responsible for specific behaviors (Olah et al., 2020b; Cao
et al., 2021; Vig et al., 2020; Olsson et al., 2022; Wang
et al., 2022), and in particular finding these subnetworks in
an automated manner (Conmy et al., 2023; Bayazit et al.,
2023). While recent work shows that these methods can
be sensitive to design choices (Zhang & Nanda, 2023)
and lack actionable insights for model editing (Hase et al.,
2023), we show that COAR is agnostic to the choice of abla-
tion method and directly enables model editing (Section 5).

Editing model behavior. Another line of work is on model
editing, where one tries to induce or suppress specific be-
haviors via targeted changes to model parameters (Bau
et al., 2020a; Santurkar et al., 2021; Ilharco et al., 2022;
Belrose et al., 2023). In Section 5, we show that COAR can
enable editing by simply zeroing out specific components.

We discuss additional related work, limitations, and exten-
sions to COAR in Appendices A, B, and C respectively.

7. Conclusion
We introduce component modeling, a framework for de-
composing predictions in terms of model components. We
specifically focus on component attribution, a special case
of this framework, where the goal is to predict the counter-
factual impact of every component on a given prediction.
Our proposed method for this task, COAR, yields predic-
tive attributions for large-scale vision and language models.
We then demonstrate how COAR attributions can directly
enable effective model editing without requiring additional
training or data collection.

9

Decomposing and Editing Predictions by Modeling Model Computation

Impact Statement
Our work seeks to improve our understanding of black-box
machine learning models. We do not foresee any signifi-
cant societal consequences in the short term. However, in
the long term, we believe that a concrete understanding of
deep learning phenomena is essential to develop reliable
deep learning systems for practical applications that have
societal impact.

Acknowledgements
The authors would like to thank Benjamin Cohen-Wang,
Logan Engstrom, Alaa Khaddaj, Kristian Georgiev, and
Sung-Min Park for helpful discussions and comments on
an earlier draft of this manuscript.

Work supported in part by the NSF grant DMS-2134108.
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. HR001120C0015.

References
Alain, G. and Bengio, Y. Understanding intermediate

layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

Antverg, O. and Belinkov, Y. On the pitfalls of analyzing
individual neurons in language models. arXiv preprint
arXiv:2110.07483, 2021.

Basu, S., Zhao, N., Morariu, V., Feizi, S., and Manjunatha,
V. Localizing and editing knowledge in text-to-image
generative models. arXiv preprint arXiv:2310.13730,
2023.

Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A.
Network dissection: Quantifying interpretability of deep
visual representations. In Computer Vision and Pattern
Recognition (CVPR), 2017.

Bau, D., Liu, S., Wang, T., Zhu, J.-Y., and Torralba, A.
Rewriting a deep generative model. In European Con-
ference on Computer Vision (ECCV), 2020a.

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou, B.,
and Torralba, A. Understanding the role of individual
units in a deep neural network. Proceedings of the Na-
tional Academy of Sciences (PNAS), 2020b.

Bauer, F. L. Computational graphs and rounding error. In
SIAM Journal on Numerical Analysis, volume 11, pp.
87–96. SIAM, 1974.

Bayazit, D., Foroutan, N., Chen, Z., Weiss, G., and
Bosselut, A. Discovering knowledge-critical subnet-

works in pretrained language models. arXiv preprint
arXiv:2310.03084, 2023.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In European Conference on Computer Vision
(ECCV), 2018.

Belrose, N., Schneider-Joseph, D., Ravfogel, S., Cotterell,
R., Raff, E., and Biderman, S. Leace: Perfect lin-
ear concept erasure in closed form. arXiv preprint
arXiv:2306.03819, 2023.

Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks
against support vector machines. In International Con-
ference on Machine Learning, 2012.

Bills, S., Cammarata, N., Mossing, D., Tillman, H., Gao,
L., Goh, G., Sutskever, I., Leike, J., Wu, J., and Saun-
ders, W. Language models can explain neurons in lan-
guage models. URL https://openaipublic. blob. core.
windows. net/neuron-explainer/paper/index. html.(Date
accessed: 14.05. 2023), 2023.

Blevins, T., Levy, O., and Zettlemoyer, L. Deep
rnns encode soft hierarchical syntax. arXiv preprint
arXiv:1805.04218, 2018.

Bolukbasi, T., Pearce, A., Yuan, A., Coenen, A., Reif, E.,
Viégas, F., and Wattenberg, M. An interpretability illu-
sion for bert. arXiv preprint arXiv:2104.07143, 2021.

Brown, D., Godfrey, C., Nizinski, C. A., Tu, J., and
Kvinge, H. Robustness of edited neural networks. ArXiv,
abs/2303.00046, 2023.

Buolamwini, J. and Gebru, T. Gender shades: Intersec-
tional accuracy disparities in commercial gender classi-
fication. In Conference on fairness, accountability and
transparency (FAccT), 2018.

Cammarata, N., Goh, G., Carter, S., Schubert, L., Petrov,
M., and Olah, C. Curve detectors. Distill, 5(6):e00024–
003, 2020.

Cao, S., Sanh, V., and Rush, A. M. Low-complexity
probing via finding subnetworks. arXiv preprint
arXiv:2104.03514, 2021.

Casper, S., Rauker, T., Ho, A., and Hadfield-Menell, D.
Sok: Toward transparent ai: A survey on interpreting
the inner structures of deep neural networks. In First
IEEE Conference on Secure and Trustworthy Machine
Learning, 2022.

Chan, L., Garriga-Alonso, A., Goldowsky-Dill, N., Green-
blatt, R., Nitishinskaya, J., Radhakrishnan, A., Shlegeris,
B., and Thomas, N. Causal scrubbing: A method for rig-
orously testing interpretability hypotheses. 2022.

10

Decomposing and Editing Predictions by Modeling Model Computation

Chang, T.-Y., Thomason, J., and Jia, R. Do localization
methods actually localize memorized data in llms? arXiv
preprint arXiv:2311.09060, 2023.

Chen, H., Yang, J., Vondrick, C., and Mao, C. Interpreting
and controlling vision foundation models via text expla-
nations. arXiv preprint arXiv:2310.10591, 2023.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T.,
Collins, M., and Toutanova, K. Boolq: Exploring the
surprising difficulty of natural yes/no questions. arXiv
preprint arXiv:1905.10044, 2019.

Cohen, R., Biran, E., Yoran, O., Globerson, A., and Geva,
M. Evaluating the ripple effects of knowledge editing in
language models. ArXiv, abs/2307.12976, 2023.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit
discovery for mechanistic interpretability. arXiv preprint
arXiv:2304.14997, 2023.

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and Wei,
F. Knowledge neurons in pretrained transformers. arXiv
preprint arXiv:2104.08696, 2021.

Dalvi, F., Durrani, N., Sajjad, H., Belinkov, Y., Bau, A., and
Glass, J. What is one grain of sand in the desert? analyz-
ing individual neurons in deep nlp models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 6309–6317, 2019.

De Cao, N., Aziz, W., and Titov, I. Editing fac-
tual knowledge in language models. arXiv preprint
arXiv:2104.08164, 2021a.

De Cao, N., Schmid, L., Hupkes, D., and Titov, I. Sparse
interventions in language models with differentiable
masking. arXiv preprint arXiv:2112.06837, 2021b.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition
(CVPR), 2009.

Dhamdhere, K., Sundararajan, M., and Yan, Q. How im-
portant is a neuron? arXiv preprint arXiv:1805.12233,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. An image is worth
16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Repre-
sentations (ICLR), 2021.

Durrani, N., Sajjad, H., Dalvi, F., and Belinkov, Y. Analyz-
ing individual neurons in pre-trained language models.
arXiv preprint arXiv:2010.02695, 2020.

Eldan, R. and Li, Y. Tinystories: How small can lan-
guage models be and still speak coherent english? arXiv
preprint arXiv:2305.07759, 2023.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., et al. Toy models of superposition. arXiv
preprint arXiv:2209.10652, 2022.

Feldman, V. and Zhang, C. What neural networks memo-
rize and why: Discovering the long tail via influence es-
timation. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 2881–2891, 2020.

Finlayson, M., Mueller, A., Gehrmann, S., Shieber, S.,
Linzen, T., and Belinkov, Y. Causal analysis of syntac-
tic agreement mechanisms in neural language models.
arXiv preprint arXiv:2106.06087, 2021.

Friedman, D., Lampinen, A., Dixon, L., Chen, D., and
Ghandeharioun, A. Interpretability illusions in the
generalization of simplified models. arXiv preprint
arXiv:2312.03656, 2023.

Gandelsman, Y., Efros, A. A., and Steinhardt, J. Interpret-
ing clip’s image representation via text-based decompo-
sition. arXiv preprint arXiv:2310.05916, 2023.

Gandikota, R., Materzynska, J., Fiotto-Kaufman, J., and
Bau, D. Erasing concepts from diffusion models. arXiv
preprint arXiv:2303.07345, 2023.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S.,
DiPofi, A., Foster, C., Golding, L., Hsu, J., Le Noac’h,
A., Li, H., McDonell, K., Muennighoff, N., Ociepa, C.,
Phang, J., Reynolds, L., Schoelkopf, H., Skowron, A.,
Sutawika, L., Tang, E., Thite, A., Wang, B., Wang, K.,
and Zou, A. A framework for few-shot language model
evaluation, 12 2023. URL https://zenodo.org/
records/10256836.

Geiger, A., Lu, H., Icard, T., and Potts, C. Causal abstrac-
tions of neural networks. Advances in Neural Informa-
tion Processing Systems, 34:9574–9586, 2021.

Geiger, A., Potts, C., and Icard, T. Causal abstrac-
tion for faithful model interpretation. arXiv preprint
arXiv:2301.04709, 2023.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. Imagenet-trained CNNs
are biased towards texture; increasing shape bias im-
proves accuracy and robustness. In International Con-
ference on Learning Representations (ICLR), 2019.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R.,
Brendel, W., Bethge, M., and Wichmann, F. A. Short-
cut learning in deep neural networks. In Nature Machine
Intelligence, 2020.

11

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Decomposing and Editing Predictions by Modeling Model Computation

Geirhos, R., Zimmermann, R. S., Bilodeau, B., Bren-
del, W., and Kim, B. Don’t trust your eyes: on the
(un) reliability of feature visualizations. arXiv preprint
arXiv:2306.04719, 2023.

Georgiev, K., Vendrow, J., Salman, H., Park, S. M.,
and Madry, A. The journey, not the destination:
How data guides diffusion models. arXiv preprint
arXiv:2312.06205, 2023.

Ghiasi, A., Kazemi, H., Borgnia, E., Reich, S., Shu, M.,
Goldblum, M., Wilson, A. G., and Goldstein, T. What
do vision transformers learn? a visual exploration. arXiv
preprint arXiv:2212.06727, 2022.

Ghorbani, A. and Zou, J. Y. Neuron shapley: Discovering
the responsible neurons. Advances in neural information
processing systems, 33:5922–5932, 2020.

Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M.,
Schubert, L., Radford, A., and Olah, C. Multimodal neu-
rons in artificial neural networks. Distill, 2021.

Goldowsky-Dill, N., MacLeod, C., Sato, L., and Arora, A.
Localizing model behavior with path patching. arXiv
preprint arXiv:2304.05969, 2023.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Hase, P., Bansal, M., Kim, B., and Ghandeharioun, A.
Does localization inform editing? surprising differences
in causality-based localization vs. knowledge editing in
language models. arXiv preprint arXiv:2301.04213,
2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition, 2015.

Hendrycks, D. and Dietterich, T. G. Benchmarking neu-
ral network robustness to common corruptions and sur-
face variations. In International Conference on Learning
Representations (ICLR), 2019.

Hermann, K. L., Mobahi, H., Fel, T., and Mozer, M. C.
On the foundations of shortcut learning. arXiv preprint
arXiv:2310.16228, 2023.

Hernandez, E., Schwettmann, S., Bau, D., Bagashvili, T.,
Torralba, A., and Andreas, J. Natural language descrip-
tions of deep visual features. In International Confer-
ence on Learning Representations, 2021.

Hewitt, J. and Liang, P. Designing and interpreting probes
with control tasks. arXiv preprint arXiv:1909.03368,
2019.

