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ABSTRACT

While large language models (LLMs) have made significant progress in processing
and reasoning over knowledge graphs, current methods suffer from a high non-
retrieval rate. This limitation reduces the accuracy of answering questions based
on these graphs. Our analysis reveals that the combination of greedy search
and forward reasoning is a major contributor to this issue. To overcome these
challenges, we introduce the concept of super-relations, which enables both forward
and backward reasoning by summarizing and connecting various relational paths
within the graph. This holistic approach not only expands the search space, but also
significantly improves retrieval efficiency. In this paper, we propose the ReKnoS
framework, which aims to Reason over Knowledge Graphs with Super-Relations.
Our framework’s key advantages include the inclusion of multiple relation paths
through super-relations, enhanced forward and backward reasoning capabilities,
and increased efficiency in querying LLMs. These enhancements collectively lead
to a substantial improvement in the successful retrieval rate and overall reasoning
performance. We conduct extensive experiments on a variety of datasets to evaluate
ReKnoS, and the results demonstrate the superior performance of ReKnoS over
existing state-of-the-art baselines, with an average accuracy gain of 2.92% across
nine real-world datasets.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have greatly improved their capacity to
perform reasoning in various natural language processing tasks (Brown et al., 2020; Wei et al., 2022).
However, for more complex and knowledge-intensive reasoning tasks, such as open-domain question
answering (Gu et al., 2021), the knowledge stored in LLM parameters alone can be insufficient
for effectively performing these tasks (Li et al., 2024). To address this limitation, recent research
has explored the integration of knowledge graphs (KGs), which represent structured information as
entities and their relationships, to provide external knowledge that can assist LLMs in answering such
questions (Sun et al., 2024; Ma et al., 2024; Xu et al., 2023; Zhang et al., 2022).

Despite this progress, effectively leveraging knowledge graphs for question answering remains
challenging due to the vast amount of information in KGs and their complex structures. Existing
approaches typically resort to two retrieval strategies: (1) subgraph-based reasoning (Zhang et al.,
2022; Jiang et al., 2023d), which retrieves subgraphs containing task-relevant triples from the KG and
uses them as input for LLMs; and (2) LLM-based reasoning (Jiang et al., 2023b; Sun et al., 2024),
which involves iteratively querying LLMs to select relevant paths within KGs. While subgraph-
based reasoning can efficiently retrieve structured knowledge, LLM-based reasoning benefits from
the comprehension capabilities of LLMs to precisely select relevant triples, resulting in superior
performance compared to subgraph-based methods (Jiang et al., 2024; Pan et al., 2024).

However, even with the advancements in LLM-based reasoning methods, there remains a significant
performance gap that is often overlooked by existing research. Specifically, current approaches exhibit
a substantial non-retrieval rate, indicating that in certain cases, the LLMs fail to find a satisfactory
reasoning path within the maximum allowable reasoning length. As demonstrated in Figure 1, for the
recent method ToG (Sun et al., 2024) on the prevalent dataset GrailQA (Gu et al., 2021), the accuracy
reduces by around 10% when the information is not retrieved from the KG.
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Figure 1: The accuracy (%) of retrieved and non-
retrieved samples on the GrailQA dataset.

In this paper, we investigate the reasons behind
retrieval failures when searching the knowledge
graph, identifying two relation patterns that are
often overlooked by existing works. As illus-
trated in Figure 2, the primary causes of non-
retrieval can be classified into three categories:
(1) Misdirection, where the correct path runs
parallel to the retrieved path; (2) Depth Limi-
tation, indicating that the correct path is longer
than the retrieved one due to the maximum al-
lowable length being exceeded; and (3) Path
Absence, where the correct path does not exist
in the knowledge graph. Notably, the first two
cases account for the majority of non-retrieval
instances. Existing methods struggle with the first case because they may initially select relations that
appear promising but are ultimately incorrect. In such cases, once the first step is wrong, subsequent
retrieval attempts are unlikely to capture the correct path.

Misdirection
68.8%

Depth Limit
25.2%

Path Absence
6.0%

Figure 2: The non-retrieval
cases on the GrailQA dataset
with baseline ToG (Sun et al.,
2024) (maximum length of 3).

To address the issue of misdirection, we propose a novel frame-
work ReKnoS, which aims to Reason over Knowledge Graphs with
Super-Relations. Super-relations are defined as a group of relations
within a specific field. For example, the relation “developer of” and
“designer of” are both under the super-relation “video_game”, as
they are in the same field of video games (shown at the bottom of
Figure 3). Using super-relations allows for a more holistic approach
by enhancing both the width (the number of relations covered at
each step) and depth (the total length of the reasoning path). By
integrating super-relations, our framework can introduce additional
relational paths that were previously inaccessible, thus expanding
the search space and improving retrieval rates. These super-relations
effectively summarize and connect disparate parts of the graph, fa-
cilitating a more comprehensive exploration of the data. Moreover,
with the summarized information within super-relations, we propose
to leverage it to achieve forward reasoning and backward reasoning,
which aim at exploring future paths and previous alternative paths,
respectively. With the design of super-relations, our framework can
represent multiple relation paths with a super-relation during reasoning. As such, we do not need to
abandon a large number of paths during reasoning, thereby significantly increasing the search space
and improving the retrieval rate.

