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Abstract

We propose a new neural model for word em-
beddings, which uses Unitary Matrices as the
primary device for encoding lexical informa-
tion. It uses simple matrix multiplication to de-
rive matrices for large units, yielding a sentence
processing model that is strictly compositional,
does not lose information over time steps, and
is transparent, in the sense that word embed-
dings can be analysed regardless of context.
This model does not employ activation func-
tions, and so the network is fully accessible
to analysis by the methods of linear algebra at
each point in its operation on an input sequence.
We test it in two NLP agreement tasks and ob-
tain rule like perfect accuracy, with greater sta-
bility than current state-of-the-art systems. Our
proposed model goes some way towards offer-
ing a class of computationally powerful deep
learning systems that can be fully understood
and compared to human cognitive processes for
natural language learning and representation.

1 Introduction

The word embeddings that deep neural networks
(DNNs) learn are encoded as vectors. The vari-
ous dimensions of the vectors correspond to distri-
butional properties of words, as measured in cor-
pora. Combining word embeddings into phrasal
and sentence vectors can be achieved through vari-
ous means, often through task-specific models with
many parameters of their own, optimised by gradi-
ent descent.

In this paper we use unitary matrices in place
of arbitrary vector embeddings. Arjovsky et al.
(2016) propose Unitary-Evolution Recurrent Neu-
ral Networks (URNs), to eliminate exploding or
vanishing gradients in gradient descent. By the
definition of unitary-evolution, at each step, a uni-
tary transformation is applied to the state of the
RNN. This means that each input symbol is inter-
preted as a unitary transformation, or equivalently
as a unitary matrix. No activation functions are

applied between the time-steps. This design pro-
vides a lightweight DNN, with several attractive
mathematical and computational properties. URNs
are strictly compositional. The effect of embed-
dings can be analysed independently of context.
Therefore the model is transparent, in the sense
that it can be analysed by direct inspection, rather
than through black box testing methods. So, for
example, researchers are forced to resort to probe
techniques (Hewitt and Manning, 2019) to ascer-
tain the syntactic structure which transformers and
other DNNs represent.

Because of the reversibility of unitary trans-
formations, long distance dependency relations
can, in principle, be reliably and efficiently recog-
nised, without additional special-purpose machin-
ery of the kind required in an LSTM. This has
been demonstrated to hold for copying and adding
tasks (Arjovsky et al., 2016; Jing et al., 2017;
Vorontsov et al., 2017) (See also section 6.4).

Here we view the unitary matrices learned by
a URN as word embeddings. Doing so gives a
richer structure to embeddings, with computational
and formal advantages that are absent from the
traditional vector format that dominates current
work in deep learning.

We demonstrate these advantages by applying
the URN architecture to two tasks: (i) bracket
matching in a generalised Dyck language, and (ii)
the more challenging task of subject-verb number
agreement in English. These experiments confirm
the long-distance capabilities of URNs, even on a
linguistically interesting and difficult task.

The richer structure of unitary embeddings per-
mits us to measure the relative effects and distances
of different words and phrases. We illustrate the
application of such metrics for both experiments.

In section 2 we describe the design of the URN,
and our implementation of it. Sections 4 and 5
present our experiments and their results, leverag-



ing the theory presented in section 3.1 We discuss
related work in section 6, and we draw conclusions
and sketch future work in section 7.

The computational perspicuity of URNs allows
them to be compared to psychologically and neu-
rologically attested models of human learning and
representation. Most deep neural networks, partic-
ularly powerful transformers, use non-linear activa-
tion functions which render their operation opaque
and difficult to understand. By contrast, the com-
putations of an URN are explicitly given as simple
matrix multiplications, and they are open to inspec-
tion at each point in the processing sequence.

2 Models

In its full generality, a recurrent network is a func-
tion from an input state vector s0 and a sequence
of input vectors xi, such that the state at each time-
step is a function of the state at the previous step
and the input at that step: si+1 = f(xi, si). The
function f is constant across steps, and it is called
a “cell” of the network.

