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ABSTRACT

Singing Voice Conversion (SVC) is a technique that enables any
singer to perform any song. To achieve this, it is essential to ob-
tain speaker-agnostic representations from the source audio, which
poses a significant challenge. A common solution involves utiliz-
ing a semantic-based audio pretrained model as a feature extractor.
However, the degree to which the extracted features can meet the
SVC requirements remains an open question. This includes their
capability to accurately model melody and lyrics, the speaker-
independency of their underlying acoustic information, and their
robustness for in-the-wild acoustic environments. In this study, we
investigate the knowledge within classical semantic-based pretrained
models in much detail. We discover that the knowledge of differ-
ent models is diverse and can be complementary for SVC. Based
on the above, we design a Singing Voice Conversion framework
based on Diverse Semantic-based Feature Fusion (DSFF-SVC). Ex-
perimental results demonstrate that DSFF-SVC can be generalized
and improve various existing SVC models, particularly in challeng-
ing real-world conversion tasks. Our demo website is available at
https://diversesemanticsvc.github.io/.

Index Terms— Singing Voice Conversion, Semantic Features,
Features Fusion, Robustness

1. INTRODUCTION

Singing Voice Conversion (SVC) aims to transform a singing signal
into the voice of a target singer while maintaining the original lyrics
and melody [1]. This allows any singer to perform any song. It has
a wide range of applications, such as music entertainment, singing
voice enhancement, vocal education, and artistic creation.

In recent years, generative models [2, 3] and conducting singing
voice conversion with non-parallel data [4, 5] has attracted more
attention. Figure 1 displays the classic pipeline for it. To empower
the reference speaker to sing the source audio, the main idea is to
extract the speaker-specific representations from the reference, ex-
tract the speaker-agnostic representations from the source, and then
synthesize the converted audio using a decoder. Usually, speaker-
specific representations can be just a one-hot speaker ID [6] or fea-
tures extracted from a pretrained speaker verification model [6, 7].
For speaker-agnostic representations, common solutions involve us-
ing the intermediate output1 from a semantic-based audio pretrained

‡Correspondence to wuzhizheng@cuhk.edu.cn.
1The intermediate output is a dense high-dimensional vector instead of

just symbolic token. It is believed that such output contains not only semantic
but also acoustic information, which can enhance the quality of synthesized
audio. In this paper, we refer to it as semantic-based features.

Fig. 1: The role of semantic-based pretrained model in the classic
singing voice conversion pipeline.

Requirements of SVC Capability of the Semantic-based Features

To model melody Whether could or not remains unknown

To model lyrics Could. But exactly how much remains unknown

To model auxiliary
acoustic information

Could. But whether the information is
speaker-agnostic or not remains unknown

To be robust for in-the-wild
acoustic environment Whether is robust or not remains unknown

Table 1: The extent to which the existing semantic-based features
satisfy the requirements of singing voice conversion is still unclear.

model. The pretraining task of this model is typically designed to be
semantic-related, such as Automatic Speech Recognition (ASR) [5,
8] or self-supervised learning guided by semantics [9, 10].

For SVC, high-quality speaker-agnostic representations should
meet several requirements (Table 1). First, they should be capable of
modeling melody and lyrics. Besides, they could also contain some
auxiliary acoustic information (such as pronunciation, articulation,
and prosody) to improve the naturalness and expressiveness of the
synthesized audio. Last, they should be robust for varied acous-
tic environments of source audios (such as the in-the-wild singing
voices separated from background music [11, 12]). However, for
the semantic-based audio pretrained models, our understanding of
their underlying knowledge remains limited, despite the consider-
able resources invested in pretraining [13, 14, 15]. It is still unclear
to what extent the extracted semantic-based features can satisfy the
requirements of SVC. For example, except for the semantic signals,
there is also acoustic information including prosody in the semantic-
based features [16, 17]. Is this sufficient, or how much additional
information is required to model the melody? Furthermore, is this
information speaker-agnostic, or could it cause the source’s timbre
leakage [18] into the converted audio? Moreover, are these semantic-
based pretrained models robust to diverse environments? How effec-
tive are these features when faced with in-the-wild audio data?
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School Representative Pretrained Task Training Objective Pretrained Data Architecture

