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ABSTRACT

Despite the remarkable success of Large Language Models (LLMs), evaluating
their outputs’ quality regarding preference remains a critical challenge. Existing
works usually leverage a powerful LLM (e.g., GPT4) as the judge for comparing
LLMs’ output pairwisely, yet such model-based evaluator is vulnerable to conflict-
ing preference, i.e., output A is better than B, B than C, but C than A, causing
contradictory evaluation results. To improve model-based preference evaluation,
we introduce GED (Preference Graph Ensemble and Denoise), a novel approach
that leverages multiple model-based evaluators to construct preference graphs, and
then ensemble and denoise these graphs for better, non-contradictory evaluation
results. In particular, our method consists of two primary stages: aggregating eval-
uations into a unified graph and applying a denoising process to eliminate cyclic
inconsistencies, ensuring a directed acyclic graph (DAG) structure. We provide
theoretical guarantees for our framework, demonstrating its efficacy in recovering
the ground truth preference structure. Extensive experiments across ten benchmark
datasets show that GED outperforms baseline methods in model ranking, response
selection, and model alignment tasks. Notably, GED combines weaker evaluators
like Llama3-8B, Mistral-7B, and Qwen2-7B to surpass the performance of stronger
evaluators like Qwen2-72B, highlighting its ability to enhance evaluation reliability
and improve model performance.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly transformed various fields within artificial intelligence,
particularly natural language processing (NLP) and decision-making systems (Wu et al., 2023; Li
et al., 2023a). Despite the remarkable success of LLMs, the need for effective evaluation methods
becomes paramount (Liu et al., 2023; Desmond et al., 2024; Siska et al., 2024). Preference evaluation,
as one of the most important assessment methods, plays an indispensable role in evaluating and
optimizing model performance (Rafailov et al., 2024; Yuan et al., 2024; Dubois et al., 2024b).
Existing works usually leverage a powerful LLM (e.g., GPT4 (Achiam et al., 2023)) as the judge for
comparing LLMs’ output pairwisely (Li et al., 2023b; Chen et al., 2023b; Wang et al., 2022).

However, while such model-based pairwise preference evaluations offer a flexible approach, they
can lead to contradictory evaluations in the assessment process (Naresh et al., 2024; Zhang et al.,
2024b). For example, an LLM might evaluate three responses and conclude that Response A is better
than Response B (A ≻ B), Response B is better than Response C (B ≻ C), yet paradoxically also
rank Response C as better than Response A (C ≻ A). These cyclic patterns introduce inconsistencies
that undermine the reliability of the evaluation results. We model this conflicting preference via
the preference graph. Specifically, a preference graph is constructed with each response as a node
and directed edges indicating pairwise preferences—an edge from node A to node B shows that the
evaluator preferred response A over B. The noise illustrated by cycles (A ≻ B ≻ C ≻ A) manifests as
loops in the preference graph. The whole process we show in the upper part of Figure 1. Ideally, a
preference graph should be structured as a directed acyclic graph (DAG) to maintain consistency. As
shown in the bottom half of Figure 1, even advanced LLMs like GPT-4-o exhibit significant noise in
preference evaluation, highlighting their limitations as weak evaluators (Refer to Appendix A.3 for
further details).
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Question

which one is better?

Answer:

LLM
Evaluator

≻

≻

≻

...

Preference GraphPreference
Result

Pairwise 
Evaluation

Figure 1: The figure is divided into two parts. The upper part shows the construction of a preference
graph from pairwise LLM evaluations, with cycles indicating inconsistent preferences highlighted
in red. The lower part presents the evaluation of ten responses for HumanEval (Chen et al., 2021)
and MATH (Hendrycks et al., 2021) tasks, generated by Llama3-70B (AI@Meta, 2024). These
were evaluated by GPT-4-o, GPT-4-o-mini, GPT-3.5 (Achiam et al., 2023), Qwen2-72B (Yang
et al., 2024a), and Llama3-8B, revealing a significant cycle rate (details in Appendix A.5) in their
evaluations. This highlights the limitations of even advanced LLMs as reliable evaluators.

To address this, we propose a novel framework, GED (Preference Graph Ensemble and Denoise),
to address the inconsistencies in preference graphs generated through pairwise evaluations. Our
method involves two key steps: (1) ensembling multiple weak evaluators to mitigate noise introduced
by individual evaluators and (2) applying a denoising process to the resulting preference graph.
By aggregating evaluations from multiple weak evaluators, we ”average out” the noise and biases,
resulting in a more robust approximation of the true preference structure. The denoising step further
refines this aggregated graph by removing inconsistencies, ensuring the final preference graph is
more reliable for downstream tasks. We provide a theoretical analysis demonstrating the soundness
of GED, showing that by treating each individual preference graph as a random perturbation of a
ground truth DAG, our ensemble and denoising framework can recover the ground truth DAG with
high probability.

To validate the practical efficacy of GED, we conduct extensive experiments across model ranking,
response selection, and model alignment tasks, utilizing ten widely recognized benchmark datasets, in-
cluding HumanEval (Chen et al., 2021), AlpacaEval (Li et al., 2023b), MATH (Hendrycks et al., 2021),
GSM8k (Chen et al., 2021), GAIA (Mialon et al., 2023), LIMA (Zhou et al., 2023), Vicuna (Chiang
et al., 2023), Koala (Vu et al., 2023), WizardLM (Xu et al., 2023), and Self-Instruct (Wang et al.,
2022). In these experiments, GED consistently outperformed baseline methods. For example, in
the response selection task, applying GED yielded an average improvement of 4.51% compared to
baseline methods across multiple benchmarks. Additionally, GED demonstrated substantial gains in
scenarios where combining preference graphs from weaker evaluators surpassed the performance of
even stronger individual evaluators. For instance, by using Llama3-8B, Mistral-7B, and Qwen2-7B
as weaker evaluators, GED exceeded the performance of using the stronger Qwen2-72B model as an
evaluator. These results highlight GED’s ability to mitigate preference noise, improve consistency,
and enhance model performance across diverse evaluation settings.

2 METHODOLOGIES

In this section, we begin by defining a preference graph, which serves as the foundation for rep-
resenting pairwise preferences among candidates (Section 2.1). Building on this foundation, we
introduce GED structured into three key stages (Section 2.2): (1) graph ensemble, where we aggregate
individual preference graphs into a unified structure, (2) graph denoising, which removes cycles and
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inconsistencies to ensure the preference graph is acyclic, and (3) graph-to-ranking, where we extract
a reliable ranking of candidates from the denoised graph. Below, we provide detailed descriptions of
each step.

2.1 PREFERENCE GRAPH

A preference graph is defined as a directed graph GP = (V,A,w), where V = {v1, v2, . . . , vn}
represents a set of n alternatives or candidates, A ⊆ V × V is a set of directed arcs representing
pairwise preferences between these alternatives, and w : A→ R+ is a weight function that assigns a
positive real value to each arc, indicating the strength of the preference.

For any pair of distinct vertices u, v ∈ V , an arc (u, v) ∈ A exists if there is a preference for u over v,
with the weight w(u, v) reflecting the intensity of this preference. Formally, this can be represented
as:

(u, v) ∈ A if and only if w(u, v) > 0 (1)

The weight function w(u, v) aggregates individual preferences or scores for the pair (u, v). If multiple
preference sources exist, the weight can be expressed as:

w(u, v) =

k∑
i=1

(si(u, v)− si(v, u)) (2)

where si(u, v) is the score or preference from the i-th source. The preference graph encapsulates the
aggregate preferences among all pairs of alternatives, with the weight of each arc representing the
cumulative preference strength derived from underlying data or models.

which one is better?

Evaluator 1 Evaluator 2 Evaluator 3

Preference 
graph 1

Preference 
graph 2

Preference 
graph 3

Graph Ensemble

Graph Denoising

Graph to Ranking
≻ ≻ ≻

≻≻

Figure 2: The GED framework mitigates noise and inconsistencies in preference evaluations by
utilizing multiple weak evaluators and applying a graph denoising process. It consists of three stages:
(1) Graph Ensemble, which combines individual preference graphs; (2) Graph Denoising, which
removes cycles to ensure an acyclic structure; and (3) Graph-to-Ranking, which extracts a reliable
ranking from the denoised graph.

2.2 GED: PREFERENCE GRAPH ENSEMBLE AND DENOISE

As illustrated in Figure 2, our method, GED (Preference Graph Ensemble and Denoise), begins by
performing graph ensemble to aggregate a set of preference graphs. It then applies graph denoising
to ensure acyclicity, followed by graph-to-ranking to derive the final node ranking. The detailed steps
are as follows:
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Graph ensemble. In the context of graph ensemble, given multiple weighted graphs G1 =
(V,A1, w1), G2 = (V,A2, w2), . . . , Gk = (V,Ak, wk) that share the same set of vertices V but
may differ in their arc sets Ai, the goal is to combine these graphs into a single ensemble graph
GE = (V,AE , wE). The ensemble graph GE is formed by first defining the arc set AE as the union
of the arc sets of the individual graphs and the weight function wE : AE → R+ for the ensemble
graph is then determined by summing the weights of the corresponding arcs in each graph.

Graph denoising. Graph denoising involves transforming the original graph G = (V,A,w) into
a DAG. This transformation is achieved by identifying and removing a set of arcs known as the
Feedback Arc Set (FAS) (Gabow, 1995), which is a set of arcs whose removal makes the graph
acyclic. The goal is to find a minimum FAS, denoted as R∗(G), which is a set of arcs with the
smallest total weights that needs to be removed to eliminate all cycles in G.

To find this minimum FAS, we can order the vertices of G in a specific sequence s = {v1, v2, . . . , vn}.
This vertex sequence induces a FAS R(s), consisting of all arcs that point against the direction of the
sequence, i.e., arcs vj → vi where j > i. The graph denoising problem is thus reframed as finding an
optimal vertex sequence s∗ that induces the minimal FAS, such that R(s∗) = R∗(G). This optimal
sequence s∗ ensures that the total weights of arcs eliminated to achieve a DAG is minimized.

Finding a minimum FAS in general is known to be an NP-complete problem, whose computational
complexity can be exponential (Karp, 2010; Bodlaender et al., 2012). Therefore, in our experiment,
we apply the well-established approximation algorithm proposed in Eades et al. (1993). Details can
be found in Appendix L.

Graph to ranking. Given a DAG graph G = (V,A,w), our goal is to derive a ranking based on
the structure of G. For each vertex v ∈ V , we compute the descendant count desc(v), defined as the
number of vertices that are reachable from v through directed arcs:

desc(v) = |{u ∈ V : v ⇝ u}| , (3)

where v ⇝ u denotes that there is a directed path from v to u. Vertices are then ranked based on
their descendant counts, with higher descendant counts indicating a higher position in the ranking.
Formally, the rankingR is represented as a sequence of subsets:

R = {v1, v2, . . . , vn}, (4)

where each vi represents a set of vertices with the i-th highest descendant count. The final ranking is
then:

v1 ≻ v2 ≻ · · · ≻ vn. (5)
This structured approach ensures that the ranking reflects not only the individual preferences captured
in the graph but also the relative strength of these preferences as represented through their descendant
connections.