Since the simple recurrent networks of Elman
(1990), the dominant architectures of RNNs, in-
cluding the influential LSTM (Hochreiter and
Schmidhuber, 1997), use non-linear activation
functions (sigmoid , tanh , ReLU) at each time-
step. Transformer models, like BERT, are even
more opaque in their operations, due the their re-
liance on a large number of attention heads that ap-
ply non-linear functions at each level. By contrast
our URNs invoke only linear cells. In fact, the cell
that we use is a linear transformation of the unitary
space,2 so that it takes unit state vectors to unit state
vectors, hence the term “unitary-evolution”. Ex-
pressed as an equation, we have f(x, s) = Q(x)s,
where Q(x) is unitary. Therefore, only state vec-
tors si of norm 1 play a role in URNs.

In our implementation of the URN architecture
we limit ourselves to real numbers, and so Q(x)
is properly described as an orthogonal matrix. We
follow this terminology in what follows.

Let n be the dimension of the state vectors si,
and N the length of the sequence of inputs. We
will consider only the case of n even. In all our
experiments, we take s0 to be the vector [1, 0, . . . ]
without loss of generality. For predictions, we ex-
tract a probability distribution from state vectors

1The code and relevant linear algebra proofs for our model
is available at https://github.com/GU-CLASP/
unitary-recurrent-network.

2The subspace of vectors of unit norm

by applying a dense layer with softmax activation
to each si.

We need to ensure that Q(x) is (and remains)
orthogonal when it is subjected to gradient descent.
In general, subtracting a gradient to an orthogonal
matrix does not preserve orthogonality of the ma-
trix. So we cannot make Q(x) a simple lookup ta-
ble from symbol to orthogonal matrix without addi-
tional restrictions. While one could project the ma-
trix onto an orthogonal space (Wisdom et al., 2016;
Kiani et al., 2022), our solution is to use a lookup
table mapping each word to a skew-hermitian ma-
trix S(x).3 We follow Hyland and Rätsch (2017)
in doing this. We then let Q(x) = eS(x), which
ensures the orthogonality ofQ(x). It is not difficult
to ensure that S(x) is skew-symmetric. It suffices
to store only the elements of S(x) above the diago-
nal, and let those below it be their anti-symmetric
image, while the diagonal is set at zero.

Another important issue is that the number of
parameters in S(x) grows with the square of n.
This would entail that doubling a model’s power
requires quadrupling the number of its parameters.
To remedy this problem we limit ourselves to ma-
trices S(x) which have non-zero entries only on
the first k rows (and consequently k columns). In
this way we limit the total size of the embedding to
(n− 1) + (n− 2) + · · ·+ (n− k + 1), due to the
constraint of symmetry. Consequently, S(x) has
at most rank 2k. Below, we refer to this setup as
consisting of truncated embeddings.

As an example, the 3×3 skew-symmetric matrix(
0 a b
−a 0 c
−b −c 0

)
is 1-truncated if c = 0. This truncation

reduces its informational content to the single row
(and column) (a b).

We use the acronym URN to refer to the gen-
eral class of unitary-evolution networks, k-TURN
to refer to our specific model architecture with k-
truncation of embeddings (fig. 1), and Full-URN
for our model architecture with no truncation.

We employ a standard training regime for our
experiments. We apply a dropout function on both
inputs of f , so that some entries of si or Q(xi) will
be zeroed out according to a Bernoulli distribution

3A matrix S is skew-symmetric iff ST = −S. Here, we
rely on the the property that the exponential of any skew-
symmetric matrix is orthogonal . The mathematical tools that
we employ are standard (Gantmacher, 1959). The key results
and their proofs are available at https://github.com/
GU-CLASP/unitary-recurrent-network/blob/
main/proofs.pdf.

https://github.com/GU-CLASP/unitary-recurrent-network
https://github.com/GU-CLASP/unitary-recurrent-network
https://github.com/GU-CLASP/unitary-recurrent-network/blob/main/proofs.pdf
https://github.com/GU-CLASP/unitary-recurrent-network/blob/main/proofs.pdf
https://github.com/GU-CLASP/unitary-recurrent-network/blob/main/proofs.pdf
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Figure 1: TURN architecture. Each input symbol xi
indexes an embedding layer, yielding a skew-symmetric
matrix S(xi). Taking its exponential yields an orthog-
onal matrix Q(xi). Multiplying the state si by Q(xi)
yields the next state, si+1.

of rate ρ.4 The embeddings are optimised by means
of the Adam gradient descent algorithm (Kingma
and Ba, 2014), with no further adjustment. Our
implementation uses the TensorFlow (Abadi et al.,
2016) framework (version 2.2), including its imple-
mentation of matrix exponential.

