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Abstract

Weakly supervised text classification methods001
typically train a deep neural classifier based on002
pseudo-labels. The quality of pseudo-labels003
is crucial to final performance but they are in-004
evitably noisy due to their heuristic nature, so005
selecting the correct ones has a huge potential006
for performance boost. One straightforward007
solution is to select samples based on the soft-008
max probability scores in the neural classifier009
corresponding to their pseudo-labels. How-010
ever, we show through our experiments that011
such solutions are ineffective and unstable due012
to the erroneously high-confidence predictions013
from poorly calibrated models. Recent stud-014
ies on the memorization effects of deep neural015
models suggest that these models first mem-016
orize training samples with clean labels and017
then those with noisy labels. Inspired by this018
observation, we propose a novel pseudo-label019
selection method LOPS that takes learning or-020
der of samples into consideration. We hypoth-021
esize that the learning order reflects the proba-022
bility of wrong annotation in terms of ranking,023
and therefore, propose to select the samples024
that are learnt earlier. LOPS can be viewed025
as a strong performance-boost plug-in to most026
of existing weakly-supervised text classifica-027
tion methods, as confirmed in extensive exper-028
iments on four real-world datasets.029

1 Introduction030

Weakly supervised text classification meth-031

ods (Agichtein and Gravano, 2000; Riloff et al.,032

2003; Tao et al., 2015; Meng et al., 2018; Mekala033

and Shang, 2020; Mekala et al., 2020, 2021) typi-034

cally start with generating pseudo-labels, and train035

a deep neural classifier to learn the mapping be-036

tween documents and classes. There is no doubt037

that the quality of pseudo-labels plays a fundamen-038

tal role in the final classification accuracy, how-039

ever, they are inevitably noisy due to their heuristic040

nature. Pseudo-labels are typically generated by041

(a) (b)

Figure 1: Distributions of correct and wrong instances
using different pseudo-label selection strategies on the
NYT-Coarse dataset for its initial pseudo-labels. The
base classifier is BERT. (a) is based on the softmax
probability of samples’ pseudo-labels and (b) is based
on the earliest epochs at which samples are learnt.

some heuristic, for example, through string match- 042

ing between the documents and user-provided seed 043

words (Mekala and Shang, 2020). Deep neural net- 044

works (DNNs) trained on such noisy labels have a 045

high risk of making erroneous predictions. More 046

importantly, when self-training is employed, such 047

error can be further amplified upon boostrapping. 048

To address this problem, in this paper, we study 049

the pseudo-label selection in weakly supervised 050

text classification, aiming to select a high quality 051

subset of the pseudo-labeled documents (in every 052

iteration when using self-training) that can poten- 053

tially achieve a higher classification accuracy. 054

A straightforward solution is to first train a deep 055

neural classifier based on the pseudo-labeled doc- 056

uments and then threshold the documents by the 057

predicted probability scores corresponding to their 058

pseudo-labels. However, DNNs usually have a poor 059

calibration and generate overconfident predicted 060

probability scores (Guo et al., 2017). For exam- 061

ple, on New York Times (NYT) coarse-grained 062

dataset, as shown in Figure 1(a), 60% of wrong 063

instances in the pseudo-labeled documents have a 064

predicted probability by BERT greater than 0.9 for 065

their wrong pseudo-labels. There are recent works 066

that use uncertainty to fix calibration (Rizve et al., 067

2021) and other lines of work focusing on label 068

selection from noisy data (Jiang et al., 2018b; Han 069
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Figure 2: Usually self-training frameworks follow the path in the top block, starting from generating noisy pseudo-
labeled documents, training the text classifier, and bootstrapping by adding high confidence predictions. We pro-
pose to add a step "Label Selection" (shown in below block) to select the correctly labeled documents. LOPS
trains a classifier to obtain the learning order of samples and we stop the training when at least τ% of samples
corresponding to each class are learnt and select the learnt samples. The numbers shown are learnt epochs and the
samples in the shaded part are selected.

