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Abstract

Current deep learning methods for anomaly de-001
tection in text rely on supervisory signals in002
inliers that may be unobtainable or bespoke ar-003
chitectures that are difficult to tune. We study004
a simpler alternative: fine-tuning Transformers005
on the inlier data with self-supervised objec-006
tives and using the losses as an anomaly score.007
Overall, the self-supervision approach outper-008
forms other methods under various anomaly009
detection scenarios, improving the AUROC010
score on semantic anomalies by 11.6% and011
on syntactic anomalies by 22.8% on average.012
Additionally, the optimal objective and resul-013
tant learnt representation depend on the type014
of downstream anomaly. The separability of015
anomalies and inliers signals that a represen-016
tation is more effective for detecting semantic017
anomalies, whilst the presence of narrow fea-018
ture directions signals a representation that is019
effective for detecting syntactic anomalies.020

1 Introduction021

Anomaly detection is the task of identifying un-022

usual samples relative to an exemplar inlier dis-023

tribution. It has numerous applications in natural024

language processing (NLP), including fake news025

detection (Lee et al., 2021), spam detection (Craw-026

ford et al., 2015), and flagging atypical reviews027

(Ruff et al., 2019).028

The difficulty of anomaly detection depends on029

the magnitude of difference between an anoma-030

lous representation and the distribution of inlier031

representations. Existing works in NLP focus on032

the far out-of-distribution (OOD) setting (Winkens033

et al., 2020) in which the anomalies are derived034

from a distinct dataset (Hendrycks et al., 2020;035

Arora et al., 2021; Li et al., 2021; Podolskiy et al.,036

2021; Zhou et al., 2021). For example, a model is037

trained on a sentiment classification dataset, and038

then that model is used to identify news articles as039

anomalies. These approaches also often assume040

the model is trained to classify the distinct inlier041

sub-classes. The anomaly scoring mechanisms typ- 042

ically leverage these supervisory signals by fitting 043

a Mahalanobis distance (Lee et al., 2018) to each 044

sub-class or by obtaining the highest probability in 045

the softmax layer (Hendrycks and Gimpel, 2017). 046

However, these supervisory signals may not always 047

be available. 048

As an alternative configuration, we analyse the 049

one-class anomaly detection setting on more chal- 050

lenging near-OOD anomalies. One-class anomaly 051

detection assumes only inlier data are available at 052

training time and only have one label. Instead of 053

supervisory signals, we study the performance of 054

fine-tuning a Transformer on the inlier data using 055

various self-supervised objectives, and we use the 056

loss as the anomaly score. We examine anomaly 057

detection performance on two near-OOD anomaly 058

types: semantic anomalies, which are created by 059

partitioning a single dataset by class label, and syn- 060

tactic anomalies, which are created by randomly 061

shuffling inlier sentences. We find that fine-tuning 062

on a pre-trained Transformer outperforms exist- 063

ing and more complex methods, boosting AUROC 064

score on semantic anomalies by 11.6% and on syn- 065

tactic anomalies by 22.8% on average. 066

Our findings also suggest that the separation of 067

anomalies and inlier classes in the learnt represen- 068

tation space of the detectors is a strong signal for 069

detecting semantic anomalies, whilst adversarially 070

brittle features are a better indicator of performance 071

in the syntactic anomaly detection setting. Overall, 072

our results indicate the fine-tuning paradigm is a 073

simple baseline that can achieve good results, and 074

the self-supervised objectives used for fine-tuning 075

exploit different cues to identify anomalies. 076

2 Approach 077

2.1 Models 078

Using the loss of a fine-tuned Transformer for 079

anomaly detection is analogous to using an autoen- 080
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coder’s reconstruction error as an anomaly score in081