Supervised WeNet
[19]

ASR, supervised by
linguistic labels

CTC,
Next Token Prediction
(character-level)

Text-only transcription
from Gigaspeech/Wenet-
speech (10k hours English
/Chinese speech)

Encoder-decoder Conformer [23]
or Transformer [21]

Weak-Supervised Whisper
[15]

Multitask including
multilingual ASR,
speech translation,
spoken language identi-
fication, etc., large-scale
weak supervision

Next Token Prediction
(byte-level [24])

680k hours multilingual
data, including both text-
only and time-aligned
transcription

Encoder-decoder Transformer [21]

Self-Supervised ContentVec
[20]

Self-supervised learning
which conditions on
disentangling speakers

Masked Token
Prediction (frame-level)

Librispeech (1k hours
English), using only speech
but no any transcription

Encoder-only Transformer [21]

Table 2: A systematic analysis for the three schools of the existing semantic-based pretrained models.

Motivated by this, by exploring the gap using only semantic-
based features to conduct the SVC task, we investigate the un-
derlying knowledge within the three classic semantic-based pre-
trained models respectively – WeNet [19], Whisper [15], and Con-
tentVec [20]. Furthermore, we suppose that the capabilities of
semantic-based features mainly depend on the pretraining tasks
and data, and different pretraining ways will yield different under-
lying knowledge (Table 2). Based on this, we propose a concise
and effective solution: by utilizing diverse semantic-based models
that are pretrained distinctly, the capabilities of these jointly used
semantic-based features will be enhanced for SVC. However, it is
challenging to fuse the multiple features of diverse audio pretrained
models. The reason is that the time resolutions of different models
are usually mismatched, since their acoustic parameters like sam-
pling rate and hop size can be different. To address it, we explored
the efficacy and efficiency between a resampling strategy with cross
attention [21, 22]. The experiments verify that such signal process-
ing based method could achieve the comparable performance to
cross attention but with a lower latency and no additional training
cost (Section 4.4). Based on the above, we design a Singing Voice
Conversion framework based on Diverse Semantic-based Features
Fusion (DSFF-SVC). Both objective and subjective evaluation re-
sults verify the effectiveness, generalization, and robustness of our
proposed framework.

2. RELATED WORK

The early singing voice conversion researches aim to design para-
metric statistical models such as HMM [25] or GMM [26, 27] to
learn the spectral features mapping of the parallel data. Since the
parallel singing voice corpus is hard to collect on a large scale, the
non-parallel SVC [4, 5], or recognition-synthesis SVC [9], is popu-
lar in recent years. The classic pipeline of the non-parallel SVC is
displayed in Figure 1. To decouple speaker-agnostic and speaker-
specific representations, some pioneering works leverage the infor-
mation bottleneck [6] and the adversarial learning [4, 28] to design
the end-to-end network. To introduce more explicit guidance instead
of depending only on end-to-end learning, utilizing pretrained mod-
els as a feature extractor has become the trend.

For the speaker-agnostic representations, the most well-known
solution is to leverage the phonetic posteriorgrams (PPG) from pre-
trained ASR models as the semantic-based features [29, 8]. In recent
times, besides the supervised ASR models, an increasing number
of semantic-based pretrained models have emerged under weak su-

pervision and self-supervised learning. Researchers have explored
in conducting the SVC task based on HuBERT [14, 9], wav2vec
2.0 [13, 10], Whisper [15, 30] and more.

However, the specific role of the semantic-based pretrained
models and the extent to which the extracted features can meet the
SVC requirements is still an open question. For example, some
researchers point out that there is also rich acoustic information like
prosody in these features [17], which is beneficial to improve the
naturalness and the speaker similarity [16]. On the contrary, others
believe that this acoustic information could be speaker-specific,
which will cause the source’s timbre leakage [18]. Motivated
by this, we aim to investigate the specific knowledge within the
semantic-based features by exploring to use them alone to conduct
the SVC task. Besides, most existing works utilize a single source
of semantic-based features. This study also researches whether
different pretrained models can be complementary for SVC.