et al., 2018; Ren et al., 2018; Fang et al., 2020),070

however, all these methods require a clean vali-071

dation set, whereas in our problem, we have no072

human-annotated documents at all.073

Recent studies on the memorization effects of074

DNNs show that they memorize easy and clean in-075

stances first, and gradually learn hard instances and076

eventually memorize the wrong annotations (Arpit077

et al., 2017; Geifman et al., 2018; Zhang et al.,078

2021). We have confirmed this in our experiments079

for different classifiers. For example, as shown080

in Figure 1(b), BERT classifier learns most of the081

clean instances in the first epoch and learns wrong082

instances across all epochs. Although it also learns083

good number of wrong instances in the first epoch,084

it is significantly less than the probability-based085

selection in Figure 1(a). Since the correct samples086

are learnt first, we hypothesize that learning order-087

based selection will be able to filter out the wrongly088

labeled samples.089

Inspired by our observation, we propose a novel090

learning order inspired pseudo-label selection091

method LOPS, as shown in Figure 2. Specifically,092

LOPS involves training a classifier and tracking093

the learning order of samples. We define a sam-094

ple is learnt if and only if the classifier trained on095

pseudo-labels gives the same argmax prediction as096

its pseudo-label at the end of an epoch. We stop the097

training when at least τ% of samples corresponding098

to each class are learnt and select all the learnt sam-099

ples. We empirically show that LOPS can boost the100

accuracy of various weakly supervised text classifi- 101

cation methods and it is much more effective and 102

stable than probability score-based selections. 103

Our contributions are summarized as follows: 104

• We propose a novel pseudo-label selection 105

method LOPS that takes learning order of sam- 106

ples into consideration. 107

• We show that selection based on learning order 108

is much stable and effective than selection based 109

on probability scores. 110

• Extensive experiments and case studies on real- 111

world datasets with different classifiers and 112

weakly supervised text classification methods 113

demonstrate significant performance gains upon 114

using LOPS. It can be viewed as a solid 115

performance-boost plug-in for weak supervision. 116

Reproducibility. We will release the code and 117

datasets on Github1. 118

2 Related Work 119

We review the literature about (1) pseudo-labeling 120

in weakly supervised text classification, (2) label 121

selection methods, and (3) training dynamics. 122

Pseudo-Labels in Weakly Supervised Text Clas- 123

sification. Since the weakly supervised text clas- 124

sification methods lack gold annotations, pseudo- 125

labeling has been a common phenomenon to gener- 126

ate initial supervision. Pseudo-labeling depends on 127

the type of weak supervision. Mekala and Shang 128

(2020) and Mekala et al. (2020) have a few label- 129

1https://github.com/anonymous

2

https://github.com/anonymous


indicative seed words as supervision and they gen-130

erate pseudo-labels using string-matching where131

a document is assigned a label whose aggregated132

term frequency of seed words is maximum. (Meng133

et al., 2018) generates pseudo-documents using the134

seed information corresponding to a label. (Wang135

et al., 2020) takes only label names as supervision136

and generates class-oriented document representa-137

tions, and cluster them to create a pseudo-training138

set. Under the same scenario, (Mekala et al., 2021)139

consider samples that exclusively contain the label140

surface name as its respective weak supervision.141

In (Karamanolakis et al., 2021b), pseudo-labels142

are created from the predictions of a trained neu-143

ral network. (Arachie and Huang, 2021) com-144

bines different weak signals to produce probabilis-145

tic training labels All the above mentioned methods146

involve learning from noisy data and our label se-147

lection method substantially reduces the noise and148

improves their performance.149

Label Selection. There are different lines of work150

aiming to select true-labeled examples from a noisy151

training set. One line of work involves train-152

ing multiple networks to guide the learning pro-153

cess. Along this direction, (Malach and Shalev-154

Shwartz, 2017) maintains two DNNs and update155

them based on their disagreement. (Jiang et al.,156

2018b) learns another neural network that provides157

data-driven curriculum. (Han et al., 2018; Yu et al.,158

2019) use co-training where they select instances159

based on small loss criteria and cross-train two net-160

works simultaneously. Another line of work learns161

weights for the training data. Along this line, (Ren162

et al., 2018) propose a meta-learning algorithm that163

learns weights corresponding to training examples164

based on their gradient directions. (Fang et al.,165

2020) learns dynamic importance weighting that166

iterates between weight estimation and weighted167

classification. weighting the instances for selec-168

tive training (Ren et al., 2018; Fang et al., 2020).169

Recently, (Rizve et al., 2021) propose utilizing pre-170

diction uncertainty to perform label selection. All171

the above-mentioned methods require clean valida-172

tion sets to infer parameters, whereas our method173

needs no clean annotated data. Inspired from the174

recent studies on memorization effects of DNNs175

that they learn clean data earlier than noisy data,176

we use learning order to select the samples.177

Training dynamics. In deep learning regime, mod-178

els with large capacity are typically more robust to179

outliers. Nevertheless, data examples can still ex-180

Table 1: Noise ratios of different pseudo-label heuris-
tics on NYT-Fine dataset.

Pseudo-label Heuristic Noise Ratio

String-Match (Mekala et al., 2020) 31.80%
Contextualized String-Match (Mekala and Shang, 2020) 31.24%
Exclusive String-Match (Mekala et al., 2021) 52.13%
Clustering (Wang et al., 2020) 15.64%