2.3 APPLICATIONS

We apply GED to three tasks: Response Selection, selecting the best response from LLM-generated
candidates; Model Ranking, ranking models based on task performance; and Model Alignment,
identifying the best instruction-response pairs for training. The steps are as follows:

Response selection. In the response selection task, a modelM generates n candidate answers
{ans1, . . . , ansn} for each question q ∈ Q, with the objective of identifying the optimal answer
ans∗q for each query. To achieve this, we employ multiple evaluatorsA = {a1, . . . , ak}, who provide
pairwise preferences among the candidate answers. For each question q, we construct a set of
preference graphs {Ga : a ∈ A}, where each graph Ga = (Vq, Aa, wa) encapsulates the preferences
of evaluator a. The vertex set Vq = {v1, . . . , vn} corresponds to the candidate answers, while the
directed arcs Aa indicate the pairwise preferences among these responses. Each arc is weighted by
wa, reflecting the strength of the preference indicated by the evaluator. The construction of preference
graphs involves evaluating each pair of candidate answers ansi and ansj . Evaluators assess the
quality of these answers, assigning a preference that is denoted by a directed arc (vi, vj) in Aa, with
a corresponding weight wa(vi, vj) based on the strength of preference. This process is detailed in
Appendix D. After collecting the preference graphs {Ga : a ∈ A} for a question q, we apply GED to
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aggregate these graphs. The aggregation begins with merging all preference graphs into a unified
graph Gq = (Vq, Aq, wq), which is subsequently processed to remove cycles, resulting in a DAG.
From this DAG, we derive the rankingRq = {v1 ≻ v2 ≻ . . . ≻ vn} of the candidate answers, where
the highest-ranked answer is selected as ans∗q . This process is repeated for each question q ∈ Q,
yielding a final set of selected answers ans∗ = {ans∗1, . . . , ans∗t }. This set reflects a consensus from
multiple evaluators in A, ensuring the chosen answers represent the highest quality responses based
on rigorous preference evaluation.

Model Ranking. In model ranking task, the goal is to rank a set of models M = {M1, . . . ,Mn}
based on their responses to a series of questions Q = {q1, . . . , qt}. A group of evaluators, denoted as
A = {a1, a2, . . . , ak}, assesses the model outputs by providing preferences for pairs of responses for
each question. For each question q ∈ Q, the evaluators generate preference graphs {Ga : a ∈ A},
where each graph Ga = (Vq, Aa, wa) encapsulates the preferences of evaluator a over the models.
The vertex set Vq = {v1, . . . , vn} corresponds to the models, while the directed arcs Aa indicate
pairwise preferences, with weights wa : Aa → R+ reflecting the strength of these preferences. The
preference graph for a given question q is constructed by evaluating each pair of modelsMi andMj ,
represented by nodes vi and vj . For their respective answers ansi =Mi(q) and ansj =Mj(q),
evaluators provide a preference indicating which answer is favored. This preference is represented by
a directed arc (vi, vj) in Aa, assigned a weight wa(vi, vj) based on preference strength. The detailed
procedure is outlined in Appendix D. Once the preference graphs {Ga : a ∈ A} are collected for a
question q, we employ GED to aggregate these graphs. The method begins by merging all preference
graphs into a single graph Gq = (Vq, Aq, wq), which is then transformed into a DAG by removing
cycles. The final ranking Rq = {v1 ≻ v2 ≻ . . . ≻ vn} is derived from this DAG. This process
is repeated for each question q ∈ Q, yielding a set of rankings {Rq : q ∈ Q}. To compute the
overall ranking R∗ of the models across all questions, we conduct a ranking ensemble on the set
{Rq : q ∈ Q}, as detailed in Appendix M. This approach culminates in a final ranking that reflects
the models’ performance as assessed by multiple evaluators in A.

Model Alignment. In the model alignment task, we have multiple data pairs of the form
(x, y1), (x, y2), . . . , (x, yn) for each instruction x. The objective is to identify the best response
y∗ corresponding to each instruction x. We utilize multiple evaluators A = {a1, . . . , ak} to provide
pairwise preferences among the candidate responses. For each instruction x, we construct a set of
preference graphs {Ga : a ∈ A}, where each graph Ga = (Vx, Aa, wa) represents the preferences
of evaluator a. The vertices Vx correspond to the candidate responses {y1, . . . , yn}, and the directed
arcs in Aa indicate preferences, weighted by wa. After constructing the preference graphs, we apply
GED to aggregate them into a single graph Gx. This graph undergoes a denoising process to remove
cycles, allowing us to derive a rankingRx of the responses. The highest-ranked response inRx is
selected as y∗ for that instruction x. This process is repeated for all t instructions, resulting in the
final training set {(x1, y

∗
1), . . . , (xt, y

∗
t )}, which reflects a consensus across the evaluators in A.

3 THEORETICAL ANALYSIS

In this section, we provide a theoretical foundation for our method, showing that by modeling
preference graphs as random perturbations of a ground truth DAG, GED can reliably recover the true
structure through graph ensemble and denoising with high probability, demonstrating its robustness
in handling noisy evaluations.

Theoretically, we treat each of our preference graph as a random perturbation of some ground truth
DAG G = (V,A). Specifically, we consider a random graph generator G(G, δ1, δ2) with parameters
δ1, δ2 ∈ [0, 1] such that Gi = (Vi, Ai) ∼ G(G, δ1, δ2) satisfies Vi = V . Furthermore, for each
u, v ∈ V with u ̸= v,

1) If (u→ v) ∈ A, then

P((u→ v) ∈ Ai) = 1− δ1 and P((v → u) ∈ Ai) = δ1;

2) If (u→ v), (v → u) /∈ A, then

P((u→ v), (v → u) /∈ Ai) = 1−δ2, P((u→ v) ∈ Ai) =
δ2
2

and P((v → u) ∈ Ai) =
δ2
2
.
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That is, each edge in E has probability δ1 of being flipped and each pair of unconnected nodes has
probability δ2 of being connected with a random direction.

Now, given that G1, . . . , GN
i.i.d.∼ G(G, δ1, δ2), we will show that to some extent our combination

of graph ensemble and graph denoising can indeed provably recover the ground truth DAG G. For
simplicity, all edges in G1, . . . , GN and G are considered equal weighted. Meanwhile, we use
MAS(·) to denote the graph obtained by denoising, which stands for the maximum acyclic subgraph
(MAS). Then, we have the following theorem.

Theorem 1 Suppose G1, . . . , GN
i.i.d.∼ G(G, δ1, δ2) for some ground truth G = (V,A). Let Ĝ be

the graph ensembled from G1, . . . , GN by operations defined in Section 2.2. Then, as long as
δ1 = 0.5− ϵ. For some ϵ > 0, we have

P
(
G ⊆ MAS(Ĝ)

)
≥ 1− 2|A| exp

(
−Nϵ2

2

)
− 2U exp

(
− Nϵ2

6U2δ2 + 2Uϵ

)
,

where G ⊆ MAS(Ĝ) represents that G is a subgraph of MAS(Ĝ) and U = |V |(|V |−1)
2 − |A| is the

number of pairs of unconnected nodes in G.

The full proof is given in Appendix E. From the theorem, we can see that the probability of failure
decreases exponentially as the number of samples N increases. Meanwhile, this guarantee only
requires δ1 < 0.5 and does not place restrictions on δ2, which are very mild conditions.

4 EXPERIMENTS ON RESPONSE SELECTION

Table 1: Performance comparison of response selection methods across five benchmarks. GED
consistently outperforms baseline methods, demonstrating the effectiveness of graph denoising and
the aggregation of weaker evaluators.

Method HumanEval AlpacaEval MATH GSM8k GAIA Avg
Llama3-8B 43.90 27.29 22.08 56.67 6.78 31.34

Mistral-7B 23.17 11.80 23.25 39.83 7.03 21.01

Qwen2-7B 48.58 25.71 59.92 76.75 7.70 43.73

Qwen2-72B 57.93 29.58 72.75 84.67 11.52 51.29

ContraSolver 65.42 31.12 74.95 86.84 12.22 54.11

ListPreference 61.52 31.67 71.75 85.0 10.90 52.16

Single model

Self-consistency 60.98 29.33 73.58 84.91 8.86 51.53

Llama3-8B 62.19 29.31 74.27 83.16 11.31 52.04

with graph denoising 64.02 30.18 74.73 86.00 11.72 53.33

Mistral-7B 67.24 27.70 74.41 83.83 10.50 52.73

with graph denoising 68.73 29.93 74.77 83.91 10.74 53.61

Qwen2-7B 61.58 28.69 74.50 85.41 11.11 52.25

with graph denoising 65.85 29.44 74.79 86.38 11.25 53.54

Qwen2-72B 60.97 31.04 74.73 86.47 12.14 53.07

Single evaluator

with graph denoising 68.90 31.17 75.33 87.45 12.26 55.02

Multi-MV 66.18 29.57 74.77 86.42 11.72 53.73

GED (w/o denoising) 69.25 30.98 74.29 87.17 12.68 54.87Multiple evaluator
GED 70.73 32.44 75.58 88.18 13.33 56.05

Experiment Setup. In this section, we evaluate the performance of GED on five benchmarks:
HumanEval (Chen et al., 2021), AlpacaEval (Li et al., 2023b), MATH (Hendrycks et al., 2021),
GSM8k (Chen et al., 2021), and GAIA (Mialon et al., 2023). The Qwen2-72B (Yang et al., 2024a)
model (M) generates ten candidate responses per question, and we assess the effectiveness of
different methods in selecting the best response. For further implementation details, see Appendix A.
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Figure 3: Comparison of GED with GPT-3.5, GPT-4-o-mini, and GPT-4-o on 100 randomly selected
tasks. GED consistently outperforms GPT-3.5 across all tasks and surpasses GPT-4-o-mini on
challenging tasks like HumanEval and GSM8k, showcasing the effectiveness of weak evaluator
aggregation with graph denoising.

We evaluate performance using three setups. First, in the single model setting, the baselines include
ContraSolver(Zhang et al., 2024b), Self-consistency(Wang et al., 2022), and direct evaluation with
models (Llama3-8B, Mistral-7B, Qwen2-7B and Qwen2-72B). Additionally, we include a baseline
called ListPreference, where instead of pairwise comparisons, all candidate responses are input
into Qwen2-72B for selecting the most appropriate response. Then, in the single evaluator setting,
individual evaluators (Llama3-8B, Mistral-7B, Qwen2-7B, Qwen2-72B) select the best response
fromM’s outputs, with and without applying GED’s graph denoising. Finally, in the multiple weak
evaluators setup, we combine three weaker evaluators (Llama3-8B, Qwen2-7B, Mistral-7B) to select
responses from Qwen2-72B with GED. We also include a new baseline referred to as Multi-MV,
which just takes the majority for each pairwise comparison as the preferred answer. We present the
results of GED and its variant (w/o denoising), which ensembles the preference graphs without the
denoising step.