3. METHODOLOGY

In this section, we analyze classic semantic-based pretrained mod-
els to demonstrate the potential knowledge embedded in semantic-
based features. We also explain why combining multiple pretrained
models can be effective for SVC (Section 3.1). Additionally, we
discuss the use of resampling and cross-attention strategies for ad-
dressing the feature fusion issue of multiple pretrained models with
different time resolutions (Section 3.2). Building on this, we intro-
duce the Diverse Semantic-based Features Fusion SVC framework
(DSFF-SVC, Figure 2), which can integrate various models as its
foundation.

3.1. Analysis for Semantic-based Pretrained Models

In order for a model to capture the semantic signals of audio, we
need to push its latent representations to align with semantic rep-
resentations (such as characters or phonemes). In other words, the
extent to which the latent representations contain semantic informa-
tion depends on the level of semantic supervision with which the
audio model is pretrained. Furthermore, the knowledge of these la-
tent representations that goes beyond semantic information is also
determined by the pretraining ways. Based on the above, we cat-
egorizes the existing semantic-based pretrained models into three
schools (Table 2):

• Supervised models: The models are pretrained under the
ASR task, whose representative is WeNet [19]. For such mod-



Fig. 2: The proposed Singing Voice Conversion framework based on Diverse Semantic-based Features Fusion (DSFF-SVC). It is capable of
incorporating most existing models (i.e., acoustic model and waveform decoder) as a base.

els, the intermediate layers closer to the input (audio) contain
more acoustic information, while layers closer to the output
(character) contain more semantic information.

• Weak-supervised models: The models are pretrained under
both ASR task and other auxiliary tasks, whose representative
is Whisper [15]. Compared to supervised ones, such models
are likely to contain additional knowledge related to the aux-
iliary tasks.

• Self-supervised models: The models conduct self-supervised
learning under semantic (or speaker-agnostic) guidance,
whose representative is ContentVec [20]. The knowledge of
these models is highly related to the construction of pseudo
labels during the initial audio tokenization, since these labels
usually play a role of “teacher” [14]. Compared to the other
two, the self-supervised ones contain more macro and general
knowledge that is beneficial for modeling context.

In summary, the underlying knowledge of the three are likely to
be different and diverse. In this study, we respectively select a repre-
sentative for them – WeNet [19], Whisper [15], and ContentVec [20],
to explore the gap when adopting them into the SVC task. We will
also investigate whether they can be complementary to each other.

3.2. Features Fusion for Models of Mismatched Resolutions

When combining several pretrained audio models, a technical prob-
lem emerges because of the differing time resolutions of the mod-
els. In particular, for a specific utterance, the feature frame lengths
extracted by different semantic-based pretrained models may vary.
A classic signal processing based method for aligning features with
different frame rates is to apply resampling. Besides of fusing the
different semantic features, another common use case is to integrate
a semantic-based model with a pretrained vocoder operating at dif-
ferent time resolutions.

3.3. Singing Voice Conversion Framework based on Diverse
Semantic-based Features Fusion

The proposed Singing Voice Conversion framework based on Di-
verse Semantic-based Features Fusion (DSFF-SVC) is displayed
in Figure 2. The fusion of multiple features derived from diverse
semantic-based pretrained models serves as the speaker-agnostic
representation. A trainable embedding layer is employed to model
the speaker features derived from a one-hot speaker ID. Furthermore,

the incorporation of auxiliary prosody features, such as fundamental
frequency (F0) and energy, facilitates the enhancement of melody
modeling and the expressiveness of synthesized audio.

For the semantic-based pretrained models, the WeNet, Whisper,
and ContentVec are all Transformer-based [21] architecture. Here
we utilize their encoder’s output as the semantic-based features. For-
mally, given the utterance u and the acoustic model M, the extracted
content features cM = M(u) ∈ RTM×DM , where M can be ei-
ther WeNet, Whisper, or ContentVec, TM is the frame length, and
DM is the latent representation dimension of the model M. Us-
ing resampling, we transform their frame lengths as the same (i.e.,
ĉM ∈ RT×DM ), and adopt adding fusion to merge them:

ĉ = Linear(ĉM1)⊕ Linear(ĉM2)⊕ Linear(ĉM3) (1)

where ĉ ∈ RT×D , Linear means the linear layer, M1, M2, and
M3 means WeNet, Whisper, and ContentVec, and ⊕ means the
element-wise adding operation.