The contributions of this paper are as follows:

• Design: The use of super-relations, defined as groups of relations within a specific field, enables
the inclusion of a large number of relations for efficient reasoning over knowledge graphs.
Moreover, super-relations can both enhance the depth and width of various reasoning paths to
deal with non-retrieval.

• Framework: We propose a novel reasoning framework ReKnoS that integrates super-relations,
enabling the representation of multiple relation paths simultaneously. This approach allows
for a significant expansion of the search space by incorporating diverse relational paths with-
out discarding potentially valuable connections during reasoning. Our code is provided at
https://anonymous.4open.science/r/REKNOS-84B2.

• Experiments and Results: We perform experiments on nine datasets and show that our ap-
proach significantly outperforms traditional reasoning methods in both the retrieval success rate
and search space size, improving them by an average of 25% and 87%, respectively. These
results highlight the effectiveness of our design choices in addressing complex knowledge graph
reasoning tasks.
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2 RELATED WORK

Although LLMs have exhibited expressive capabilities in various natural language process tasks, such
as question-answer tasks (Wei et al., 2022; Wang et al., 2023), they can lack up-to-date or domain-
specific knowledge (Wang et al., 2023; Jiang et al., 2023b). Recently, researchers have proposed to
use knowledge graphs (KGs), which provide up-to-date and structured domain-specific information,
to enhance the performance of LLMs (Pan et al., 2024). As a classic example, retrieval-augmented
generation (RAG) methods have been widely used to incorporate external knowledge sources as
additional input to LLMs (Jiang et al., 2023e). Nevertheless, the complex structures in KGs render
such retrieval more difficult and may involve unnecessary noise (Petroni et al., 2021).

Knowledge graph question answering (KGQA) focuses on answering natural language questions
using structured facts from knowledge graphs (Pan et al., 2024). A central challenge lies in efficiently
retrieving relevant knowledge and applying it to derive accurate answers. Recent approaches to
KGQA can be divided into two main categories: (1) subgraph-based reasoning and (2) LLM-based
reasoning. Subgraph-based methods, such as SR (Zhang et al., 2022), UniKGQA (Jiang et al.,
2023d), and ReasoningLM (Jiang et al., 2023c), perform reasoning over retrieved subgraphs that
contain task-related fact triples from the KG. However, these methods are highly dependent on
the quality of the retrieved subgraphs, which may contain irrelevant information and struggle to
generalize to other structures within the KG. More recently, researchers have turned to LLMs to
enhance reasoning on KGs. As an early effort, StructGPT (Jiang et al., 2023b) leverages LLMs to
generate executable SQL queries for reasoning on structured data, including databases and KGs.
Think-on-Graph (ToG) (Sun et al., 2024) extends this by using LLMs to select relevant relations and
entities for retrieving target answers. KG-Agent (Jiang et al., 2024) further advances this line of work
by incorporating a multifunctional toolbox that dynamically selects tools to explore and reason over
KGs.

3 PRELIMINARIES

3.1 KNOWLEDGE GRAPH (KG)

A knowledge graph is composed of a large set of fact triples, represented as G = {⟨e, r, e′⟩ | e, e′ ∈
E, r ∈ R}, where E and R denote the sets of entities and relations, respectively. Each triple ⟨e, r, e′⟩
captures a factual relationship, indicating that a relation r exists between a head entity e and a tail
entity e′. For the KGQA task studied in this work, we assume the availability of a KG that contains
the entities relevant to answering the given natural language question. Our goal is to design an
LLM-based framework capable of performing reasoning on the KG to retrieve the answer to the
question.

3.2 SUPER-RELATIONS

Figure 3: An example of vari-
ous super-relations R included
in a super-relation set S.

In this paper, we introduce the concept of a super-relation
to efficiently gather information from a set of more granu-
lar, detailed relations. For instance, consider a super-relation
"music.featured_artist," which encompasses a variety of specific
relations, such as "music.featured_artist.recordings." Iterating over
each of these detailed relations can be computationally intensive. By
using a higher-level super-relation like "music.featured_artist," we
abstract and group these related relations together, allowing us to
query LLMs using a single, more general relation. This abstraction
reduces the complexity of handling numerous fine-grained relations
while preserving the relevant information needed for reasoning. In
the prevalent knowledge graph Wikidata (Vrandečić & Krötzsch,
2014) that we use in this paper, relations are typically organized
into a three-level hierarchy, such as "music," "featured_artist," and
"recordings." We treat the second-level relations as super-relations,
which serve as a representative for related third-level relations. How-
ever, it is important to note that not all KGs are structured with such
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clear hierarchical levels. In cases where a KG lacks this inherent structure, an alternative approach
involves clustering relations based on their semantic similarity and using the cluster centers as
super-relations. These cluster centers must be textually coherent and meaningful to ensure they can
effectively summarize the detailed relations within each cluster. In our experiments, we directly
utilize the hierarchical levels.