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. A
benchmark for interpretability methods in deep neural
networks. arXiv preprint arXiv:1806.10758, 2018.

Huang, J., Geiger, A., D’Oosterlinck, K., Wu, Z., and Potts,
C. Rigorously assessing natural language explanations
of neurons. arXiv preprint arXiv:2309.10312, 2023a.

Huang, Z., Shen, Y., Zhang, X., Zhou, J., Rong, W., and
Xiong, Z. Transformer-patcher: One mistake worth one
neuron. arXiv preprint arXiv:2301.09785, 2023b.

Idrissi, B. Y., Arjovsky, M., Pezeshki, M., and Lopez-Paz,
D. Simple data balancing achieves competitive worst-
group-accuracy. In Conference on Causal Learning and
Reasoning, pp. 336–351. PMLR, 2022.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururan-
gan, S., Schmidt, L., Hajishirzi, H., and Farhadi, A.
Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and
Madry, A. Datamodels: Predicting predictions from
training data. In International Conference on Machine
Learning (ICML), 2022.

Javaheripi, M. and Bubeck, S. Phi-2: The surprising power
of small language models, Dec 2023.

Johnson, A. E., Pollard, T. J., Greenbaum, N. R., Lun-
gren, M. P., Deng, C.-y., Peng, Y., Lu, Z., Mark, R. G.,
Berkowitz, S. J., and Horng, S. Mimic-cxr-jpg, a large
publicly available database of labeled chest radiographs.
arXiv preprint arXiv:1901.07042, 2019.

Kirichenko, P., Izmailov, P., and Wilson, A. G. Last layer
re-training is sufficient for robustness to spurious corre-
lations. arXiv preprint arXiv:2204.02937, 2022.

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Al-
sallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N.,
Araya, C., Yan, S., et al. Captum: A unified and generic
model interpretability library for pytorch. arXiv preprint
arXiv:2009.07896, 2020.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Simi-
larity of neural network representations revisited. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning (ICML), 2019.

Krizhevsky, A. Learning multiple layers of features from
tiny images. In Technical report, 2009.

Lakretz, Y., Kruszewski, G., Desbordes, T., Hupkes, D.,
Dehaene, S., and Baroni, M. The emergence of number
and syntax units in lstm language models. arXiv preprint
arXiv:1903.07435, 2019.

12

Decomposing and Editing Predictions by Modeling Model Computation

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman,
H., and Madry, A. ffcv. https://github.com/
libffcv/ffcv/, 2022.

Leino, K., Sen, S., Datta, A., Fredrikson, M., and Li, L.
Influence-directed explanations for deep convolutional
networks. In 2018 IEEE international test conference
(ITC), pp. 1–8. IEEE, 2018.

Li, M., Davies, X., and Nadeau, M. Circuit breaking: Re-
moving model behaviors with targeted ablation. 2023a.

Li, Y., Yang, X., Sun, P., Qi, H., and Lyu, S. Celeb-df: A
large-scale challenging dataset for deepfake forensics. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3207–3216, 2020.

Li, Y., Bubeck, S., Eldan, R., Del Giorno, A., Gunasekar,
S., and Lee, Y. T. Textbooks are all you need ii: phi-
1.5 technical report. arXiv preprint arXiv:2309.05463,
2023b.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In International Conference
on Computer Vision (ICCV), 2015.

Maini, P., Mozer, M. C., Sedghi, H., Lipton, Z. C., Kolter,
J. Z., and Zhang, C. Can neural network memorization
be localized? In International Conference on Machine
Learning, 2023.

Materzyńska, J., Torralba, A., and Bau, D. Disentangling
visual and written concepts in clip. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16410–16419, 2022.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locat-
ing and editing factual associations in GPT. Advances in
Neural Information Processing Systems, 36, 2022.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Man-
ning, C. D. Fast model editing at scale. arXiv preprint
arXiv:2110.11309, 2021.

Mu, J. and Andreas, J. Compositional explanations of neu-
rons. Advances in Neural Information Processing Sys-
tems, 33:17153–17163, 2020.

Nanda, N. Attribution patching: Activation patching at
industrial scale. 2023. URL https://www. neelnanda.
io/mechanistic-interpretability/attribution-patching,
2023.

Nanda, N., Chan, L., Liberum, T., Smith, J., and Steinhardt,
J. Progress measures for grokking via mechanistic inter-
pretability. arXiv preprint arXiv:2301.05217, 2023.

Oakden-Rayner, L., Dunnmon, J., Carneiro, G., and Ré, C.
Hidden stratification causes clinically meaningful fail-
ures in machine learning for medical imaging. In Pro-
ceedings of the ACM conference on health, inference,
and learning, 2020.

Oikarinen, T. and Weng, T.-W. Clip-dissect: Automatic
description of neuron representations in deep vision net-
works. arXiv preprint arXiv:2204.10965, 2022.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schu-
bert, L., Ye, K., and Mordvintsev, A. The building blocks
of interpretability. In Distill, 2018.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. An overview of early vision in incep-
tionv1. Distill, 2020a. doi: 10.23915/distill.00024.002.
https://distill.pub/2020/circuits/early-vision.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to cir-
cuits. Distill, 2020b. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Palit, V., Pandey, R., Arora, A., and Liang, P. P. Towards
vision-language mechanistic interpretability: A causal
tracing tool for blip. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2856–
2861, 2023.

Panigrahi, A., Saunshi, N., Zhao, H., and Arora, S. Task-
specific skill localization in fine-tuned language models.
arXiv preprint arXiv:2302.06600, 2023.

Park, S. M., Georgiev, K., Ilyas, A., Leclerc, G., and
Madry, A. Trak: Attributing model behavior at scale.
In Arxiv preprint arXiv:2303.14186, 2023.

Radford, A., Jozefowicz, R., and Sutskever, I. Learning
to generate reviews and discovering sentiment. arXiv
preprint arXiv:1704.01444, 2017.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multi-
task learners. 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., et al. Learning transferable visual models
from natural language supervision. In arXiv preprint
arXiv:2103.00020, 2021.

13

https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/

Decomposing and Editing Predictions by Modeling Model Computation

Ravfogel, S., Twiton, M., Goldberg, Y., and Cotterell,
R. D. Linear adversarial concept erasure. In Inter-
national Conference on Machine Learning, pp. 18400–
18421. PMLR, 2022.

Ribeiro, M. T., Singh, S., and Guestrin, C. " why should i
trust you?" explaining the predictions of any classifier. In
International Conference on Knowledge Discovery and
Data Mining (KDD), 2016.

Rosenfeld, E. and Risteski, A. Outliers with opposing sig-
nals have an outsized effect on neural network optimiza-
tion. arXiv preprint arXiv:2311.04163, 2023.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gen-
eralization. In International Conference on Learning
Representations, 2020.

Santurkar, S., Tsipras, D., Elango, M., Bau, D., Torralba,
A., and Madry, A. Editing a classifier by rewriting its
prediction rules. In Preprint, 2021.

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., and Netra-
palli, P. The pitfalls of simplicity bias in neural networks.
Advances in Neural Information Processing Systems, 33:
9573–9585, 2020.

Shah, H., Jain, P., and Netrapalli, P. Do input gradients
highlight discriminative features? Advances in Neural
Information Processing Systems, 34, 2021.

Shah, H., Park, S. M., Ilyas, A., and Madry, A. Mod-
eldiff: A framework for comparing learning algorithms.
In International Conference on Machine Learning, pp.
30646–30688. PMLR, 2023.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. The
woman worked as a babysitter: On biases in language
generation. arXiv preprint arXiv:1909.01326, 2019.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Stolfo, A., Belinkov, Y., and Sachan, M. Understanding
arithmetic reasoning in language models using causal
mediation analysis. arXiv preprint arXiv:2305.15054,
2023.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In International Conference on
Machine Learning (ICML), 2017.

Tigges, C., Hollinsworth, O. J., Geiger, A., and Nanda,
N. Linear representations of sentiment in large language
models. arXiv preprint arXiv:2310.15154, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in Neural Information
Processing Systems, 2017.

Vendrow, J., Jain, S., Engstrom, L., and Madry, A.
Dataset interfaces: Diagnosing model failures using
controllable counterfactual generation. arXiv preprint
arXiv:2302.07865, 2023.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Singer, Y., and Shieber, S. Investigating gender bias in
language models using causal mediation analysis. Ad-
vances in neural information processing systems, 33:
12388–12401, 2020.

Wah, C., Branson, S., Welinder, P., Perona, P., and Be-
longie, S. The caltech-ucsd birds-200-2011 dataset.
2011.

Wang, H., Ge, S., Xing, E. P., and Lipton, Z. C. Learn-
ing robust global representations by penalizing local pre-
dictive power. Neural Information Processing Systems
(NeurIPS), 2019.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for
indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Wang, Z., Yang, E., Shen, L., and Huang, H. A comprehen-
sive survey of forgetting in deep learning beyond contin-
ual learning. arXiv preprint arXiv:2307.09218, 2023.

Wen, K., Li, Y., Liu, B., and Risteski, A. Transform-
ers are uninterpretable with myopic methods: a case
study with bounded dyck grammars. arXiv preprint
arXiv:2312.01429, 2023.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, pp. 818–833. Springer, 2014.

Zhang, F. and Nanda, N. Towards best practices of activa-
tion patching in language models: Metrics and methods.
arXiv preprint arXiv:2309.16042, 2023.

Zheng, X., Pang, T., Du, C., Jiang, J., and Lin, M. In-
triguing properties of data attribution on diffusion mod-
els. arXiv preprint arXiv:2311.00500, 2023.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Tor-
ralba, A. Places: A 10 million image database for scene
recognition. In IEEE transactions on pattern analysis
and machine intelligence, 2017.

Zhou, B., Sun, Y., Bau, D., and Torralba, A. Revisiting
the importance of individual units in cnns via ablation.
arXiv preprint arXiv:1806.02891, 2018.

14

https://arxiv.org/abs/2211.00593

Decomposing and Editing Predictions by Modeling Model Computation

Zhu, C., Rawat, A. S., Zaheer, M., Bhojanapalli, S., Li,
D., Yu, F., and Kumar, S. Modifying memories in trans-
former models. arXiv preprint arXiv:2012.00363, 2020.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R.,
Pan, A., Yin, X., Mazeika, M., Dombrowski, A.-K., et al.
Representation engineering: A top-down approach to ai
transparency. arXiv preprint arXiv:2310.01405, 2023.

15

Decomposing and Editing Predictions by Modeling Model Computation

Appendices

A Related work 18

B Discussion 19

C Future work 20

D Additional COAR-EDIT experiments 21

D.1 “Forgetting” a class . 21

D.2 Mitigating a backdoor attack . 22

E Evaluation setup 23

E.1 Pseudocode . 23

E.2 Datasets and models. 23

E.3 Baselines . 24

E.4 Implementation details . 25

F Applying COAR to language models 26

F.1 Evaluating GPT-2 on the TinyStories dataset . 26

F.2 Evaluating Phi-2 on the BoolQ dataset . 26

G Additional evaluation of COAR 28

G.1 Evaluating COAR on additional datasets . 28

G.2 Evaluating COAR on additional model architectures . 28

G.3 Evaluating COAR on additional tasks . 28

G.4 Comparing COAR attributions estimated with different ablation fractions 28

G.5 Comparing COAR attributions estimated with different sample sizes . 29

G.6 Analyzing COAR attributions at the example level . 29

G.7 Qualitatively analyzing COAR attributions . 29

H Additional evaluation of COAR-EDIT 38

H.1 Editing individual predictions . 38

H.2 Forgetting a class . 38

H.3 Improving subpopulation robustness. 38

H.4 Mitigating backdoor attacks. 39

H.5 Improving robustness to typographic attacks. 39

I Analyzing design choices in COAR 46

16

Decomposing and Editing Predictions by Modeling Model Computation

I.1 Effect of ablation fraction . 46

I.2 Effect of ablation method . 46

I.3 Effect of model output function . 47

17

Decomposing and Editing Predictions by Modeling Model Computation

A. Related work
Our work relates to several lines of work in machine learning interpretability, which we categorize into works that localize
model behavior, works that interpret specific model components, and works that perform model editing.