vision (Sakurada and Yairi, 2014). We anticipate082

that the fine-tuned models can learn the underlying083

characteristics of inlier data but not those of anoma-084

lies. Hence, the loss is used as the anomaly score085

as it should be higher for anomalous instances.086

We analyse three self-supervised objectives in087

our experiments. To minimise the influence of ar-088

chitectural differences, we use the encoder from089

a pre-trained uncased BERTBASE (Devlin et al.,090

2019) and append different heads depending on091

the objective. We fine-tune each model for a max-092

imum of 30,000 steps on inlier data, employing093

early stopping based on the inlier validation set’s094

loss.095

Masked language modelling (MLM). We re-096

tain the default configuration for BERTBASE and097

randomly mask 15% of tokens. At inference time,098

we mask the same proportion of tokens in the test099

sentences and use the error between the predicted100

and true tokens as the anomaly score.101

Causal language modelling (CLM). We fine-102

tune the model to predict the next token given pre-103

vious tokens in the sequence and use perplexity104

as the anomaly score. Perplexity has been used105

to evaluate evidence-supported fact-checking (Lee106

et al., 2021) and far-OOD detection (Arora et al.,107

2021). Our work differs as it uses perplexity to eval-108

uate more difficult anomalies and does not require109

auxiliary data.110

Contrastive loss (SimCSE). Previous works in111

vision suggest a contrastive loss can help discrim-112

inate anomalies from inliers (Tack et al., 2020;113

Sehwag et al., 2021). However, these methods114

require data augmentations that are not directly115

transferrable to NLP.116

SimCSE (Gao et al., 2021) resolves the data117

augmentation issue by applying different dropout118

masks to sentences and trains the model to select119

the same sentence from a minibatch of other sen-120

tence pairs. We fine-tune the model using the de-121

fault dropout probability (p = 0.1) and tempera-122

ture (τ = 0.05) described in SimCSE and evalu-123

ate anomalies using the NT-Xent loss (Chen et al.,124

2020).125

We compare the three fine-tuned models to four126

baselines:127

Pre-trained BERT (Pre-trained). We evaluate128

MLM loss on BERTBASE without any fine-tuning.129

This configuration can be compared to MLM to130

examine the incremental benefit of fine-tuning. We131

disregard the auxiliary next-sentence prediction ob- 132

jective as we do not use sentence pairs for anomaly 133

detection. 134

Other attention-based anomaly detectors. We 135

compare our approach to two state-of-the-art meth- 136

ods which use attention. CVDD (Ruff et al., 2019) 137

learns a set of compact context vectors to describe 138

the inlier data using a multi-head self-attention 139

mechanism. It evaluates a sentence through the 140

average cosine distance of the sentence’s contex- 141

tual embedding to the context vectors. 142

DATE (Manolache et al., 2021) adapts ELEC- 143

TRA (Clark et al., 2020) for the anomaly detection 144

task. DATE includes an additional objective to 145

predict which pre-defined pattern was used by the 146

generator to mask the input tokens. At inference 147

time, the input text is fed into the discriminator di- 148

rectly. The average probability of each token being 149

uncorrupted serves as the anomaly score. 150

Bag-of-words models (BoW). We follow the ap- 151

proach in CVDD and compute the mean over word 152

embeddings extracted from FastText (Bojanowski 153

et al., 2017) to create a sentence embedding for 154

each datum. We use these sentence embeddings to 155

train linear OC-SVMs, which worked better than 156

using k-NNs or Mahalanobis distances in our ex- 157

periments. 158

2.2 Datasets and anomaly detection setup 159

To allow comparison with the baseline methods, 160

we evaluate anomaly detection performance on 20 161

Newsgroups (Lang, 1995), Reuters-21578 (Lewis, 162

1997), AG News (Zhang et al., 2015) and IMDb 163

Movie Reviews (Maas et al., 2011). We also per- 164

form experiments on Snopes (Vo and Lee, 2020) (a 165

fact-checking dataset) and the Enron Spam Dataset 166

(Metsis et al., 2006) to simulate more realistic 167

anomaly detection applications. We pre-process 168

each dataset by lowercasing text, stripping punc- 169

tuation and removing stopwords as per Ruff et al. 170

(2019). 171

We use the datasets’ class labels to construct 172

two setups for the inlier training data. This allows 173

us to examine anomaly detection performance in 174

the settings where the inliers are narrow and more 175

diverse. For a dataset with m class labels: 176

• Unimodal normality: We construct the inliers 177

using data from a single label. 178

• Multimodal normality: We construct the in- 179

liers using data from m− 1 labels. 180
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(a) Semantic anomaly results.
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(b) Syntactic anomaly results encompassing all n-grams.

Figure 1: Anomaly detection results aggregated by model.

Class Sentence

Inlier voip gaining ground despite cost concerns

Anomaly concerns voip despite cost ground gaining

Table 1: Example of a syntactic anomaly derived from
the AG News dataset. We look at n-grams (n ∈
{1, 2, 3, 4}) and shuffle them until each n-gram is no
longer in its original position.