3 Properties of Orthogonal Embeddings

The absence of activation functions in the URN
make it more amenable to theoretical analysis than
the general class of RNNs with activation functions,
including LSTMs and GRUs. The key feature of
this design is that the behaviour of the cell is en-
tirely defined by the matrix Q(x), the orthogonal
embedding of x. The cell only multiplies by word
embeddings, and we can focus solely on those em-
beddings to understand the model.

Since the work of Mikolov et al. (2013), vector
embeddings have proven to be an extremely suc-
cessful modelling tool. However, their structure is
opaque. The only way of analysing their relations
is through geometric distance metrics like cosine
similarity. The unit vectors u and v are deemed
similar if 〈u, v〉 is close to 1. Here we work with or-
thogonal matrix embeddings, which exhibit much
richer structure. We use mathematical analysis to
get a better sense of this structure, and relate it to
vector embeddings.

4Even though we follow this regime to be standard, experi-
ments indicate that dropout rates appear not critical when we
restrict transformations to be unitary.

Composition of Embeddings A decisive bene-
fit of unitary (and orthogonal) matrix embeddings
is that they form a group. We can obtain the in-
verse of a word embedding simply by transpos-
ing it: Q(x)−1 = Q(x)T . We can also com-
pose two embeddings to obtain an embedding
for the composition. Thanks to the associativ-
ity of multiplication, we have f(x1, f(x0, s0)) =
Q(x1)(Q(x0)s0) = (Q(x1) × Q(x0))s0. So, we
can define the embedding of any sequence as
Q(x0. . . xi) = Q(xi) × Q(xi−1) × · · · × Q(x0).
Using this notation, the final state of an URN is
Q(x0. . . xN−1)s0. Hence, the URN is composi-
tional by design.5

It is important to recognise that compositionality
is strictly a consequence of the structure of a URN.
It follows directly from the use of unitary matrix
multiplication, through which the successive states
in the RNN’s processing sequence are computed,
without activation functions, It is not necessary to
demonstrate this result experimentally, since it is
a formal consequence of the associativity of or-
thogonal matrix multiplication, as shown above.
Because URNs do not incorporate additional non-
linear activation functions, a simple matrix is al-
ways sufficient to express any combination of word
and phrasal embeddings.

Distance and Similarity For vector embeddings,
one often uses cosine similarity as a metric of prox-
imity. With unit vectors, this cosine similarity
is equal to the inner product 〈u, v〉 =

∑
i uivi.

In unitary space, it is equivalent to working with
euclidean distance squared, because ‖u− v‖2 =
2(1− 〈u, v〉).

Notions of vector similarity and distance can
be naturally extended to matrices. The Frobenius
inner product 〈P,Q〉 = ΣijPijQij extends co-
sine similarity, and the Frobenius norm ‖A‖2 =∑

ij A
2
ij extends euclidean norm. Furthermore, for

orthogonal matrices they relate in an analogous
way to unit vectors:‖P −Q‖2 = 2(n− 〈P,Q〉).

Why is the Frobenius norm a natural extension
of cosine similarity for vectors? It is not merely
due to the similarity of the respective formulas.

5One might expect that the composition of embeddings
can be done at the level of skew-symmetric embeddings:
S(x0x1) = S(x0) + S(x1). However, this will not work.
The law eS0+S1 = eS0eS1 holds only when S0 and S1 com-
mute, which is, in general, not true in our setup. This non-
commutativity makes it possible to obtain, by composition,
embeddings of higher rank, by which way we make use of all
the dimensions of the orthogonal group.



The connection is deeper. A crucial property of the
Frobenius inner product (and associated norm) is
that it measures the average behaviour of orthogo-
nal matrices on state vectors. More precisely, the
following holds: Es[〈Ps,Qs〉] = 1

n〈P,Q〉 , and
Es[‖Ps−Qs‖2] = 1

n‖P −Q‖
2. In sum, as a fall-

back, one can analyse unitary embeddings using
the methods developed for plain vector embeddings.
Doing so is theoretically sound. Together with the
fact that matrix embeddings can be composed, it
means that one can analyse the distances between
phrases.