hibit diverse levels of difficulties. Arpit et al. (2017) 181

finds that data examples are not learned equally 182

when injecting noisy data into training. Easy exam- 183

ples are often learned first. Hacohen et al. (2019) 184

furthers shows such order of learning examples is 185

shared by different random initializations and neu- 186

ral architectures. Toneva et al. (2019) shows that 187

certain examples are forgotten frequently during 188

training, which means that they can be first classi- 189

fied correctly then incorrectly. Model performance 190

can be largely maintained when removing those 191

least forgettable examples from training. 192

3 Problem and Motivation 193

Weakly supervised classification refers to the 194

problem with inputs (1) a set of unlabeled text doc- 195

uments S = {x}, where x ∈ X . (2) and M target 196

labels C = {1, . . . ,M}. Our goal is to find a label- 197

ing function f : X → C that maps every document 198

x to its true label. Here we denote y∗ as the un- 199

known true label of a document x. To cold start the 200

classification of unlabeled documents, a source of 201

weak supervision has to be introduced, which can 202

come from various sources such as label surface 203

names (Wang et al., 2020), label-indicative seed 204

words (Mekala and Shang, 2020), or rules (Kara- 205

manolakis et al., 2021a). Given a “weak” label- 206

ing function w : X → C, pseudo-labels are then 207

generated on a subset of the unlabeled documents, 208

which yields a labeled subset D = {(x,w(x))}. 209

For convenience, we denote D[j] to be the set of 210

all documents that are pseudo-labeled as class j in 211

D, namely D[j] = {(x,w(x)) ∈ D|w(x) = j}. 212

Pseudo-labels are noisy due to their heuristic na- 213

ture. For example, as shown in Table 1, we consider 214

NYT fine-grained dataset and generate pseudo- 215

labels using four different strategies (Mekala and 216

Shang, 2020; Mekala et al., 2020, 2021; Wang et al., 217

2020) and compute their noise ratios. We can ob- 218

serve that no strategy is perfect and all of them 219

generate noisy labels, ranging from 15% to 50%. 220

When a classifier is trained on such noisy train- 221

ing data, it can make some high confident erro- 222

neous predictions. And, upon bootstrapping the 223

classifier on unlabeled data, it has a snowball effect 224

3



where such high confident erroneous predictions225

are added to the training data, and thus corrupting226

it more. As this process repeats for a few iterations,227

it adds more noise and significantly affects the final228

performance. Therefore, identifying and selecting229

the correctly labeled samples is necessary and has230

a huge potential for a boost in performance. Note231

that, if the labels are not selected carefully, it could232

instead hurt the performance.233

Our pseudo-label selection problem. The weak234

supervision is likely to generate a noisy labeled235

set, which means w(x) 6= y∗ for some docu-236

ments x. We denote DX as the set of correctly237

labeled documents and D× = D \ DX as the238

set of wrongly labeled documents, where DX =239

{(x,w(x))|w(x) = y∗}. The problem of pseudo-240

label selection is thus to identify DX.241

Note that pseudo-label selection is conceptually242

related to failure prediction (Hecker et al., 2018;243

Jiang et al., 2018a; Corbière et al., 2019) and out-244

of-distribution detection (Hendrycks and Gimpel,245

2017; Devries and Taylor, 2018; Liang et al., 2018;246

Lee et al., 2018). However, the major difference247

here is for pseudo-label selection we have to detect248

wrong annotations in the training phase instead of249

inference phase.250

4 Pseudo-label Selection methods251

4.1 Confidence function-based selection252

Confidence function κ : X × C → [0, 1], assigns253

a value to each labeled document, which represents254

our confidence of its pseudo-label being correct.255

Then, we can perform the selection by choosing a256

threshold τ on confidence function. We denote the257

set of labeled documents selected based on κ and258

τ as D̂X(κ, τ), namely259

D̂X(κ, τ) = {(x,w(x)) ∈ D | κ(x,w(x)) > τ}260

An optimal confidence function κ∗ should be able261

to perfectly distinguish the correctly labeled doc-262

uments from wrongly labeled ones, namely there263

exists a threshold τ∗ such that D̂X(κ
∗, τ∗) = DX.264

Evaluation of a confidence function. Practical265

confidence functions may not be possible to suffice266

such ideal condition. There always exists a trade-267

off between noise ε(κ, τ) and coverage φ(κ, τ),268

defined as:269

ε(κ, τ) =
|D̂X(κ, τ) ∩ D×|
|D̂X(κ, τ)|

, φ(κ, τ) =
|D̂X(κ, τ)|
|D| .270

The coverage is the fraction of labeled documents271

being selected and the noise is the fraction of272

wrongly labeled documents within selected doc- 273

uments. A small threshold leads to high cover- 274

age i.e. most labeled documents will be selected, 275

thus being more noisy. And a high threshold leads 276

to an opposite situation. Therefore, to evaluate 277

a confidence function, we plot noise and cover- 278

age at various thresholds, which we refer as the 279

noise-coverage curve (NC-curve) and compute the 280

area under the noise-coverage curve (AUNC). As 281

shown in figure 3, an optimal confidence function 282

selects wrongly labeled documents only after se- 283

lecting all the correctly labeled documents, hence 284

generates a NC-curve in the shape of a rectifier, 285

namely ε = max(0, φ−|DX|/|D|). A random con- 286

fidence function always selects the same fraction of 287

wrongly labeled documents, hence generates a NC- 288

curve with a constant value. An ideal confidence 289

function should minimize AUNC. 290

Selection of the threshold. For a given confidence 291

function, one wishes to select pseudo-labels based 292

on a threshold such that the noise is low and the 293

coverage is high. We define ratio between noise 294

and coverage as NC-ratio, namely r(κ, τ) = ε(κ,τ)
φ(κ,τ) . 295

An optimal threshold has the lowest NC-ratio. 296

4.2 Learning order as a superior confidence 297

function 298

In this section, we introduce learning order as con- 299

fidence function and compare it with the commonly 300

used probability score using previously mentioned 301

evaluation metrics. 302

Probability score. One intuitive confidence func- 303

tion for pseudo-label selection is the model’s pre- 304

diction probability scores corresponding to the 305

pseudo-labels. Specifically, let f : X → [0, 1]|C| 306

be a probabilistic classifier trained on pseudo- 307

labeled documents and f(x)[j] represents the pre- 308

dicted probability of document x belonging to class 309

j, f(x)[w(x)] is used as the confidence function. 310

However, due to the poor calibration of DNNs (Guo 311

et al., 2017), probability scores of wrongly labeled 312

documents are usually high. As a result, it might 313

be difficult to distinguish correctly- and wrongly- 314

labeled documents based on probability scores. 315

Learning order. Learning order of a pseudo- 316

labeled document is the epoch when it is learnt 317

during training, or more specifically when its label 318

predicted by the model matches its given pseudo- 319

label. Recent studies show that a DNN learns clean 320

samples first and then gradually memorizes the 321

noisy samples (Arpit et al., 2017). We thus hypoth- 322
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Figure 3: NC-curves of learning order and probability
score with BERT as the classifier.
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esize that learning order can reflect the probability323