For the auxiliary prosody features, we follow [31] to obtain the
quantized F0 and energy features. We adopt the trainable embedding
layers to get the F0 embeddings f ∈ RT×D and energy embeddings
e ∈ RT×D . For the speaker-specific representations, a look-up ta-
ble with a trainable embedding layer is adopted to learn the speaker
embeddings s ∈ RD . Finally, we adopt the adding fusion to merge
all the features:

c = CondEnc(ĉ⊕ f ⊕ e⊕ ŝ) (2)

where CondEnc means a condition encoder that interacts with all
the conditions of SVC. It is set as a simple linear layer in our exper-
iments. ŝ ∈ RT×D represents the frame-level speaker feature, being
obtained by repeating s T times.

During training, the DSFF-SVC conducts the reconstruction
learning on the training corpus, and the speaker ID is just the
speaker identity of every training sample. During conversion, given
any source audio, we extract its semantic-based and energy features
and stay them unchanged. To convert the speaker identity, we in-
ject a reference speaker ID (which is seen in the training) to obtain
the speaker-specific representations. For F0 features, we conduct
the musical key transposition2 to make the reference speaker sing
the source song in his vocal range. Specifically, following [31, 1],
we shift the source F0 features by multiplying a factor, which is

2https://en.wikipedia.org/wiki/Transposition (music)

https://en.wikipedia.org/wiki/Transposition_(music)


Semantic-based Features MCD (↓) F0CORR (↑) F0RMSE (↓) CER (↓) SIM (↑)

Ground Truth 0.000 1.000 0.0 12.9% 1.000

WeNet 10.324 0.203 423.4 38.2% 0.912
Whisper 8.229 0.524 297.3 18.9% 0.914
ContentVec 8.972 0.491 361.0 22.1% 0.918

WeNet + Whisper 8.345 0.540 284.2 16.8% 0.911
WeNet + ContentVec 8.870 0.525 329.5 19.9% 0.912
Whisper + ContentVec 8.201 0.548 279.6 16.9% 0.912

WeNet + Whisper + ContentVec 8.249 0.572 278.5 16.1% 0.913

Table 3: Objective evaluation results of different semantic-based features and their integration. It can be observed that from WeNet to Wenet
+ Whisper, and then to Wenet + Whisper + ContentVec, the results of most metrics are promoted stage by stage.

computed as the ratio between the F0 medians among the reference
speaker’s training corpus and the source audio.

Notably, the DSFF-SVC framework can support any archi-
tectures of acoustic models and waveform decoders (vocoders).
During our experiments, we will investigate the generalization of
DSFF-SVC for various base models including transformer-based,
diffusion-based, and end-to-end models (Section 4.1).

4. EXPERIMENTS

We conduct experiments to answer the following questions:

• EQ1: How much the existing semantic-based pretrained
models can meet the requirements of SVC? Could the mul-
tiple features from diverse semantic-based pretrained models
be complementary?

• EQ2: How effective and generalized is the proposed singing
voice conversion framework based on diverse semantic-based
features fusion?

• EQ3: How effective is the resampling strategy compared to
deep learning based method such as cross attention [21, 22]
for fusing multiple features of mismatched time resolutions?

4.1. Experimental Setup

4.1.1. Evaluation Tasks

We adopt two conversion settings to evaluate: (1) Recording Stu-
dio Setting: following the most existing works, we utilize the high-
quality singing corpus that is recorded in studio as the experimental
data. The vocals are clean with virtually no noise or environmental
interference. Specifically, we use Opencpop [32] as the target singer,
whose training corpus is 5.2 hours of studio recorded singing voices.
For source audios, we use M4Singer [33] and randomly 25 utter-
ances for each timbre type respectively (including Soprano, Alto,
Tenor, and Bass). (2) In-the-Wild Setting: in the real-world SVC
application, usually the singing voices are separated from the back-
ground music, which will remain some artifacts or reverb in the vo-
cals [11, 12]. We consider this as a more challenging conversion
task to examine the robustness of the SVC systems. Specifically, we
adopt a private corpus which contains 6.4 hours of singing voices of
15 professional singers (6 English singers and 9 Chinese singers).
The vocals are separated by Ultimate Vocal Remover (UVR)3. We

3https://github.com/Anjok07/ultimatevocalremovergui

adopt four singers as the targets (an English male, an English fe-
male, a Chinese male, and a Chinese female). For source audios,
we randomly sample 100 utterances which cover multiple musical
genres including Pop, Rock, Folk and Soul.