Average Effect A useful metric for unitary em-
beddings is the squared distance to the identity
matrix, ‖Q− I‖2. By the above result, it is the
average squared distance between s and Qs — es-
sentially, the average effect that Q has, relative
to the task for which the URN is trained. Note
that this sort of metric is unavailable when using
opaque vector embeddings. In particular, the norm
of a vector embedding is not directly interpretable
as a measure of its effect. In the case of an LSTM,
for example, vector embeddings first undergo linear
transformations followed by activation functions,
before effecting the state, in several separate stages.

Signature of Embeddings While the average ef-
fect is a useful measure, it is rather crude. Averag-
ing over random state vectors considers all features
as equivalent. But we might be interested in the
effect of Q along specific dimensions, measured
separately.

For this purpose, it is useful to note that any or-
thogonal matrix Q can be decomposed as the effect
of n/2 independent rotations, in n/2 orthogonal
planes. The angles of these rotations define how
strongly Q effects the state vectors lying in this
plane. We refer to such a list of angles as the sig-
nature of Q, and we denote it as sig(Q). When
displaying a signature, we omit any zero angle.
This is useful because a k-truncated embedding
has at most k non-zero angles in its signature. Non-
zero angles will be represented graphically as a
dial, with small angles pointing up , and large
angles pointing down .

4 Natural Language Agreement Task

It may seem that the extreme simplicity of the
TURN architecture renders it unsuitable for any
non-trivial processing task. In fact, this is not at all
the case.

0 1 2 3 4 5 6 7 8 9 10 11 12
0.7

0.8
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3-TURN
LSTM, Linzen et al.

Figure 2: Accuracy per number of attractors for the
verb number agreement task. Linzen et al. (2016) do
not report performance of their LSTM past 4 attractors.
Error bars represent binomial 95% confidence intervals.

Our first experiment applies a TURN to a natural
language agreement task proposed by Linzen et al.
(2016). This task is to predict the number of third
person verbs in English text, with supervised train-
ing. In the phrase “The keys to the cabinet are on
the table”, the RNN is trained to predict the plural
“are” rather than the singular “is”.

The training data is composed of 1.7 million sen-
tences with a selected subject-verb pair, extracted
from Wikipedia. The vocabulary size is 50,000,
and out-of-vocabulary tokens are replaced by their
part-of-speech tag. Training is performed for ten
epochs, with a learning rate of 0.01, and a dropout
rate of ρ = 0.05. We use 90% of the data for
training and 10% for validation and testing. A de-
velopment subset is not necessary since no effort
was made to tune hyperparameters. Our first experi-
ment proved sufficient to illustrate our main claims.
In any case, a TURN has few hyperparameters to
optimise.

Linzen et al. (2016) point out that solving the
agreement task requires knowledge of hierarchical
syntactic structure. That is, if an RNN captures
the long-distance dependencies involved in agree-
ment relations, it cannot rely solely on the linear
sequence of nouns (in particular their number in-
flections) preceding the predicted verb in a sen-
tence. In particular, the accuracy must be sustained
as the number attractors increases. An attractor is
defined as a noun occurring between the subject
and the verb which additionally exhibits the wrong
number feature required to control the verb. In the
above example sentence, “cabinet” is an attractor.

Figure 2 shows the results for a 50-unit TURN



word effect word effect word effect
. 0.22 an 3.70 for 4.62

the 1.44 as 3.76 in 4.62
his 1.47 he 3.95 have 4.62
its 2.17 had 3.95 who 4.68

also 2.27 to 3.96 were 4.88
their 2.54 a 4.06 that 5.00
not 2.73 of 4.09 was 5.55

been 2.82 from 4.09 ( 5.68
at 3.40 i 4.11 ) 5.74
or 3.46 it 4.14 are 6.25
by 3.50 and 4.18 but 6.27
one 3.54 on 4.33 is 6.38
this 3.62 with 4.36 which 7.75
be 3.65 has 4.41 , 8.35

Table 1: Table of average effects for agreement experi-
ment for the most frequent tokens in the corpus, ordered
by average effect, from least to greatest

with 3-truncated embeddings for the agreement
task, for up to 12 attractors. We see that the TURN
“solves” this task, with error rates well under one
percent. Crucially, there is no evidence of accu-
racy dropping as the number of attractors increases.
Even though the statistical uncertainty increases
with the number of attractors, due to decreasing
numbers of examples, the TURN makes no mis-
takes for the higher number of attractor cases.