Localizing model behavior. One line of work (within the field of mechanistic interpretability), attempts to localize specific
capabilities or behaviors of neural networks (especially language models) to specific “subnetworks” or “circuits” (Olah
et al., 2020b). For example, prior work has used a variety of methods to localize gender bias (Vig et al., 2020); specifical
factual associations (Meng et al., 2022); and other behavior (Wang et al., 2022; Li et al., 2023a; Goldowsky-Dill et al.,
2023; Tigges et al., 2023) within model parameters.

More recent work has tried to automate this localization process, using techniques based on fine-tuning (Panigrahi et al.,
2023), activation patching (Conmy et al., 2023; Goldowsky-Dill et al., 2023), or differentiable masking (Bayazit et al.,
2023; Cao et al., 2021; De Cao et al., 2021b; Chang et al., 2023). These techniques (or variants thereof) have been
subsequently used to localize properties such as arithmetic reasoning (Stolfo et al., 2023), syntactic agreement (Finlayson
et al., 2021), visual question answering (Palit et al., 2023), and visual attributes in diffusion models (Basu et al., 2023).
Other work has also developed methods (Dhamdhere et al., 2018; Leino et al., 2018; Nanda, 2023; Ghorbani & Zou, 2020)
to attribute model behavior to specific components.

Recently, however, Zhang & Nanda (2023) showed that the design choices underlying many automated localization meth-
ods (e.g., the way they ablate components) can drastically change their results. Furthermore, Hase et al. (2023) show that
localizing factual associations does not directly inform how to erase or amplify these associations via model editing. In
contrast, COAR can (a) adapt to any reasonable choice of ablation method (Remark 2) and (b) yield actionable insights for
model editing (Section 5).

Editing model behavior. Another related line of work focuses on model editing, the goal of which is to make small,
targeted changes to model representations in order to induce or suppress a specific behavior. Model editing methods include
“hypernetworks” (De Cao et al., 2021a; Mitchell et al., 2021), rank-one updates to model parameters (Bau et al., 2020a;
Santurkar et al., 2021; Meng et al., 2022), constrained fine-tuning (Zhu et al., 2020), and weight interpolation (Ilharco et al.,
2022; Zou et al., 2023), among other methods. Recent work has also studied erasing concepts and suppressing spurious
correlations from models using layer-wise linear probing (Belrose et al., 2023; Ravfogel et al., 2022), CLIP-specific text-
based methods (Gandelsman et al., 2023; Chen et al., 2023), and fine-tuning variants (Gandikota et al., 2023; Kirichenko
et al., 2022). In this work, we treat model editing as an application, and show how attributions can enable model edits that
modify individual model predictions (§5.1,§D.1), improve subpopulation-level robustness (§5.2) and suppress spurious
concepts (§D.2, §5.3).

Interpreting specific model components. Instead of starting with a functionality and trying to localize it to specific
components, another line of work introduces methods for studying the functionality of individual model components. Such
methods include, feature visualization (Zeiler & Fergus, 2014; Ghiasi et al., 2022; Olah et al., 2020a), activation maps (Bau
et al., 2017; Mu & Andreas, 2020), ablations (Zhou et al., 2018), saliency maps (Olah et al., 2018), probing (Dalvi et al.,
2019; Durrani et al., 2020), and natural language descriptions (Hernandez et al., 2021; Oikarinen & Weng, 2022; Bills
et al., 2023). Subsequent analyses use these methods to identify and ascribe meaning to specific model components by
labeling them as, e.g., “curve detectors” (Cammarata et al., 2020), “knowledge neurons” (Dai et al., 2021), “multimodal
neurons” (Goh et al., 2021), and “syntax units” (Lakretz et al., 2019) to name a few. Recently, however, the reliability
and robustness of these methods has been called into question (Bolukbasi et al., 2021; Antverg & Belinkov, 2021; Hewitt
& Liang, 2019; Huang et al., 2023a; Geirhos et al., 2023; Hooker et al., 2018; Shah et al., 2021). Here, our goal is not
to interpret specific model components, but rather to study how different components jointly influence model predictions
through the lens of component modeling (Definition 1).

Understanding machine learning models by proxy. Finally, our work connects to a line of research that aims to under-
stand machine learning models by constructing interpretable proxies. For example, certain feature attribution methods like
LIME (Ribeiro et al., 2016) approximate a given ML model with a linear model in input space. Similarly, a line of work on
datamodeling (Ilyas et al., 2022; Park et al., 2023) approximates a given learning algorithm by a linear model in “dataset
space.” More generally, one can view a component attribution (or in fact, any component model) as a causal abstraction
(Geiger et al., 2021; 2023) of a given machine learning model—that is, a simple, high-level model that predicts how an
intricate, low-level process (in this case, the computation graph GM) behaves.

18

Decomposing and Editing Predictions by Modeling Model Computation

B. Discussion
In this section, we put component modeling in context with work in mechanistic interpretability and model editing. We
also discuss some key limitations of COAR.

How does component attribution differ from mechanistic interpretability? In one sense, component attribution falls
under the realm of mechanistic interpretability (e.g., Vig et al. (2020); Casper et al. (2022); Wang et al. (2022); Meng
et al. (2022)) since our goal is indeed to understand how models internally process examples. However, our approach
differs from a typical “mechanistic approach” in that rather than attempting to find circuits for a specific capability or
uncovering the function of a specific component, component modeling takes a top-down, capability-agnostic perspective.
That is, our main goal is to find a proxy for model behavior on a specific example as a function of model components.
Analyzing this proxy then turns out to be a reliable way of editing models and uncovering subpopulations, as shown in
Section 5. The top-down nature of our approach makes COAR immediately scalable to large models, and our focus on
specific examples rather than human-prescribed capabilities eliminates some subjectivity (and inevitable misspecification)
from the method itself, deferring it instead to a deliberate human decision. Furthermore, recent work (Wen et al., 2023;
Friedman et al., 2023) demonstrates that bottom-up mechanistic analyses that solely analyze specific model components
or its hidden representations in isolation can lead to misleading conclusions about model behavior.

Does localization help with model editing? The extent to which localizing specific model behavior to a subset of model
components helps with model editing remains contested. On one hand, Hase et al. (2023) show that localizing factual
associations in language models does not necessarily help with editing these associations. Additional evaluation studies
show that model edits can fail to consistently modify model behavior as targeted (Cohen et al., 2023) and degrade robust-
ness to distribution shifts (Brown et al., 2023). On the other hand, recent work shows that localization methods can in
fact recover “ground truth” localization in controlled settings (Chang et al., 2023) and improve calibration of fine-tuned
language models (Panigrahi et al., 2023). Our findings in Section 5 substantiate the latter view, as COAR-EDIT directly
enable model editing in a variety of settings. Based on these findings, we hypothesize that the effectiveness of localization
methods for model editing (a) depends on the causal efficacy of the localization method itself and (b) the intrinsic difficulty
of different editing tasks.

Limitations. Our proposed method for estimating component attributions, COAR, is not without its limitations. First, the
major computation bottleneck in COAR is that constructing a component dataset for a given example requires a moderately
large number of forward passes through the model. In Appendix G.5, we show that the sample size required to estimate
component attributions can be reduced by 2-5× without significantly impacting the quality of the resulting attributions. Im-
proving the sample efficiency of component attribution through better sampling or approximation techniques would further
mitigate this bottleneck. Second, specifying the “right” computational graph for a given task can be tricky. For example,
a computation graph over neurons rather than over attention heads would lead to finer-grained localization, and thus better
model editing, but would also make estimating component attributions more expensive. Similarly, COAR requires a choice
of ablation method (Equation 1). While we use zero ablations due to its simplicity (Remark 2), more sophisticated ablations
(e.g., Chan et al. (2022)) may be more appropriate for different tasks and/or model architectures (Zhang & Nanda, 2023).
In Appendix G.4, we show that COAR is not dependent on the zero-ablation method and can be used with an alternative
ablation method that simply scales down the activations of ablated components by a constant factor. Finally, while we
extensively test the effectiveness of COAR in editing model behavior, we do so in a proof-of-concept manner. Developing
finer-grained editing methods that leverage component attributions as a building block is an interesting avenue for future
work.

19

Decomposing and Editing Predictions by Modeling Model Computation

C. Future work
Below, we highlight a few directions that, while outside the scope of this work, may be interesting avenues for future work
to explore.

Attributing generative models. In this work, we focus our study to image classifiers. However, COAR is a general method
in that given an appropriate model output function, it can estimate component attributions for any given machine learning
model. Future work might thus explore possible model output functions (and their corresponding component attributions)
for generative models. For diffusion-based generative models, one might study the denoising error for a fixed timestep,
as in (Georgiev et al., 2023; Zheng et al., 2023). For language models, a possible point of start (following Park et al.
(2023)) would be to use the average correct-class margin (5) of a sequence of tokens as the model output function. In
fact, our preliminary experiments in Appendix F demonstrate that COAR yields predictive component attributions for GPT-
2 (Radford et al., 2019) and Phi-2 (Javaheripi & Bubeck, 2023) without requiring any modifications to the algorithm. In
general, estimating and applying component attributions for generative models is a promising avenue for future work.

Beyond linear attributions. Recall from Definition 2 that component attribution is a linear instantiation of the component
modeling task (Definition 1). Linearity makes component attributions rather interpretable, and our results (Section 4)
indicate that component attributions can still accurately predict model behavior. Still, the fact that component attributions’
predictiveness decreases on out-of-distribution component subsets (i.e., when αtest ̸= αtrain) suggests that linear models
might not be expressive enough to fully capture the map between model components and outputs. An potential avenue for
future work would thus be to explore other (non-linear) model classes that map between ablated components and model
output (e.g., decision trees or kernel methods). Note that the generality of COAR allows one to learn component models
for any model class of choice.

Studying neural network representations. Finally, another interesting direction for future work would be to use compo-
nent attribution (and component models, more generally) to study empirically documented phenomena in deep learning.
There are a plethora of questions to ask here which, although beyond the scope of this work, are natural extensions of the
results here. For example, extending our results from Section 5.1, can we use component attribution to better isolate “con-
flicting features” (Ilyas et al., 2022; Rosenfeld & Risteski, 2023) for a given task, and to understand their role in the training
process (Rosenfeld & Risteski, 2023)? Can we study redundancy in how concepts are represented by neural networks, and
how this representation evolves over the course of training? Similarly, can we develop improved methods for localizing
memorized inputs to specific model components (Feldman & Zhang, 2020; Maini et al., 2023)? Given that component
attributions are causally meaningful, can we use them as a kernel with which to compare different models (Kornblith et al.,
2019) or learning algorithms (Shah et al., 2023)? Relatedly, are component models transferable across tasks (allowing us
to view them as sparse “subpopulation vectors” (Ilharco et al., 2022))?

20

Decomposing and Editing Predictions by Modeling Model Computation

D. Additional COAR-EDIT experiments
D.1. “Forgetting” a class

We now consider “selective forgetting” problem (Wang et al., 2023), where the goal is to impair model performance on
(only) a specific set of examples. In this experiment, we edit the same ImageNet ResNet-50 classifier (Setup B) as in
Section 5.1, with the goal of forgetting the entire “chain-link fence” class. Like before, we use our editing approach
COAR-EDIT (see (8) and (9)) to identify components that, when ablated, decrease the model’s correct-class margin on
examples from the “chain-link fence” class, but not on reference examples from other classes.

Results. Figure 6 summarizes our findings. In Figure 6a, we show that ablating just eight (out of 22, 720) model compo-
nents degrades accuracy on the “chain fence” class from 66% to 20% while preserving overall accuracy on the train and
validation set. Then, in Figure 6b, a comparison of class-wise accuracies before and after the edit shows that our approach
specifically targets the “chain fence” class without impacting performance on any other class. Finally, Figure 6c uses the
ImageNet-Sketch (Wang et al., 2019) (top) and ImageNet⋆ (Vendrow et al., 2023) (bottom) datasets to show that the our
edit is robust to distribution shifts in both the target and reference distribution.

Through additional experiments in Appendix H.2, we highlight that (a) our approach is sample-efficient, not needing many
samples from the target and reference distributions to find effective edits; and (b) our findings are robust to the choice of
class to forget.