We formally define a super-relation R as a group of more granular, detailed relations R =
{r1, r2, . . . , rn}, where each ri is a specific relation on the knowledge graph. Examples are shown Fig-
ure 3. For example, if R is the super-relation "music.featured_artist," it might include a set of relations
such as R = {"music.featured_artist.recordings", "music.featured_artist.albums", . . . }.

3.3 SUPER-RELATION SEARCH PATHS

We first define a super-relation connection between two super-relations.

Definition 1. Super-Relation Connection. Let R1 and R2 be two super-relations, each consisting of
multiple relations. We define R1 → R2 (i.e., R1 connects to R2) if and only if there exist entities e1,
e2, and e3 such that e1

r1−→ e2
r2−→ e3, where r1 ∈ R1 and r2 ∈ R2.

In this manner, based on connections between super-relations, we define a super-relation path and then
define a super-relation search path, where each position in the path consists of multiple super-relations.

Definition 2. Super-Relation Path. A super-relation path P = (R1 → R2 → . . . → RL) of length
L consist of L super-relations that are consecutively connected.

Definition 3. Super-Relation Search Path. A super-relation search path QL of length L consists
of L super-relation sets, i.e., QL={S1,S2, . . . ,SL}. Here Si = {R(1)

i , R
(2)
i , . . . , R

(|Si|)
i } is a super-

relation set at the i-th position in QL. Moreover, in each super-relation set Si, there exists at least
one super-relation that is connected to a super-relation in the subsequent set Si+1, i.e.,

∀R ∈ Si, ∃R′ ∈ Si−1 such that R′ → R, i = 2, 3, . . . , L.

4 SUPER-RELATION REASONING

Our ReKnoS framework consists of at most L reasoning steps, which is also the maximum length of
search paths considered. During each reasoning step, we aim to retrieve a set of N important super-
relations that are the most semantically related to the query, based on the selected super-relations
from previous reasoning steps. In other words, at the beginning of the l-th reasoning step, the
search path Ql−1 = {S1,S2, . . . ,Sl−1} is of length l − 1, i.e., containing l − 1 sets of important
super-relations. These super-relation sets are consecutively connected according to Definition 3, i.e.,
∀R ∈ Si,∃R′ ∈ Si−1 such that R′ → R. Our goal in this reasoning step is to select an important
set of N super-relations in Sl, while satisfying the condition that ∀R ∈ Sl,∃R′ ∈ Sl−1 such that
R′ → R. Moreover, |Si| = N, i = 1, 2, . . . , l. At the end of each reasoning step, the LLM will be
asked to decide whether to extract the answer from the entities or continue the next reasoning step.
The overall framework is illustrated in Figure 4.

4.1 CANDIDATE SELECTION

To select the current Sl, we first need to extract any candidate super-relation R that satisfies the
connection requirement: ∃R′ ∈ Sl−1 such that R′ → R, which means that R is connected by any
super-relation in the last super-relation set Sl−1. Therefore, we can represent the set of candidate
super-relations Cl as

Cl = {R | ∃R′ ∈ Sl−1 such that R′ → R}, (1)

where Sl−1 is the previous super-relation set in the search path Ql−1. This approach obtains all
super-relations directly connected to the search path. As the connections are generally becoming
larger as the search proceeds, it is likely that |Cl| > |Sl−1| = N for l ≥ 2. Therefore, we need to
perform reasoning to filter out irrelevant super-relations in Cl to obtain Sl ⊆ Cl.

4
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Figure 4: Overall ReKnoS framework. The LLM first extracts the query entity from the input question
and then performs up to L steps of reasoning. In each step, the LLM retrieves several super-relations
and scores them. Only the selected candidates will be used for further reasoning. Finally, the LLM
gathers the reasoning paths and final entities to generate the final answer.

4.2 SCORING

In the scoring step, we use an LLM to assign a score for each of the super-relations in Cl. The scores
are denoted as {s1l , s2l , . . . , sMl }, where M = |Cl|. Note that this step is only needed if M > N .
Based on these scores, we aim to select N super-relations with the largest scores. The scores are
obtained as follows:

{s1l , s2l , . . . , sMl } = LLM({R1
C , R

2
C , . . . , R

M
C }), where Ri

C ∈ Cl, i = 1, 2, . . . ,M. (2)

The prompt to the LLM is as follows, setting N = 3 as an example:

You need to select three relations from the following candidate relations, which are
the most helpful for answering the question.
Question:
Topic Entity:
Candidate Relations:
Reply with the relations you selected from these candidate relations:

Note that in the prompt, we do not explicitly inform the LLM about the super-relations in order to
reduce unnecessary complexity. Based on these scores, we select the N super-relations from Cl with
the highest scores. We first sort the scores in descending order:

s
(1)
l ≥ s

(2)
l ≥ · · · ≥ s

(N)
l ≥ · · · ≥ s

(M)
l , (3)

where s
(i)
l is the i-th largest score, and the corresponding super-relation is denoted as R(i)

l .