4.1 Average effect
In this section we illustrate the notion of average
effect developed in 3, for this task.

We report the average effect for the embeddings
of the most common words in the dataset (table 1),
and other selected words and phrases obtained by
composition. We stress that this is not done by
measuring the average effect on the data set; but
rather using the formula‖Q− I‖2 for each unitary
embedding Q. Looking at the table of effects for
these words and phrases (ordered from smallest to
largest effect) confirms the analysis of 3: tokens
which are relevant to the task (e.g. verbs, relative
pronouns) generally have a larger effect than those
which are not (e.g. the dot, “not”).

We also computed the distance between pairs of
the most frequent nouns, with both singular and
plural inflections (table 2). We observe, as our
account predicts, that nouns with the same number
inflection tend to be grouped (with a distance of 7.5
or less between them), while nouns with differing
numbers are further apart (with a distance of 7.5 or

more).

5 Dyck-language modelling task

To evaluate the theoretical long-distance modelling
capabilities of an RNN in a way that abstracts
away from the noise in natural language, one
can construct synthetic data. Following Bernardy
(2018) we use a (generalised) Dyck language. This
language is composed solely of matching paren-
thesis pairs. So the strings “{([])}<>” and
“{()[<>]}” are part of the language, while “[}”
is not. This experiment is an idealised version
of the agreement task, where opening parentheses
correspond to subjects, and closing parentheses to
verbs. An attractor is an opening parenthesis oc-
curring between the pair, but of a different kind.
Matching of parentheses corresponds to agreement.
Because we use five distinct kinds of parentheses,
the majority class baseline is at 20%. This makes
it easier to evaluate the performance of a model on
the matching task than for the third person agree-
ment task, where the majority class baseline for the
training corpus is above 70%.

We complicate the matching task with an addi-
tional difficulty. We vary the nesting depth be-
tween training and test phases. The depth of
the string is the maximum nesting level reached
within it. For instance “[{}]” has depth 2, while
“{([()]<>)}” has depth 4. In this task, we use
strings with a length of exactly 20 characters. We
train on 102,400 randomly generated strings, with
maximum depth 3, and test it on 5120 random
strings of maximum depth 10. Training is per-
formed with a learning rate of 0.01, and a dropout
rate of ρ = 0.05, for 100 epochs.

The training phase treats the URN as a genera-
tive language model, applying a cross-entropy loss
function at each position in the string. At test time,
we evaluate the model’s ability to predict the right
kind of closing parenthesis at each point (this is
the equivalent of predicting the number of a verb).
We ignore predictions regarding opening parenthe-
ses, because they are always acceptable for the
language.

We ran three versions of this experiment. One
with truncated embeddings, one with full embed-
dings, and a third using a baseline RNN with full
embeddings that are not constrained to be orthog-
onal. In all cases, the size of matrices is 50 by
50. We report accuracy on the task by number of
attractors in fig. 3.



article year area world family articles years areas worlds families
article 0.00 7.04 6.51 6.89 5.82 9.26 9.84 10.01 10.87 9.39
year 7.04 0.00 7.62 6.30 5.38 8.22 9.06 9.75 10.14 8.64
area 6.51 7.62 0.00 6.42 6.34 9.57 9.70 10.39 11.63 10.39
world 6.89 6.30 6.42 0.00 5.17 7.32 8.82 9.17 9.13 7.83
family 5.82 5.38 6.34 5.17 0.00 7.71 7.72 8.78 9.49 8.82
articles 9.26 8.22 9.57 7.32 7.71 0.00 5.11 4.79 4.28 4.57
years 9.84 9.06 9.70 8.82 7.72 5.11 0.00 6.42 6.61 7.14
areas 10.01 9.75 10.39 9.17 8.78 4.79 6.42 0.00 5.93 6.09
worlds 10.87 10.14 11.63 9.13 9.49 4.28 6.61 5.93 0.00 7.79
families 9.39 8.64 10.39 7.83 8.82 4.57 7.14 6.09 7.79 0.00

Table 2: Distances between embeddings of most frequent nouns and their plural variants. Words which can be both
nouns and verbs were excluded.
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Figure 3: Accuracy of closing parenthesis prediction by
number of attractors.