0 1 2 3 4 5 6 7 8
Number of model components ablated

20

30

40

50

60

70

80

90

100

M
od

el
 a

cc
ur

ac
y

(%
)

(a) Editing to "forget" an ImageNet class

Accuracy over

Train set Test set Class "chain fence"

10 20 30 40 50 60 70 80 90 100
Class-level accuracy before edit (%)

10

20

30

40

50

60

70

80

90

100

C
la

ss
-le

ve
l a

cc
ur

ac
y

af
te

r e
di

t (
%

)

-46%

(b) Effect of edit on ImageNet classes

All classes

Class "chain fence" before edit

Class "chain fence" after edit

(c) Edit generalizes to OOD ImageNet data

Class "chain fence" All classes
0

20

40

60

A
cc

ur
ac

y
(%

)

54.9%

24.5%27.5% 24.5%

Dataset: ImageNet-Sketch

Before edit

After edit

Class "chain fence" All classes
0

20

40

60

80

A
cc

ur
ac

y
(%

)

70.3%
60.8%

42.9%

60.8%

Dataset: ImageNet*

Figure 6: “Forgetting” a class with COAR-EDIT. We edit an ImageNet-trained ResNet-50 (Setup B from Section 4)
to forget the “chain-link fence” class. On the left, we show how model accuracy on the class of interest (red) degrades
as a function of k (the number of components removed), while model accuracy on the train (blue) and test (black) sets
remains constant. In the center panel, we show the per-class accuracy of the model before and after an edit with k = 8
components—while accuracy on the chain-link fence class degrades significantly, accuracy on other classes stays roughly
constant. Finally, on the right we evaluate the effects of the edit on class-specific and overall accuracy for distribution-
shifted versions of ImageNet (namely ImageNet-Sketch (Wang et al., 2019) and ImageNet⋆ (Vendrow et al., 2023)). As
desired, our edit has a significant effect on the chain-link fence class, while leaving average model performance unchanged.

21

Decomposing and Editing Predictions by Modeling Model Computation

D.2. Mitigating a backdoor attack

We now use COAR to edit a model in order to reduce its sensitivity to backdoor attacks (Biggio et al., 2012; Gu et al.,
2017). In a backdoor attack, an adversary introduces an artificial correlation into the training dataset of a machine learning
model, causing the resulting model to rely on a spurious signal at test time. (For example, Gu et al. (2017) place a small
square in the top corner of a random subset of training examples and relabel them with the “horse” class—models trained
on this dataset will label any image containing a square as a horse.)

Experiment setup. In this experiment, our goal is to edit a model and remove its dependence on a spurious backdoor
feature. We consider a ResNet18 with a computation graph that comprises all 2, 344 convolution filters that is trained on
a modified CIFAR-10 dataset. Specifically, the dataset is “backdoored” in that an adversary has constructed a spurious
correlation between a small blue-squared pattern and the “airplane” class (Figure 7a). As shown in Figure 7a, the resulting
model latches on to the spurious pattern—simply adding the “airplane” trigger to CIFAR-10 test examples drops model
accuracy from 89% (middle row) to 37% (bottom row).

Results. To edit this model, we apply COAR-EDIT over paired examples—i.e., examples with and without the backdoor
trigger—to identify and ablate trigger-specific components. The trigger-specific components correspond to components
that, when ablated, correct the misclassifications induced by the trigger without impacting predictions on test examples
without the trigger. Figure 7b shows that ablating 25 components (1%) is sufficient to boost model accuracy on test exam-
ples with the trigger (red) from 37% to 84%—a 47% improvement. Furthermore, the model edit does not degrade accuracy
on test examples without the trigger (blue) by more than 1%. In Figure 7c, we compare how model outputs on paired
test examples with the trigger (y-axis) and without the trigger (x-axis) correlate before (top) and after the edit (bottom).
Both subplots show that the model edit suppresses the effect of the trigger even at the example level, improving correla-
tion between model outputs on examples with and without the trigger from 0.41 to 0.92. We also note that our approach is
sample-efficient, requiring only 5 paired target and reference examples with and without the trigger to effectively “remove”
the trigger via model editing. We defer additional details to Appendix H.4.

(a) Effect of backdoor trigger on model predictions
CIFAR-10 training data with airplane-specific trigger

 car horse airplane airplane

CIFAR-10 test data without trigger (89% accuracy)

 frog ship horse airplane
CIFAR-10 test data with trigger (37% accuracy)

 airplane airplane airplane airplane

(b) Editing to "remove" the trigger

0 5 10 15 20 25
Number of model components ablated

40

50

60

70

80

90

M
od

el
 a

cc
ur

ac
y

(%
)

88%

89%

84%

37%

Model accuracy on
Test data without trigger

Test data with trigger

(c) Effect of edit on model outputs

-4 4Examples w/o trigger

-6

6
Ex

am
pl

es
 w

/
tr

ig
ge

r

Model outputs before edit

= 0.41

-4 4Examples w/o trigger

-4

4

Ex
am

pl
es

 w
/

tr
ig

ge
r

Model outputs after edit

= 0.92

Figure 7: Mitigating backdoor attacks with COAR-EDIT. We edit a ResNet18 trained on a backdoored CIFAR-10 dataset
to remove its dependence on a planted blue-squared trigger that is spuriously correlated with the “airplane” class. On the
left, we show that the model is sensitive to the trigger—adding the blue trigger to CIFAR-10 test examples drops model
accuracy from 89% (middle row) to 37% (bottom row). In the center panel, we show that ablating 25 components (1%) is
sufficient to boost model accuracy on test examples with the trigger (red) from 37% to 84% without impacting accuracy
on test examples without the trigger (blue). On the right, we show that the model edit suppresses the effect of the trigger
even at the example level—the correlation between model outputs on paired test examples with and without the trigger
improves from 0.41 to 0.92.

22

Decomposing and Editing Predictions by Modeling Model Computation

E. Evaluation setup
In this section, we outline the experiment setup—datasets, models, baselines, implementation details—used in Section 4
to evaluate whether COAR attributions can accurately estimate ground-truth component counterfactuals.

E.1. Pseudocode

Figure 8: Pseudocode for estimating component attributions with COAR.

E.2. Datasets and models.

We now outline the datasets and models used to evaluate COAR (§4) and COAR-EDIT (§5).

CIFAR-10. We use the standard CIFAR-10 (Krizhevsky, 2009) image classification dataset to evaluate COAR attributions
(Section 4, Appendix G.2) and for an editing task (Appendix D.2). We train ResNet, ViT, and MLP models that attain test
accuracies of 91%, 83% and 56% respectively. We specify a computation graph over 2, 344 components for the ResNet-
18 model, 31, 728 components for the ViT model, and 3, 072 components for the MLP model. Each component in the
ResNet-18 model corresponds to a convolution filter. Similarly, each component in the ViT and MLP models corresponds
to a neuron.

*ImageNet. We use the standard ImageNet (Deng et al., 2009) image classification dataset to evaluate COAR attributions in
Section 4 and for editing tasks in Appendix D.1. We use ImageNet-Sketch (Wang et al., 2019) and five random shifts from
ImageNet⋆ (Vendrow et al., 2023)—“in the water”, “at dusk simple”, “orange”, “pencil sketch”, “green”— to evaluate
the out-of-distribution performance of edited ImageNet models in Appendix D.1. We use the pre-trained ResNet50 and
ViT-B/16 models2 that attain test accuracies of 75.4% and 80.7% respectively. For the ResNet-50 model, we specify
a computation graph over 22, 720 components, each corresponding to a convolution filter. Similarly, for the ViT-B/16
model, we specify a computation graph over 82, 944 components, each corresponding to a neuron.

Waterbirds. The Waterbirds dataset (Sagawa et al., 2020) comprises images of birds taken from the CUB dataset (Wah
et al., 2011) and pasted on backgrounds from the Places dataset (Zhou et al., 2017). The task here is to classify “waterbirds”
and “landbirds” in the presence of spurious correlated “land” and “water” backgrounds in the training dataset. Sagawa et al.
(2020) introduce Waterbirds as a benchmark to improve model performance under subpopulation shifts induced by spurious
correlations. We use this dataset to evaluate whether COAR-EDIT can improve subpopulation robustness via model editing.
In this experiment, we fine-tune an ImageNet ResNet50 model and use a computation graph over 22, 720 components, each
corresponding to a convolution filter.

CelebA. The CelebA dataset (Li et al., 2020) comprises images of celebrities with binary attributes such as “smiling”,
“wearing hat”, “wearing lipstick”, etc. Similar to previous work on subpopulation robustness (e.g., (Sagawa et al., 2020)),
we repurpose CelebA as a binary classification task where the goal is to predict whether a person in a given image has
blond hair. The attributes “hair color” and “gender” are spuriously correlated in the training dataset, resulting in models
that latch on to a “gender → blond hair” shortcut and underperform on the “blond males” subpopulation. Similar to the
Waterbirds setting, we fine-tune an ImageNet ResNet50 model and specify a computation graph over 22, 720 components,

2Model and pre-trained weights taken from torchvision: https://pytorch.org/vision/stable/models.html

23

https://pytorch.org/vision/stable/models.html

Decomposing and Editing Predictions by Modeling Model Computation

each corresponding to a convolution filter.

Typographic attacks dataset. We use a dataset of typographic attacks (Materzyńska et al., 2022) for an editing task
in Section 5.3. This dataset comprises 180 images of household objects with and without eight typographic attacks such
as “taxi”, “twitter”, “EU”, and “iPad”. We visualize some examples from this dataset in Figure 5. Our experiment in Sec-
tion 5.3 uses this dataset along with a zero-shot CLIP ViT-B/16 classifier (Radford et al., 2021). For this model, we specify
a computation graph over all 82, 944 components, corresponding to the set of all weight vectors (individual rows in weight
matrices) in all self-attention and MLP modules. See Appendix H.5 for more details.

*TinyStories. We use the TinyStories dataset (Eldan & Li, 2023) to evaluate COAR attributions over the GPT-2 language
model (Appendix F). This dataset contains short stories synthetically generated by GPT-3.5 and GPT-4. To compute
component attributions for GPT-2, we specify a computation graph over 64, 512 components, which correspond to the set
of all weight vectors, i.e., in every self-attention module and feed-forward module of the model. See Appendix F.1 for
experiment details and findings.

*BoolQ. We use the BoolQ dataset (Clark et al., 2019) to evaluate COAR attributions for the Phi-2 model (Li et al., 2023b).
Each example in this dataset comprises a passage of text, a question, and a binary answer. We evaluate the zero-shot
performance of Phi-2 using the prompting and evaluation procedure from Gao et al. (2023)3. Given the size of the Phi-2
model, we specify a computation graph over 55, 552 components, each corresponding to a contiguous block of 10 weight
vectors in every self-attention module and feed-forward module of the model. See Appendix F.2 for experiment details and
findings.

E.3. Baselines

In Section 4, we compare COAR against four baseline methods for estimating component attributions: Leave-One-Out
(LOO), Gradient-times-parameters (GP), Neuron Conductance (NC), and Internal Influence (II). Each baseline computes
an attribution vector w(z) ∈ R|C| for a given example z by assigning an “importance” score w

(z)
j to each component

cj ∈ C. Then, as per Equation 4, we estimate a component counterfactual fM (z, C ′) as the sum of importance scores of
components in C \ C ′, i.e., scores of components that are not ablated. We describe each baseline in more detail below:

• Leave-One-Out (LOO): This method ablates each component cj ∈ C and sets the coefficient θ(z)j to the change in
model output fM (z) before and after ablation:

w(z)
j = fM (z, {cj})− fM (z, ∅)

• Gradient-times-Parameters (GP): This method approximates the leave-one-out estimate described above. Specifically,
it estimates the leave-one-out effect of each component cj ∈ C using a first-order Taylor approximation of fM (z, {cj})
around fM (z, ∅):

w
(z)
j = ∇cjfM (z, ∅) · δcj

where δcj is the parameter-space change in cj induced by the ablation method of choice.

• Neuron Conductance (NC) (Dhamdhere et al., 2018): This method extends the Integrated Gradients method (Sundarara-
jan et al., 2017)—an input-space feature attribution method—to compute importance scores for each component cj ∈ C.
Intuitively, NC modifies the computation in Integrated Gradients in order to quantify the “flow” through each component
cj ∈ C. See Equation 3 in (Dhamdhere et al., 2018) for a formal description.