4.1.2. Evaluation Metrics

For objective evaluation, following [1], we adopt Mel-cepstral dis-
tortion (MCD) [34], F0 Pearson correlation coefficient (F0CORR),
F0 Root Mean Square Error (F0RMSE), Character Error Rate (CER)
which is obtained with the recognition results of whisper-large ASR
model [15]. Besides, following [35], we use the WavLM model [36]
finetuned for speaker verification4 to compute the cosine speaker
similarity score (SIM). For subjectivce evalution, we invite 12 vol-
unteers who are experienced in the audio generation areas to conduct
the Mean Opinion Score (MOS) evaluation in terms of naturalness
and similarity. The naturalness score ranks from 1 (“Bad”) to 5 (“Ex-
cellent”), and the similarity score ranks from 1 (“Different speaker,
sure”) to 4 (“Same speaker, sure”).

4.1.3. Base Models

We select three base models to verify the generalization ability of
DSFF-SVC framework:

• TransformerSVC: It adopts a vanilla encoder-only trans-
former model[21] as the acoustic model. Its output is the
mel-spectrogram.

• VitsSVC: It is a VITS-based [37] model which is similar to
the SoftVC-VITS5. It is an end-to-end framework and can
directly produce waveform.

• DiffWaveNetSVC: It adopts a diffusion-based acoustic
model and could generate mel-spectrogram, which is pro-
posed by [31]. The internal encoder of the diffusion frame-
work is based on Bidirectional Non-Causal Dilated CNN[38],
which is similar to WaveNet[39].

4.1.4. Implementation Details

For WeNet, we use the official models pretrained by 10k hours
Wenetspeech6 to extract semantic-based features. For Whisper, we
use the multilingual MEDIUM model7. For ContentVec, we use the

4https://huggingface.co/microsoft/wavlm-base-plus-sv
5https://github.com/svc-develop-team/so-vits-svc
6https://github.com/wenet-e2e/wenet
7https://github.com/openai/whisper

https://github.com/Anjok07/ultimatevocalremovergui
https://huggingface.co/microsoft/wavlm-base-plus-sv
https://github.com/svc-develop-team/so-vits-svc
https://github.com/wenet-e2e/wenet
https://github.com/openai/whisper


(a) WeNet (b) WeNet + Whisper (c) WeNet + Whisper + ContentVec

Fig. 3: The complementary role of diverse semantic-based features in melody modeling. More benefits of the joint usage of diverse semantic-
based features (including spectrogram reconstruction, lyrics modeling, etc.) can be seen at our demo website.

official 500-CLASS model preatrained by 1k hours Librispeech8.
The latent space dimension D is set as 384. We adopt Parsel-
mouth [40] to extract F0 and compute L2-norm of the amplitude
of each short-time Fourier transform frame as energy features [41].
Following [31], we set their numbers of bins for quantization as
256. For the three base models, we adopt the implementations of
Amphion9 [42]. For DiffWaveNetSVC and TransformerSVC, we
use the pretrained Amphion Singing BigVGAN10 as the vocoder to
decode waveform from mel-spectrogram.

4.2. Performance of Different Semantic-based Features (EQ1)

In this section, we aim to explore the gap using semantic-based fea-
tures alone to conduct the SVC task. We select DiffWaveNetSVC
as the base model and conduct the task under the Recording Studio
Setting. The experimental results are illustrated in Table 3.