Main results. Table 1 presents the results of the response selection task across five benchmarks.
GED consistently outperforms baseline methods, including both single model evaluations (single
model) and direct response selection by individual models (single evaluator). This demonstrates the
strength of aggregating weak evaluators with GED, particularly when coupled with graph denoising,
which enhances response quality by filtering out noise and biases. This highlights the effectiveness of
aggregating weak evaluators and applying graph denoising to improve response quality. Furthermore,
by combining preference graphs from weaker models (Llama3-8B, Mistral-7B, Qwen2-7B), GED
surpasses the performance of a much stronger evaluator (Qwen2-72B). This underscores the value
of ensemble methods in mitigating the limitations of individual evaluators. Then, the denoising
process proves to be crucial for improving consistency and overall response quality. The substantial
performance gains observed when using GED with denoising, compared to both the single evaluator
setup and the ensemble without denoising, highlight its importance in refining response selection.
We also evaluated Multi-MV, which aggregates pairwise comparisons using majority voting across
evaluators. While Multi-MV offers improvements over individual evaluators, it underperforms
compared to GED, highlighting GED’s ability to capture more nuanced evaluation signals and reduce
inconsistencies. Additionally, we observed that the ListPreference baseline performed worse than
Qwen2-72B as single evaluator, likely due to LLM limitations in handling long-text. Lastly, to
further evaluate GED, we compared its performance with GPT-3.5, GPT-4-o-mini, and GPT-4-o.
Due to computational and API cost constraints, we limited the evaluation to 100 data points for each
task. As shown in Figure 3, GED consistently outperformed GPT-3.5 across all tasks and surpassed
GPT-4-o-mini on challenging benchmarks like HumanEval and GSM8k. These results highlight
the superiority of GED, particularly in leveraging multi-weak evaluators and graph denoising to
outperform individual state-of-the-art models.

Ablation study. We evaluate the impact of removing the ensembling step in GED, referred to as
the (w/o ensemble) variant. In this case, individual evaluators’ preference graphs are denoised and
converted to rankings, which are then aggregated using methods such as Weight Score, Kemeny,
Weighted Kemeny, Pairwise Majority, and Weighted Pairwise Majority (detailed in Appendix M). For
simplicity of presentation, we use Weight Score to represent GED (w/o ensemble) (Weight Score). As
shown in Figure 4, all (w/o ensemble) methods consistently underperform compared to GED. This
performance gap arises because converting graphs to ranks before aggregation leads to information
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Figure 4: Comparison of GED and (w/o ensemble) variants. GED outperforms due to preserving more
information by directly ensembling preference graphs, while rank aggregation in the (w/o ensemble)
methods leads to performance loss.

Table 2: Results of the model ranking task, evaluated using Ranking Correction. Higher correlation
values indicate a stronger alignment with the ground truth rankings.

Model Weight Score Kemeny Weighted
Kemeny

Pairwise
Majority

Weighted
Pairwise
Majority

Avg.

Llama3-70B 50.88 60.80 60.80 62.23 61.85 59.31
with graph denoising 52.44 62.54 62.54 63.92 62.18 60.72

Qwen2-72B 65.34 59.87 67.39 66.05 66.59 65.04
with graph denoising 66.05 70.43 70.43 72.32 72.41 70.32

Qwen1.5-72B 63.64 60.72 60.72 62.65 63.28 62.20
with graph denoising 64.81 61.77 61.77 64.36 64.76 63.49

Mistral-8×7B 64.90 68.74 68.74 73.06 72.87 69.66

Single evaluator

with graph denoising 65.47 70.06 69.92 73.39 73.21 70.41

GED (w/o ensemble) 62.82 68.44 68.44 69.34 67.34 67.27

GED (w/o denoising) 64.84 69.23 69.81 75.35 74.37 70.72Multiple evaluator
GED 66.59 71.14 71.14 77.17 76.46 72.50

loss. In contrast, GED ensembles the graphs directly, preserving more detailed preference information
and resulting in better final rankings.

5 EXPERIMENTS ON MODEL RANKING

Experiment Setup. In this section, we evaluate the effectiveness of GED in the model ranking task
within a human preference setting, using the AlpacaEval benchmark (Li et al., 2023b). We employ 30
widely used models from the AlpacaEval dataset as our model setM, while the benchmark’s questions
form the question set Q. The rankings provided by the AlpacaEval benchmark serve as ground truth
for evaluating the accuracy of various ranking methods. This is justified by AlpacaEval’s strong
correlation with Chatbot Arena rankings, making it a reasonable proxy for human judgments (Dubois
et al., 2024a). We adopt Ranking Correction, measured by the Spearman rank correlation coefficient,
to evaluate the similarity. To generate rankings, we utilize outputs from the open-source models
Llama3-70B, Qwen2-72B, Mistral-8×7B, and Qwen1.5-72B as our evaluators, denoted as set A. For
further implementation details, see Appendix A. We investigate two variants of GED: (w/o ensemble)
denoises the preference graphs from different evaluators for the same question, converts each into a
ranking, and then ensembles these rankings to produce the final output, while (w/o denoising) directly
ensembles the preference graphs to obtain the final ranking without denoising.

Main results. The results, presented in Table 2, show that GED outperforms all single-model
baselines, highlighting the significant improvement in ranking accuracy achieved by leveraging
preference information from multiple evaluators. Moreover, GED surpasses the (w/o ensemble)
variant, indicating that generating rankings through graph ensemble first prevents information loss
compared to converting individual graphs into rankings. When the ensemble graph is not denoised
(w/o denoising), residual noise can adversely affect the final ranking quality. Additionally, our
denoising method also enhances results in single-model settings.
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6 EXPERIMENTS ON INSTRUCT TUNING

Experiment Setup. In this section, we explore the effects of various data selection methods for
model alignment on Llama-2-7B (Touvron et al., 2023) and Mistral-7B (Jiang et al., 2023) through
instruct tuning. Specifically, we randomly sampled 5000 data points from UltraFeedback (Cui et al.,
2023), and utilized Qwen1.5-14B (Yang et al., 2024a) to generate 8 responses for each data point
as instruct data. We then applied four different methods—Random, Longest (Zhao et al., 2024),
ContraSolver (Zhang et al., 2024b), and our proposed GED—to select a subset of these responses for
model alignment training. The Origin refers to the performance of the base model without alignment.
The resulting models were evaluated on the HH-RLHF (Bai et al., 2022) benchmark, which consists
of four sub-sets: Harmless (base), Helpful (base), Helpful (online), and Helpful (rejection). For
evaluation, we adopted the same Reward model, following prior work (Song et al., 2024; Yu et al.,
2023), to measure human preference levels gained by the models. These results are summarized in
Table 3. To ensure a comprehensive evaluation, we also tested the models, using the Llama-2-7B
backbone, across additional benchmarks such as LIMA (Zhou et al., 2023), Vicuna (Chiang et al.,
2023), Koala (Vu et al., 2023), WizardLM (Xu et al., 2023) and Self-Instruct (Wang et al., 2022), in
line with recent works (Chen et al., 2023b; Zhang et al., 2024a; Hu et al., 2024).

Table 3: Performance comparison of different methods (Random, Longest, ContraSolver, and GED)
on model alignment task across the HH-RLHF benchmark. The results demonstrate the superiority
of GED in consistently selecting high-quality responses, leading to improved model performance
compared to baseline methods.

BaseModel Harmless (base) Helpful (base) Helpful (online) Helpful (rejection) Avg.
Origin 69.67 61.12 65.41 64.06 65.07

Random 69.38 62.87 66.75 65.57 66.14

Longest 69.65 63.54 66.99 66.43 66.65

ContraSolver 69.57 63.61 66.87 66.59 66.66
Llama-2-7B

GED 69.71 64.10 67.87 67.01 67.17
Origin 61.59 59.51 65.21 63.17 62.37

Random 59.15 59.61 64.06 62.38 61.30

Longest 61.81 60.53 64.52 63.22 62.52

ContraSolver 61.48 59.85 64.66 63.41 62.85
Mistral-7B

GED 61.96 60.71 65.49 63.82 63.50

Main results. From Table 3, we observe that GED consistently outperforms all baseline meth-
ods, demonstrating its effectiveness in selecting high-quality responses when multiple answers are
available for a given instruction. When faced with multiple responses y1, y2, . . . , yn for a given
instruction x, the Random selection method can have a detrimental impact, especially when the
quality of the responses is inconsistent. This effect is most evident with the Mistral-7B, where
Random selection actually performs worse than the Origin, indicating that randomly chosen data
points can introduce noise and degrade the model’s performance. Moreover, we find that simply
selecting the longest response does not always lead to the best outcomes. While longer responses may
provide more detailed answers, they are not necessarily better in terms of quality, particularly when
both high-quality and low-quality answers exist for the same question. This is reflected in the results
where the Longest method underperforms compared to both ContraSolver and GED, emphasizing
that response length alone is not always a reliable criterion. From Figure 5, we can draw similar
conclusions as Table 3. Specifically, we observe that GED consistently outperforms all baselines,
demonstrating its effectiveness across all datasets. Particularly in AlpacaEval and Self-Instruct,
the Random baseline performs worse than the Origin model, indicating that when response quality
varies significantly, poor selection can lead to negative performance. In contrast, GED excels by
aggregating preference graphs and applying denoising, effectively filtering out low-quality responses.
This ensures robust performance, especially in cases where response quality is inconsistent. The
denoising step is crucial for removing noisy evaluations, leading to improved model alignment. The
denoising process in GED proves essential, particularly in settings with inconsistent responses, as it
removes evaluation noise and leads to more robust performance.
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Figure 5: Performance comparison of different methods (Random, Longest, ContraSolver, and
GED) across multiple benchmarks, including LIMA, Vicuna, Koala, WizardLM and Self-Instruct.
The results show GED effectively filters low-quality responses, improving performance and model
alignment over baselines.

7 RELATED WORK

Preference evaluation of LLMs. Reference-free evaluation metrics have a long history (Louis
& Nenkova, 2013), which evaluates the generated text based on intrinsic properties and coherence
with the context. Although they achieve high accuracy on matching inner-evaluator, the achievement
suffers from spurious correlations such as perplexity and length (Durmus et al., 2022). Recently,
people have started using a strong model (e.g., GPT-4) as an evaluator to perform a zero-shot reference-
free evaluation on the weak models (Shen et al., 2023; Dubois et al., 2024b; Chen et al., 2023b).
However, using LLM-based preference evaluations can introduce inconsistencies in preference graphs,
often resulting in cyclic preferences or contradictions when comparing multiple outputs.

Weak supervision. The concept of weak-to-strong supervision originates from the need to leverage
noisy or partial labels in machine learning tasks, enabling the development of more robust models from
imperfect data (Ratner et al., 2016; Zhang et al., 2023b; 2022). In LLMs, weak-to-strong supervision
aids AI alignment by allowing weaker models to improve strong ones, enhancing performance without
extensive data and supporting scalable oversight (Zheng et al., 2024a; Guo & Yang, 2024; Tong
et al., 2024). Similarly, in task-oriented LLMs, weak-to-strong learning improves LLM’s ability by
enabling strong models to refine their data autonomously, boosting performance without extensive
high-quality input (Zhang et al., 2023a; Yang et al., 2024b). Through weak-to-strong supervision,
LLM performance can be significantly improved by iteratively transforming low-quality labels into
more reliable ones, leading to more effective model training and robust outputs (Zakershahrak &
Ghodratnama, 2024; Lang et al., 2024).