• Internal Influence (II) (Leino et al., 2018): Similar to NC, this method also adapts Integrated Gradients (Sundararajan
et al., 2017) to compute importance scores. At a high level, II directly applies Integrated Gradients to layerwise
activations by treating the output of each layer as an input to subsequent layers. See Definition 1 in (Leino et al., 2018)
for a formal description.

We implement the first two baselines (LOO and GP) from scratch4 and use the captum library (Kokhlikyan et al., 2020) 5

to implement NC and II. As per Definition 2, we estimate the component counterfactual fM (z, C ′) using these baselines
by setting the bias term b(z) to zero and taking the sum over attribution scores of components that are not ablated.

3https://github.com/EleutherAI/lm-evaluation-harness/
4Our code is available at https://github.com/MadryLab/modelcomponents
5Github repository: https://github.com/pytorch/captum

24

https://github.com/EleutherAI/lm-evaluation-harness/
https://github.com/MadryLab/modelcomponents
https://github.com/pytorch/captum

Decomposing and Editing Predictions by Modeling Model Computation

E.4. Implementation details

Sample size for component attribution estimation. The computational cost of our approach linearly scales with the
sample size m used to estimate component attributions (see Figure 8). Each sample in the component dataset D(z) cor-
responds to a single forward pass through the model M in order to compute the counterfactual fM (z, C ′) (1), i.e., model
output fM (z) after ablating a subset of components C ′ ⊂ C. The setups {A,B,C} considered in Section 4 use sample size
m = {50000, 100000, 200000} respectively. In Appendix G.5, we show that the sample size m used in Section 4 can be
reduced by 2-5×, resulting in a direct speedup while only reducing the predictive power of COAR attributions by a small
amount.

Data loading. We use the FFCV library6 (Leclerc et al., 2022) to train and evaluate models. FFCV removes the data
loading bottleneck for small models, gives a 3-4× improvement in throughput compared to standard PyTorch data loading.

*Speeding up regression. The second step of COAR—fitting component attributions to the component dataset (2)—requires
solving a linear regression problem (Equation 3) for each example z. We parallelize this step by using the fast-l1
package7, a SAGA-based GPU solver for linear regression.

Computing resources. We train our models and compute COAR attributions on a cluster of machines, each with 9
NVIDIA A100 or V100 GPUs and 96 CPU cores. We also use half-precision to increase training speed.

6Github repository: https://github.com/libffcv/ffcv
7Github repository: https://github.com/MadryLab/fast_l1

25

https://github.com/libffcv/ffcv
https://github.com/MadryLab/fast_l1

Decomposing and Editing Predictions by Modeling Model Computation

F. Applying COAR to language models
In Section 4 and Appendix G, we showed that our proposed method COAR attributions accurately estimate component
counterfactuals (1) on large-scale vision tasks across several datasets and model architectures. In this section, we apply
COAR to language models. Specifically, we consider two experiments: (a) GPT-2 (Radford et al., 2019) evaluated on the
next-token prediction task and (b) Phi-2 (Li et al., 2023b) evaluated on a zero-shot classification task. In both cases, we
show that COAR attributions accurately predict how model outputs change in response to component ablations.

F.1. Evaluating GPT-2 on the TinyStories dataset

Task and model output function. We apply COAR to the next-token prediction task. Following Park et al. (2023), we
interpret this task as a sequence as a v-way classification problem, where v is the vocabulary size, and set the model output
function to be the average correct-class margin (5) over all tokens in a given sequence.

Model and dataset. In this experiment, we consider the GPT-2 model8 (Radford et al., 2019), with a computation graph
over 64, 512 components. These components correspond to the set of weight vectors in every self-attention module and
feed-forward module in the model. We evaluate model performance on the next-token prediction task using the TinyStories
dataset9 (Eldan & Li, 2023), where each sequence corresponds to a synthetically generated short story.

Computing COAR attributions. We apply COAR (without any modifications) to compute component attributions for
a random subset of 1000 examples in the TinyStories validation set using a component dataset of 200, 000 component
counterfactuals (2) and a ablation fraction of α = 2.5%.

Evaluating COAR attributions. Similar to the results in Section 4, COAR attributions are predictive in the language
modeling setting as well. Specifically, these attributions accurately predict the effect of ablating components on the average
correct-class margin of GPT-2 on examples from the TinyStories validation set. In Figure 9a, we pick a random example z
from the TinyStories validation set and compute the correlation between ground-truth component counterfactuals fM (z, ·)
and the corresponding estimate (4) using its COAR attributions θ(z), as defined in Equation 6. In Figure 9b, we plot a
histogram over example-level correlations of 1000 examples and find that COAR attributions attain an average correlation
of {0.83, 0.85, 0.89} with ground-truth component counterfactuals sampled using ablation fraction α = {5%, 2.5%, 1%}
respectively.

F.2. Evaluating Phi-2 on the BoolQ dataset

Task and model output function. We now turn to a reading comprehension task, where the goal is to answer a question
given a passage of text. We evaluate this classification task in a zero-shot manner: the language model is prompted with a
passage of text and a question, and the goal is to output the correct answer from {yes, no}. Like in vision tasks (Section 4),
we use the correct-class margin (5) as the model output function for this zero-shot binary classification task.

Model and dataset. We consider the Phi-2 model10 (Li et al., 2023b) and specify a computation graph over 55, 552
components. Here, each component corresponds to a contiguous block of 10 weight vectors in the model. We evaluate
this model on the BoolQ dataset11 (Clark et al., 2019), where each example consists of a passage of text, a question, and
a binary {yes, no} answer. Using the prompting and evaluation procedure from the Gao et al. (2023)12, Phi-2 attains an
83.6% accuracy on this task.

Computing COAR attributions. Like in Appendix F.1, we apply compute COAR attributions for a random subset of 500
examples in the BoolQ validation set using a component dataset of m = 100, 000 component counterfactuals (2) and a
ablation fraction of α = 0.025.

Evaluating COAR. We find that COAR attributions are predictive of unseen component counterfactuals on this task as well.
Figure 10a plots the correlation between ground-truth component counterfactuals fM (z, ·) and the corresponding COAR
estimate (4) of a random BoolQ example z. The histograms in Figure 10b show that COAR attributions attain correlation
{0.58, 0.66, 0.66} with component counterfactuals sampled using ablation fraction α = {5%, 2.5%, 1%} respectively.

8https://huggingface.co/gpt2
9https://huggingface.co/datasets/roneneldan/TinyStories

10https://huggingface.co/microsoft/phi-2
11https://huggingface.co/datasets/google/boolq
12https://github.com/EleutherAI/lm-evaluation-harness

26

https://huggingface.co/gpt2
https://huggingface.co/datasets/roneneldan/TinyStories
https://huggingface.co/microsoft/phi-2
https://huggingface.co/datasets/google/boolq
https://github.com/EleutherAI/lm-evaluation-harness

Decomposing and Editing Predictions by Modeling Model Computation

6 5 4 3 2 1 0 1
Ground-truth model output (avg margin over tokens)

6

4

2

0

Es
tim

at
ed

 m
od

el
 o

ut
pu

t v
ia

 C
oa

r
Once upon a time, there was a 3 year old boy named...

Correlation: 0.85

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Model output correlation

0

20

40

60

80

100

120

Co
un

t

Average correlation
Subsampling fraction and avg correlation

0.050 (0.83)
0.025 (0.85)
0.010 (0.89)

Attributing GPT-2 on TinyStories | Next-token prediction task

Figure 9: Evaluating COAR on GPT-2. We apply COAR to the GPT-2 model (Radford et al., 2019) on the TinyStories
dataset (Eldan & Li, 2023). The resulting component attributions are predictive of component counterfactuals. The left
plot shows that component attributions can estimate the effect of ablating components on the average correct-class margin
(over tokens in a sequence) of GPT-2 on a random TinyStories example with high correlation. The histograms in the right
plot show that COAR attributions attain high average correlation for multiple values of ablation fraction α.

2 1 0 1 2 3
Ground-truth model output (correct-class margin)

2

1

0

1

2

3

Es
tim

at
ed

 m
od

el
 o

ut
pu

t v
ia

 C
oa

r

will there be a season 5 of steven universe?

Correlation: 0.67

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Model output correlation

0

10

20

30

40

50

60

70

Co
un

t

Average correlation
Subsampling fraction and avg correlation

0.050 (0.58)
0.025 (0.66)
0.010 (0.66)

Attributing Phi-2 on BoolQ | Zero-shot classification

Figure 10: Evaluating COAR on Phi-2. We apply COAR to the Phi-2 model (Javaheripi & Bubeck, 2023) on the BoolQ
dataset (Clark et al., 2019). The resulting component attributions are predictive of component counterfactuals. The left
plot shows that component attributions can estimate the effect of ablating components on the average correct-class margin
of Phi-2 on a random BoolQ example with high correlation. The histograms in the right plot show that COAR attributions
attain high average correlation for multiple values of ablation fraction α.

27

Decomposing and Editing Predictions by Modeling Model Computation

G. Additional evaluation of COAR

In this section, we first show that COAR learns accurate component attributions on additional datasets, model architectures,
and tasks (Appendices G.1 to G.3). This supplements our findings in Section 4, where we showed that COAR learns
component attributions that accurately predict component counterfactuals (1) on three image classification setups: CIFAR-
10 ResNet-18, ImageNet ResNet-50, and ImageNet ViT-B/16. Then, we show that COAR attributions retain its predictive
power when estimated with fewer samples (Appendix G.5) or with different ablation fractions (Appendix G.4). Finally, we
supplement our example-level evaluation of COAR attributions in Section 4 with additional example-level comparisons of
ground-truth component counterfactuals and attribution-based estimates (Appendix G.6).

G.1. Evaluating COAR on additional datasets

Our experiments in Section 4 evaluated the predictiveness of COAR attributions corresponding to in-distribution test ex-
amples from the CIFAR-10 and ImageNet datasets. Now, we show that COAR attributions remain predictive on training
examples as well as out-of-distribution examples. Specifically, we apply COAR to compute attributions of ResNet-18 pre-
dictions on the CIFAR-10 training set and on six corrupted versions of the CIFAR-10 test set (Hendrycks & Dietterich,
2019). as shown in Figure 11, COAR attributions exhibit high correlation on average (between 0.6 and 0.8) depending on
the ablation fraction α used to ablate random α-fraction sized components subsets. Note that the correlation is maximum
when α = 0.05 because the component attributins are estimated with the same ablation fraction, i.e., αtrain = 0.05.

G.2. Evaluating COAR on additional model architectures

Recall that COAR is model-agnostic in that it is not tied to any specific model architecture. In Section 4, we applied COAR
to ResNets trained on CIFAR-10 and ImageNet and a ViT-B/16 model trained on ImageNet. In this section, we apply
COAR to two additional model architectures: a ViT model trained on CIFAR-10 (83% accuracy) and a one-layer fully-
connected network trained on CIFAR-10 (56% accuracy). Figure 12 shows that COAR attributions on both architectures
yield accurate estimates of how model outputs change in response to ablating random α-fraction sized components subsets,
with correlation 0.65 and 0.85 for the ViT and MLP models when α = αtrain respectively.

G.3. Evaluating COAR on additional tasks

We now evaluate COAR attributions on four additional tasks:

• First, we apply COAR to pre-trained ImageNet ResNet50 model fine-tuned on two datasets—Waterbirds and CelebA—
that we use in Section 5.2—see first row of Figure 13. We find that COAR attributions are predictive on both datasets,
attaining higher correlation with ground-truth component counterfactuals when α is closer to αtrain = 0.05.

• Second, we apply COAR to a pre-trained ImageNet ResNet50 model fine-tuned on MIMIC-CXR (Johnson et al., 2019), a
dataset of labeled chest radiographs. In this case, we set the model output function to be the logit of the “Cardiomegaly”
class instead of correct-class margin that we use in Section 4. Figure 13 shows that COAR attributions attain a correlation
of 0.7 and 0.6 with ground-truth logits when α = αtrain = 0.05 and α = 0.10 respectively.

• The fourth plot in Figure 13 corresponds to the CLIP setting considered in Section 5. In this setting, we take the zero-shot
CLIP ViT-B/16 classifier and evaluate it on a dataset of images with and without typographic attacks (Materzyńska et al.,
2022). As shown in the plot, the correlation between COAR attributions and ground-truth margins is close to 0.7 when
α = αtrain = 0.03, i.e., ablating 3% of the components in the CLIP model.