On the one hand, the underlying knowledge of different semantic-
based models can be distinct and diverse: (1) For modeling melody
(F0CORR and F0RMSE), Whisper and ContentVec perform bet-
ter than WeNet. This is mainly because the auxiliary tasks of the
weak-supervised Whisper and the self-supervised ContentVec are
beneficial for modeling more prosody-related signals. (2) For mod-
eling lyrics (CER), Whisper performs best compared to the other
two. It is assumed that the multilingual ASR tasks and the large-
scale pretraining data allow Whisper to model more valid and robust
semantic information. Moreover, ContentVec will provide better
semantic signals than WeNet, although both are pretrained only on
speech. It reveals that the self-supervised pretrained models could
be more robust than the classical supervised ASR model. (3) When
measuring speaker independence (SIM), the speaker similarity re-
sults of the three are comparable and all above 0.9, which is difficult
to rank from human perception (see our demo page). This means
that when using only semantic-based features for SVC, the three can
all be considered speaker-agnostic.

On the other hand, the diverse semantic-based features can be
complementary in most cases. For example, from WeNet to Wenet +
Whisper, and then to Wenet + Whisper + ContentVec, the results of
most metrics are promoted stage by stage. We display a case study
of melody modeling in Figure 3. It illustrates that after integrat-
ing diverse semantic-based features, the trajectories of the melody

8https://github.com/auspicious3000/contentvec
9https://github.com/open-mmlab/Amphion/tree/main/egs/svc

10https://huggingface.co/amphion/BigVGAN singing bigdata

between converted audios and ground truth are closer. However,
we can also find that using only semantic-based features is hard to
model melody adequately (the highest F0CORR in Table 3 is 0.572),
appearing the “out of tune” for human hearing. Therefore, introduc-
ing explicit melody modeling (such as F0 features) for SVC remains
necessary in the present technology context.

4.3. Performance of the DSFF-SVC framework (EQ2)

To verify the generalization and robustness of the proposed DSFF-
SVC framework, we conduct experiments based on both the record-
ing studio and the in-the-wild settings for the three base models.
Here we also use the auxiliary prosody features (including F0 and
energy), to improve the melody modeling and the expressiveness of
the system. The objective and subjective evaluation results can be
seen in Table 4 and Table 5. It reveals that: (1) Conducting SVC un-
der in-the-wild setting is more difficult. Facing to the more complex
acoustic environment, only using the supervised WeNet produces a
very poor performance. Integrating with the weak-supervised Whis-
per and the self-supervised ContentVec are usually beneficial, espe-
cially for Whisper. (2) For the generalization ability, we can observe
that for all three models, the proposed idea of diversion semantic-
based features fusion is effective in most cases under both settings.
(3) For the robustness, particularly, under the in-the-wild setting, the
improvement of integrating diverse semantic-based features is more
obvious, especially for the objective CER and the subjective metrics.

Compared with Table 3 and 4, there are also many interesting
observations about auxiliary prosody features (F0 and energy): (1)
After injecting such prosody signals into SVC models, the intelligi-
bility (CER) has been improved a lot. In our opinion, this is because
the prosody in singing voice is expressive and characteristic, which
is hard to be modeled without the explicit assistant of prosody fea-
tures like F0. Therefore, using only semantic-based features, some
tone- and intonation-related signals will not be learned well, lead-
ing to the worse intelligibility. (2) Except for the intelligibility,
it is also notable about the change of conversion speaker similar-
ity (SIM). After introducinh F0 features, the melody-related metrics
have been improved a lot and the converted singing voices are not out
of tune any more. In the meantime, however, the speaker similarity
is also harmed. We suppose such auxiliary prosody features own
some speaker-specific signals, e.g. the personalized vibrato patterns
within F0 features. Therefore, directly copying the original prosody
features from the source audio could not be the best choice for SVC,
although it is a common way in the most SVC works.

https://diversesemanticsvc.github.io/content_features.html
https://diversesemanticsvc.github.io/
https://github.com/auspicious3000/contentvec
https://github.com/open-mmlab/Amphion/tree/main/egs/svc
https://huggingface.co/amphion/BigVGAN_singing_bigdata


Base Model Semantic-based Features Recording Studio Setting In-the-Wild Setting

F0CORR (↑) F0RMSE (↓) CER (↓) SIM (↑) F0CORR (↑) F0RMSE (↓) CER (↓) SIM (↑)