of wrong pseudo-label in terms of ranking.324

We now utilize learning order to define a confi-325

dence function. Specifically, let f t(·) be the clas-326

sifier being trained at epoch t, and T as the total327

number of epochs, the learning order of document328

x can be defined as329

η(x,w(x)) =1− 1

T
min{t | argmax

j
f t(x)[j] = w(x)},

(1)330

where t ∈ {1, . . . , T}. Here we have negated and331

scaled the learning order to be complied with the332

convention of confidence function i.e. higher confi-333

dence implies higher probability of a correct label.334

We calculate the learning order at the granularity335

of epoch because the model would have seen all336

the training data by the end of an epoch, and hence,337

the learning order computed would be fair for all338

documents. In case when the epoch number is not339

sufficient to distinguish the documents, one can340

increase the granularity of the learning order, for341

example, the batch number at which the document342

is learnt. Granularity higher than the epoch incurs343

extra training cost as a document will be examined344

more than once in each epoch.345

Learning Order vs Probability Score. We com-346

pare the effectiveness of learning order and prob-347

ability scores as confidence functions. We plot348

NC-curves and NC-ratios of learning order and349

probability scores in figures 3, 4 on NYT-Coarse,350

20News-Fine datasets. From figure 3, we observe351

that learning order has significantly smaller AUNC352

compared to the probability score. In easy datasets353

such as NYT-Coarse, it can even approach the opti-354

mal confidence function.355

As shown in Figure 4, when selecting the op-356

timal threshold, learning order has significantly357

lower NC-ratios for all datasets compared to prob-358

ability score. Furthermore, the optimal thresholds359

of learning order for all datasets are almost the360

same. In contrast, the optimal thresholds of prob-361

ability score vary greatly across different datasets 362

due to the poor calibration of DNNs. Finally, we 363

also observe that the NC-ratio for probability score 364

often changes greatly around the optimal thresh- 365

old, which poses difficulty in locating the optimal 366

threshold. In contrast, since there are only few 367

possible thresholds for learning order, it is easier 368

to find the optimal threshold. Therefore, in terms 369

of both performance and robustness, learning or- 370

der is a more effective confidence function than 371

probability score. 372

5 LOPS: Putting it all together 373

Motivated by previous analyses, we utilize learning 374

order to select pseudo-labels. We train a classifier 375

on all pseudo-labeled documents and track their 376

first learnt epoch during training. The confidence 377

function can then be calculated based on Equa- 378

tion (1). Finally, we rank the documents based 379

on their confidence and select the top-τ% for each 380

label independently. 381

To maximize the efficiency of LOPS, we utilize 382

the fact that the top-ranked documents are learned 383

earlier, and conduct the confidence calculation and 384

pseudo-label selection simultaneously during train- 385

ing. Specifically, for each label, a document is se- 386

lected once it is learnt, until the fraction of selected 387

documents exceeds τ% in this label. Whenever 388

the fractions of selected documents exceeds τ% for 389

all labels, we stop the training. The pseudo-code 390

is shown in Algorithm 1. Note that LOPS can be 391

plugged to any weakly-supervised classification 392

framework as shown in Appendix A.1. 393

6 Experiments 394

In this section, we evaluate our label selection 395

method on different state-of-the-art classifiers and 396

weakly supervised text classification frameworks. 397
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Algorithm 1: LOPS Method
Input: A set of documents D pseudo-labeled by w,

Classifier f .
Output: Selected documents D̂X

for epoch t = 1, 2, . . . , T do
Train f on D
for (x,w(x)) ∈ D do

if argmaxj f(x)[j] = w(x) then
if |D̂X[w(x)]|/|D[w(x)]| < τ% then
D̂X = D̂X ∪ {(x,w(x))}

if |D̂X[j]|/|D[j]| ≥ τ% for all j then
Break

Return D̂X

Table 2: Dataset statistics.

Dataset # Docs # labels Avg Len

NYT-Coarse 13081 5 778
NYT-Fine 13081 26 778

20News-Coarse 17871 5 400
20News-Fine 17871 17 400

AGNews 120000 4 426
Books 33594 8 620

6.1 Datasets398

We experiment on four datasets: New York399

Times (NYT), 20 Newsgroups (20News), AG-400

News (Zhang et al., 2015), Books (Wan and401

McAuley, 2018; Wan et al., 2019). NYT and402

20News datasets also have fine-grained labels403

which are also used for evaluation. The dataset404

statistics are provided in Table 2 and more details405

are provided in Appendix A.2.406

6.2 Compared Label Selection Methods407

We compare with several metrics used for label408

selection mentioned below:409

• Probability: We sort the prediction probabilities410

corresponding to pseudo-labels in descending411

order and select the same number of samples as412

LOPS in each iteration of bootstrapping.413

• Random: We randomly select the same number414

of samples as LOPS in each iteration of boot-415

strapping. To avoid skewed selection, we sample416

in a stratified fashion based on class labels.417

• Learning Stability (stability): (Dong et al.,418

2021) introduced a metric to measure the data419

quality based on the frequency of events that an420

example is predicted correctly throughout the421

training. We sort the samples based on learning422

stability in descending order i.e. most stable to423

least stable and select the same number of sam-424

ples as LOPS in each iteration of bootstrapping.425

We consider the same number of samples as LOPS426

in each iteration for all above baselines because we427

cannot tune individual thresholds for each dataset 428

since there is no human-annotated data under the 429

weakly supervised setting and one fixed threshold 430

for all datasets doesn’t work as the distribution of 431

prediction probability varies across datasets. So, to 432

perform controlled experiments with a fair compar- 433

ison, we consider the same number of samples as 434

LOPS in each iteration. 435

We also present experimental results without 436

any label selection (denoted by No-Filter) as lower 437

bound and with all the wrongly annotated samples 438

removed as Optimal. 439

6.3 Experimental Settings 440

Seed Words. For all our experiments, we con- 441

sider seed words used in (Mekala and Shang, 442

2020; Wang et al., 2020) as weak supervision 443

and generate initial pseudo-labels using String- 444

Match (Mekala et al., 2020) unless specified. The 445

average number of seeds are 4 per class. 446

Text Classifiers. We experiment on four 447

state-of-the-art text classifiers: (1) BERT 448

(bert-base-uncased) (Devlin et al., 2018), 449

(2) RoBERTa (roberta-base) (Liu et al., 450

2019), (3) XLNet (xlnet-base-cased) (Yang 451

et al., 2019), and (4) GPT-2 (Radford et al., 2019). 452

We follow the same self-training method for all 453

classifiers that starts with generating pseudo-labels, 454

training a classifier on pseudo-labeled data, and 455

bootstrap it on unlabelled data by adding samples 456

whose prediction probabilities are greater than δ. 457

Following (Mekala and Shang, 2020), we as- 458

sume that weak supervision W is of reasonable 459

quality i.e. majority of pseudo-labels are good. 460

Therefore, we set τ to 50%. While training the 461

classifiers, we fine-tune RoBERTa for 3 epochs, 462

BERT, XLNet, GPT-2 for 4 epochs. We bootstrap 463

all the classifiers for 5 iterations with the probabil- 464

ity threshold δ as 0.6. 465

Weakly Supervised Text Classification Frame- 466

works. We experiment on state-of-the-art weakly 467

supervised text classification methods: Con- 468

Wea (Mekala and Shang, 2020), X-Class (Wang 469

et al., 2020), WeSTClass (Meng et al., 2018), and 470

LOTClass (Meng et al., 2020). Three of them are 471

self-training-based methods and more details about 472

these methods are mentioned in Appendix A.3. 473

6.4 Quantitative Results 474

We discuss the effectiveness of LOPS with different 475

classifiers and weakly supervised text classification 476

frameworks. 477
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Table 3: Evaluation results on six datasets using different combinations of classifiers and pseudo-label selection
methods. Initial pseudo-labels are generated using String-Match. Micro- and Macro-F1 scores and their respective
standard deviations are presented in percentages. Abnormally high standard deviations are highlighted in blue and
low performances are highlighted in red. Statistical significance results are in Appendix A.5