8 CONCLUSION

In this paper, we presented GED, a framework designed to address inconsistencies in pairwise prefer-
ence evaluations by LLMs. By employing graph ensemble techniques and denoising, GED reduces
cyclic patterns and enhances the reliability of evaluation outcomes. Our theoretical analysis shows
that GED can recover the ground truth DAG under reasonable conditions, improving consistency in
preference rankings. Extensive experiments across response selection, model ranking, and instruct
tuning demonstrate the efficacy of our method. GED consistently outperformed baseline methods
in both single-evaluator and multi-evaluator settings, particularly in scenarios where combining
weak evaluators led to superior results over stronger individual evaluators. Future work will explore
extending GED to broader evaluation frameworks and applying its principles to more complex
decision-making tasks, including multi-agent systems and human-AI interaction.
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A IMPLEMENTATION DETAILS

A.1 EXPERIMENTAL SETUP

All experimental procedures were conducted on a machine equipped with an AMD EPYC
7543 32-Core Processor, 512GB memory, 128 CPUs, and four 80GB NVIDIA A800 GPUs.
The code is available at https://anonymous.4open.science/r/kkk-B9F2. The ref-
erences to Llama-2-7B, Llama3-70B, Llama3-8B, Mistral-7B, Mistral-8×7B, Qwen2-7B, and
Qwen2-72B in the main text refer to the specific models: Llama-2-7b-chat-hf, Meta-Llama-3-
70B-Instruct, Meta-Llama-3-8B-Instruct, Mixtral-7B-Instruct-v0.3, Mixtral-8x7B-Instruct-v0.1,
Qwen2-7B-Instruct, and Qwen2-72B-Instruct. We utilized the reward model oasst-rm-2-pythia-
6.9b-epoch-1 following prior works (Song et al., 2024; Yu et al., 2023). Each experi-
ment was repeated three times, and the average performance was reported as the final re-
sult. Our training script was adapted from the example provided in LlamaFactory (Zheng
et al., 2024b), specifically https://github.com/hiyouga/LLaMA-Factory/blob/
main/examples/train_full/llama3_full_sft_ds3.yaml. The training was con-
figured with a batch size of 1 per device, gradient accumulation steps of 4, a learning rate of 1e-5, and
he model was trained for 3 epochs, with warmup over 20 steps and a cosine learning rate scheduler.
For generating diverse responses from LLMs, we followed the configuration in Yuan et al. (2024),
setting T = 0.7 and p = 0.9. For tasks such as AlpacaEval (Dubois et al., 2024b), we used GPT-4-o
unless stated otherwise.

A.2 DETAILS OF EVALUATOR SELECTION ACROSS DIFFERENT TASKS

In this subsection, we provide more detailed information about the selection of evaluators across
different tasks.

Response Selection. In the response selection task, we evaluated both single models and ensembles
of evaluators using the GED method. For single model evaluation, we assessed the standalone perfor-
mance of Llama3-8B, Mistral-7B, Qwen2-7B, and Qwen2-72B on benchmarks such as HumanEval,
AlpacaEval, MATH, GSM8k, and GAIA. This served two purposes: first, to establish the baseline
performance of smaller models (Llama3-8B, Mistral-7B, Qwen2-7B) that are later combined using
GED, and second, to compare against Qwen2-72B, where we tested a baseline approach by randomly
selecting one response from the 10 it generated for each question. For single evaluator evaluation,
each model (Llama3-8B, Mistral-7B, Qwen2-7B, and Qwen2-72B) was also used as an evaluator to
rank responses generated by Qwen2-72B. Notably, Qwen2-72B acted as a self-evaluator, selecting
the best response from its own generated outputs. Finally, for multiple evaluator evaluation, our GED
method combined the evaluations of Llama3-8B, Mistral-7B, and Qwen2-7B to rank responses.

Model Ranking. For the model ranking task, we selected larger models as evaluators to ensure
alignment with rankings produced by GPT-4. Specifically, we used Llama3-70B, Qwen2-72B,
Qwen1.5-72B, and Mistral-8×7B as single evaluators. This choice was guided by two factors:
performance considerations and practical feasibility. Larger models generally produce more reliable
rankings, closely aligning with GPT-4, and the AlpacaEval benchmark, containing 805 tasks, makes
the computational cost of using larger models acceptable. In the multiple evaluator setting, our GED
method aggregated the evaluations from these four larger models to produce robust and consistent
rankings. The combination of these high-capacity models ensures that our approach yields rankings
that are both accurate and consistent across tasks.

Instruction Tuning. In the instruction tuning task, the objective was to perform data selection for
model training. For this task, we employed Llama3-8B, Mistral-7B, and Qwen2-7B as evaluators.
These models were selected because they balance computational efficiency and evaluation perfor-
mance, making them suitable for iterative instruction tuning processes. The evaluators’ pairwise
preferences were aggregated using GED to identify the most appropriate responses for training.
This approach ensured that the selected data pairs reflected a consensus among the evaluators while
keeping computational costs manageable.
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A.3 DEFINITION OF WEAK EVALUATORS

In this work, ”weak evaluators” are defined by their tendency to produce noisy or inconsistent
pairwise preferences, not by their overall model capacity. Even advanced models like GPT-4-o
can generate preference graphs with cycles, indicating that preference inconsistency is a universal
challenge, regardless of model scale. Evaluators such as Llama3-8B, Mistral-7B, Qwen2-7B, and
even GPT-4-o are considered weak if their pairwise evaluations exhibit significant noise or conflicts.

A.4 EVALUATION SETTINGS: SINGLE MODEL VS. SINGLE EVALUATOR

The ”single model” setting evaluates each model’s (Llama3-8B, Mistral-7B, Qwen2-7B, Qwen2-72B)
outputs directly on benchmarks like HumanEval, AlpacaEval, MATH, GSM8k, and GAIA, without
selection or modification. In contrast, the ”single evaluator” setting uses these models to select the
best response from ten candidates generated by Qwen2-72B, assessing their evaluation capability.
The key difference is that the single model setting focuses on generation quality, while the single
evaluator setting assesses evaluation ability.

A.5 DEFINITION OF CYCLE RATE

The Cycle Rate is the percentage of preference graphs with at least one cycle, indicating inconsistency
in pairwise comparisons. For example, if an evaluator produces cycles in 100 out of 164 graphs for
the HumanEval dataset, the Cycle Rate is 100

164 × 100 = 60.97%. A lower Cycle Rate indicates greater
consistency, while a higher rate suggests evaluator biases or difficulties with ambiguous comparisons.
This metric helps assess the reliability of evaluators, such as GPT-4-o and GPT-4-o-mini, across
different datasets.

A.6 DATASET

In this appendix, we provide detailed information about the datasets used in main text.

• UltraFeedback (Cui et al., 2023): UltraFeedback is a large-scale, fine-grained, diverse
preference dataset, used for training powerful reward models and critic models. We collect
about 64k prompts from diverse resources (including UltraChat, ShareGPT, Evol-Instruct,
TruthfulQA, FalseQA, and FLAN). We then use these prompts to query multiple LLMs (see
Table for model lists) and generate 4 different responses for each prompt, resulting in a total
of 256k samples.

• HH-RLHF (Bai et al., 2022): The HH-RLHF dataset contains human preference data for
training language models to be helpful and harmless, as well as red teaming data to identify
harmful model outputs. The preference data includes pairs of chosen and rejected responses,
while the red teaming data includes transcripts of adversarial interactions with AI assistants,
rated for harmfulness. We strictly follow prior works (Song et al., 2024; Yu et al., 2023) and
used the code from this repository 1 for testing.

• MATH (Hendrycks et al., 2021): The MATH dataset consists of 12,500 challenging
competition-level math problems, each with a detailed step-by-step solution. It is designed
to teach models to generate answer derivations and explanations, aiding in mathematical
reasoning. Despite progress in improving accuracy, the dataset highlights the limitations
of large Transformer models in solving complex math problems without new algorithmic
advancements. Due to the high resource cost of using the full test set, we randomly sampled
400 problems from the test set for evaluation.

• GSM8k (Chen et al., 2021): GSM8K (Grade School Math 8K) is a collection of 8.5K
high-quality math word problems designed for grade school students. It supports the task of
multi-step reasoning and question answering in basic math. The problems require 2 to 8
steps, focusing on elementary arithmetic operations (addition, subtraction, multiplication,
and division). The solutions are provided in natural language, making it accessible for
evaluation of language models’ internal reasoning. GSM8K has been widely used to test
logic and mathematical capabilities in language models, especially for benchmarks like

1https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/PRO
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the LLM Leaderboard. Due to the high computational cost of using the entire test set, we
randomly sampled 400 data points from the test set for our evaluation.

• GAIA (Mialon et al., 2023): The GAIA dataset is a benchmark designed to evaluate next-
generation LLMs with augmented capabilities like tooling and search access. It consists
of over 450 complex questions with unambiguous answers, requiring various levels of
autonomy and tooling. The dataset is divided into three levels, each increasing in difficulty,
with a public dev set for validation and a private test set for evaluation. We used the entire
test set for our evaluation.

• HumanEval (Chen et al., 2021): The OpenAI HumanEval dataset contains 164 programming
problems, each with a function signature, docstring, body, and unit tests. These problems are
handwritten to ensure they were not included in the training sets of code generation models.
The dataset is designed to evaluate the performance of models in Python code generation.
We used the entire test set for evaluation.

• AlpacaEval. (Dubois et al., 2024b): AlpacaEval consists of 805 instructions, including 252
from the self-instruct test set (Wang et al., 2022), 188 from the Open Assistant (OASST)
test set, 129 from Anthropic’s helpful test set (Zhou et al., 2023), 80 from the Vicuna test
set (Chiang et al., 2023), and 156 from the Koala test set (Vu et al., 2023).

• LIMA. (Zhou et al., 2023): LIMA collects a training dataset of 1000 prompts and responses,
curated to ensure stylistic consistency while accommodating diverse input types. It also
includes an open-source test set of 300 prompts and a development set of 50. The data is
primarily sourced from community-driven Q&A platforms like Stack Exchange, wikiHow,
and the Pushshift Reddit Dataset (Baumgartner et al., 2020), along with manually curated
examples. The inclusion of human-authored examples further increases dataset diversity. In
our experiments, we use the LIMA test set to evaluate our models.

• Vicuna. (Chiang et al., 2023): Vicuna organizes its 80 test instructions into eight distinct
categories: Fermi problems, commonsense, roleplaying, coding/math/writing tasks, counter-
factuals, knowledge, and general questions. This categorization aims to comprehensively
assess different facets of chatbot performance. Prior work suggests that Vicuna’s instructions
are generally of lower complexity and difficulty (Xu et al., 2023). We utilize the Vicuna test
set to assess the performance of large language models across these varied categories of
instructions.