We note that even the baseline model is capable
of generalising to longer distances. Up to 9 attrac-
tors, it achieves performance that is well above a
majority class baseline (20%). However, it shows
steadily decreasing accuracy as the number of at-
tractors increases.

By contrast, the URN models remain accurate
as the number of attractors grows. Perhaps surpris-
ingly, the URN improves in relation to the number
of attractors. We will solve this apparent puzzle
below, through analysis of the embeddings. The
explanation will hinge on the fact that truncating
embeddings affects performance only when the
number of attractors is low.

Comparing the arbitrary embeddings model with
with full URN highlights the importance of limit-
ing the network to orthogonal matrices. The perfor-
mance of the full URN is better over the long term
and in general, with a validation loss of 1.47213
compared to 1.52914 for the arbitrary case. This
happens despite the fact that the orthogonal system

0.33 0.35 1.35
0.46 1.73 0.2
1.09 0.2 0.34

Table 3: Similarity for each pair of rotation planes, for
the embeddings of ( and [. Headers show the rotation
effected on the compared planes. A value of 2 indicates
that the planes are equal (up to rotation of the basis vec-
tors), and a value of 0 indicates that they are orthogonal.

is a special case of the arbitrary network, and so
orthogonal embeddings are, in principle, available
to the baseline RNN. But it is not able to converge
on the preferred solution (even for absolute loss).
In sum, restricting to orthogonal matrices acts like
a regularising constraint which offers a significant
net benefit in generalisation and tracking power.

5.1 Analysis

As in the previous experiment, matrix embeddings
can be analysed regardless of contexts, offering a
direct view of how the model works. We consider
the embeddings produced by training the 3-TURN
model, and we start with the embeddings of indi-
vidual characters and their signatures (table 4). The
average effect, and even the signatures of all em-
beddings are strikingly similar. This does not imply
that they are equal. Indeed, they rotate different
planes.

We see in table 3 that the planes which undergo
rotation by similar angles are far from orthogonal
to each other— one pair even exhibits a similarity
of 1.73. This corresponds to the fact that the trans-
formations of ( and [manipulate a common subset
of coordinates. On the other hand, those planes that
undergo rotation by different angles tend to be in a



character average effect signature
( 14.79
< 14.34
{ 13.98
[ 14.25
+ 14.20
) 14.85
> 14.42
} 14.07
] 14.34
- 14.26
() 0.06
<> 0.06
{} 0.07
[] 0.06
+- 0.06

Table 4: Average effect and signatures of parenthesis
embeddings and matching pairs.

closer to orthogonal relationship.

Composition of Matching Parentheses To fur-
ther clarify the formal properties of our model let’s
look at the embeddings of matching pairs, com-
puted as the product of the respective embeddings
of the pairs. Such compositions are close to identity
(table 4). This observation explains the extraordi-
narily accurate long-distance performance of the
URN on the matching task. Because a matching
pair has essentially no effect on the state, by the
time all parentheses have been closed, the state
returns to its original condition. Accordingly, the
model experiences the highest level of confusion
when it is inside a deeply nested structure, and
not when a deep structure is inserted between the
governing opening parenthesis and the prediction
conditioned on that parenthesis.

6 Related Work

6.1 Explainable NLP

It has frequently been observed that DNNs are com-
plex and opaque in the way in which they operate.
It is often unclear how they arrive at their results, or
why they identify the patterns that they extract from
training data. This has given rise to a concerted
effort to render deep learning systems explainable
(Linzen et al., 2018, 2019). This problem has be-
come more acute with the rapid development of
very large pre-trained transformer models (Vaswani
et al., 2017), like BERT (Devlin et al., 2018), GPT2

(Solaiman et al., 2019), GPT3 (Brown et al., 2020),
and XLNet (Yang et al., 2019).

URNs avoid this difficulty by being composi-
tional by design. If they prove robust for a wide
variety of NLP tasks, they will go some way to
solving the problem of explainability in deep learn-
ing.