Coarse-grained Datasts Fine-grained Datasets

NYT-Coarse 20News-Coarse AGNews Books NYT-Fine 20News-Fine

Classifier Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

BERT

No-Filter 90.1(0.17) 80.3(0.91) 77.3(0.27) 76.4(0.76) 75.4(0.64) 75.4(0.47) 55.7(0.54) 57.9(0.82) 77.2(0.36) 71.6(0.43) 70.0(0.30) 69.6(0.25)

Random 90.3(0.47) 80.9(0.47) 79.0(1.00) 76.8(1.50) 76.3(0.35) 76.3(0.65) 56.1(0.18) 58.2(0.35) 78.4(0.94) 71.7(0.47) 71.4(0.50) 70.6(1.00)
Probability 92.3(1.50) 85.1(2.00) 78.6(2.5) 77.5(3.00) 77.4(1.25) 77.6(1.34) 54.3(1.12) 56.5(1.43) 46.6(2.50) 22.3(0.50) 47.8(23.50) 47.9(23.50)

Stability 93.3(0.50) 86.5(0.50) 76.7(5.00) 75.4(5.00) 79.3(0.75) 79.5(0.35) 55.0(0.43) 57.0(0.19) 48.1(29.50) 35.5(33.50) 73.5(0.50) 72.5(1.00)
LOPS 94.6(0.36) 88.4(0.50) 81.7(1.00) 80.7(0.43) 79.5(0.86) 79.5(0.58) 57.7(0.87) 59.5(0.46) 84.3(0.54) 81.6(0.34) 73.8(0.61) 72.7(1.00)

Optimal 98.3(0.27) 96.4(0.37) 94.7(0.37) 94.9(0.61) 89.4(0.46) 89.3(0.76) 76.2(0.21) 76.7(0.19) 97.4(0.71) 92.2(0.62) 87.6(0.37) 86.5(0.36)

RoBERTa

No-Filter 90.2(0.41) 82.1(0.24) 76.5(0.41) 75.7(0.58) 74.4(0.44) 74.2(0.71) 57.6(0.29) 58.6(0.53) 79.4(0.65) 76.6(0.54) 67.4(0.67) 67.3(0.87)

Random 92.3(0.21) 84.4(0.82) 76.5(1.00) 74.5(1.00) 74.6(0.32) 74.2(0.27) 56.4(0.57) 58.7(0.32) 76.6(1.25) 74.8(0.34) 68.4(0.23) 68.5(0.23)
Probability 93.4(0.48) 87.5(1.00) 76.7(0.50) 75.4(1.00) 76.2(0.89) 76.3(1.12) 56.2(1.28) 57.4(1.85) 26.6(23.00) 14.4(11.50) 46.2(23.00) 45.3(23.50)

Stability 90.5(1.09) 83.3(0.50) 78.5(1.00) 76.0(1.50) 76.5(0.48) 76.5(0.64) 58.5(1.18) 59.5(1.06) 21.5(12.50) 9.2(5.00) 70.3(1.00) 70.6(1.00)
LOPS 92.4(2.99) 85.6(3.00) 77.5(2.00) 75.8(2.00) 75.6(0.22) 75.5(0.27) 59.7(0.41) 60.5(0.45) 81.8(0.90) 80.7(0.50) 70.7(0.68) 70.8(0.34)

Optimal 98.2(0.17) 96.1(0.16) 94.3(0.74) 94.5(0.35) 89.7(0.17) 89.3(0.28) 76.5(0.29) 77.7(0.22) 97.4(0.34) 92.8(0.26) 85.3(0.32) 85.5(0.65)

XLNet

No-Filter 89.2(0.74) 80.1(0.64) 77.6(0.39) 75.4(0.68) 72.7(0.97) 72.4(0.53) 57.6(0.31) 58.7(0.46) 77.4(0.34) 71.3(0.75) 60.7(0.74) 66.5(0.61)

Random 90.7(0.03) 80.5(0.51) 78.6(0.50) 75.4(1.00) 67.5(0.22) 67.4(0.63) 57.5(0.43) 58.3(0.45) 76.6(0.94) 72.7(0.70) 67.3(0.49) 67.2(0.32)
Probability 91.3(0.29) 83.4(0.50) 77.4(1.00) 75.2(0.30) 70.1(1.09) 70.4(1.14) 54.6(1.42) 56.3(1.26) 38.2(6.50) 36.5(1.00) 69.5(0.82) 69.2(0.12)

Stability 91.4(1.00) 82.3(1.5) 79.7(1.50) 77.6(1.50) 74.3(1.10) 74.5(0.87) 56.3(0.88) 58.1(0.97) 79.5(0.50) 76.3(1.10) 68.5(0.49) 68.4(1.00)
LOPS 89.5(0.17) 81.4(0.90) 82.5(0.50) 81.2(0.2) 77.7(0.57) 77.7(0.54) 58.5(0.65) 59.4(0.67) 80.7(0.22) 77.4(0.83) 70.6(0.31) 70.4(0.27)

Optimal 98.3(0.12) 96.5(0.21) 94.5(0.23) 94.4(0.29) 89.3(0.28) 89.7(0.39) 76.4(0.44) 76.3(0.43) 97.4(0.32) 93.6(0.38) 86.6(0.43) 86.4(0.35)

GPT-2

No-Filter 91.1(0.24) 82.3(0.28) 78.4(0.26) 76.3(0.38) 61.3(0.28) 61.2(0.43) 51.6(0.41) 53.3(0.37) 76.2(0.41) 69.5(0.38) 70.5(0.46) 70.4(0.38)