We use the test splits of each dataset to formulate181

two types of near-OOD anomalies:182

• Semantic anomalies: Data belonging to the183

same original class label(s) as the training data184

are categorised as inliers whilst the remainder185

are categorised as anomalies.186

• Syntactic anomalies: Inlier and anomaly data187

are derived from the same class of data used188

to construct the training set. Inlier data are un-189

changed; anomalies have shuffled word order.190

To create the anomalies, we implement the191

seeded random function algorithm in Sinha192

et al. (2021). This setup allows us to measure193

the anomaly detectors’ sensitivity to the un-194

derlying syntactic information whilst fixing195

the word frequency statistics. We illustrate an196

example of a syntactic anomaly in Table 1.197

3 Results198

Figure 1 shows the overall anomaly detection re-199

sults for both types of anomalies. The full results200

split by dataset and normality are in Appendix A.201

Fine-tuning a pre-trained Transformer boosts202

anomaly detection performance. In the case203

of semantic anomalies, although the BoW per-204

formance suggests anomaly detection can be per-205

formed through analysing word frequency statis-206

tics, fine-tuning helps to give additional informa- 207

tion about the nature of inliers. This observation 208

aligns with observations in vision (Fort et al., 2021). 209

Our approach also outperforms CVDD and DATE, 210

particularly in the multimodal normality setting. 211

Fine-tuning also improves syntactic anomaly de- 212

tection, where frequency statistics are insufficient 213

for discrimination. SimCSE is an exception, and 214

we attribute this to the NT-Xent loss considering 215

the entire sentence representation at inference. 216
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Figure 2: Mean AUROC across datasets on syntactic
anomalies by n-gram level. Larger n-grams are more
challenging to differentiate from inliers as fewer indi-
vidual tokens are shuffled.

Density models are much better at detecting 217

syntactic anomalies. We conducted an ablation 218

study of performance under different permutation 219

strengths. CLM is more stable under more chal- 220

lenging anomaly detection conditions (Figure 2), 221

experiencing a decline of only 4% between 1-grams 222

and 4-grams. Pre-trained and fine-tuned MLM ex- 223

perience similar drops (11%), which indicates the 224

choice of objective for anomaly scoring is a core 225

component for performance. As CLM calculates its 226

score at the token level, it is more sensitive to syn- 227

tactic changes compared to MLM, which considers 228

spans of tokens through its masking mechanism. 229
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In the following experiments, we extracted the230

embeddings at the last hidden BERT layer and231

mean-pooled over the positions to analyse the char-232

acteristics of the learnt embeddings.233
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Figure 3: Comparison between using the loss as an
anomaly score and k-NNs for semantic anomaly detec-
tion. We also experimented with OC-SVMs and Maha-
lanobis distances, but k-NNs performed best overall.

Using the loss combined with the embedding234

is better than using the embeddings as a feature235

extractor. Figure 3 shows the median semantic236

anomaly detection AUROC score when using the237

models end-to-end compared to extracting the em-238

bedding to train a k-NN. Although the raw embed-239

dings are generally capable of performing anomaly240

detection, end-to-end use of the methods is more241

discriminative.242
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Figure 4: Scatter plot comparing classification accuracy
of test inliers versus anomalies to anomaly detection
performance across datasets.

Separability of inliers and anomalies is a243

stronger signal for better semantic anomaly de-244

tection. To examine the separability of embeddings245

for each learnt representation, we extracted both246

inlier and anomalous embeddings at the last hidden247

state and trained a logistic classifier. The correla-248

tion between classification accuracy and anomaly249

detection is more apparent for semantic anomalies250

(Figure 4), suggesting separability is a good indica-251

tor for better representations in this case, whereas252

there is no such relationship for syntactic anoma-253

lies. This pattern suggests there is another factor 254

that influences syntactic anomaly detection. 255
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Figure 5: Scatter plot comparing average log L2 norms
of the training inlier data to 1-gram syntactic anomaly
detection performance. Higher norms are more brittle.
The pattern is similar across different n-gram levels.