The N selected super-relations are denoted as follows:

Sl = {R(1)
l , R

(2)
l , . . . , R

(N)
l }. (4)

Then, we normalize the scores of the selected super-relations so that they sum to 1:

s
(k)
l =

s
(k)
l∑N

j=1 s
(j)
l

for k = 1, 2, . . . , N. (5)

In this way, we ensure that only the most relevant super-relations with the highest scores are considered
in the next iteration, and their influence is appropriately scaled through normalization. The normalized
scores {s(1)l , s

(2)
l , . . . , s

(N)
l } will be later used for relevant path selection in the reasoning process.

4.3 SCORE-BASED ENTITY EXTRACTION SELECTION

Now we have obtained the selected super-relation search path of length l, i.e., Ql = {S1,S2, . . . ,Sl}.
Here, each super-relation set Si consists of N super-relations, i.e., Si = {R(1)

i , R
(2)
i , . . . , R

(N)
i }.

5
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Moreover, each super-relation R
(j)
i is associated with a score assigned during the scoring step,

denoted as s
(j)
i . At this point, we need to either use the retrieved super-relations to answer the

question or proceed to further increase the length of the super-relation search path.

To find the potential answers and also provide sufficient information for the LLM to decide whether
to continue retrieving the super-relation search path, we propose to extract the entities at the end of
Ql, i.e., entities connected by super-relations at the last step of that path. These entities will be used
to prompt the LLM to decide whether the retrieved entities are sufficient for answering the query. If
the LLM responds that these entities are sufficient for answering the query, we will further prompt
it for the answer. On the other hand, if the LLM suggests further exploring the reasoning, we will
repeat the steps described above to retrieve a longer super-relation search path Ql+1. When l = L,
we will always ask the LLM for the answer.

Super-Relation Path Selection. Due to the large number of entities connected by super-relations
in Ql, we first identify K most relevant super-relation paths from Ql. Particularly, we represent a
super-relation path Pi derived from Ql as follows:

Pi =
(
R

(ki,1)
1 → R

(ki,2)
2 → . . . → R

(ki,l)
l

)
, where R

(ki,j)
j → R

(ki,j+1)
j+1 , j = 1, 2, . . . , l−1. (6)

Here, ki,j ∈ [1, |Sj |] represents the index of the specific super-relation in the j-th position of
the i-th path, such that R(ki,j)

j ∈ Sj . The set of all possible super-relation paths is denoted as
P = {P1, P2, . . . , P|P|}. Notably, the number of possible super-relation paths, i.e., |P|, may vary,
depending on the connectivity across different super-relation sets in Pl. However, P contains at least
one super-relation path, i.e., |P| ≥ 1 according to the following theorem.
Theorem 4.1. A super-relation search path leads to at least one super-relation path. Given a selected
super-relation set path of length l, Ql = {S1,S2, . . . ,Sl}, there exists at least one super-relation

path of length l, i.e., P =
(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kl)
l

)
, where R

(kj)
j ∈ Sj .

Intuitively, this theorem is true because the consecutive super-relation sets, i.e., Si and Si+1, are
connected, and thus at least one super-relation in each of them is connected to each other according
to Definition 3. Therefore, the consecutively connected super-relations form a super-relation path.
The proof is provided in Appendix A. To select the super-relation paths that are more relevant to
the input query, we propose to sum the scores of the l super-relations in each super-relation path.
Specifically, for the i-th super-relation path Pi =

(
R

(ki,1)
1 → R

(ki,2)
2 → . . . → R

(ki,l)
l

)
, the total

score is computed as

Score(Pi) =

l∑
j=1

s
(ki,j)
j = s

(ki,1)
1 + s

(ki,2)
2 + . . .+ s

(ki,l)
l . (7)

With the summed scores for these super-relation paths, we select the K super-relation paths with the
largest scores. The final selected super-relation paths are as follows:

P∗ = argmax
Pf⊆P : |Pf |≤K

∑
P∈Pf

Score(P ). (8)

Final Entity Selection. With the relevant super-relation paths, our final goal is to extract the entities
at the end of each reasoning path in P∗. We first introduce the following theorem for selecting
specific relation paths from super-relation paths.

Theorem 4.2. For any super-relation path P =
(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kl)
L

)
, there exists at

least one corresponding KG reasoning path of length l, represented as:

e1
r1−→ e2

r2−→ · · · rl−→ el+1,

where ri ∈ R
(ki)
i is a relation chosen from the super-relation R

(ki)
i , and e1, e2, . . . , el+1 are entities

in the knowledge graph.

This theorem is true because in a super-relation path, according to Definition 2, two consecutive super-
relations are connected, which leads to the connection of two relations. Therefore, the consecutively

6
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Figure 5: Number of relations need to score by the LLM in (a) the baseline ToG (Sun et al., 2024)
and (b) our framework ReKnoS. The numbers on the arrows represent LLM evaluated scores and
correspond to LLM computations. For clarity, we deliberately omit some blue nodes.

connected relations will form a relation path. The proof is provided in Appendix B. According to the
theorem, we know that the selected super-relation path P consists of at least one valid relation path
in the knowledge graph. Therefore, this relation path can be used to extract entities that contribute to
answering the query.