• Self-Instruct. (Wang et al., 2022): Self-Instruct contains 252 human-authored test instruc-
tions, each paired with a well-constructed output. This dataset is curated to simulate
real-world use cases of instruction-following models, spanning various domains such as
email composition, social media, productivity tools, and coding tasks. The instructions differ
in format and complexity, featuring diverse task lengths and output types such as bullet
points, tables, code snippets, and mathematical expressions. In our research, we utilized the
Self-Instruct test set to rigorously evaluate our model’s ability to follow detailed instructions
across multiple domains.

• Wizardlm. (Xu et al., 2023): Wizardlm consists of a training set of 70k examples derived
from 52k instructions initially provided by Alpaca. The test set includes 218 instructions
sourced from various open-source projects and online communities, covering 29 distinct
skills derived from real-world tasks. These skills range from Code Generation & Debugging
to Reasoning, Mathematics, Writing, Complex Format Handling, and Mastery of Extensive
Domains. In our study, we employed the Wizardlm test set to evaluate the model’s ability to
adhere to detailed instructions comprehensively.

• Koala. (Vu et al., 2023): Koala comprises 180 real-world user queries sourced from the web,
spanning diverse topics and typically reflecting a conversational tone. These queries are
especially relevant for evaluating models intended for chat-based applications. To ensure
no overlap with training data, any query yielding a BLEU score above 20% compared to
examples from our training set is excluded. Additionally, queries involving programming
or non-English languages are omitted, as our evaluation team, composed of crowd-sourced
raters, lacks the expertise to assess such content effectively. We exclusively used the Koala
test set to gauge our model’s proficiency in handling authentic conversational queries.
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A.7 AGGREGATION PROCESS IN GED ACROSS DIFFERENT TASKS

The GED implementation differs between response selection and model ranking tasks due to their
objectives. In response selection, GED aggregates preference graphs from multiple evaluators for
each question into a single DAG. From this DAG, a final ranking is derived, and the top-ranked answer
is selected as the output. Notably, aggregation is performed only at the per-question level, without
a rank aggregation across questions. In model ranking, GED involves two steps: first, aggregating
the evaluators’ preference graphs into a DAG for each question to rank the models, and second,
employing a rank ensemble method to aggregate these per-question rankings into a final overall
model ranking across all questions. For details on the aggregation modeling, see Section 2.3, covering
Response Selection, Model Ranking, and Model Alignment.

B ALTERNATIVE EVALUATOR CONFIGURATIONS FOR MODEL RANKING

To address concerns about the computational cost and fairness of using 70B-level models as weak
evaluators in the model ranking task, we conducted additional experiments using smaller, more
comparable models. Table 4 summarizes the performance of these models, both individually and
when combined using GED. The results show that GED outperforms individual evaluators even when
using smaller 7B-scale models, achieving an average score of 62.70 compared to the best individual
performance of 57.92 (Qwen2-7B with graph denoising). This demonstrates that the aggregation
of smaller models through GED effectively enhances performance while reducing computational
costs. These findings validate the versatility of GED, showing that it can provide robust and accurate
rankings without relying solely on large-scale models.

Table 4: Performance comparison in the model ranking task using 7B-scale models as evaluators on
the AlpacaEval dataset. Higher values indicate better performance. GED achieves robust performance
even with smaller evaluators.

Model Weight Score Kemeny Weighted
Kemeny

Pairwise
Majority

Weighted
Pairwise
Majority

Avg.

Llama3-8B 35.88 45.80 45.80 47.23 46.85 44.31
with graph denoising 37.44 47.54 47.54 48.92 48.18 45.92

Qwen2-7B 55.34 52.87 52.87 56.05 56.59 54.74
with graph denoising 56.05 57.43 57.43 59.32 59.41 57.92

Mistral-7B 49.90 53.74 53.74 58.06 57.87 54.66

Single evaluator

with graph denoising 50.47 55.06 54.92 61.39 61.21 56.61

Multiple evaluator GED 57.59 61.14 61.14 67.17 66.46 62.70

C IMPACT OF EVALUATOR QUANTITY ON DENOISING QUALITY

We investigated how the number of evaluators affects the denoising quality in GED by conducting
experiments using different numbers of evaluators in the response selection setting. Specifically, we
evaluated the performance of GED when aggregating preferences from two, three, and four evaluators.
The evaluators used were Llama3-8B, Mistral-7B, Qwen2-7B, and Gemma-9B2.

Table 5: Performance comparison of GED with varying numbers of evaluators across five benchmarks.
Increasing the number of evaluators enhances denoising quality, reflected in improved performance
metrics.

Evaluators Set HumanEval AlpacaEval MATH GSM8k GAIA Avg.
Llama3-8B, Mistral-7B 69.21 31.87 74.97 86.92 12.51 55.10
Llama3-8B, Mistral-7B, Qwen2-7B 70.73 32.44 75.58 88.18 13.33 56.05
Llama3-8B, Mistral-7B, Qwen2-7B, Gemma-9B 70.98 32.87 75.91 88.75 13.46 56.39

2https://huggingface.co/google/gemma-2-9b-it
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As shown in Table 5, increasing the number of evaluators consistently improves the denoising
quality of GED, as reflected by higher performance across all benchmarks. For instance, the average
performance improves from 55.10% with two evaluators to 56.39% with four evaluators. This
enhancement can be attributed to the diverse perspectives and complementary strengths of multiple
evaluators, contributing to a more robust and accurate aggregation of preferences. These results
highlight the importance of selecting a diverse and capable set of evaluators to enhance GED’s
effectiveness. Incorporating more evaluators allows the denoising process to better identify and
mitigate inconsistencies in the preference graphs, leading to improved overall performance in response
selection tasks.

D CONSTRUCTION OF THE PREFERENCE GRAPH

In this section, we provide a detailed explanation of the process used to construct the preference graph
sets for both the model ranking and response selection tasks, as outlined in Algorithms 1 and 2. These
algorithms form the backbone of our method, enabling the representation of pairwise preferences as
directed graphs, which are essential for downstream aggregation and ranking.

Algorithm 1 describes the construction process for generating a set of preference graphs for the model
ranking task. The procedure is as follows: Initialization: For each question q ∈ Q, we begin by
initializing a vertex set Vq , where each vertex vi corresponds to a modelMi in the set of models M .
We also initialize an empty set of edges Aa and a weight function wa, which will be used to track the
strength of the preferences between model pairs. Pairwise Comparisons: For each pair of modelsMi

andMj , the assigned evaluator a ∈ A assesses their responses to the given question q. If evaluator a
prefersMi overMj , a directed edge (vi → vj) is added to the edge set Aa, and its corresponding
weight is incremented. Conversely, ifMj is preferred, the edge (vj → vi) is added or its weight is
updated. Graph Storage: Once all pairwise comparisons have been processed for a given evaluator,
the resulting graph Ga = (Vq, Aa, wa) is stored for that evaluator. This process is repeated for all
evaluators in A and for all questions in Q, generating a set of preference graphs for each evaluator
and question.

Algorithm 1 Construction of the Preference Graph for Model Ranking
Require: Set of models M = {M1,M2, . . . ,Mn}, set of questions Q = {q1, q2, . . . , qt}, set of evaluators
A = {a1, a2, . . . , ak}

Ensure: Set of preference graph sets {Ga : a ∈ A} for each question q ∈ Q
1: for each question q ∈ Q do
2: for each evaluator a ∈ A do
3: Initialize vertex set Vq = {v1, v2, . . . , vn}, where each vi corresponds to modelMi

4: Initialize edge set Aa = ∅, and weight function wa : Aa → R+

5: for each pair of models (Mi,Mj) with i ̸= j do
6: Let ansi =Mi(q) and ansj =Mj(q)
7: if a(ansi, ansj) > 0 then ▷ evaluator a prefersMi overMj

8: if (vi, vj) /∈ Aa then
9: Add directed edge (vi → vj) to Aa

10: Set wa(vi, vj) = 1
11: else
12: Increment wa(vi, vj) by 1
13: end if
14: else
15: if (vj , vi) /∈ Aa then
16: Add directed edge (vj → vi) to Aa

17: Set wa(vj , vi) = 1
18: else
19: Increment wa(vj , vi) by 1
20: end if
21: end if
22: end for
23: Store the preference graph Ga = (Vq, Aa, wa) for evaluator a
24: end for
25: end for

Algorithm 2 follows a similar structure but applies to the response selection task, where the objective
is to rank a set of candidate answers for each question: Initialization: For each question q ∈ Q,
we initialize a vertex set Vq, where each vertex corresponds to a candidate answer ansi. As in the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

model ranking task, we also initialize an edge set Aa and a weight function wa for each evaluator
a ∈ A. Pairwise Comparisons: Evaluators compare the quality of pairs of candidate answers ansi
and ansj for each question. A directed edge is added based on the evaluator’s preference, with the
weight reflecting the strength of preference. As before, if evaluator a prefers ansi over ansj , an
edge (vi → vj) is added or its weight incremented, and vice versa. Graph Storage: After all pairwise
comparisons are complete, the preference graph Ga = (Vq, Aa, wa) for evaluator a is stored. This
procedure is repeated for all evaluators and questions, resulting in a set of preference graphs for each
evaluator and each question.

Both algorithms ensure that the preference graphs are constructed in a consistent manner, forming the
basis for the aggregation and denoising processes used later in our framework. These graphs encap-
sulate the evaluators’ preferences and provide a structured representation of pairwise comparisons,
facilitating further analysis.

Algorithm 2 Construction of the Preference Graph for Response Selection
Require: Set of candidate answers {ans1, ans2, . . . , ansn} for each question q ∈ Q, set of evaluators
A = {a1, a2, . . . , ak}

Ensure: Set of preference graph sets {Ga : a ∈ A} for each question q ∈ Q
1: for each question q ∈ Q do
2: for each evaluator a ∈ A do
3: Initialize vertex set Vq = {v1, v2, . . . , vn}, where each vi corresponds to ansi
4: Initialize edge set Aa = ∅, and weight function wa : Aa → R+

5: for each pair of answers (ansi, ansj) with i ̸= j do
6: if a(ansi, ansj) > 0 then
7: if (vi, vj) /∈ Aa then
8: Add directed edge (vi → vj) to Aa, set wa(vi, vj) = 1
9: else

10: Increment wa(vi, vj) by 1
11: end if
12: else
13: if (vj , vi) /∈ Aa then
14: Add directed edge (vj → vi) to Aa, set wa(vj , vi) = 1
15: else
16: Increment wa(vj , vi) by 1
17: end if
18: end if
19: end for
20: Store the preference graph Ga = (Vq, Aa, wa) for evaluator a
21: end for
22: end for

E PROOF OF THEOREM 1

Theorem 1 Suppose G1, . . . , GN
i.i.d.∼ G(G, δ1, δ2) for some ground truth G = (V,A). Let Ĝ be

the graph ensembled from G1, . . . , GN by operations defined in Section 2.2. Then, as long as
δ1 = 0.5− ϵ. For some ϵ > 0, we have

P
(
G ⊆ MAS(Ĝ)

)
≥ 1− 2|A| exp

(
−Nϵ2

2

)
− 2U exp

(
− Nϵ2

6U2δ2 + 2Uϵ

)
,

where G ⊆ MAS(Ĝ) represents that G is a subgraph of MAS(Ĝ) and U = |V |(|V |−1)
2 − |A| is the

number of pairs of unconnected nodes in G.