TransformerSVC
WeNet 0.849 149.3 15.6% 0.878 0.871 210.0 40.0% 0.865
+ Whisper 0.924 77.2 14.9% 0.881 0.848 183.8 18.7% 0.867
+ Whisper + ContentVec 0.931 75.5 16.2% 0.883 0.857 186.7 23.3% 0.868

VitsSVC
WeNet 0.937 175.3 19.1% 0.890 0.919 91.3 57.7% 0.869
+ Whisper 0.945 144.4 17.8% 0.890 0.920 86.9 35.2% 0.869
+ Whisper + ContentVec 0.946 112.9 17.7% 0.886 0.921 79.5 32.3% 0.870

DiffWaveNetSVC
WeNet 0.936 55.5 15.8% 0.875 0.901 87.8 60.8% 0.855
+ Whisper 0.943 49.5 15.2% 0.884 0.921 73.6 21.1% 0.865
+ Whisper + ContentVec 0.940 55.2 15.7% 0.884 0.919 79.9 23.3% 0.867

Table 4: Objective Evaluation Results of the proposed DSFF-SVC framework.

Semantic-based Features Recording Studio In-the-Wild

Nat. (↑) Sim. (↑) Nat. (↑) Sim. (↑)

WeNet 2.72 ±0.22 2.64 ±0.21 2.85 ±0.21 2.34 ±0.20
+ Whisper 4.02 ±0.18 3.13 ±0.17 3.70 ±0.18 2.86 ±0.23
+ Whisper + ContentVec 4.14 ±0.19 3.25 ±0.18 3.71 ±0.18 2.82 ±0.23

Table 5: Subjective MOS evaluation results (with 95% confidence
interval) of DiffWaveNetSVC. The full scores of Naturalness (Nat.)
and Similarity (Sim.) are 5 and 4.

4.4. Performance of the Resolution Transformation based Fea-
tures Fusion (EQ3)

Fusion Strategy Computational Cost Conversion Quality

RTX (↑) RTF (↓) F0CORR (↑) CER (↓) SIM (↑)

Cross attention 191.9 2.57 0.896 16.4% 0.871
Resampling 415.0 0.86 0.936 15.8% 0.875

Table 6: The comparison between resampling and cross attention
for features fusion.

To verify the performance and efficiency of the resampling for
feature fusing, we select the cross attention [21] as the compared
method. Specifically, we utilize only WeNet to extract semantic-
based features and try different strategies to align its resolution to
that of F0 and energy features. We conduct the experiments on Dif-
fWaveNetSVC and follow NaturalSpeech2 [22] to adopt the cross
attention for features fusion within the diffusion model.

Except for the quality evaluation for the conversion results, we
also measure the computational cost of the both. Assume the dura-
tion of the whole training corpus is dtrain, the duration of the eval-
uation samples to be converted is dinfer , the time to train an epoch
is ttrain, and the time to infer the evaluation samples is tinfer . We
define RTX as dtrain/ttrain, which can measure the training effi-
ciency. We define RTF as tinfer/dinfer to measure the inference la-
tency. The computational platform is a single NVIDIA Tesla V100.

The comparison results between resampling and cross attention
are displayed in Table 6. We can see that when fusing the features of
mismatched time resolutions for the SVC task, resampling is even
slightly better than cross attention in terms of conversion quality.
Moreover, as a non-learning method, resampling does not introduce
any additional parameters and greatly accelerates both training effi-
ciency (RTX) and inference speed (RTF) much.

5. CONCLUSION AND FUTURE WORK

This paper investigates three semantic-based pretrained models of
supervised, weak-supervised, and self-supervised fashions for SVC.
We discover their capabilities including modeling melody and lyrics
are diverse and can be complementary. Based on these findings, we
propose the SVC framework based on Diverse Semantic-based Fea-
tures Fusion. The experimental results confirm the effectiveness of
our proposed framework, particularly for real-world applications in-
volving in-the-wild data. In addition, this paper raises other ques-
tions worth exploring. Is it possible to pretrain one model that can
capture both melody and lyrics signals while being speaker-agnostic
at the same time? How should we select the pretraining method and
construct the pretraining corpus to improve the robustness? We will
leave these to our future research.
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