In Figure 5, we show that for the baseline ToG, the number of LLM calls grows exponentially as l
increases. However, for our framework ReKnoS, the required LLM calls at each step remain constant,
indicating the efficiency of our framework. However, one challenge remains—there is a large number
of entities covered by these super-relations, which can make it difficult to find the relevant ones. We
describe how to address this issue below.

With these super-relation paths in P∗, we aim to extract the entities that satisfy the con-
nection property of these relations. The entity set for the entire super-relation path P =(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kl)
l

)
can be expressed as

E
(kl)
l = {e | ∃r1 ∈ R

(k1)
1 , r2 ∈ R

(k2)
2 , . . . , rl ∈ R

(kl)
l , such that e1

r1−→ e2
r2−→ · · · rl−→ e}. (9)

This set E(kl)
l contains all of the final entities that satisfy the super-relation path P . Note that although

each super-relation in P can contain multiple relations, the size of E(kl)
l should be much smaller, as

it requires l − 1 predecessor entities on the super-relation path to each e ∈ E
(kl)
l , which is a stricter

requirement.

We use the obtained entity set E(kl)
l along with the super-relations in P to query the LLM about

the next step. The LLM will either output an inferred answer from E
(kl)
l or decide to continue the

process by proceeding to the subsequent super-relations, i.e., repeating the process starting from
Section 4.1 and increasing the super-relation path length l. Notably, when l = L, we will always ask
the LLM for the answer.

5 EXPERIMENTS

Baselines. We compare our ReKnoS framework against several methods, including standard
prompting (IO prompt) (Brown et al., 2020), Chain-of-Thought prompting (CoT prompt) (Wei et al.,
2022), and Self-Consistency (Wang et al., 2023). Additionally, we include previous state-of-the-art
(SOTA) approaches tailored for reasoning on knowledge graphs: StructGPT (Jiang et al., 2023b),
Think-on-Graph (ToG) (Sun et al., 2024), and KG-Agent (Jiang et al., 2024).

Datasets. To evaluate the performance of our framework on multi-hop knowledge-intensive reasoning
tasks, we conduct tests using four KBQA datasets: CWQ (Talmor & Berant, 2018), WebQSP (Yih
et al., 2016), GrailQA (Gu et al., 2021), and SimpleQA (Bordes et al., 2015). Among these, three are

7
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Table 1: The results (Hits@1 in %) of different methods on various Datasets, using GPT-3.5 and
GPT-4o-mini as the LLM. The best results are highlighted in bold.

Dataset WebQSP GrailQA CWQ SimpleQA WebQ T-REx zsRE Creak Hotpot QA
LLM GPT-3.5
IO 63.3 29.4 37.6 20.0 48.7 33.6 27.7 89.7 28.9
Chain-of-Thought 62.2 28.1 38.8 20.3 48.5 32.0 28.8 90.1 34.4
Self-Consistency 61.1 29.6 45.4 18.9 50.3 41.8 45.4 90.8 35.4
ToG 76.2 68.7 57.1 53.6 54.5 76.4 88.0 91.2 35.3
KG-Agent 79.2 68.9 56.1 50.7 55.9 79.8 85.3 90.3 36.5
StructGPT 75.2 66.4 55.2 50.3 53.9 75.8 86.2 89.5 34.9
ReKnoS (Ours) 81.1 71.9 58.5 52.9 56.7 78.9 88.7 91.7 37.2
LLM GPT-4o-mini
ToG 80.7 79.7 65.4 66.1 57.0 77.2 87.9 95.6 38.9
KG-Agent 81.2 77.5 67.0 67.9 56.2 80.6 86.5 96.1 40.1
StructGPT 79.5 78.2 64.7 63.0 54.5 76.6 88.1 94.9 38.5
ReKnoS (Ours) 83.8 80.5 66.8 67.2 57.6 78.5 88.4 96.7 40.8

multi-hop reasoning datasets with reasoning path lengths generally larger than one, and one is single-
hop reasoning (i.e., SimpleQA) with reasoning paths of length one. Additionally, we include one
open-domain QA dataset, WebQ (Berant et al., 2013), two slot-filling datasets, T-REx (Elsahar et al.,
2018) and Zero-Shot RE (Petroni et al., 2021), one multi-hop complex QA dataset, HotpotQA (Yang
et al., 2018), and one fact-checking dataset, Creak (Onoe et al., 2021). For the larger datasets,
GrailQA and SimpleQA, 1,000 samples were randomly selected for testing to reduce computational
overhead. For all of the datasets, we use exact match accuracy (Hits@1) as our evaluation metric,
consistent with prior studies (Li et al., 2024; Jiang et al., 2023b). We use Freebase (Bollacker et al.,
2008) as the KG for CWQ, WebQSP, GrailQA, SimpleQA, and WebQ. We use Wikidata (Vrandečić
& Krötzsch, 2014) as the KG for T-REx, Zero-Shot RE, HotpotQA, and Creak. The implementation
details are provided in Appendix C.