Syntactic anomaly detection performance is 256

more correlated to brittle features. We hypothe- 257

sise that a narrower1 inlier representation is a better 258

signal for syntactic anomaly performance as it pro- 259

vides more directions for anomalies to manifest. 260

We adopt the procedure in Mai et al. (2021) 261

and calculate the average L2 gradient norms di- 262

vided by the trace of the covariance matrix with 263

respect to the training data. We observe similar be- 264

haviour across all datasets (summarised in Figure 265

5), whereby higher gradient norms clearly corre- 266

spond to better anomaly detection performance. 267

Among the methods, CLM-based embeddings 268

tend to be the most brittle and SimCSE the least. 269

This corresponds with previous literature which 270

states that autoregressive models like GPT (Rad- 271

ford et al., 2018) are highly anisotropic (Cai et al., 272

2021), and models such as SimCSE which are 273

trained on contrastive objectives are more isotropic 274

(Wang and Isola, 2020; Gao et al., 2021). 275

4 Conclusion 276

We studied the performance of fine-tuned Trans- 277

formers using three self-supervised losses through 278

a range of datasets and anomaly detection tasks. 279

We show that this approach outperforms more 280

complex methods, and employing the loss as an 281

anomaly detector is better than using the learnt 282

embeddings as a feature extractor. The best self- 283

supervised loss depends on the nature of the anoma- 284

lies, which suggests there is scope for analysing en- 285

semble models or outlier exposure in future work. 286

1Narrow and brittle features refer to non-robust features as
defined in adversarial machine learning literature (Ilyas et al.,
2019).
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Ethical considerations287

Anomaly detectors are practical tools for indicating288

whether a system is working as intended and for289

flagging potential hazards (Hendrycks et al., 2021).290

An adversary may learn how to bypass systems by291

leveraging anomaly detection research. We restrict292

this by manually curating inliers and anomalies293

from publicly available datasets (as described in294

Section 2.2). By construction, our experiments are295

limited to the English language and may not rep-296

resent features in other languages. We encourage297

extending our work to other domains and languages298

to investigate these differences.299

References300

Udit Arora, William Huang, and He He. 2021. Types301
of out-of-distribution texts and how to detect them.302
In Proceedings of the 2021 Conference on Empiri-303
cal Methods in Natural Language Processing, pages304
10687–10701, Online and Punta Cana, Dominican305
Republic. Association for Computational Linguistics.306

Piotr Bojanowski, Edouard Grave, Armand Joulin, and307
Tomas Mikolov. 2017. Enriching word vectors with308
subword information. Transactions of the Associa-309
tion for Computational Linguistics, 5:135–146.310

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth311
Church. 2021. Isotropy in the contextual embedding312
space: Clusters and manifolds. In International Con-313
ference on Learning Representations.314

Ting Chen, Simon Kornblith, Mohammad Norouzi, and315
Geoffrey Hinton. 2020. A simple framework for316
contrastive learning of visual representations. In317
Proceedings of the 37th International Conference318
on Machine Learning, volume 119 of Proceedings319
of Machine Learning Research, pages 1597–1607.320
PMLR.321

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and322
Christopher D. Manning. 2020. Electra: Pre-training323
text encoders as discriminators rather than generators.324
In International Conference on Learning Representa-325
tions.326

Michael Crawford, Taghi M Khoshgoftaar, Joseph D327
Prusa, Aaron N Richter, and Hamzah Al Najada.328
2015. Survey of review spam detection using ma-329
chine learning techniques. Journal of Big Data,330
2(1):1–24.331

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and332
Kristina Toutanova. 2019. BERT: Pre-training of333
deep bidirectional transformers for language under-334
standing. In Proceedings of the 2019 Conference of335
the North American Chapter of the Association for336
Computational Linguistics: Human Language Tech-337
nologies, Volume 1 (Long and Short Papers), pages338

4171–4186, Minneapolis, Minnesota. Association for 339
Computational Linguistics. 340

Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. 341
2021. Exploring the limits of out-of-distribution de- 342
tection. In Advances in Neural Information Process- 343
ing Systems. 344

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 345
SimCSE: Simple contrastive learning of sentence em- 346
beddings. In Proceedings of the 2021 Conference 347
on Empirical Methods in Natural Language Process- 348
ing, pages 6894–6910, Online and Punta Cana, Do- 349
minican Republic. Association for Computational 350
Linguistics. 351

Dan Hendrycks, Nicholas Carlini, John Schulman, and 352
Jacob Steinhardt. 2021. Unsolved problems in ml 353
safety. arXiv preprint arXiv:2109.13916. 354