Learning Agreement The question of whether
generative language models can learn long-distance
agreement was proposed by Linzen et al. (2016).
If accuracy is insensitive to the number of attrac-
tors, then we know that the model can work on
long distances. The results of Linzen et al. (2016)
are inconclusive on this question. Even though the
model does better than the majority class baseline
for up to four attractors, accuracy declines steadily
as the number of attractor increases. This trend is
confirmed by Bernardy and Lappin (2017), who
ran the same experiment on a larger dataset and
thoroughly explored the space of hyperparameters.
It is also confirmed by Gulordava et al. (2018), who
analysed languages other than English. Marvin and
Linzen (2018) focused on other linguistic phenom-
ena, reaching similar conclusions. Lakretz et al.
(2021) recently showed that an LSTM may extract
bounded nested tree structures, without learning
a systematic recursive rule. These results do not
hold directly for BERT-style models, because they
are not generative, even though Goldberg (2019)
provides a tentative approach. For a more detailed
review of these results, see the recent account of
Lappin (2021).

Our experiment shows that URNs can surpass
state of the art results for this kind of task. This
is not surprising. URNs are designed so that they
cannot forget information, and so it is expected
that they will perform well on tracking long dis-
tance relations. The conservation of information
is explained by the fact that multiplying by an
orthogonal matrix conserves cosine similarities:
〈Qs0, Qs1〉 = 〈s0, s1〉. Therefore any embedding
Q, be it of a single word or of a long phrase, maps
a change in its input state to an equal change in
its output state. Considering all possible states as
a distribution, Q conserves the density of states.
Hence, contrary to the claims of Sennhauser and
Berwick (2018), URNs demonstrate that a class of
RNNs can achieve rule-like accuracy in syntactic
learning.

Dyck Languages Elman (1991) already ob-



served that it is useful to experiment with artifi-
cial systems to filter out the noise of real world
natural language data. However, to ensure that
the model actually learns recursive patterns instead
of bounded-level ones, it is necessary to test on
more deeply nested structures than the ones that the
model is trained on, as we did. Generalised Dyck
languages are ideal for this purpose (Bernardy,
2018). While LSTMs (and GRUs) exhibit a certain
capacity to generalise to deeper nesting their per-
formance declines in proportion to the depth of the
nesting, as is the case with their handling of natu-
ral language agreement data. Other experimental
work has also illustrated this effect (Hewitt et al.,
2020; Sennhauser and Berwick, 2018). Similar con-
clusions are observed for generative self-attention
architectures (Yu et al., 2019), while BERT-like,
non-generative self-attention architectures simply
fail at this task (Bernardy et al., 2021).

By contrast URNs achieve excellent perfor-
mance on this task, without declining in relation
to either depth of nesting or the number of attrac-
tors. Careful analysis of the learned embeddings
explains this level of accuracy in a principled way,
as the direct consequence of their formal process-
ing design.

6.2 Quantum-Inspired Systems

Unitary matrices are essential elements of quantum
mechanics, and quantum computing. There, too,
they insure that the relevant system does not lose
information through time.

Coecke et al. (2010); Grefenstette et al. (2011)
propose what they describe as a quantum inspired
model of linguistic representation. It computes
vector values for sentences in a category theoretic
representation of the types of a pregroup grammar
(Lambek, 2008). The category theoretic structure
in which this grammar is formulated is isomorphic
with the one for quantum logic.6

A difficulty of this approach is that it requires
the input to be already annotated as parsed data.
Another problem is that the size of the tensors asso-
ciated with higher-types is very large, making them
hard to learn. By contrast, URNs do not require
a syntactic type system. In fact, our experiments
indicate that, with the right processing network, it
is possible to learn syntactic structure and semantic
composition from unannotated input.

Compositionality of phrase and sentence matri-

6See Lappin (2021) for additional discussion of this theory.

ces is intrinsic to the formal specification of the
network.

6.3 Tensor Recurrent Neural Networks

Sutskever et al. (2011) describe what they call a
“tensor recurrent neural network” in which the tran-
sition matrix is determined by each input symbol.
This design appears to be similar to URNs. How-
ever, unlike URNs, they use non-linear activation
functions, and so they inherit the complications
that these functions bring.