5.1 COMPARATIVE RESULTS

The performance of our ReKnoS framework is evaluated on both GPT-3.5 and GPT-4o-mini across
multiple datasets, as shown in Table 1. The results highlight several key insights. First, our framework
consistently outperforms the baselines across most datasets, particularly in more complex datasets
like GrailQA, CWQ, and T-REx. On GrailQA, for example, our framework achieves an accuracy
of 71.9% on GPT-3.5 and 80.5% on GPT-4o-mini, compared to the best baseline (KG-Agent) with
68.9% and 77.5% accuracy, respectively. This improvement can be attributed to our model’s more
effective integration of reasoning mechanisms and structured knowledge representation, which are
critical for answering more complex questions.

On simpler datasets, such as SimpleQA and WebQ, our approach also shows competitive perfor-
mance. Although the margin of improvement is smaller compared to other baselines, our framework
still surpasses them. For example, on GPT-3.5, our framework achieves 52.9% accuracy on Sim-
pleQA, which is higher than KG-Agent’s 50.7% accuracy, demonstrating the robustness of our
framework even in tasks that may not demand intricate reasoning chains.

Furthermore, we observe that the performance gap between our framework and the baselines becomes
more pronounced when transitioning from GPT-3.5 to GPT-4o-mini. On CWQ, for instance, our
framework improves from 58.5% (GPT-3.5) to 66.8% (GPT-4o-mini) accuracy, while the best-
performing baseline (KG-Agent) improves from 56.1% to 67.0% accuracy. This suggests that our
framework better leverages the increased reasoning and understanding capabilities of GPT-4o-mini,
particularly in datasets that require multi-step reasoning, such as CWQ and GrailQA. Moreover,
we also observe that the baseline KG-Agent performs better on SimpleQA and T-REx using the
GPT-4o-mini LLM. This is potentially due to the advanced tool-using capabilities of GPT-4o-mini
that can benefit KG-Agent, which performs reasoning over KGs with a specialized toolbox.

In conclusion, the results demonstrate the effectiveness and adaptability of our approach across
a range of datasets, consistently outperforming state-of-the-art baselines. The transition to more

8
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Figure 6: The size of search space (i.e., the number of fact triples encountered during searching) of
different methods on dataset GrailQA. The shape denotes the distribution of the search space sizes
across all samples.

advanced language models like GPT-4o-mini further amplifies our model’s strengths, especially in
datasets that require deeper reasoning and knowledge inference.

5.2 EFFECT OF BACKBONE MODELS

Table 2: Results (Hits@1 in %) of ReKnoS and ToG on
various backbone models on four datasets.

Model WebQSP GrailQA CWQ SimpleQA
Llama-2-7B

ToG 61.2 60.3 49.8 35.7
ReKnoS 64.7 62.2 51.2 41.0

Mistral-2-7B
ToG 61.9 62.6 50.3 39.2
ReKnoS 62.5 64.3 53.1 45.3

Llama-3-8B
ToG 64.4 63.9 53.2 42.7
ReKnoS 67.9 65.8 56.7 46.4

GPT-4
ToG 82.6 81.4 67.6 66.7
ReKnoS 84.9 82.7 68.2 69.3

In this subsection, we conduct experi-
ments to compare the performance of our
framework ReKnoS and the recent base-
line ToG using different backbone models
to study the impact of model parameter
sizes. Notably, we consider the following
LLMs, in addition to the two LLMs used
in Sec. 5.1: Llama-2-7B (Touvron et al.,
2023), Mistral-7B (Jiang et al., 2023a),
Llama-3-8B (Dubey et al., 2024), and GPT-
4 (Anand et al., 2023). As seen in Ta-
ble 2, the performance of our framework
ReKnoS varies depending on the choice
of the underlying backbone model. First,
smaller models, like Llama-2-7B, generally
achieve worse results than larger models on
all datasets. Nevertheless, the performance
improvement of ReKnoS over ToG is more
significant on smaller models, compared to
large models like GPT-4. This indicates that our framework is significantly better for smaller models
that could be easily deployed, making our framework more practical. Moreover, our framework
consistently outperforms ToG on models of various parameter sizes, indicating the advantage of our
framework in helping smaller models solve complex tasks. Finally, GPT-4, as expected, provides
the highest performance across all datasets. This further underscores the potential of more advanced
models like GPT-4 to handle complex, multi-step reasoning tasks and diverse queries, outperforming
smaller and less sophisticated models.

5.3 SUPER-RELATION ANALYSIS

In this subsection, we investigate how the incorporation of super-relations contributes to improved
accuracy and running time. As an example, we present the size of the search space of different
methods on dataset GrailQA in Figure 6. We observe that our method has the largest search space,
with nearly 42% and 55% improvements in average size over the state-of-the-art methods KG-Agent
and ToG, respectively. This indicates that with super-relations, we can significantly increase the
search space size when we perform reasoning on a KG. As a consequence, our method can encounter
more fact triples and is more likely to retrieve the correct one for answering the question.

