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Abstract

While computer vision approaches have demon-
strated success in various image-based tasks, they
face challenges with early childhood height pre-
diction for malnutrition detection due to a scarcity
of publicly available training data. However,
building public datasets for training and bench-
marking machine learning models for this task
is difficult because of the sensitive nature of
the images. Although synthetic data have been
employed in other data-scarce machine learning
tasks, they do not exist for predicting children’s
height. In this work, we develop a novel gen-
erative algorithm to create synthetic images (in-
cluding depth maps, segmentation maps, and key-
points) with non-photorealistic human figures,
thereby providing an ethical and scalable solution
to pre-train and evaluate computer vision models
in a controlled setting. Our synthetic dataset mod-
els a wide variety of key real-world variables such
as physical proportions, lighting, and posture. We
demonstrate the potential of our dataset in a trans-
fer learning setting by showing that models pre-
trained on our synthetic data outperform baseline
approaches when applied to real-world prediction
tasks.

1. Introduction

Despite recent progress, malnutrition remains a significant
global health problem, especially among children under
the age of two in developing countries. Early detection
and intervention are extremely important in preventing ad-
verse health consequences for these children and promoting
their future healthy growth and development (Hasegawa
et al., 2017). Height is a key factor in determining if a
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child is malnourished, so being able to measure this accu-
rately is critical (Ezzat et al., 2022). Traditional methods
for obtaining heights suffer from two challenges: (1) man-
ual height measurements with measuring tape can be prone
to measurement error (Mikula et al., 2016), especially for
children under the age of two due to their inability to keep
a fixed posture; (2) manual measurement methods required
specially trained personnel, disadvantaging resource-poor
regions (Lazzerini & Lassi, 2019). Given the profound
implications of inaccurate height measurements for estimat-
ing children’s malnutrition, developing more accurate and
efficient methods for measuring children’s height is crucial.

To overcome these challenges, we wish to use machine
learning to automatically predict heights from pictures of
children taken by cell phones. Since cell phones are highly
portable and widely available, this would make measuring
height more widely accessible.

While deep learning techniques have been remarkably suc-
cessful in various image-based tasks, obtaining data for
training deep learning models can be challenging. The
data must be labeled and annotated, which can be time-
consuming and expensive. Obtaining images of subjects for
childhood malnutrition prediction is even more challenging.
These images and height measurements must be taken in a
controlled environment by trained personnel to ensure high
accuracy, and privacy is a significant concern.

Synthetic data can help alleviate some of these challenges.
When implemented effectively, it allows for the training
of computer vision models in a safe and ethical manner
while still capturing important visual factors and real-world
variations found in real images. Combining synthetic data
with transfer learning could improve model generalizability
and reduce the size of the real-world dataset needed.

We present a novel method to generate synthetic datasets for
pre-training and benchmarking computer visions models in
the task of early-childhood malnutrition detection. Our syn-
thetic dataset is designed to satisfy the above two important
criteria. Our contributions are as follows:

1. We present an algorithm to create synthetic images,
depth maps, segmentation maps, and keypoints that
capture key variations in real images (e.g. proportions,
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posture, light, and texture).

2. We provide a safe, ethical testing ground for re-
searchers to develop and pre-train models prior to fine-
tuning on limited real-data.

We benchmark a range of traditional computer vision mod-
els, such as convolutional neural networks (CNNs) and Vi-
sion Transformers (ViTs), on the synthetic dataset to explore
height prediction performance across different neural net-
work architectures. We demonstrate the promise of our
dataset in a transfer learning setting.

Furthermore, we compare the performance of several com-
puter vision models with and without pretaining on our
synthetic dataset to show that our synthetic dataset provides
a performance boost. This enhancement is especially ev-
ident where real labeled images are scarce or difficult to
obtain. We show that pre-training models on our synthetic
data leads to better transfer to a real prediction task, when
compared with baseline approaches.

2. Related Works
2.1. Modeling
2.1.1. HEIGHT PREDICTION FROM IMAGES

Predicting anthropometric measurements, particularly
height, from images has been an active area of research.
Early works employed single-image methods, which typ-
ically require a reference object of known dimensions for
calibration, leading to relatively high errors of around 5.5%
(Lee, 2012). Researchers have also explored Bayesian-like
frameworks that incorporate prior knowledge of human an-
thropometry to eliminate the need for reference objects (Ben-
Abdelkader & Yacoob, 2008). Multiple-view approaches
have been proposed, enabling 3D reconstruction of the body
for improved height estimation with an error of around 1%
(Li et al., 2012). Depth-based techniques have enhanced ac-
curacy to within 0.9% error by leveraging additional depth
information (Yin & Zhou, 2020). However, most of these
works focused on adult subjects rather than young children.