Dan Hendrycks and Kevin Gimpel. 2017. A baseline for 355
detecting misclassified and out-of-distribution exam- 356
ples in neural networks. In International Conference 357
on Learning Representations. 358

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam 359
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020. 360
Pretrained transformers improve out-of-distribution 361
robustness. In Proceedings of the 58th Annual Meet- 362
ing of the Association for Computational Linguistics, 363
pages 2744–2751, Online. Association for Computa- 364
tional Linguistics. 365

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Lo- 366
gan Engstrom, Brandon Tran, and Aleksander Madry. 367
2019. Adversarial examples are not bugs, they are 368
features. In Advances in Neural Information Process- 369
ing Systems, volume 32. Curran Associates, Inc. 370

Ken Lang. 1995. Newsweeder: Learning to filter net- 371
news. In Machine Learning, Proceedings of the 372
Twelfth International Conference on Machine Learn- 373
ing, Tahoe City, California, USA, July 9-12, 1995, 374
pages 331–339. Morgan Kaufmann. 375

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 376
2018. A simple unified framework for detecting out- 377
of-distribution samples and adversarial attacks. In 378
Advances in Neural Information Processing Systems, 379
pages 7167–7177. 380

Nayeon Lee, Yejin Bang, Andrea Madotto, and Pascale 381
Fung. 2021. Towards few-shot fact-checking via 382
perplexity. In Proceedings of the 2021 Conference 383
of the North American Chapter of the Association 384
for Computational Linguistics: Human Language 385
Technologies, pages 1971–1981, Online. Association 386
for Computational Linguistics. 387

David D. Lewis. 1997. Reuters-21578 text categoriza- 388
tion test collection, distribution 1.0. 389

Xiaoya Li, Jiwei Li, Xiaofei Sun, Chun Fan, Tianwei 390
Zhang, Fei Wu, Yuxian Meng, and Jun Zhang. 2021. 391
kFolden: k-fold ensemble for out-of-distribution de- 392
tection. In Proceedings of the 2021 Conference on 393

5

https://doi.org/10.18653/v1/2021.emnlp-main.835
https://doi.org/10.18653/v1/2021.emnlp-main.835
https://doi.org/10.18653/v1/2021.emnlp-main.835
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=j5NrN8ffXC
https://openreview.net/forum?id=j5NrN8ffXC
https://openreview.net/forum?id=j5NrN8ffXC
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://doi.org/10.1016/b978-1-55860-377-6.50048-7
https://doi.org/10.1016/b978-1-55860-377-6.50048-7
https://doi.org/10.1016/b978-1-55860-377-6.50048-7
http://papers.nips.cc/paper/7947-a-simple-unified-framework-for-detecting-out-of-distribution-samples-and-adversarial-attacks
http://papers.nips.cc/paper/7947-a-simple-unified-framework-for-detecting-out-of-distribution-samples-and-adversarial-attacks
http://papers.nips.cc/paper/7947-a-simple-unified-framework-for-detecting-out-of-distribution-samples-and-adversarial-attacks
https://www.aclweb.org/anthology/2021.naacl-main.158
https://www.aclweb.org/anthology/2021.naacl-main.158
https://www.aclweb.org/anthology/2021.naacl-main.158
https://doi.org/10.18653/v1/2021.emnlp-main.248
https://doi.org/10.18653/v1/2021.emnlp-main.248
https://doi.org/10.18653/v1/2021.emnlp-main.248


Empirical Methods in Natural Language Processing,394
pages 3102–3115, Online and Punta Cana, Domini-395
can Republic. Association for Computational Lin-396
guistics.397

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,398
Dan Huang, Andrew Y. Ng, and Christopher Potts.399
2011. Learning word vectors for sentiment analysis.400
In Proceedings of the 49th Annual Meeting of the401
Association for Computational Linguistics: Human402
Language Technologies, pages 142–150, Portland,403
Oregon, USA. Association for Computational Lin-404
guistics.405

Kimberly T. Mai, Toby Davies, and Lewis D. Grif-406
fin. 2021. Brittle features may help anomaly de-407
tection. Women in Computer Vision Workshop at408
the IEEE/CVF Conference on Computer Vision and409
Pattern Recognition.410

Andrei Manolache, Florin Brad, and Elena Burceanu.411
2021. DATE: Detecting anomalies in text via self-412
supervision of transformers. In Proceedings of the413
2021 Conference of the North American Chapter of414
the Association for Computational Linguistics: Hu-415
man Language Technologies, pages 267–277, Online.416
Association for Computational Linguistics.417