Proof E.1 For brevity, we consider all edges in G have weights equal to 1 and all weights in Ĝ are
divided by N . By construction, we can notice that for each (u → v) ∈ A, the weight wĜ(v → u)
can be viewed as an empirical estimate of δ1. Then, we claim that the following two events can imply
G ⊆ MAS(Ĝ):

• (E1) For any (u→ v) ∈ A, it holds
∣∣wĜ(v → u)− δ1

∣∣ ≤ ϵ
2 .

• (E2) For any pair of nodes (u, v) such that (u → v), (v → u) /∈ A, it holds∣∣wĜ(u→ v)− wĜ(v → u)
∣∣ ≤ ϵ

U .
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To see this, first by Lemma 1, we know that for any pair of nodes (u, v), MAS(Ĝ) will contain exactly
one of (u→ v) and (v → u).3 Therefore, for any (u→ v) ∈ A, MAS(Ĝ) will contain exactly one of
(u→ v) and (v → u). Then, since E1 holds, δ1 = 0.5− ϵ < 0.5 and wĜ(u→ v)+wĜ(v → u) = 1,
we have wĜ(u → v) − wĜ(v → u) ≥ ϵ. Furthermore, since E2 holds, for (u, v) such that
(u → v), (v → u) /∈ A, arbitrary way of edge removing among these nodes can influence the
total edge weights by at most ϵ. Therefore, when applying the denoising operation to Ĝ, for any
(u→ v) ∈ A, only (u→ v) will be kept in MAS(Ĝ), which makes G ⊆ MAS(Ĝ). As a result, we

have P(E1 ∩ E2) ≤ P
(
G ⊆ MAS(Ĝ)

)
.

Then, we can now bound the probability of E1 ∩ E2. In particular, for fixed (u → v) ∈ A, since
wĜ(v → u) is an empirical mean estimate of δ1, by Hoeffding’s inequality, we have

P
(∣∣wĜ(v → u)− δ1

∣∣ ≤ ϵ

2

)
≥1− 2 exp

(
−Nϵ2/2

)
=⇒ P(E1) ≥1− 2|A| exp

(
−Nϵ2/2

)
,

where the second inequality comes from the union bound over all edges in A. Similarly, for fixed
node pair (u, v) that is unconnected in G, wĜ(u→ v)− wĜ(v → u) can be viewed as 1

N

∑N
i=1 Xi,

where Xi’s are i.i.d. and

Xi =


1, with probability δ2

2

−1, with probability δ2
2

0, with probability 1− δ2

.

Therefore, by Bernstein’s inequality, we have

P
(∣∣wĜ(u→ v)− wĜ(v → u)

∣∣ ≤ ϵ

U

)
≥1− 2 exp

(
− Nϵ2

6U2δ2 + 2Uϵ

)
=⇒ P(E2) ≥1− 2U exp

(
− Nϵ2

6U2δ2 + 2Uϵ

)
,

where the second inequality is an union bound over all unconnected node pairs in G. As a result, we
eventually have

P
(
G ⊆ MAS(Ĝ)

)
≥P (E1 ∩ E2) ≥ 1− 2|A| exp

(
−Nϵ2

2

)
− 2U exp

(
− Nϵ2

6U2δ2 + 2Uϵ

)
.

Lemma 1 For a weighted directed graph G = (V,A,w), if (u→ v), (v → u) ∈ A, then MAS(G)
contains exactly one of (u→ v) and (v → u).

Proof E.2 Recall that MAS(G) gives an acyclic subgraph of G with the maximum weight. Since it
has to be acyclic, it is obvious that MAS(G) cannot contain both (u→ v) and (v → u).

We will then use contradiction to show it is impossible for MAS(G) to contain neither (u→ v) nor
(v → u). Suppose this is true instead. Then, since MAS(G) is a maximum acyclic subgraph, adding
either (u→ v) or (v → u) to MAS(G) will make it cyclic. That is, MAS(G) contains a path that
goes from v to u; meanwhile, it also contains a path from u to v. As a result, it contains a cycle that
goes from v to u and then from u to v, which contradicts with the fact that MAS(G) is a maximum
acyclic subgraph. Therefore, MAS(G) must contain exactly one of (u→ v) and (v → u).

F IMPACT OF EVALUATOR WEIGHTING ON GED PERFORMANCE

In our theoretical analysis, GED assumes equal weighting of edges in the preference graphs. However,
in practical scenarios, evaluators may have varying levels of reliability or expertise. Incorporating
evaluator-specific confidence scores or performance metrics could enhance the effectiveness of GED.
To investigate this, we conducted experiments using a weighted version of GED, referred to as

3There is non-zero probability that some edges in Ĝ will have zero weight, but we treat them as existing for
the ease of argument. That is, we allow only Ĝ to contain zero-weight edges.
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Table 6: Performance comparison of GED and WeightGED using 7B-scale evaluators across five
benchmarks. WeightGED marginally outperforms GED, demonstrating the potential benefits of
incorporating evaluator-specific weights.

Method HumanEval AlpacaEval MATH GSM8k GAIA Avg.
GED 70.73 32.44 75.58 88.18 13.33 56.05

7B Evaluators WeightGED 70.97 32.67 75.71 88.24 13.56 56.23
GED 73.21 59.87 82.49 86.43 16.27 63.65

GPT Evaluators WeightGED 74.52 61.71 83.93 87.84 17.32 65.06

WeightGED, under the Response Selection setting. In WeightGED, we assigned weights to evaluators
based on their individual performance on specific datasets. For example, on the GSM8k dataset, the
response selection accuracies for Llama3-8B, Mistral-7B, and Qwen2-7B were 62.19%, 67.24%, and
61.58%, respectively. These accuracies were normalized to compute evaluator weights:

weight(Llama3-8B) =
62.19

62.19 + 67.24 + 61.58
= 0.326,

weight(Mistral-7B) =
67.24

62.19 + 67.24 + 61.58
= 0.352,

weight(Qwen2-7B) =
61.58

62.19 + 67.24 + 61.58
= 0.322.

These weights were used to scale the contributions of each evaluator’s preferences during graph
construction. We compared the performance of GED and WeightGED across multiple benchmarks,
as presented in Table 6.

As shown in Table 6, WeightGED achieves marginal but consistent improvements over GED across all
benchmarks. For instance, using 7B-scale evaluators, WeightGED improves the average performance
from 56.05% to 56.23%. Similarly, with GPT evaluators, the average performance increases from
63.65% to 65.06%. These results suggest that incorporating evaluator-specific weights based on
performance metrics can enhance the effectiveness of GED. Furthermore, we conducted additional
experiments using stronger evaluators such as GPT-3.5, GPT-4-o-mini, and GPT-4-o. The weights
were computed based on their respective performance accuracies, following the same normalization
procedure. The improvements observed with these evaluators reinforce the potential of weight-
ing schemes in enhancing GED. In summary, our preliminary findings indicate that integrating
evaluator-specific confidence scores or performance metrics is a promising direction for future work.
Systematically designing and optimizing these weighting schemes could lead to more robust and
accurate evaluation frameworks.

G EVALUATING GED ON DIVERSE METRICS

To address the need for more comprehensive assessments beyond accuracy-based metrics, we
expanded our evaluation of GED to include nuanced quality aspects of LLM-generated outputs,
such as factuality, relevance, coherence, informativeness, helpfulness, and validity. This evaluation
was motivated by the understanding that tasks involving LLMs often require subtle judgments beyond
simple accuracy, and GED’s adaptability to these scenarios is crucial. Building upon this foundation,
we conducted experiments following (Chen et al., 2023a). Specifically, we used Llama3-70B to
generate ten candidate responses for each query, and GED was applied in the response selection
setting with Llama3-8B, Mistral-7B, and Qwen2-7B serving as evaluators. Each metric—factuality,
relevance, coherence, informativeness, helpfulness, and validity—was assessed to measure GED’s
ability to enhance the overall quality of LLM outputs. The results, shown in Table 7, highlight GED’s
effectiveness. GED consistently outperformed individual evaluators and random selection across
all metrics. For instance, GED improved factuality by approximately 5 percentage points over the
best individual evaluator. Similarly, it enhanced relevance and coherence, indicating better alignment
with the query and logically consistent responses. GED also demonstrated notable improvements
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in informativeness and helpfulness, suggesting that the responses selected by GED provide more
valuable and user-centric information. These findings confirm GED’s adaptability to tasks requiring
nuanced quality assessments. By aggregating preferences from multiple evaluators, GED captures
subtle qualities of generated content, enhancing not only accuracy but also the overall reliability
and utility of LLM outputs. This adaptability reinforces GED’s value in scenarios demanding
comprehensive evaluations of language models.

Table 7: Performance comparison on nuanced quality metrics (in %). GED outperforms individual
evaluators and random selection across Factuality, Relevance, Coherence, Inform., Helpful. and
Validity metrics.

Method Factuality Relevance Coherence Inform. Helpful. Validity Avg.
Random 86.73 87.91 92.47 77.62 17.48 48.92 68.52
Llama3-8B 88.59 89.91 94.41 79.77 18.48 50.92 70.35
Mistral-7B 89.10 90.29 94.85 79.95 18.55 51.13 70.65
Qwen2-7B 89.25 90.44 95.03 80.09 18.58 51.21 70.77
GED 94.73 95.91 97.36 86.62 19.48 55.92 75.00

H EXPANDED RELATED WORK ON PREFERENCE DENOISING FOR LLMS

This work situates itself within the broader field of denoising preference evaluations for LLMs,
addressing inconsistencies and noise in preference graphs. We acknowledge that existing literature
has explored two primary approaches to this challenge: within-model preference modeling and
modular pre-processing. Below, we provide a detailed comparison of GED with representative
methods from these approaches.

Within-model approaches, such as robust DPO (rDPO) (Chowdhury et al., 2024) and conservative
DPO (cDPO) (Mitchell, 2023), focus on integrating denoising mechanisms directly within the
preference modeling process. These methods incorporate regularization techniques to mitigate the
effects of noisy or adversarial preference data during model alignment. While these approaches are
effective in refining the preference modeling pipeline, they are tightly coupled with specific models
and tasks, limiting their versatility. In contrast, GED is a modular framework that operates as a
pre-processing step, denoising preference graphs before downstream tasks, making it adaptable to a
wide range of applications and models. Modular approaches like CURATRON (Naresh et al., 2024)
address noise and missing comparisons in preference datasets using techniques such as low-rank
matrix completion. While CURATRON effectively mitigates certain types of noise, it does not
explicitly target cyclic inconsistencies (e.g., A≻ B, B≻ C, C≻ A), which are a critical focus of GED.
By leveraging a graph-based framework, GED detects and removes such cycles through its denoising
process, ensuring that the resulting preference graph is acyclic and thus more consistent and reliable
for downstream use. Additionally, GED distinguishes itself by providing theoretical guarantees for
recovering the ground truth preference DAG under certain conditions. Furthermore, the ensemble
mechanism in GED demonstrates the novel insight that combining weaker evaluators can surpass the
performance of a single stronger evaluator, a feature not emphasized in the aforementioned methods.