9
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5.4 EFFICIENCY ANALYSIS

Table 3: Comparison of the average number of calls and
query times (in seconds) on the WebQSP and GrailQA
datasets.

Model WebQSP GrailQA
# Calls Time Hits@1 # Calls Time Hits@1

ToG 15.3 4.9 76.2 18.9 6.8 68.7
StructGPT 11.0 2.0 75.2 13.3 3.5 66.4

ReKnoS 7.2 3.7 81.1 10.2 5.1 71.9

LLM calls are the dominant part of the com-
putation in our reasoning task; we hence
only analyze LLM calls here. The LLM
operations typically require the most time
and computational resources in such frame-
works, especially when compared to other
processes like preprocessing or document
retrieval, which are relatively lightweight.

Let N and L represent the search width
and length, respectively. In each reasoning
step, ReKnoS calls the LLM twice, where
the first one is to score the super-relations, and the second one is to determine whether to proceed
to the next reasoning step. Therefore, in this manner, ReKnoS calls the LLM (2L∗ + 1) times per
question, where L∗ is the final number of reasoning steps used and the other one is to answer the
final question. Note that the value of L∗ can be smaller than the value of L.

The significant advantage of ReKnoS lies in the fact that the number of calls is independent of
the width N as we utilize the concept of super-relations. In contrast, ToG searches for each path
individually, and the resulting total number of LLM calls is maximally 2LN + 1 (ToG calls the LLM
twice at each reasoning step for each relation, while also requiring a final call for the answer). This
reliance on N significantly increases the number of LLM calls needed.

We show the average query times for the different methods in Table 3. As seen in the table, ReKnoS
achieves the fewest LLM calls while maintaining superior performance, underscoring both its
efficiency and effectiveness. Although StructGPT is faster in terms of query times, it suffers from
lower accuracy, making it less reliable for tasks that require high precision. This trade-off between
speed and accuracy further highlights the balance ReKnoS achieves, as it maintains high accuracy
without excessively increasing the number of LLM calls.

5.5 HYPER-PARAMETER ANALYSIS

Table 4: Accuracy (Hits@1 in %) and the retrieval rate
(Ret.) of ReKnoS with different hyper-parameters.

Setting N = 1 N = 3 N = 5

Hits@1 Ret. Hits@1 Ret. Hits@1 Ret.
L = 1 75.3 57.0 79.2 69.2 79.8 71.3
L = 3 76.2 64.3 81.1 69.8 81.8 76.6
L = 5 77.3 68.6 82.1 72.9 82.2 76.9

In this subsection, we evaluate how hyper-
parameters affect the performance of Re-
KnoS. We present the results of our frame-
work in Table 4 with different values of
L and N . From the results, we see that
increasing both L and N leads to better
performance. This is because, with larger
L and N , our framework can retrieve and
store more information in the super-relation
search path Q, which can contain up to NL
super-relations. It is noteworthy that decreasing N from 3 to 1 causes a considerable drop in accuracy.
The reduction in Hits@1 is substantial, particularly with lower L values. For example, when L = 3,
Hits@1 drops from 81.1% with N = 3 to 76.2% with N = 1. This indicates that N plays a crucial
role in the framework’s performance, as fewer super-relations reduces the amount of information
available for reasoning, leading to less effective answers.

6 CONCLUSION

This paper introduced the ReKnoS framework, which leverages super-relations to involve a large
number of relations during reasoning in knowledge graphs. By enabling the representation and
exploration of multiple relation paths simultaneously, our approach significantly expands the search
space of reasoning paths over knowledge graphs without sacrificing potentially valuable information.
Extensive experiments demonstrate the effectiveness of our method, showing that ReKnoS achieves
substantial improvements over traditional reasoning techniques. These results underscore the potential
of super-relations in advancing complex reasoning tasks in knowledge graph applications.
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A PROOF OF THEOREM 4.1

Theorem 4.1. A super-relation search path leads to at least one super-relation path. Given a selected
super-relation set path of length l, Ql = {S1,S2, . . . ,Sl}, there exists at least one super-relation

path of length l, i.e., P =
(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kl)
l

)
, where R

(kj)
j ∈ Sj .

Proof. Let Ql = {S1,S2, . . . ,Sl} represent a super-relation search path consisting of l super-relation
sets, as per Definition 3. Each super-relation set Si = {R(1)

i , R
(2)
i , . . . , R

(|Si|)
i } contains multiple

super-relations.

According to Definition 3, in each super-relation set Si, there exists at least one super-relation R ∈ Si

that connects to a super-relation in the next set Si+1. In other words,

∀R ∈ Si,∃R′ ∈ Si+1 such that R → R′.

This ensures that there are connected super-relations between consecutive sets.

Start with the first super-relation set S1. According to the definition, there exists a super-relation
R

(k1)
1 ∈ S1 and another super-relation R

(k2)
2 ∈ S2 such that:

R
(k1)
1 → R

(k2)
2 .

We generalize this observation using induction. Suppose we have established that for any super-
relation R

(ki)
i ∈ Si, there exists a connected super-relation R

(ki+1)
i+1 ∈ Si+1 such that:

R
(ki)
i → R

(ki+1)
i+1 .