Convolutional Neural Networks (CNNs) have been widely
used for height prediction tasks, with models like Mo-
bileNet, VGG16, GoogleNet, and AlexNet achieving mean
absolute errors (MAEs) below 1.1 cm for height estimation
in infants (Shu et al., 2023). These work have focused on
using real-life, non-synthetic images dataset.

2.1.2. MULTI-VIEW AND FUSION TECHNIQUES

To effectively utilize multiple views of an object, researchers
have explored multi-view convolutional neural networks
(MVCNNS5s) (Su et al., 2015). These models process each
view through shared convolutional layers and aggregate the

view-specific features using additional layers for the final
prediction task, enabling information sharing across views.

Fusion-based methods (Ramirez et al., 2021) combine fea-
tures or decisions from multiple views or image types, such
as fusing RGB images with depth maps at different stages
of the processing pipeline. Transformer models (Dosovit-
skiy et al., 2020), inspired by natural language processing,
have also shown promise in handling dependencies between
multiple views of an object for classification or regression
tasks. However, these have not been applied in the context
of height prediction for children in lying position.

2.1.3. MALNUTRITION DETECTION

In the context of malnutrition detection, researchers have
investigated two main approaches (Rajappan et al., 2023).
The first one involves directly classifying malnutrition status
from images, with models like EfficientNet-B4 achieving
96% accuracy. The second approach predicts body mass
index (BMI) from images and uses it to identify malnutrition,
with models like ResNet34 yielding 92% accuracy.

2.2. Datasets for Height Prediction and Malnutrition
Detection

2.2.1. REAL-WORLD DATA

Several datasets have been curated for height prediction
tasks. Trivedi et al. (Trivedi et al., 2021) collected a dataset
of depth images for children under five years old from rural
India, aimed at height estimation. However, this dataset
focused on standing children and did not specifically target
other postures often encountered in the field such as children
lying down on a mat. Yin and Zhou (Yin & Zhou, 2020)
created datasets of RBG images and depth maps, but for
adult subjects rather than children. There are significant dif-
ferences between the anatomy and body length proportions
of children and adults that may make it difficult to predict
the heights of children based on training with this dataset
alone, however. A more general dataset that includes the
types of proportions and features expected to be present in
children is needed.

2.2.2. SYNTHETIC DATA

To overcome the challenges of collecting real-world data,
researchers have also explored synthetic data generation
approaches. Peng et al. (Peng et al., 2018) surveyed and
discussed the use of synthetic data for training computer vi-
sion deep learning models in general. Rhodin et al. (Rhodin
et al., 2018) generated a synthetic dataset of 3D human
poses for unsupervised representation learning. Varol et
al. (Varol et al., 2017) presented synthetically-generated
but realistic images of people rendered from 3D sequences
of human motion capture data to train CNNs for human
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depth estimation and human part segmentation tasks. These
synthetic datasets were beneficial for pose estimation and
segmentation. They do not contain heights that can be used
to train a computer vision model, however.

Lurch et al. (Lurch et al., 2020) augmented the data for 3D
pose estimation with synthetically generated dataset cov-
ering a more continuous pose space than the existing one,
demonstrating the potential of synthetic data in overcoming
the scarcity of real-world datasets. Additionally, Kubric
(Kubric, 2019) is a scalable dataset generator that can create
synthetic images with varying scenes, objects, and annota-
tions, enabling the exploration of various computer vision
tasks ranging from studying 3D NeRF models to optical
flow estimation. While these datasets demonstrate the utility
of synthetic data in training deep learning models, neither
of them contain heights for human subjects that can be used
to train a computer vision model for height prediction.

3. Background

In the subsequent section, we discuss a pipeline for gener-
ating synthetic data for use in estimating a subject’s height
using computer graphic techniques. The synthetic data com-
prises RGB images, depth images, and segmentation maps
of children lying on mats in various positions, lighting con-
ditions, and camera view angles. The following terminology
and notation are used throughout:

RGB images: color images that represent the scene in the
red, green, and blue color channels.