I IMPACT OF EVALUATOR SELECTION ON GED PERFORMANCE

The selection of weak evaluators is a critical factor influencing the performance of GED. While our
initial experiments demonstrated the benefits of combining weaker evaluators, further analysis is
necessary to understand how their diversity and capabilities affect GED’s effectiveness. To address
this, we conducted additional experiments evaluating three different configurations of evaluator
sets: the original set comprising Llama3-8B, Mistral-7B, and Qwen2-7B; a diverse set that adds
Gemma-9B4 to introduce more variation in model architecture and training data; and a higher-
capability set that replaces smaller models with larger ones, specifically Llama3-70B, Mistral-8×7B,
and Qwen2-72B. The results, shown in Table 8, reveal two key insights. First, incorporating diversity

4https://huggingface.co/google/gemma-2-9b-it
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Table 8: Performance comparison with different evaluator sets across five benchmarks. The results
highlight the impact of evaluator diversity and capability on GED’s effectiveness.

Evaluators Set HumanEval AlpacaEval MATH GSM8k GAIA Avg
Original 70.73 32.44 75.58 88.18 13.33 56.05
Diverse 70.98 32.87 75.91 88.75 13.46 56.39
Higher Capability 74.73 47.92 75.58 90.04 16.21 60.89

Table 9: Performance comparison of ActiveGED under different budget constraints. ActiveGED
achieves competitive performance with significantly fewer pairwise evaluations.

Evaluators Set of GED HumanEval AlpacaEval MATH GSM8k GAIA Avg.
Random 57.93 29.58 72.75 84.67 11.52 51.29
ActiveGED (30%) 67.28 30.96 74.65 85.73 11.39 54.00
ActiveGED (50%) 68.62 31.91 74.87 87.06 12.08 54.91
GED (Full Budget) 70.73 32.44 75.58 88.18 13.33 56.05

by adding Gemma-9B improves GED’s performance slightly, increasing the average score from
56.05% to 56.39%. This suggests that models with diverse training data and architectures can
contribute to more robust aggregated evaluations. Second, replacing smaller evaluators with higher-
capability models yields a more substantial improvement, with the average score rising to 60.89%.
Notably, benchmarks like AlpacaEval and GAIA benefit the most from the advanced reasoning and
language understanding capabilities of larger models. These findings demonstrate the importance of
both diversity and capability in evaluator selection. Diversity provides marginal gains by bringing
varied perspectives, while higher-capacity models contribute to more significant improvements by
enhancing the overall quality of evaluations. This suggests that, when computational resources allow,
incorporating advanced models into the evaluator set can meaningfully boost GED’s performance.

J COST CONSIDERATIONS AND ACTIVE LEARNING WITH ACTIVEGED

Using multiple evaluators and aggregating their preferences can be computationally expensive, es-
pecially when constructing dense preference graphs. This limitation becomes more pronounced in
scenarios where preferences across all pairs of evaluators are required, which scales quadratically with
the number of responses or models being compared. To address this, we clarify the computational
trade-offs and propose an active learning-based approach to reduce the number of required pairwise
evaluations. To further reduce the number of pairwise evaluations needed, we developed an active
learning algorithm called ActiveGED. This algorithm strategically selects the most informative
pairs for evaluation, effectively lowering the overall computational cost while maintaining high
performance. ActiveGED combines random sampling with uncertainty-based selection to maxi-
mize information gain from each additional pairwise evaluation. We evaluated ActiveGED under
budget constraints of 30% and 50% of the total possible pairwise comparisons, where we set the
random budget ratio as 0.5. The results, presented in Table 9, demonstrate that ActiveGED achieves
competitive performance with significantly fewer evaluations. For example, under a 50% budget,
ActiveGED retains most of the performance benefits of full GED while cutting the number of pairwise
comparisons in half.

The algorithm behind ActiveGED is outlined in Algorithm 3. It begins by randomly selecting a
portion of the budget to initialize the preference graph and then iteratively selects the most informative
edges based on uncertainty, as estimated using PageRank scores. This approach balances exploration
(random sampling) and exploitation (uncertainty-based selection) to efficiently construct an accurate
preference graph.

ActiveGED demonstrates that by carefully selecting the most informative pairs, it is possible to
achieve competitive performance with significantly fewer evaluations. This makes GED more
scalable and practical for real-world applications where computational resources are limited.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 3 ActiveGED

Require: Candidate set V = {v1, v2, . . . , vn}; Initial preference graph G = (V,A,w); Evaluator
set E = {ev1, . . . , evk}; Total budget B; Random budget ratio α ∈ (0, 1)

Ensure: Updated preference graph G∗ = (V,A∗, w∗)
1: Randomly select mrand = αB edges from (V × V ) \A to form Arand
2: for each edge (u, v) ∈ Arand do
3: for each evaluator evi ∈ E do
4: Obtain preference weight wi(u, v)
5: end for
6: Aggregate weights w(u, v) = 1

k

∑k
i=1 wi(u, v)

7: end for
8: Update A∗ ← A ∪Arand
9: Set current budget b← mrand

10: Compute PageRank PR(v) for all v ∈ V using G∗ = (V,A∗, w∗)
11: while b < B do
12: for each unevaluated edge (u, v) ∈ (V × V ) \A∗ do
13: Estimate uncertainty U(u, v) based on current PageRank scores
14: end for
15: Select edge (u∗, v∗) with highest U(u, v)
16: for each evaluator evi ∈ E do
17: Obtain preference weight wi(u

∗, v∗)
18: end for
19: Aggregate weights w(u∗, v∗) = 1

k

∑k
i=1 wi(u

∗, v∗)
20: Update A∗ ← A∗ ∪ {(u∗, v∗)}
21: Increment b← b+ 1
22: Recompute PageRank PR(v) for all v ∈ V using the updated G∗

23: end while
24: return G∗ = (V,A∗, w∗)

K MITIGATING EVALUATOR BIASES IN GED

Evaluator biases, such as position bias and token bias, can significantly impact the accuracy and
fairness of the preference graphs used in GED. Addressing these biases is crucial for ensuring reliable
evaluations and robust performance. In this section, we describe the strategies employed in our
framework to mitigate these biases and discuss potential areas for future improvement. Position
bias arises when evaluators exhibit a preference for a particular position in a pairwise comparison,
such as consistently favoring the first or second option regardless of content. To counter this, we
explicitly include both orderings of each question and its candidate answers in the response selection
setting. Specifically, for a question Q with two candidate answers A1 and A2, we evaluate both
configurations:

• Order 1:

Question: [Question Text]

Answer 1: [Answer Text A1]

Answer 2: [Answer Text A2]

Which one is better?

• Order 2:

Question: [Question Text]

Answer 1: [Answer Text A2]

Answer 2: [Answer Text A1]
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Which one is better?

By testing both (Q, A1, A2) and (Q, A2, A1), we ensure that any positional preferences of the
evaluators are balanced out when constructing the preference graph. This approach minimizes the
impact of position bias on the overall rankings. Token bias occurs when an evaluator exhibits a latent
preference for a specific option or label (e.g., consistently favoring ”Option A” over ”Option B”). Our
framework implicitly mitigates token bias through the aforementioned position-swapping strategy,
which prevents evaluators from associating a fixed label with a specific position. By averaging the
results across both orderings, any systematic preference for a particular label is effectively neutralized.

L DENOISING OF PREFERENCE GRAPHS FOR GED

In this section, we describe the denoising procedure used in the GED framework, specifically for
transforming the aggregated preference graph into a DAG. Let G = (V,A) be a simple connected
directed graph, where n = |V | and m = |A|, with n − 1 ≤ m ≤

(
n
2

)
. A feedback arc set (FAS)

of G, denoted as R(G), is a set of arcs whose removal transforms G into a DAG. The minimum
feedback arc set R∗(G) is the FAS of minimum cardinality, and finding R∗(G) is the well-known
FAS problem.

Consider a scenario where the vertices of G are arranged sequentially along a horizontal line and
labeled as v1, v2, . . . , vn from left to right. This arrangement is referred to as a vertex sequence and
is denoted by s = v1v2 . . . vn. Each vertex sequence s induces a feedback arc set R(s), consisting
of all leftward arcs vj → vi for j > i. The FAS problem can therefore be reformulated as finding
a vertex sequence s∗ such that R(s∗) = R∗(G). Our proposed algorithm, GED, computes a vertex
sequence s that corresponds to a minimal feedback arc set R(s). The algorithm iteratively removes
vertices (and their incident arcs) from G, focusing on sinks, sources, and vertices that maximize a
specific property. For any vertex u ∈ V , let d(u) denote its degree, d+(u) its outdegree, and d−(u)
its indegree, such that d(u) = d+(u) + d−(u). At each step, after removing sinks and sources, the
algorithm selects a vertex u for which δ(u) = d+(u)− d−(u) is maximized. If the removed vertex u
is a sink, it is concatenated with a vertex sequence s2; otherwise, it is concatenated with s1. Once
G is reduced to an empty graph, the final vertex sequence s is obtained by concatenating s1 and s2.
The detailed steps of the algorithm are shown in Algorithm 4. In our GED framework, this denoising
step is essential for ensuring that the aggregated preference graph becomes acyclic, thus enabling a
reliable ranking to be extracted. By iteratively removing vertices based on their structural properties,
we minimize the feedback arc set and ensure that the remaining graph is a DAG, which can be directly
used to generate rankings in subsequent steps.

M RANK ENSEMBLE METHOD

Weight score (Adler et al., 2002) : The Weight Score method assigns a score to each vertex v
based on its position in each rankingRi. For a vertex v in rankingRi, the score is given by:

Si(v) = li − ri(v) + 1 (6)

where li is the length of rankingRi and ri(v) is the rank of vertex v inRi. If v is not present inRi,
Si(v) = 0. The total score for each vertex across all rankings is:

T (v) =

k∑
i=1

Si(v) (7)

The final consensus rankingR∗ is obtained by sorting the vertices v in descending order of T (v).