Vangelis Metsis, Ion Androutsopoulos, and Georgios418
Paliouras. 2006. Spam filtering with naive bayes -419
which naive bayes? In CEAS 2006 - The Third Con-420
ference on Email and Anti-Spam, July 27-28, 2006,421
Mountain View, California, USA.422

Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Eka-423
terina Artemova, and Irina Piontkovskaya. 2021. Re-424
visiting mahalanobis distance for transformer-based425
out-of-domain detection. In Proceedings of the AAAI426
Conference on Artificial Intelligence, volume 35,427
pages 13675–13682.428

Alec Radford, Karthik Narasimhan, Tim Salimans, and429
Ilya Sutskever. 2018. Improving language under-430
standing by generative pre-training.431

Lukas Ruff, Yury Zemlyanskiy, Robert Vandermeulen,432
Thomas Schnake, and Marius Kloft. 2019. Self-433
attentive, multi-context one-class classification for434
unsupervised anomaly detection on text. In Proceed-435
ings of the 57th Annual Meeting of the Association for436
Computational Linguistics, pages 4061–4071, Flo-437
rence, Italy. Association for Computational Linguis-438
tics.439

Mayu Sakurada and Takehisa Yairi. 2014. Anomaly440
detection using autoencoders with nonlinear dimen-441
sionality reduction. In Proceedings of the MLSDA442
2014 2nd workshop on machine learning for sensory443
data analysis, pages 4–11.444

Vikash Sehwag, Mung Chiang, and Prateek Mittal. 2021.445
SSD: A unified framework for self-supervised out-446
lier detection. In 9th International Conference on447
Learning Representations.448

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle 449
Pineau, Adina Williams, and Douwe Kiela. 2021. 450
Masked language modeling and the distributional hy- 451
pothesis: Order word matters pre-training for little. 452
In Proceedings of the 2021 Conference on Empiri- 453
cal Methods in Natural Language Processing, pages 454
2888–2913, Online and Punta Cana, Dominican Re- 455
public. Association for Computational Linguistics. 456

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo 457
Shin. 2020. Csi: Novelty detection via contrastive 458
learning on distributionally shifted instances. Ad- 459
vances in Neural Information Processing Systems, 460
33:11839–11852. 461

Nguyen Vo and Kyumin Lee. 2020. Where are the 462
facts? searching for fact-checked information to al- 463
leviate the spread of fake news. In Proceedings of 464
the 2020 Conference on Empirical Methods in Natu- 465
ral Language Processing, pages 7717–7731, Online. 466
Association for Computational Linguistics. 467

Tongzhou Wang and Phillip Isola. 2020. Understanding 468
contrastive representation learning through alignment 469
and uniformity on the hypersphere. In Proceedings 470
of the 37th International Conference on Machine 471
Learning, volume 119 of Proceedings of Machine 472
Learning Research, pages 9929–9939. PMLR. 473

Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert 474
Stanforth, Vivek Natarajan, Joseph R Ledsam, Patri- 475
cia MacWilliams, Pushmeet Kohli, Alan Karthike- 476
salingam, Simon Kohl, et al. 2020. Contrastive train- 477
ing for improved out-of-distribution detection. arXiv 478
preprint arXiv:2007.05566. 479

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 480
Character-level convolutional networks for text clas- 481
sification. In Advances in Neural Information Pro- 482
cessing Systems, volume 28. Curran Associates, Inc. 483

Wenxuan Zhou, Fangyu Liu, and Muhao Chen. 2021. 484
Contrastive out-of-distribution detection for pre- 485
trained transformers. In Proceedings of the 2021 486
Conference on Empirical Methods in Natural Lan- 487
guage Processing, pages 1100–1111, Online and 488
Punta Cana, Dominican Republic. Association for 489
Computational Linguistics. 490