G.4. Comparing COAR attributions estimated with different ablation fractions

We now analyze how changing the ablation fraction αtrain used to fit COAR attributions affects their predictiveness over
different ablation fractions at test time. Specifically, we consider the ImageNet ResNet-50 setting from Section 4 and
compute two sets of COAR attributions, corresponding to two values of αtrain: 0.05 and 0.10. Then, for each of these
two sets of attributions, we evaluate its correlation with ground-truth component counterfactuals over a range of ablation
fractions α. As shown in Figure 14, the correlation “profile” over α depends on the value of αtrain used to fit the attributions.
When α is small, the correlation is higher for attributions estimated with αtrain = 0.05. Analogously, when α is large, the
correlation is higher for attributions estimated with αtrain = 0.10. This is because the component attributions fare better

28

Decomposing and Editing Predictions by Modeling Model Computation

as counterfactual predictors on component counterfactuals that are “similar” to the ones used to fit them—i.e., when
αtest ≈ αtrain.

G.5. Comparing COAR attributions estimated with different sample sizes

In Section 4, we computed COAR attributions using sample sizes m = 50000 for the ResNet-18 model trained on CIFAR-
10 and m = 100000 for the ResNet-50 model trained on ImageNet. Recall that the sample size m here corresponds to
the number of component counterfactuals used to fit the component attributions. In this section, we vary the sample size
m and show that COAR attributions remain predictive even when trained on k× fewer examples, where k ∈ {2, 5, 10}.
Specifically, the left column of Figure 15 shows that COAR attributions estimated on CIFAR-10 and ImageNet data with
sample size m and m/k have high cosine similarity on average, with the similarity increasing as k decreases. The right
column of Figure 15 shows that decreasing the sample size m by a factor of k ∈ {2, 5, 10} does not significantly impact
the correlation between COAR attributions and ground-truth component counterfactuals. For example, reducing the sample
size by 5× only reduces the correlation from 0.7 to 0.65 in the CIFAR-10 ResNet-18 setting. Additionally, we observe
that COAR attributions fare better than attributions estimated with the best-performing baseline (LOO) even when trained
on 10× fewer examples on CIFAR-10 and 5× fewer examples on ImageNet.

G.6. Analyzing COAR attributions at the example level

To supplement our evaluation in Section 4, we provide additional example-level scatterplot comparisons between ground-
truth component counterfactuals and the corresponding estimates obtained using component attributions estimated with
COAR and all baselines from Section 4. We plot these comparisons on CIFAR-10 examples in Figure 16 and on ImageNet
examples in Figure 17. Our findings further substantiate that COAR attributions exhibit higher correlation with ground-truth
component counterfactuals than all four baseliens on both CIFAR-10 and ImageNet.

G.7. Qualitatively analyzing COAR attributions

We qualitatively analyze COAR attributions using two visualization techniques:

Visualizing component-specific attributions across examples. Given examples {z1, . . . , zn} with corresponding compo-
nent attributions {θ(z1), . . . , θ(zn)}, we analyze how the attribution estimates of individual components vary across the set
of examples. Specifically, for a component ci ∈ C, we visualize the examples with the most positive attribution values θ(z)i

for component ci. In this experiment, we visualize a random subset of components from the ImageNet ResNet-50 model
(setup B in Section 4). As shown in Figure 18, the examples with the most positive attributions for a given component
exhibit high visual similarity at different levels of granularity:

• The first, third and fifth row in Figure 18 show that the examples with the most positive attributions for
layer4.0.conv3[477] and layer4.2.conv3[53] contain purple flowers, watch faces, and glass-shaped ob-
jects respectively.

• However, consistent with recent work on superposition in deep networks (Elhage et al., 2022), we observe that some
components such as layer4.2.conv2[336] in the second row as well as layer3.1.conv3[655] in the last
row can surface dissimilar subsets of examples and do not readily map to a single semantic concept.

Visualizing nearest neighbors in attribution space. We also use component attributions as feature embeddings in order
to visualize the nearest neighbors of a given example in “component attribution” space. Intuitively, this technique allows
us to identify examples on which model outputs change similarly in response to component ablations. In this experiment,
we visualize a random subset of examples from the CelebA dataset along with their 5 nearest neighbors using COAR
attributions of a fine-tuned ImageNet ResNet-50 model. Figure 19 shows that the nearest neighbors of a given example in
attribution space high visual similarity, i.e., similar facial attributes such as background (first row), hair color (second and
fourth row), accessories (third row), or even the same person in different poses (last row).

29

Decomposing and Editing Predictions by Modeling Model Computation

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Dataset = Train

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Dataset = Test

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Dataset = Brightness corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Dataset = Gaussian Blur corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Dataset = Gaussian Noise corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Dataset = Snow corruption

Figure 11: Do COAR attributions generalize to out-of-distribution examples? COAR attributions remain predictive on
the CIFAR-10 training set and on six corrupted versions of the CIFAR-10 test set (Hendrycks & Dietterich, 2019) over a
range of ablation fractions α. See Appendix G.1 for more details.

0.05 0.1* 0.15 0.2
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Evaluating Coar on a CIFAR-10 ViT

0.1 0.25 0.5* 0.8
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Evaluating Coar on a CIFAR-10 MLP

Figure 12: Do COAR attributions generalize to other model architectures? COAR attributions yield accurate estimates
of component counterfactuals on two additional model architectures: a ViT-based model (left) and a one-layer fully-
connected network (right) trained on CIFAR-10. See Appendix G.2 for more details.

30

Decomposing and Editing Predictions by Modeling Model Computation

0.01 0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on Waterbirds

0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on CelebA

0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on MIMIC-CXR
 ("Cardiomegaly" logit as model output)

0.01 0.03 0.05* 0.1
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

Zero-shot CLIP ViT-B/16 classifier evaluated
 on images with typographic attacks

Figure 13: Evaluating COAR attributions on additional tasks. We find that component attributions estimated using
COAR are predictive on four additional tasks: fine-tuning ImageNet ResNet50 on Waterbirds, CelebA and MIMIC-CXR,
and a zero-shot CLIP ViT-B/16 classification task on a dataset containing typographic attacks (Section 5.3). Note that
the MIMIC-CXR setting uses the logit of the “Cardiomegaly” class as the model output function. See Appendix G.3 for
additional information about these tasks.

31

Decomposing and Editing Predictions by Modeling Model Computation

0.3 0.2 0.1 0.05 0.03 0.01
Subsampling fraction used at evaluation time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Effect of train-time subsampling fraction
 on model output correlation

Train-time subsampling fraction
= 0.10 = 0.05

Figure 14: Comparing COAR attributions estimated with different ablation fractions α. COAR attributions estimated
with different ablation fractions αtrain attain a different correlation “profile” over α at test time. The correlation between
ground-truth component counterfactuals and attribution-based estimates is higher for attributions estimated with αtrain =
0.05 when α is small, and higher for attributions estimated with αtrain = 0.10 when α is large. This empirically shows that
COAR attributions are more predictive on component counterfactuals that are “similar” to the ones used to fit them—i.e.,
when αtest ≈ αtrain. See Appendix G.4 for more details.

32

Decomposing and Editing Predictions by Modeling Model Computation

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Cosine similarity with attributions trained with 50000 samples

0

10000

20000

30000

40000

50000

Co
un

t

Comparing CIFAR-10 attributions
 estimated with different sample sizes

Sample size m
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

5000 10000 25000 50000
Sample size used to compute attributions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Evaluating CIFAR-10 attributions estimated with
 different sample sizes (ablation fraction 0.1)

Best baseline (LOO): 0.52

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine similarity with attributions trained with 100000 samples

0

10000

20000

30000

40000

Co
un

t

Comparing ImageNet attributions
 estimated with different sample sizes

Sample size m
10000
20000
30000
40000
50000
60000
70000
80000
90000

10000 20000 50000 100000
Sample size used to compute attributions

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Evaluating ImageNet attributions estimated with
 different sample sizes (ablation fraction 0.05)

Best baseline (LOO): 0.34

Figure 15: Comparing COAR attributions estimated with different sample sizes. COAR attributions for CIFAR-10
ResNet-18 and ImageNet ResNet-50 (Setup A and B respectively in Section 4) estimated with smaller sample sizes m are
still predictive of component counterfactuals. On the left, we show that COAR attributions estimated with sample size m
and m/k have high cosine similarity on average, with the similarity increasing as k decreases. On the right, we show that
decreasing the sample size m by a factor of k ∈ {2, 5, 10} does not significantly affect the correlation between COAR
attributions and ground-truth component counterfactuals. In particular, COAR outperforms the best-performing baseline
(LOO) even with 10× fewer samples on CIFAR-10 (top row) and 5× fewer samples on ImageNet (bottom row).

33

Decomposing and Editing Predictions by Modeling Model Computation

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #6820
Corr. 0.80

2 0 2
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Leave-one-out | #6820
Corr. 0.56

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #6820
Corr. 0.35

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #6820
Corr. 0.29

0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #6820
Corr. 0.01

2.5 0.0 2.5
Ground-truth margin

3
2
1
0
1
2

Co
ar

 e
st

im
at

e

Coar | #8458
Corr. 0.81

2.5 0.0 2.5
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #8458
Corr. 0.69

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #8458
Corr. 0.33

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #8458
Corr. 0.05

2.5 0.0 2.5
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #8458
Corr. 0.13

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4756
Corr. 0.78

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4756
Corr. 0.56

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4756
Corr. 0.28

2 0 2
Ground-truth margin

3

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4756
Corr. -0.06

2 0 2
Ground-truth margin

2

1

0

1

2

3

Co
ar

 e
st

im
at

e

Int. Infl. | #4756
Corr. 0.15

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4518
Corr. 0.82

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4518
Corr. 0.65

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4518
Corr. 0.25

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4518
Corr. 0.21

2.5 0.0 2.5
Ground-truth margin

3

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4518
Corr. 0.09

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #7168
Corr. 0.78

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #7168
Corr. 0.71

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #7168
Corr. 0.40

2 0
Ground-truth margin

3
2
1
0
1
2

Co
ar

 e
st

im
at

e

Neuron cond. | #7168
Corr. 0.03

2 0 2
Ground-truth margin

2

1

0

1

2

3

Co
ar

 e
st

im
at

e

Int. Infl. | #7168
Corr. -0.00

Example-level evaluation of component attributions | CIFAR-10 ResNet-18

Figure 16: Additional example-level evaluation of component attributions on CIFAR-10. Each row corresponds to a
different example z randomly picked from the CIFAR-10 test set and each column corresponds to a different attribution
method. The left-most subfigure in each row shows that COAR attributions and the corresponding ground-truth component
counterfactuals exhibit high correlation on example z. In comparison, the other subfigures in each row, one for baseline
method, consistently exhibit lower correlation. See Appendix G.5 for more details.

34

Decomposing and Editing Predictions by Modeling Model Computation

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4838
Corr. 0.70

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4838
Corr. 0.47

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4838
Corr. 0.41

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4838
Corr. 0.02

0 5
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4838
Corr. -0.00

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #9960
Corr. 0.73

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #9960
Corr. 0.59

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #9960
Corr. 0.34

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #9960
Corr. 0.08

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #9960
Corr. -0.01

5 0
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Coar | #8630
Corr. 0.67

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #8630
Corr. 0.39

2.5 0.0
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Grad-times-param | #8630
Corr. 0.20

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #8630
Corr. -0.06

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #8630
Corr. -0.02

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #9788
Corr. 0.77

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #9788
Corr. 0.61

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #9788
Corr. 0.50

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #9788
Corr. 0.01

2.5 0.0 2.5
Ground-truth margin

2

0

2
Co

ar
 e

st
im

at
e

Int. Infl. | #9788
Corr. 0.04

2.5 0.0 2.5
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4871
Corr. 0.66

2 0 2
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Leave-one-out | #4871
Corr. 0.28

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4871
Corr. 0.22

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4871
Corr. 0.01

5 0
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4871
Corr. 0.03

Example-level evaluation of component attributions | ImageNet ResNet-50

Figure 17: Additional example-level evaluation of component attributions on ImageNet. Similar to the results in Fig-
ure 16, each row corresponds to a different example z randomly picked from the ImageNet test set. The left-most subfigure
in each row shows that COAR attributions and the corresponding ground-truth component counterfactuals exhibit high cor-
relation on example z. In comparison, the other subfigures in each row, corresponding to a baseline method, consistently
exhibit worse correlation. See Appendix G.5 for more details.