Random 90.2(0.42) 80.2(0.56) 79.7(0.46) 78.4(0.32) 68.2(0.18) 68.1(0.19) 53.4(0.46) 55.3(0.42) 77.5(0.52) 70.4(1.02) 69.4(0.21) 69.3(0.29)
Probability 93.3(1.04) 85.5(1.13) 80.4(1.49) 78.5(1.50) 66.2(0.69) 66.6(0.89) 51.7(1.11) 54.5(1.09) 76.7(0.57) 71.3(0.69) 69.4(1.21) 69.3(1.18)

Stability 94.4(0.56) 88.6(0.59) 81.4(1.02) 78.6(1.50) 72.4(0.58) 72.3(0.53) 53.6(1.02) 55.3(1.13) 79.4(0.62) 75.3(0.65) 70.6(0.68) 70.4(0.63)
LOPS 95.2(0.49) 89.1(0.51) 82.5(0.57) 80.3(0.63) 75.7(0.52) 75.3(0.31) 56.8(0.89) 58.6(0.63) 80.4(0.09) 76.3(0.21) 70.6(0.76) 70.5(0.48)

Optimal 98.3(0.24) 96.2(0.21) 94.2(0.23) 93.3(0.27) 88.7(0.26) 88.4(0.28) 72.3(0.19) 73.7(0.22) 97.3(0.18) 92.4(0.19) 86.1(0.35) 85.5(0.38)

Table 4: Evaluation results of weakly supervised text
classification frameworks with LOPS. This demon-
strates that LOPS can be easily plugged in and im-
proves the performance.

NYT-Coarse NYT-Fine 20News-Coarse 20News-Fine AGNews Books

Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

ConWea

No-Filter 93.1 87.2 87.4 77.4 74.3 74.6 68.7 68.7 73.4 73.4 52.3 52.6
LOPS 94.2 90.1 87.5 78.6 79.7 78.4 70.4 70.6 79.2 79.2 57.5 58.7

X-Class

No-Filter 96.3 93.3 86.6 74.7 58.2 61.1 70.4 70.4 82.4 82.3 53.6 54.2
LOPS 96.2 93.3 86.8 73.8 60.7 62.3 71.2 71.2 83.6 82.7 54.2 56.3

WeSTClass

No-Filter 92.3 86.0 67.1 60.4 53.2 49.4 54.9 54.9 80.4 80.1 49.7 48.1
LOPS 93.4 88.1 68.4 63.8 53.3 51.5 61.1 60.5 81.4 81.3 51.2 49.8

LOTClass

No-Filter 70.1 30.3 5.3 4.1 47.0 35.0 12.3 10.6 84.9 84.7 19.9 16.1
LOPS 70.1 30.3 3.5 2.9 45.7 32.6 7.8 4.1 86.2 86.1 15.8 10.3

6.4.1 Results: Different Classifiers478

We summarize the evaluation results with different479

combinations of classifiers and selection methods480

in Table 3. All experiments are run on three random481

seeds and mean, standard deviations are reported482

in percentages.483

As shown in Table 3, upon plugging our pro-484

posed method LOPS, we observe a significant485

boost in performance over No-Filter with all the486

classifiers. We observe that LOPS always outper-487

forms random selection which shows that the se-488

lection in LOPS is strategic and principled. LOPS489

performs better than probability and stability based490

selection methods in most of the cases. This shows 491

that LOPS is very effective in removing wrongly 492

labeled and preserving correctly labeled samples. 493

We also observe a significant boost in perfor- 494

mance over No-Filter with all the classifiers in 495

the case of fine-grained datasets as well. In some 496

cases like BERT on NYT-Fine, the improvement 497

is as high as 7 points on micro-f1 and 10 points 498

on macro-f1. We observe abnormally low perfor- 499

mances of probability and stability based selection 500

methods in some scenarios (highlighted in red). 501

This is because the number of noisy labels are 502

more in fine-grained datasets and gets amplified 503

with self-training and resulting in high noise. And 504

also, based on Figure 3, the calibration is so poor 505

on fine-grained datasets that the probability score 506

is even worse than random. Moreover, we also ob- 507

serve that probability and stability based selections 508

are biased towards majority labels and select wrong 509

majority labels over correct minority labels. For 510

example, the precision of pseudo-labels belonging 511

to minority classes like cosmos, gun control, and 512

abortion in NYT-Fine before selection is 100% and 513

it selected almost none of these whereas it selected 514

700 wrong documents belonging to a majority la- 515

bel like, international business. Although stratified 516

selection can be employed to address this problem, 517

this ends up having a same threshold and selecting 518

7



(a) 20News Coarse (b) Books

Figure 5: Macro-F1 scores w.r.t. τ on Books &
20News-Coarse datasets using GPT2 and RoBERTa as
classifiers with LOPS. The dashed lines represent per-
formance with no label selection.