6

http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/2021.naacl-main.25
https://doi.org/10.18653/v1/2021.naacl-main.25
https://doi.org/10.18653/v1/2021.naacl-main.25
http://www.ceas.cc/2006/listabs.html#15.pdf
http://www.ceas.cc/2006/listabs.html#15.pdf
http://www.ceas.cc/2006/listabs.html#15.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17612
https://ojs.aaai.org/index.php/AAAI/article/view/17612
https://ojs.aaai.org/index.php/AAAI/article/view/17612
https://ojs.aaai.org/index.php/AAAI/article/view/17612
https://ojs.aaai.org/index.php/AAAI/article/view/17612
https://doi.org/10.18653/v1/P19-1398
https://doi.org/10.18653/v1/P19-1398
https://doi.org/10.18653/v1/P19-1398
https://doi.org/10.18653/v1/P19-1398
https://doi.org/10.18653/v1/P19-1398
https://openreview.net/forum?id=v5gjXpmR8J
https://openreview.net/forum?id=v5gjXpmR8J
https://openreview.net/forum?id=v5gjXpmR8J
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://proceedings.neurips.cc/paper/2020/hash/8965f76632d7672e7d3cf29c87ecaa0c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8965f76632d7672e7d3cf29c87ecaa0c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8965f76632d7672e7d3cf29c87ecaa0c-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.84
https://doi.org/10.18653/v1/2021.emnlp-main.84
https://doi.org/10.18653/v1/2021.emnlp-main.84


A Appendix 491

A.1 Semantic anomaly detection results 492
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Figure 6: Semantic anomaly detection results split by dataset.
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A.2 Syntactic anomaly detection results493
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Figure 7: Syntactic anomaly detection results split by dataset. The figures include all n-gram runs.
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A.3 Contamination results494
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Figure 8: Mean AUROC scores across datasets by con-
tamination percentage. Experiments are conducted us-
ing semantic anomalies.

We simulate a purely unsupervised anomaly de-495

tection setup by incorporating a set percentage of496

semantic anomalies {5%, 10%, 15%} into the train-497

ing data. The self-supervised losses on average498

elicit higher AUROC scores compared to the other499

model types, and SimCSE appears to be the most500

robust approach.501

A.4 Implementation details502

We used an NVIDIA RTX Titan X and NVIDIA503

Tesla V100s to run our experiments depending on504

availability.505

506

Model implementation. We used507

Huggingface’s2 implementation of BERTBASE508

and Sentence-Transformers3 for our509

Transformer experiments. In addition, we used510

nltk4 for pre-processing, spaCy5 for encoding511

the bag-of-words models, Faiss6 to train the512

k-NNs, and sci-kit learn7 for constructing513

OC-SVMs.514

515

Dataset details. All of the datasets used in our516

paper are publicly available.517

• 20 Newsgroups (Lang, 1995) is a collection518

of 20,000 newsgroup documents split across519

2https://huggingface.co
3https://sbert.net
4https://nltk.org
5https://spacy.io
6https://faiss.ai
7https://scikit-learn.org

20 different newsgroups. We use the six top- 520

level subjects (computer, recreation, science, 521

miscellaneous, politics, religion) to partition 522

the classes. Partitioning by class label, there 523

are 577-2859 training samples and 382-1909 524

test samples. 525

• Reuters-21578 (Lewis, 1997) is a collection of 526

10,788 news articles split across 90 topics. We 527

only use a subset of data that have only one 528

label (earn, acq, crude, trade, money-fx, in- 529

terest, ship). Partitioning by class label, there 530

are 108-2,840 training samples and 36-1,083 531

testing samples. 532

• AG News (Zhang et al., 2015) is a topic classi- 533

fication dataset gathered from more than 2,000 534

news sources over one year of activity. It con- 535

tains four classes (business, sci, sports, world), 536

each with 30,000 samples for training and 537

1,900 for testing. 538

• IMDb (Maas et al., 2011) is a sentiment clas- 539

sification dataset consisting of film reviews. 540

It contains two classes (pos, neg), each with 541

25,000 samples for training and 25,000 for 542

testing. 543

• Snopes (Vo and Lee, 2020) is a fact-checking 544

dataset containing paired examples of tweets 545

and a fact-checking article from snopes.com. 546

There are four classes (true, mostly true, 547

mostly false, false). We only use true (7,363) 548

and false (21,256) tweets in our experiments 549

and do not use the articles. We randomly par- 550

tition 80% of this smaller dataset for training 551

and use the remaining 20% for testing. 552

• The Enron Spam Dataset (Metsis et al., 2006) 553

is derived from the Enron Email Dataset. 554

There are two classes, ham (16,458) and spam 555

(17,171) emails. We randomly partition 80% 556

of the dataset for training and the remaining 557

20% for testing. 558
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