6.4 Unitary-Evolution Recurrent Networks

Arjovsky et al. (2016) proposed Unitary-Evolution
recurrent networks to solve the problem of explod-
ing and vanishing gradients, caused by the presence
of non-linear activation functions. Despite this, Ar-
jovsky et al. (2016) suggest that they use ReLU
activation between time-steps, unlike URNs. More-
over, we are primarily concerned with the structure
of the underlying unitary embeddings. The connec-
tion between the two lines work is that, if an RNN
suffers exploding/vanisihing gradients, it cannot
track long-term dependencies.

Arjovsky et al. (2016)’s embeddings are com-
putationally cheaper than ours, because they can
be multiplied in linear time. Like us, they do not
cover the whole space of unitary matrices. Jing
et al. (2017) propose another representation which
is computationally less expensive than ours, but
which has asymptotically the same number of pa-
rameters. A third option is let back-propagation
update the unitary matrices arbitrarily n × n,
and project them onto the unitary space periodi-
cally (Wisdom et al., 2016; Kiani et al., 2022).

Because we use a fully general matrix exponen-
tial implementation, our model is computationally
more expensive than all the other options men-
tioned above. We can however report that when
experimenting with the unitary matrix encodings
Jing et al. (2017) and Arjovsky et al. (2016), we got
much worse results for our experiments. This may
be because we do not include a ReLU activation,
while they do use one.

To the best of our knowledge, no previous study
of URNs has addressed agreement or other lan-
guage modelling tasks. Rather, they have been
directed at data-copying tasks, which is of lim-
ited linguistic interest. This includes the work of
Vorontsov et al. (2017), even though it is ostensibly
concerned with long distance dependencies.



7 Conclusions and Future work

In conclusion, we have shown that the URN is a
useful architecture for syntactic tasks, for which it
can reach or surpass state-of-the art precision. We
strongly suspect that it will also prove effective for
NLP tasks requiring fine-grained semantic knowl-
edge. Unlike other DNNs, a URN is transparent
and mathematically grounded in straightforward
operations of linear algebra. It is possible to trace
and understand what is happening at each level of
the network, and at each point in the sequence that
makes up the processing flow of the network.

Additionally, URNs learn unitary embeddings.
These offer two important advantages. First, they
have a rich internal structure from which we can
analyse the learned model. Second they handle
compositionality without stipulated constraints, or
additional mechanisms. Therefore we can obtain
unitary embeddings for any phrase or sentence.

The refined distance, effect, and relatedness met-
rics that unitary embeddings facilitate, open up the
possibility of more interesting procedures for iden-
tifying natural syntactic and semantic word classes.
These can be textured and dynamic, rather than
static. They can focus on specific dimensions of
meaning and structure, and they can be driven by
specific NLP tasks. If additional types of input
data are encoded in a matrix, such as visual con-
tent, then these classes could also be grounded in
extralinguistic contexts.

In order to render URNs efficient, it is necessary
to reduce the number of parameters from which
the matrix can be derived. We found that a simple
k-truncation of underlying anti-symmetric matrices
is a useful strategy to limit the size of word embed-
dings. It also makes the learned embeddings more
accessible to formal analysis, because they can be
decomposed as rotations along k planes. For the
tasks that we considered, truncation does not seri-
ously degrade the performance of the TURN model.
Kiani et al. (2022) recently applied this strategy to
another subset of tasks, suggesting general viability
of this strategy.

In preliminary work we have applied URNs
to the recognition of mildly context-sensitive lan-
guages containing cross serial dependencies of the
sort found in Swiss German and in Dutch. The
performance of the model is even more robust and
stable than it is for the agreement tasks reported
here. We will be extending this work to a variety
of other linguistically and cognitively interesting

NLP tasks.
Given the radical computational transparency of

URN architecture, these models are natural candi-
dates for comparison with human processing sys-
tems, both at the neurological level, and on more
abstract psychological planes. Identifying and mea-
suring the content of their acquired knowledge for
particular tasks can be done through direct obser-
vation of their processing patterns, and the appli-
cation of straightforward distance metrics. In this
respect they are of particular interest in the study
of the cognitive foundations of linguistic learning
and representation.
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