35

Decomposing and Editing Predictions by Modeling Model Computation
la
ye

r4
.0
.c
on

v3
[4
77

] 0.019 0.018 0.018 0.018 0.017 0.017 0.017

la
ye

r4
.2
.c
on

v2
[3
36

] 0.025 0.023 0.023 0.022 0.021 0.021 0.017

la
ye

r4
.2
.c
on

v3
[5
3] 0.025 0.023 0.022 0.021 0.021 0.021 0.021

la
ye

r3
.5
.c
on

v2
[4
4] 0.042 0.04 0.033 0.029 0.026 0.024 0.023

la
ye

r4
.0
.c
on

v3
[1
16

5] 0.038 0.032 0.03 0.027 0.025 0.025 0.023

la
ye

r3
.1
.c
on

v3
[6
55

] 0.041 0.034 0.028 0.028 0.027 0.027 0.027

Figure 18: Visualizing component-specific attributions across examples. We sample a random set of components from
the ImageNet ResNet-50 model (setup B in Section 4) and visualize the examples with the most positive attributions for
each component. In general, the examples with the most positive attributions for a given component exhibit visual sim-
ilarity at different levels of granularity. For example, the first, third and fifth row in Figure 18 show that the examples
with the most positive attributions for layer4.0.conv3[477] and layer4.2.conv3[53] contain purple flow-
ers, watch faces, and glass-shaped objects respectively. However, consistent with recent work on superposition in deep
networks (Elhage et al., 2022), we observe that some components such as layer4.2.conv2[336] (second row) and
layer3.1.conv3[655] (last row) can surface dissimilar subsets of examples or do not readily map to a single seman-
tic concept.

36

Decomposing and Editing Predictions by Modeling Model Computation

Query Neighbor #1 Neighbor #2 Neighbor #3 Neighbor #4 Neighbor #5

Figure 19: Visualizing nearest neighbors in COAR attribution space. We also use component attributions as feature
embeddings in order to visualize the five nearest neighbors of examples from the CelebA dataset in “component attribution”
space. Intuitively, this technique allows us to identify examples on which model outputs change similarly in response to
component ablations. In general, we observe that the nearest neighbors of a given example in attribution space high visual
similarity, e.g, similar facial attributes such as background (first row), hair color (second and fourth row), accessories (third
row), or even the same person in different poses (last row).

37

Decomposing and Editing Predictions by Modeling Model Computation

H. Additional evaluation of COAR-EDIT

We use COAR-EDIT in five different editing tasks: correcting misclassifications (§5.1); forgetting a class (§D.1); improving
subpopulation robustness (§5.2); localizing backdoor attacks (§D.2); and improving robustness to typographic attacks
(§5.3). In this section, we provide additional details and/or supplementary experiments for each task.

H.1. Editing individual predictions

Experiment details. In Section 5.1, we use COAR-EDIT to correct misclassifications of a ResNet-50 model on ImageNet
examples. In this experiment, we set the “target” example to be a misclassified ImageNet example and the “reference”
example to a set of 50 randomly selected ImageNet examples. Then, we use these examples to identify and ablate com-
ponents (9) that increase the correct-class margin (5) of the target example without impacting the average margin over the
reference examples.

Additional experiments. We first show that COAR-EDIT is not sensitive to the choice of misclassified examples, model,
or dataset. In Figure 21, we reproduce the experiment in Section 5.1 on additional ImageNet examples misclassified by
a ResNet-50 model. In Figure 20, we use COAR-EDIT to similarly fix misclassifications of a ResNet-18 model on the
CIFAR-10 dataset. In Figure 22, we show that COAR-EDIT can also be used to adversarially induce misclassifications
on ImageNet examples by ablating the top-k components corresponding to the “target” example. Similar to our findings
in Section 5.1, we observe that ablating a few components via COAR-EDIT is sufficient to change the individual example-
level prediction without changing overall model performance.

Additional analysis. Which components does COAR-EDIT ablate to correct misclassifications? To answer this question,
we first aggregate all components ablated by COAR-EDIT in order to (individually) correct ImageNet examples misclassi-
fied by a ResNet-50 model. Then, we plot the most common convolution layers corresponding to these ablated components
in Figure 23. We find that COAR-EDIT primarily targets convolution filters from the last few layers (closet to the output)
of the ResNet-50 model in order to make fine-grained edits that do not impact overall model performance. For example,
more than 25% of the ablated components belong to layer4.{0,1,2}.conv3—the last convolution layer in the first
three residual blocks of the last layer group of the ResNet-50 model.

H.2. Forgetting a class

*Experiment details. In Appendix D.1, we use COAR-EDIT to selectively forget a class of a ResNet-50 model on ImageNet.
In this experiment, we set the “target” examples to be set of 10 examples from the class to be forgotten and the “reference”
examples to be a set of 50 randomly selected ImageNet examples. Using these examples, we use COAR-EDIT to ablate
components (9) that decrease the average correct-class margin (5) of the target examples without impacting the average
margin over the reference examples.

*Additional experiments We show that COAR-EDIT can be used to selectively forget additional ImageNet classes. Specif-
ically, in Figure 24, we reproduce the COAR-EDIT experiment in Appendix D.1 on three additional ImageNet classes:
“folding chair”, “military uniform”, and “revolver”. Like in Figure 6, we again observe that COAR-EDIT can specifically
degrade the accuracy on the target class without impacting the average accuracy over the train or test set by ablating a few
components (convolution filters) in the ResNet-50 model.

H.3. Improving subpopulation robustness.

*Experiment details. In Section 5.2, we use COAR-EDIT to improve subpopulation robustness of models trained on two
benchmark datasets: Waterbirds and CelebA. In both cases, we fine-tune a ResNet-50 model via standard “empirical risk
minimization” using SGD hyperparameters taken from Sagawa et al. (2020). The resulting fine-tuned models attain 64%
and 47% worst-subpopulation accuracy on the Waterbirds and CelebA test sets, respectively. To improve subpopulation
robustness on Waterbirds, we set the “target” examples to a set of 10 random training examples from the “waterbirds on
land” (the worst-performing subpopulation) and the “reference” examples to be 10 random examples from other subpop-
ulations. Analogously, for CelebA, we set the “target” examples to the set of 20 random examples from the “blond male”
worst-performing subpopulation and the “reference” examples to 20 random examples from other subpopulations. Then,
we use COAR-EDIT to identify components that, when ablated, increase the average correct-class margin (5) of the target
examples without impacting the average margin over the reference examples. In both cases, the number of components to
ablate is a hyperparameter that we select by tracking the worst-subpopulation accuracy on a validation set.

38

Decomposing and Editing Predictions by Modeling Model Computation

H.4. Mitigating backdoor attacks.

Experiment details. We now describe the experiment setup in Appendix D.2, where we used COAR-EDIT to mitigate the
effect of a backdoor attack on a ResNet-18 model trained on a backdoored CIFAR-10 dataset. The CIFAR-10 dataset is
modified by adding a small blue-squared trigger to the upper left corner of 50% of examples in the “airplane” class. Training
a model with standard SGD hyperparameter on this dataset causes the model to spuriously associate the trigger with the
“airplane” class, leading to a backdoor attack. That is, while the resulting model attains 89% test accuracy, applying the
attack to examples in the test set causes the model to misclassify them as “airplanes”, resulting in 37% accuracy on test
examples with the trigger. To mitigate the effect of the backdoor attack, we first sample ten examples from the training
set. Then, we set the “target” examples to these two examples with the trigger and the “reference” examples to these two
examples without the trigger. Then, we use COAR-EDIT to ablate components (9) that increase the correct-class margin
(5) of the target examples without impacting the average margin over the reference examples.

Additional analysis. Recall that our experiment in Appendix D.2 shows that COAR-EDIT can significantly mitigate the
effect of a backdoor attack on a ResNet-18 model by ablating a few backdoor-specific components. We now qualitatively
analyze the components ablated via COAR-EDIT to mitigate the effect of a backdoor attack in Figure 25. Specifically,
we visualize the ablated components (convolution filters in this case) using the input-times-gradient saliency map method
from the Captum library (Kokhlikyan et al., 2020). As shown in Figure 25, these visualizations suggest that the ablated
components are sensitive to the blue-squared trigger.

H.5. Improving robustness to typographic attacks.

Experiment details. In Section 5.3 and Figure 5 in particular, we show that COAR-EDIT can be used to improve robustness
of zero-shot CLIP classifiers to typographic attacks. In this experiment, we consider a zero-shot CLIP ViT-B/16 classi-
fier (Radford et al., 2021) and specify a computation graph over 82, 944 components, where each component corresponds
to a weight vector in the ViT (across all layers). We evaluate the robustness of this model in a zero-shot setting on 180 im-
ages and four real-world typographic attacks—“taxi”, “twitter”, “EU”, and “iPad”—taken from the dataset in (Materzyńska
et al., 2022). We also consider synthetic typographic attacks, where we render a blob of text on a white background and
place it in the center of a given image. The zero-shot performance of the CLIP model drops from 95% to 51% and 54% on
the real and synthetic typographic attacks, respectively. To improve robustness, we set the “target” examples to be the 25
examples with a randomly picked synthetic attack and the “reference” examples to the same set of examples without any
attack. Then, we use COAR-EDIT to ablate components (9) that increase the average correct-class margin (5) of the target
examples without impacting the average margin over the reference examples. We use a validation set comprising examples
with and without the synthetic attack to select the number of components to ablate from the model.

39

Decomposing and Editing Predictions by Modeling Model Computation

Figure 20: Correcting misclassified CIFAR-10 examples via COAR-EDIT. We reproduce the COAR-EDIT experiment
from Section 5.1 on the CIFAR-10 dataset. Specifically, each row corresponds to CIFAR-10 test example that is misclas-
sified by a ResNet-18 model. The left subplot in each row shows how applying COAR-EDIT (by ablating components (9))
increases the correct-class margin (5) of the misclassified example without impacting the average margin over the train or
test set. The right subplot reports the drop in overall test accuracy and visualizes examples with correct-class margins that
change the most or least due to the edit.

40

Decomposing and Editing Predictions by Modeling Model Computation

Figure 21: Correcting misclassified ImageNet examples via COAR-EDIT. We reproduce the COAR-EDIT experiment
from Section 5.1 on additional ImageNet examples (one per row) misclassified by a ResNet-50 model. The left subplot
shows that applying COAR-EDIT (by ablating components (9)) increases the correct-class margin (5) of the misclassified
example without impacting the average margin over the train or test set. (Right) The right subplot visualizes examples with
margins that change the most or least due to the edit.

41

Decomposing and Editing Predictions by Modeling Model Computation

Figure 22: Adversarially inducing misclassifications on ImageNet examples via COAR-EDIT. Each row corresponds
to an ImageNet test example that is correctly classified by a ResNet-50 model. In the left subplot of each row, we show
that applying COAR-EDIT (by ablating the top-k components (9)) decreases the correct-class margin (5) of the correctly
classified example without impacting the average margin over the train or test set. On the right, we shw that the edit does
not impact visually dissimilar examples, but does increase or decrease the correct-class margin of examples containing
visually similar objects, e.g., tennis balls in the second row.

42

Decomposing and Editing Predictions by Modeling Model Computation

0 2 4 6 8 10 12
Percent of ablated components from the given layer

layer4.0.conv3
layer4.1.conv3
layer4.2.conv3
layer4.2.conv1
layer4.0.conv1
layer4.0.conv2
layer3.0.conv3
layer4.2.conv2
layer4.1.conv2
layer4.1.conv1
layer3.1.conv3
layer3.2.conv3
layer3.3.conv3
layer3.4.conv3
layer3.5.conv3
layer3.0.conv1
layer3.5.conv1
layer3.5.conv2
layer3.0.conv2
layer2.0.conv3
layer2.1.conv3
layer3.4.conv1
layer3.4.conv2
layer3.1.conv2
layer3.2.conv2
layer3.3.conv2
layer3.3.conv1
layer2.2.conv3
layer3.1.conv1
layer2.3.conv3

Co
nv

ol
ut

io
n

La
ye

r i
n

Im
ag

eN
et

 R
es

Ne
t5

0
m

od
el

Layers from which Coar-Edit ablates
 components in order to fix model errors

Percent
2
4
6
8
10

Figure 23: Which components does COAR-EDIT target to fix model errors? We analyze the specific convolution layers
from which COAR-EDIT ablates components (convolution filters) to correct ImageNet examples misclassified by a ResNet-
50 model. On the y-axis, we plot the 30 most common convolution layers corresponding to the ablated components. On
the x-axis, we plot the percentage of ablated components that belong to each convolution layer. We find that COAR-EDIT
primarily targets convolution filters from the last few layers (closet to the output) of the ResNet-50 model in order to make
fine-grained edits that do not impact overall model performance. For example, more than 25% of the ablated components
belong to layer4.{0,1,2}.conv3—the last convolution layer in the first three residual blocks of the last layer group
of the ResNet-50 model.