a fixed ratio of samples for every dataset, which519

might not be optimal for every dataset as shown in520

Figure 4. We have to note unusually high standard521

deviation for probability and stability based selec-522

tion methods in some cases (highlighted in blue) as523

observed in Figure 4.524

This demonstrates that these selection methods525

are unstable. LOPS is comparatively more stable526

and its effectiveness is largely due to its invariance.527

Although probability and stability based selection528

methods outperform LOPS in a few cases, their un-529

stable nature makes them unreliable. Therefore, we530

believe LOPS is a superior method than compared531

selection methods.532

We observe that LOPS uplifts the performance533

quite close to supervised methods. This demon-534

strates that LOPS acts as an effective plugin and535

helps in closing the performance gap between the536

weakly supervised and supervised settings.537

6.4.2 Results: Different Weakly-Supervised538

Text Classification Methods539

We summarize the evaluation results with differ-540

ent weakly supervised methods in Table 4. The541

results demonstrate that LOPS improves the perfor-542

mance of ConWea and WeSTClass significantly on543

all datasets and X-Class sometimes. Note that, X-544

Class sets a confidence threshold and selects only545

top-50% instances, which provides a hidden ad-546

vantage and LOPS improves the performance on547

top of it for some datasets. We have to note the548

significantly low performance of LOTClass. It is549

observed that LOTClass requires a wide variety of550

contexts of label surface names from the input cor-551

pus to generate high quality category vocabulary,552

which plays a key role in performance (Wang et al.,553

2020). The performance is comparitively worse in554

fine-grained classes than coarse-grained classes be-555

cause LOTClass assumes that the replacements of556

label surface names are indicative of its respective557

label. However, this might not be a valid assump-558

tion for fine-grained classes (Mekala et al., 2021). 559

Among the datasets we experimented on, these re- 560

quirements are satisfied only by AGNews dataset 561

where there are many documents(120000) classi- 562

fied broadly into 4 categories and we observe a per- 563

formance boost using LOPS on this dataset. Due 564

to poor quality of pseudo-labels for other datasets, 565

there is no increment in performance with LOPS. 566

6.5 Performance vs τ 567

We conduct experiments to study the effect of τ 568

on performance. The plot of macro-f1 score vs τ 569

on 20News-coarse and Books dataset using GPT2 570

and RoBERTa classifiers is shown in Figure 5. We 571

observe that the performance increases initially and 572

gradually drops down at higher τ values. The lower 573

τ values imply being highly selective and thus the 574

few number of selected samples are not enough for 575

the model to generalize. The higher τ values im- 576

ply poor selection with many noisy labels, making 577

the performance to drop. From the plot, we can 578

observe that the performance is robust for middle 579

τ values i.e. 50− 70%. 580

6.6 Example samples 581

A few incorrectly pseudo-labeled samples from 582

NYT-Fine dataset that are selected by probability- 583

based selection by RoBERTa are shown in Table 6 584

in Appendix A.6. We observe a high probability as- 585

signed to each incorrect pseudo-label whereas these 586

are learnt by the classifier at later epochs. These 587

wrongly annotated samples induce error that gets 588

propagated and amplified over the iterations. By 589

not selecting these wrong instances, LOPS curbs 590

this and boosts the performance. 591

7 Conclusion and Future Work 592

In this paper, we proposed LOPS, a novel learning 593

order inspired pseudo-label selection method. Our 594

method is inspired from recent studies on mem- 595

orization effects that showed that clean samples 596

are learnt first and then wrong samples are mem- 597

orized. Experimental results demonstrate that our 598

method is effective, stable and can act as a perfor- 599

mance boost plugin on many text classifiers and 600

weakly supervised text classification methods. It 601

outperforms several label selection methods based 602

on probability and learning stability. In the future, 603

we are interested in analyzing the role of noise and 604

investigate any positive consequences of noise in 605

text classification. 606
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8 Ethical Consideration607

This paper proposes a label selection method for608

weakly supervised text classification frameworks.609

The aim of the paper is to detect the noise caused610

by the heuristic pseudo-labels and we don’t intend611

to introduce any biased selection. Based on our612

experiments, we manually inspected some filtered613

samples and we didn’t find any underlying pattern.614

Hence, we do not anticipate any major ethical con-615

cerns.616
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A Appendix796

A.1 LOPS for weakly supervised797

classification methods798

The pseudo code for self-training with LOPS is799

shown in Algorithm 2.

Algorithm 2: Self-training with LOPS la-
bel selection
Input: Unlabeled data D, Classifier C,
Weak SupervisionW .

Output: Prediction labels predLabs
D̂ = Generate Pseudo-labels from D,W
for it ∈ {1, 2, 3, . . . , nits} do
Dsel = LOPS (D̂, C)
Train C on Dsel
predLabs, predProbs = Predict(C, D)
D̂ = D̂ ∪ {x | predProbs(x) > δ}