By the definition of the super-relation search path, we can extend this reasoning to each consecutive
set, up to the final set Sl. This guarantees that for every i, there exists a super-relation R

(ki)
i ∈ Si

such that:
R

(ki)
i → R

(ki+1)
i+1 .

By induction, we have constructed a sequence of super-relations R
(k1)
1 , R

(k2)
2 , . . . , R

(kl)
l , where

R
(k1)
1 ∈ S1, R

(k2)
2 ∈ S2, . . . , R

(kl)
l ∈ Sl, such that:

R
(k1)
1 → R

(k2)
2 → . . . → R

(kl)
l .

This sequence forms a valid super-relation path of length l, denoted as:

P =
(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kl)
l

)
.

Thus, every super-relation search path leads to at least one super-relation path, as required.

B PROOF OF THEOREM 4.2

Theorem 4.2. For any super-relation path P =
(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kL)
L

)
, there exists at

least one corresponding KG reasoning path of length l, represented as:

e1
r1−→ e2

r2−→ · · · rL−→ el+1,

where ri ∈ R
(ki)
i is a relation chosen from the super-relation R

(ki)
i , and e1, e2, . . . , el+1 are entities

in the knowledge graph.

Proof. Given the super-relation path P =
(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kl)
L

)
, we need to show that

there exists a corresponding reasoning path in the knowledge graph such that:

e1
r1−→ e2

r2−→ · · · rL−→ el+1,

13
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where each ri is a relation from the super-relation R
(ki)
i , and the entities e1, e2, . . . , el+1 are KG

entities.

From Definition 1, we know that each super-relation Ri is composed of multiple relations, i.e.,
Ri = {r1, r2, . . . }, where rj is a standard binary relation between two entities in the knowledge
graph. The super-relation R

(k1)
1 connects to R

(k2)
2 , denoted as R(k1)

1 → R
(k2)
2 , if there exist entities

e1, e2, e3 such that:
e1

r1−→ e2
r2−→ e3,

where r1 ∈ R
(k1)
1 and r2 ∈ R

(k2)
2 .

According to Definition 2, a super-relation path P = (R1 → R2 → . . . → RL) consists of l
consecutive super-relations that are connected. This means that for each consecutive pair of super-
relations R(ki)

i and R
(ki+1)
i+1 , there exist entities ei, ei+1, ei+2 such that:

ei
ri−→ ei+1

ri+1−−−→ ei+2,

where ri ∈ R
(ki)
i and ri+1 ∈ R

(ki+1)
i+1 .

We proceed by induction on the length l of the super-relation path.

Base Case (l=1): For a super-relation path of length 1, P = (R
(k1)
1 ), we have the relation r1 ∈ R

(k1)
1

and two entities e1 and e2 such that:
e1

r1−→ e2.

This forms a valid KG reasoning path of length 1.

Assume that for a super-relation path of length l = n, there exists a corresponding KG reasoning
path:

e1
r1−→ e2

r2−→ · · · rn−→ en+1,

where each ri ∈ R
(ki)
i is chosen from the respective super-relation.

Now, consider a super-relation path of length l = n+ 1, P = (R
(k1)
1 → R

(k2)
2 → . . . → R

(kn+1)
n+1 ).

By the inductive hypothesis, there exists a corresponding reasoning path of length n:

e1
r1−→ e2

r2−→ · · · rn−→ en+1,

where each ri ∈ R
(ki)
i .

From Definition 1, the super-relation R
(kn)
n connects to R

(kn+1)
n+1 , meaning there exist entities en+1

and en+2 such that:
en+1

rn+1−−−→ en+2,

where rn+1 ∈ R
(kn+1)
n+1 .

Thus, the extended path is:
e1

r1−→ e2
r2−→ · · · rn+1−−−→ en+2,

which forms a valid KG reasoning path of length n+ 1.

By induction, for any super-relation path P =
(
R

(k1)
1 → R

(k2)
2 → . . . → R

(kL)
L

)
, there exists a

corresponding KG reasoning path of length l of the form:

e1
r1−→ e2

r2−→ · · · rL−→ el+1,

where each ri ∈ R
(ki)
i , as required.

C IMPLEMENTATION DETAILS

Since our framework is flexible and can be applied to any LLMs, in our experiments, we mainly
consider two large LLMs: GPT-3.5 (ChatGPT) (OpenAI, 2022) and GPT-4o-mini (Anand et al., 2023).
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We additionally consider Llama-2-7B (Touvron et al., 2023), Mistral-7B (Jiang et al., 2023a), Llama-
3-8B (Dubey et al., 2024), and GPT-4 (Anand et al., 2023) in Sec. 5.2. We run all the experiments on
one Nvidia A6000 GPU with 48GB of memory. Across all datasets and methods, we set the width
N as 3 and the maximum length L as 3. When prompting the LLM to score super-relations, we use
3 examples as in-context learning demonstrations, following the existing work ToG. Our code is
provided at https://anonymous.4open.science/r/REKNOS-84B2.
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