Kemeny and weighted Kemeny (Kemeny, 1959) : The Kemeny method seeks a consensus ranking
R∗ that minimizes the total pairwise disagreements betweenR∗ and the input rankings, measured
using the Kendall τ -distance:
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Algorithm 4 Preference Graphs Denoising for GED

Require: G: Directed graph, var s: Vertex sequence
1: s1 ← ∅
2: s2 ← ∅
3: while G ̸= ∅ do
4: while G contains a sink do
5: Choose a sink u
6: s2 ← u · s2
7: G← G− u
8: end while
9: while G contains a source do

10: Choose a source u
11: s1 ← s1 · u
12: G← G− u
13: end while
14: Choose a vertex u with maximum δ(u)
15: s1 ← s1 · u
16: G← G− u
17: end while
18: s← s1 · s2

R∗ = argmin
R

k∑
i=1

τ(R,Ri) (8)

The Weighted Kemeny method introduces a weight αi for each rankingRi, reflecting its importance
or reliability:

R∗ = argmin
R

k∑
i=1

αi · τ(R,Ri) (9)

Here, the goal is to minimize the weighted Kendall tau distance, emphasizing rankings with higher
weights.

Pairwise majority and weighted pairwise majority (Caragiannis et al., 2016) : The Pairwise
Majority (PM) method determines a consensus rankingR∗ by maximizing the number of pairwise
agreements with the input rankings. For each pair of vertices (vi, vj), the goal is to ensure that the
majority of rankings agree with their relative order inR∗:

R∗ = argmax
R

∑
i<j

(
k∑

p=1

1(Rp(vi) < Rp(vj))

)
· 1(R(vi) < R(vj)) (10)

The Weighted Pairwise Majority method incorporates weights αp to account for the reliability of
each rankingRp:

R∗ = argmax
R

∑
i<j

(
k∑

p=1

αp · 1(Rp(vi) < Rp(vj))

)
· 1(R(vi) < R(vj)) (11)

In both methods, the objective is to maximize the (weighted) pairwise agreement between the
consensus ranking and the input rankings.
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(d) Denoised Preference Graph 2

Figure 6: Case studies showcasing the raw and denoised preference graphs. In both Case 1 and
Case 2, the raw preference graphs (a, c) contain cyclic inconsistencies, which are resolved by GED
into directed acyclic graphs (b, d). The dashed lines in the denoised graphs represent the edges that
were removed by GED to eliminate cycles. The nodes labeled 0-9 correspond to the ten generated
responses by Qwen2-72B. These examples illustrate the effectiveness of GED in eliminating noise
and restoring consistency in preference evaluations.

N VISUALIZATION

In this section, we present two case studies that demonstrate the effectiveness of our proposed GED
method in denoising preference graphs. Figure 6 illustrates the raw preference graphs, which are
generated by multiple evaluators, i.e., Llama3-8B, Mistral-7B, and Qwen2-7B, through the responses
produced by Qwen2-72B on the HumanEval benchmark. The nodes labeled 0-9 in the graphs
correspond to the ten generated responses. The comparison between the raw (left) and denoised
(right) graphs shows how our method successfully resolves cyclic inconsistencies, transforming noisy
graphs into DAGs. In the denoised graphs, the dashed lines represent the edges that were removed by
GED to eliminate cycles.

Case Study 1. In the first case study, we showcase the impact of our denoising approach. The raw
graph (Figure 6 (a)) contains multiple cyclic inconsistencies, such as 9 ≻ 4 ≻ 3 ≻ 9, 9 ≻ 4 ≻ 3 ≻
2 ≻ 9, and 9 ≻ 4 ≻ 3 ≻ 7 ≻ 9. By applying GED, we identify that removing a single edge (4 ≻
3) eliminates all cycles, converting the noisy preference graph into a consistent DAG, as shown in
Figure 6 (b).

Case Study 2. The second case study (Figure 6 (c)) presents another scenario with conflicting
preferences, where cycles like 7 ≻ 0 ≻ 6 ≻ 7 and 7 ≻ 1 ≻ 0 ≻ 6 ≻ 7 indicate noisy judgments.
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Table 10: Prompt template for evaluating programming solutions on the HumanEval dataset.

Prompt for HumanEval

System Prompt:
You are an expert programmer and code reviewer. Your task is to evaluate code solutions for
programming problems. Assess each solution based on its correctness, efficiency, readability,
and adherence to best coding practices.

User Prompt:
Please compare the following two code solutions to the given programming problem. For each
solution, evaluate whether it produces correct outputs for all edge cases, whether it is efficient
in terms of time and space complexity, and whether the code is clean, well-documented, and
follows best practices. Identify any errors or areas for improvement.
Programming Problem: [Problem Description]
Solution A: [Candidate Solution A]
Solution B: [Candidate Solution B]
Question: Which solution is better and why? Provide a detailed comparison focusing on
correctness, efficiency, readability, and coding standards.

Here, removing just one edge (0 ≻ 6) using GED is sufficient to eliminate all cycles and convert the
graph into a DAG, as depicted in Figure 6 (d).

Conclusion from Case Studies. In both case studies, removing any other edge would not fully
resolve all cyclic inconsistencies without requiring additional deletions, which would result in more
information loss. GED effectively minimizes edge removals while maintaining the integrity of the
original preference graph, making it a highly efficient solution for improving the consistency of
preference evaluations.

O PROMPT TEMPLATE

Prompt for Response Selection. In this section, we provide detailed prompt templates used for
response selection across five datasets: HumanEval (Chen et al., 2021), AlpacaEval (Dubois et al.,
2024b), MATH (Hendrycks et al., 2021), GSM8k (Chen et al., 2021), and GAIA (Mialon et al.,
2023). These prompts include both a system prompt to establish the evaluator’s context and a user
prompt tailored to the specific task requirements. Each prompt is designed to guide the evaluators
in comparing two candidate responses based on task-specific criteria such as correctness, clarity,
efficiency, relevance, and completeness. The templates are shown in Table 10, Table 11, Table 12,
Table 13, and Table 14.

Prompt for Model Ranking. This section presents the prompt template used in the Model Ranking
task. The template is designed to evaluate and compare responses generated by different models
for a given instruction, based on criteria such as accuracy, clarity, completeness, and helpfulness.
The evaluation process involves analyzing two candidate responses and identifying which one better
fulfills the requirements of the instruction. The detailed prompt for the Model Ranking is provided in
Table 15.

Prompt for Instruct Tuning. In this section, we provide the prompt template used for data selection
in the Instruct Tuning task. The goal is to select the most appropriate response for each instruction
from multiple candidates, ensuring that the selected responses are helpful, harmless, and relevant. We
use the HH-RLHF dataset (Bai et al., 2022), which contains human preference data aimed at training
language models to be both helpful and harmless. The detailed prompt used by evaluators to assess
and compare candidate responses is presented in Table 16.
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Table 11: Prompt template for assessing instruction-following responses on the AlpacaEval dataset.

Prompt for AlpacaEval

System Prompt:
You are an AI assistant trained to assess and compare responses to user instructions. Your
evaluations should be based on accuracy, clarity, completeness, and helpfulness.

User Prompt:
Please compare the following two responses to the given instruction. Analyze each response for
how well it follows the instruction, the accuracy of the information provided, the clarity of the
explanation, and the overall helpfulness to the user. Point out any errors, omissions, or areas
where the response could be improved.
Instruction: [Instruction Text]
Response A: [Candidate Response A]
Response B: [Candidate Response B]
Question: Which response better addresses the instruction and why? Provide a detailed compar-
ison focusing on the criteria mentioned above.

Table 12: Prompt template for evaluating mathematical solutions on the MATH dataset.

Prompt for MATH

System Prompt:
You are a mathematician and educator skilled at evaluating mathematical solutions. Assess
the correctness, completeness, and clarity of the following solutions to the math problem. Pay
attention to the logical reasoning steps, the mathematical accuracy, and the clarity of explanations.

User Prompt:
Please evaluate the following two solutions to the given math problem. For each solution, analyze
whether the reasoning is correct, if all necessary steps are included, and if the explanations are
clear and easy to understand. Identify any errors or misconceptions.
Math Problem: [Problem Description]
Solution A: [Candidate Solution A]
Solution B: [Candidate Solution B]
Question: Which solution is better and why? Provide a detailed comparison focusing on
correctness, completeness, and clarity.
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Table 13: Prompt template for assessing multi-step reasoning answers on the GSM8k dataset.

Prompt for GSM8k

System Prompt:
You are a teacher specializing in elementary mathematics. Evaluate student answers to math
word problems for correctness and quality of reasoning. Consider whether the student has
correctly understood the problem, applied appropriate mathematical operations, and provided
clear explanations for each step.

User Prompt:
Please compare the following two answers to the given math word problem. For each answer,
assess the accuracy of the solution, the appropriateness of the reasoning steps, and the clarity of
the explanations. Highlight any mistakes or areas for improvement.
Math Word Problem: [Problem Description]
Answer A: [Candidate Answer A]
Answer B: [Candidate Answer B]
Question: Which answer is more accurate and better explained, and why? Provide a detailed
comparison focusing on the criteria mentioned above.

Table 14: Prompt template for evaluating complex question answers on the GAIA dataset.

Prompt for GAIA

System Prompt:
You are an expert in complex problem-solving and knowledge retrieval. Assess the following
answers for accuracy, relevance, depth, and comprehensiveness in response to the complex
question. Consider whether the answers provide correct information, cover all aspects of the
question, and are well-articulated.

User Prompt:
Please evaluate the following two answers to the given question. For each answer, analyze the
correctness of the information provided, the relevance to the question asked, the depth of the
explanation, and the overall quality of the response. Note any inaccuracies, omissions, or areas
where the answer could be improved.
Question: [Complex Question]
Answer A: [Candidate Answer A]
Answer B: [Candidate Answer B]
Question: Which answer provides a better response to the question and why? Provide a detailed
comparison focusing on the criteria mentioned above.
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Table 15: Prompt template in the Model Ranking.

Prompt for Model Ranking

System Prompt:
You are an AI assistant trained to assess and compare responses to user instructions. Your
evaluations should be based on accuracy, clarity, completeness, and helpfulness.

User Prompt:
Please compare the following two responses to the given instruction. Analyze each response for
how well it follows the instruction, the accuracy of the information provided, the clarity of the
explanation, and the overall helpfulness to the user. Point out any errors, omissions, or areas
where the response could be improved.
Instruction: [Instruction Text]
Response A: [Candidate Response A]
Response B: [Candidate Response B]
Question: Which response better addresses the instruction and why? Provide a detailed compar-
ison focusing on the criteria mentioned above.

Table 16: Prompt template for evaluating responses in the Instruct Tuning.

Prompt for Instruct Tuning

System Prompt:
You are a highly skilled AI assistant trained to evaluate and compare responses to user instructions.
Your evaluations should focus on helpfulness, harmlessness, and relevance.

User Prompt:
Please compare the following two responses to the given instruction. For each response, assess
the following aspects:
Helpfulness: Does the response effectively address the instruction and provide useful, accurate
information?
Harmlessness: Does the response avoid any harmful, offensive, or inappropriate content?
Relevance: Is the response directly related to the instruction without unnecessary or irrelevant
information?
Provide your analysis for each aspect, noting any issues or areas for improvement.
Instruction: [Instruction Text]
Response A: [Candidate Response A]
Response B: [Candidate Response B]
Question: Which response better satisfies the criteria above and why? Provide a detailed
explanation supporting your choice, focusing on helpfulness, harmlessness, and relevance.
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