Return predLabs

800

A.2 Datasets801

The details of datasets are provided below:802

• The New York Times (NYT): The NYT dataset803

is a collection of news articles published by The804

New York Times. They are classified into 5805

coarse-grained genres (e.g., science, sports) and806

25 fine-grained categories (e.g., music, football,807

dance, basketball).808

• The 20 Newsgroups (20News): The 20News809

dataset2 is a collection of newsgroup documents810

partitioned widely into 6 groups (e.g., recre-811

ation, computers) and 20 fine-grained classes812

(e.g., graphics, windows, baseball, hockey). Fol-813

lowing (Wang et al., 2020), coarse- and fine-814

grained miscellaneous labels are ignored.815

• AGNews (Zhang et al., 2015) is a huge collec-816

tion of news articles categorized into four coarse-817

grained topics such as business, politics, sports,818

and technology.819

• Books (Wan and McAuley, 2018; Wan et al.,820

2019) is a dataset containing description of books,821

user-book interactions, and users’ book reviews822

collected from a popular online book review823

website Goodreads3. Following (Mekala et al.,824

2020), we select books belonging to eight popu-825

lar genres. Using the title and description as text,826

we aim to predict the genre of a book.827

2http://qwone.com/~jason/20Newsgroups/
3https://www.goodreads.com/

A.3 Compared Weakly Supervised Text 828

Classification Methods 829

We compared with following state-of-the-art 830

weakly supervised text classification methods de- 831

scribed below4: 832

• ConWea (Mekala and Shang, 2020) is a seed- 833

word driven iterative framework that uses pre- 834

trained language models to contextualize the 835

weak supervision. 836

• X-Class (Wang et al., 2020) takes only label 837

surface names as supervision and learns class- 838

oriented document representations. These docu- 839

ment representations are aligned to classes, com- 840

puting pseudo labels for training a classifier. 841

• WeSTClass (Meng et al., 2018) generates 842

pseudo documents using seed information and 843

refines the model through a self-training module 844

that bootstraps on unlabeled documents. 845

• LOTClass (Meng et al., 2020) queries replace- 846

ments of class names using BERT (Devlin et al., 847

2018) and constructs a category vocabulary for 848

each class. This is used to pseudo-label the 849

documents via string matching. A classifier is 850

trained on this pseudo-labeled data with further 851

self-training. 852

We use the public implementations of these 853

methods and modify them to plug-in our filter. 854

Specifically, in WeSTClass and LOTClass, we add 855

our filter after generating the pseudo documents; in 856

ConWea, we add our filter before training the text 857

classifier; and for X-Class, we plug-in our filter 858

after learning the document-class alignment. 859

A.4 Experimental Settings 860

Train-Test sets. We remove the labels in the whole 861

dataset and our task is to assign labels to these 862

unlabeled samples. We measure our performance 863

on the whole dataset by comparing it with their 864

respective gold labels. 865

Computation Infrastructure. We performed our 866

experiments on NVIDIA RTX A6000 GPU. The 867

batch size for training BERT is 32, RoBERTa is 32, 868

GPT2 is 4, XLNet is 1. The running time for BERT 869

and RoBERTa took 3 hrs, GPT2 took 6 hours, and 870

XLNet took 12 hrs. 871

A.5 Statistical Significance Tests 872

We perform a paired t-test between LOPS and each 873

of the other baseline filtering techniques for all clas- 874

4We also considered experimenting on ASTRA, however
the instructions to run on custom datasets were not made
public yet.
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sifiers and on all datasets. The results are showed875

in Table 5. From these p-values, we can conclude876

that the performance improvement over baselines877

is significant.878

A.6 Example samples879

A few incorrectly pseudo-labeled samples from880

NYT-Fine dataset that are selected by probability-881

based selection with RoBERTa as classifier are882

shown in Table 6.883 (a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6: Distributions of correctly and wrongly la-
beled pseudo-labels using different selection strategies
on all datasets for its initial pseudo-labels. The base
classifier is BERT. Each row represents a dataset. Fig-
ure (a), (b) represents NYT-Fine, (c), (d) represents
20News-Coarse, (e), (f) represents 20News-Fine, (g),
(h) represents Books, and (i), (j) represents AGNews
datasets respectively. Left column is based on the soft-
max probability of samples’ pseudo-labels and right
column is based on the earliest epochs at which sam-
ples are learnt.
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Table 5: Statistical significance results.

Classifier Method NYT-Coarse NYT-Fine 20News-Coarse 20News-Fine AGNews Books

BERT

No-Filter 1.93 × 10−112 1.92 × 10−105 7.08 × 10−80 9.37 × 10−79 1.05 × 10−74 7.15 × 10−96

Random 1.58 × 10−115 2.01 × 10−105 5.98 × 10−94 7.32 × 10−39 4.26 × 10−81 3.25 × 10−100

Probability 1.69 × 10−112 6.25 × 10−189 4.19 × 10−120 6.71 × 10−136 5.13 × 10−71 8.72 × 10−123

Stability 2.63 × 10−33 2.41 × 10−194 2.78 × 10−58 4.07 × 10−9 1.36 × 10−45 1.24 × 10−97

RoBERTa

No-Filter 6.06 × 10−100 1.82 × 10−63 5.4 × 10−3 3.09 × 10−109 2.13 × 10−57 1.15 × 10−22

Random 8.38 × 10−94 3.55 × 10−71 3.26 × 10−39 5.20 × 10−101 5.12 × 10−72 1.75 × 10−61

Probability 5.27 × 10−62 9.18 × 10−193 1.39 × 10−71 1.13 × 10−85 4.03 × 10−24 2.16 × 10−72

Stability 1.46 × 10−86 3.39 × 10−188 6.28 × 10−5 8.71 × 10−107 1.17 × 10−76 1.81 × 10−65

XLNet

No-Filter 3.14 × 10−79 4.68 × 10−139 5.42 × 10−112 4.17 × 10−103 1.69 × 10−114 5.63 × 10−107

Random 3.26 × 10−71 2.97 × 10−48 2.56 × 10−77 5.32 × 10−75 6.38 × 10−32 4.38 × 10−48

Probability 4.12 × 10−29 1.36 × 10−63 7.25 × 10−19 6.27 × 10−47 1.57 × 10−31 6.23 × 10−32

Stability 6.17 × 10−29 4.27 × 10−44 1.47 × 10−73 3.57 × 10−41 1.79 × 10−28 3.48 × 10−56

GPT-2

No-Filter 6.09 × 10−50 1.10 × 10−98 2.05 × 10−57 1.22 × 10−5 4.68 × 10−91 1.56 × 10−65

Random 2.54 × 10−22 6.97 × 10−81 4.25 × 10−91 9.89 × 10−38 6.39 × 10−77 8.70 × 10−63

Probability 5.52 × 10−49 2.37 × 10−89 7.02 × 10−85 1.05 × 10−83 1.99 × 10−63 3.44 × 10−49

Stability 6.15 × 10−110 3.88 × 10−31 3.40 × 10−66 6.27 × 10−78 2.21 × 10−47 2.36 × 10−41

Table 6: Incorrectly pseudo-labeled samples selected
by probability-based selection are shown below. These
samples are learnt at later epochs, thus LOPS avoids
selecting them.

Document Pseudo-label

Corinthians have received offer from tottenham
hotspur for brazil’s paulinho although the mid-
fielder said on saturday he would not decide his
future until after the confederations cup ."there
is an official offer from tottenham to corinthians
but, as i did when there was an inter milan offer,
i’ll sit and decide with my family before i make
any decision," paulinho told reporters.

Football
Softmax Prob: 0.96

Learnt Epoch: 2

Brittney griner and elena delle donne were
poised to make history as the first pair of rook-
ies from same class to start wnba all-star game.
Now, neither will be playing as both are side-
lined with injuries. It’s a tough blow for the
league, which has been marketing the two bud-
ding stars.

Baseball
Softmax Prob: 0.96

Learnt Epoch: 2

Denmark central defender simon kjaer has
joined french side lille from vfl wolfsburg on a
four-year deal. Lille paid two million euros. 72
million pounds for the 24-year-old kjaer, who
has won 35 caps for his country. He joined
wolfsburg from palermo for 12 million euros.

Intl. Business
Softmax Prob: 0.94

Learnt Epoch: 2

Fiorentina striker giuseppe rossi is quickly mak-
ing up for lost time after suffering successive
knee ligament injuries which kept him out of ac-
tion for the best part of two years.

Football
Softmax Prob: 0.95

Learnt Epoch: 2
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