43

Decomposing and Editing Predictions by Modeling Model Computation

0 2 4 6 8 10 12 14
Number of model components ablated

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "folding chair"

Train set
Val set
Class "folding chair"

0 2 4 6 8 10 12 14
Number of model components ablated

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "military uniform"

Train set
Val set
Class "military uniform"

0 2 4 6 8 10 12 14
Number of model components ablated

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "chain-link fence"

Train set
Val set
Class "chain-link fence"

0 2 4 6 8 10 12 14
Number of model components ablated

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Class: "revolver"

Train set
Val set
Class "revolver"

Forgetting ImageNet classes via Coar-Edit

Figure 24: Forgetting ImageNet classes via COAR-EDIT. We reproduce the COAR-EDIT experiment from Appendix D.1
on additional ImageNet classes (one per subplot). Specifically, in each subplot, we find that ablating 15 of 22, 720 convo-
lution filters (identified via COAR-EDIT) suffices to significantly degrade the accuracy of a ResNet-50 model on a specific
class (in green). This edit is targeted in that it does not impact the average accuracy over the train set (in blue) or test set
(in orange).

44

Decomposing and Editing Predictions by Modeling Model Computation

CIFAR-10 examples with backdoor patch

(1) block2.conv1:120

(2) block1.conv2:134

(3) block3.conv1:98

(4) block1.conv1:99

(5) block2.conv2:118

(6) block2.conv1:177

(7) block1.conv2:33

(8) block2.conv2:31

Figure 25: Visualizing components ablated via COAR-EDIT to mitigate a backdoor attack. Recall that in Ap-
pendix D.2, we used COAR-EDIT to mitigate the effect of a backdoor attack (a blue-squared spurious trigger) on a ResNet-
18 model trained on a backdoored CIFAR-10 dataset. Here, we visualize the components ablated via COAR-EDIT to
reduce the model’s reliance on this spurious feature. The first row shows a set of random examples from the modified
CIFAR-10 test set that contain the trigger. Each subsequent row corresponds to an ablated component—a convolution filter
of the ResNet-18 model in this case. In each of these rows, we use the input-times-gradient saliency map method from the
Captum library (Kokhlikyan et al., 2020) to (qualitatively) highlight parts of the examples that are most “important” for the
ablated component’s output. These maps suggest that all ablated components are sensitive to the blue-squared trigger.

45

Decomposing and Editing Predictions by Modeling Model Computation

I. Analyzing design choices in COAR

In this section, we analyze three design choices in COAR: (a) the train-time ablation fraction α used to sample a subset of
components C ′ ⊂ C of size α|C|, (b) the ablation method (Remark 2) used to intervene on the sampled components C ′,
and (c) the specific model output function used to compute component counterfactuals fM (·, C ′) (1), i.e., model output
fM (·) after ablating the component subset C ′.

I.1. Effect of ablation fraction

The first step of COAR—constructing a component dataset (Equation 2)—requires choosing a ablation fraction α ∈ (0, 1).
This hyperparameter determines the size of the random α-fraction subsets C ′ ⊂ C used to compute component counterfac-
tuals. A priori, however, it is not clear which ablation fraction α is best suited for learning accurate component attributions.
For example, ablating too large a component subset (large α) can induce a significant drop in model performance to a point
where the ablated model is no longer representative of the original model.

*Effect of train-time ablation fraction αtrain We use two metrics to quantify the effect of ablation fraction α on model
outputs:

• Change in model performance. We measure the effect of ablating random α-fraction subsets C ′ ⊂ C of components
on model performance, e.g., test accuracy.

• Correlation between example-level model outputs. We measure the correlation between model outputs before and
after ablation, e.g., logits or margins.

We use these (heuristic) metrics to ensure that the ablations are not too severe to nullify model performance and that the
outputs of the ablated models are still predictive of the outputs of the original model.

*Effect of train-time ablation fraction αtrain. Figure 26 evaluates how varying the train-time ablation fraction αtrain changes
both metrics—model performance and correlation between model outputs—for all three settings considered in Section 4:
CIFAR-10 ResNet-18, ImageNet ResNet-50, and ImageNet ViT-B/16. In all three settings, we find that model accuracy
and margin correlation decrease as the ablation fraction α increases. For instance, ablating 15% of components (α = 0.15)
results in a significant accuracy drop for ResNets, but not for ViTs. On the other hand, ablating 1% of all components
(α = 0.01) results in a small drop in accuracy and correlation, e.g., for the ResNet-18 model trained on CIFAR-10 (first
row of Figure 26). Therefore, our experiments in Section 4 use α = 0.10 for the CIFAR-10 model and α = 0.05 for both
ImageNet models. These findings also suggest that the choice of α depends on the model architecture and the task at hand,
e.g., ViTs are more robust to zero ablations than ResNets.

I.2. Effect of ablation method

As discussed in Remark 2, we use a simple ablation method that sets the weights/activations of a subset of components
C ′ ⊂ C to zero. However, our method COAR is not dependent on any specific ablation method, and can be used to compute
component attributions with other ablation methods as well.

Alternative ablation method based on scaling. In this section, we consider an alternative ablation method that scales
down the activations of a component by a factor of γ ∈ [0, 1]. Note that setting γ = 0 corresponds to the zero ablation
method described in Remark 2; we use γ = 0.5 in our experiments.

Experiment results. We find that the alternative scaling-based ablation maintains high correlation between model outputs
before and after ablations, resulting in accurate component attributions. Specifically, we make three key observations.

• We first observe that on a ResNet-18 model trained on CIFAR-10, the scaling-based ablation method described
above maintains high correlation between model outputs before and after ablation, even at high ablation fractions
α ∈ {0.30, . . . , 0.05} (fourth row of Figure 26).

• Then, in Figure 27, we apply COAR with the scaling-based ablation method to a CIFAR-10 ResNet-18 model.
The resulting component attributions attain an average correlation of more than 0.75 for most ablation fractions
α ∈ {0.40, . . . , 0.01}. The correlation between COAR attribution estimates and ground-truth counterfactuals is high
across a range of ablation fractions α from 0.01 to 0.45.

46

Decomposing and Editing Predictions by Modeling Model Computation

• In Figure 28, we compare COAR attributions computed with the scaling ablations to attributions computed with zero-
ablations. We find that (a) these attributions exhibit high cosine similarity (Figure 28a) and that (b) attributions learned
with scaling-based ablations are predictive of ground-truth component counterfactuals computed using zero-ablations
(Figure 28b). This indicates that both ablations—scaling down the activations of a component by a factor of γ = 0.5 and
setting the activations of a component to zero—change model outputs in a similar manner.

I.3. Effect of model output function

Recall that in Section 4, we use the correct-class margin (5) as the model output function to estimate COAR attributions for
classification tasks. However, our approach is not tied to a specific model output function. Depending on the task at hand,
one can use an alternative model output function to estimate COAR attributions. For example, in a multi-label classification
task, we can also use the logit of a fixed class of interest as the model output function to estimate COAR attributions.
In Figure 13, we apply COAR to a pre-trained ImageNet ResNet50 model fine-tuned on MIMIC-CXR (Johnson et al.,
2019)—a dataset of labeled chest radiographs—and set the model output function to be the logit of the “Cardiomegaly”
class. Our results show that COAR attributions remain predictive with this model output function, and attain a correlation
of 0.7 and 0.6 with the ground-truth counterfactuals on “Cardiomegaly” logits when α = αtrain = 0.05 and α = 0.10
respectively. Additionally, in Appendix F, we also apply COAR to the next-token prediction task in language modeling,
using average correct-class margin over all tokens in a given sequence as the model output function.

47

Decomposing and Editing Predictions by Modeling Model Computation

0.01 0.05 0.1 0.15
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-10 trained on CIFAR-10

0.01 0.05 0.1 0.15
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-10 trained on CIFAR-10

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-50 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-50 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: VIT-B/16 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: VIT-B/16 trained on ImageNet

0.05 0.1 0.15 0.2 0.25 0.3
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-10 trained on CIFAR-10
 with alternative ablation method

0.05 0.1 0.15 0.2 0.25 0.3
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-10 trained on CIFAR-10
 with alternative ablation method

Effect of subsampling fraction on model outputs

Figure 26: Effect of ablation fraction α on model outputs. We evaluate the effect of ablating α-fraction subsets C ′ ⊂ C
of components (x-axis) on model accuracy (y-axis in the left column) and the correlation between model outputs before
and after ablation (y-axis in the right column). In all settings considered in Section 4 (one per row), we find that model
accuracy and margin correlation gradually decrease as the ablation fraction α increases. See Appendix I.1 for more details.

48

Decomposing and Editing Predictions by Modeling Model Computation

0.01 0.03 0.05 0.10 0.15 0.20* 0.25 0.30 0.35 0.40
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

Evaluating COAR attributions | CIFAR-10 ResNet-18 | Alternative ablation method

Figure 27: Effect of ablation method on COAR attributions. We estimate COAR attributions for a CIFAR-10 ResNet-18
model using an alternative ablation method that scales down the activations of a subset of components C ′ ⊂ C by a factor
of γ (0.5 in this case) instead of setting them to zero. The resulting attribution-derived estimates (4) exhibit high correlation
(y-axis) with ground-truth component counterfactuals. See Appendix I.2 for more details.

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Cosine similarity

0

20

40

60

80

100

120

Co
un

t

Comparing CIFAR-10 attributions
 corresp. to 0x and 0.5x ablation methods

0.01 0.03 0.05 0.10 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
rre

la
tio

n

Predicting 0x-ablation counterfactuals
 using 0.5x-ablation attributions

Effect of ablation method | CIFAR-10 ResNet-18

Figure 28: Comparing COAR attributions estimated with different ablation methods. We compare COAR attributions
on a CIFAR-10 ResNet18 model computed with the zero-ablation method Remark 2 to attributions computed with the
alternative ablation method described in Appendix I.2. The left plot shows that the paired attributions (corresponding to
each example) exhibit high cosine similarity. The right plot shows that the counterfactual estimates (4) computed using
attributions from the alternative ablation method are predictive of ground-truth component counterfactuals computed using
the zero ablation method. See Appendix I.2 for more details.

49

	Introduction
	Setup and Problem Statement
	Component attribution with Coar
	Does Coar learn accurate attributions?
	Results

	Do Coar Attributions Enable Editing?
	Editing individual model predictions
	Improving subpopulation robustness
	Improving robustness to typographic attacks

	Related work
	Conclusion
	Appendices
	Related work
	Discussion
	Future work
	Additional Coar-Edit experiments
	``Forgetting'' a class
	Mitigating a backdoor attack

	Evaluation setup
	Pseudocode
	Datasets and models.
	Baselines
	Implementation details

	Applying Coar to language models
	Evaluating GPT-2 on the TinyStories dataset
	Evaluating Phi-2 on the BoolQ dataset

	Additional evaluation of Coar
	Evaluating Coar on additional datasets
	Evaluating Coar on additional model architectures
	Evaluating Coar on additional tasks
	Comparing Coar attributions estimated with different ablation fractions
	Comparing Coar attributions estimated with different sample sizes
	Analyzing Coar attributions at the example level
	Qualitatively analyzing Coar attributions

	Additional evaluation of Coar-Edit
	Editing individual predictions
	Forgetting a class
	Improving subpopulation robustness.
	Mitigating backdoor attacks.
	Improving robustness to typographic attacks.

	Analyzing design choices in Coar
	Effect of ablation fraction
	Effect of ablation method
	Effect of model output function