Depth images: grayscale images where each pixel represents
the distance of that point in the scene from the camera.

Ray tracing: a technique used to generate synthetic images
by tracing the path of light rays through a virtual scene and
simulating their interactions with objects.

Procedural images: images generated through computer
programs rather than captured from the real world.

Parameter space: the range of values that the various param-
eters used to generate the synthetic data can take.

Keypoints: specific locations on the synthetic subject, such
as the top of the head, the center of the hips, and the hands
and feet, that are automatically generated and labeled for
use in computer vision approaches.

4. Methods

In this section, we describe FigureSynth, an algorithm that
generates images of human postures that (1) have pixel-
perfect height measurements and (2) capture key variations
in real images of subjects being assessed for early childhood
malnutrition. In Section 5.1, we show that the generated

Figure 1. Example of a synthetic subject generated by FigureSynth.
The upper row consists of color images, the middle row consists of
depth maps, and the bottom row consists of binary segmentation
maps indicating whether each pixel is part of the subject or part of
the background.

synthetic data can be used to evaluate and pre-train deep
learning models for height prediction.

4.1. Overview of FigureSynth

FigureSynth is a command-line program that uses procedu-
ral modeling and ray tracing powered by Pov-RAY (pov)
to generate color images, depth maps, segmentation maps,
keypoints, precise height measurements, and auxiliary in-
formation for synthetic children lying on a mat as viewed
from different camera angles. Figure 1 shows an example
of a synthetic child generated by FigureSynth.

The goal of FigureSynth is to parametrically model fore-
ground subjects with a wide range of variations and with
pixel-perfect measurements. Every foreground element —
including physical proportions, postures, and textures — is
modeled parametrically and can be individually specified
or sampled from various random distributions. Elements of
the scene, including camera position, lighting, and image
quality, are also parametrically modeled. One can specify
over 100 different parameters to control how the foreground
subjects and scenes are rendered.

We argue that FigureSynth provides two important benefits
in addition to benchmarking the model for height prediction:

* Model Explainability: By providing precise measure-
ments for over 100 different features of the generated
image, this data provides a rich environment for model
explainability. For example, by analyzing the metadata
attached to each image, one may find that a particular
model is performing poorly on synthetic images where
subjects have a particular type of limb articulation.
These explanations can guide us in making targeted
and effective improvements to our models.
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* Generalization to Other Tasks: Height prediction
is just one of the many tasks that we can benchmark
using our synthetic dataset. Any parameter such as
body width, leg length, leg position, or even keypoint
locations (explained below) can be used in a prediction
task. In fact, we can decompose height prediction into
a set of sub-tasks, for which we can train models using
FigureSynth. Combining models for multiple sub-tasks
can potentially improve overall height prediction.

We emphasize that, with FigureSynth, we specifically avoid
creating photorealistic images. The generation or curation
of photorealistic images of children for machine learning
can be problematic from an ethical standpoint, even when
the end goal is for the public good.

Using real images of children without proper consent can
lead to significant ethical issues (Ghosh, 2023). Real im-
ages of children contain personal information that can be
used to identify individuals in some cases, leading to pri-
vacy breaches. Protecting the privacy of children is critical
since they are a vulnerable population. Furthermore, using
real images can lead to stigmatization of the children, espe-
cially if these images are publicly shared or the children are
identified as malnourished.

Even realistic-looking synthetic images, though they do
not directly infringe on privacy, can still raise ethical ques-
tions about the implications of using such data for training
models, especially if some of these images look like actual
individuals, even if by chance. (Hansen, 2023)

Another significant ethical concern is that realistic-looking
synthetic images can potentially be used to create fake or
misleading content. These images could be used to spread
misinformation or even harass individuals. An individual
might create fake images of someone in compromising situ-
ations and distribute them online, leading to harm.

'We note that photorealism is not always necessary for achiev-
ing good results in training computer vision models. De-
pending on the specific application and tasks, computer
vision systems can be effectively trained using synthetic or
stylized imagery that does not mimic the full complexity
of real-world visuals but instead retains essential structural
and contextual elements needed for the model to learn and
perform accurately. For example, non-photorealistic render-
ing was successfully used to train models for autonomous
driving in complex urban environments under many weather
conditions, where logistical challenges prevent training and
testing such systems in the physical world (Dosovitskiy
et al., 2017). Non-photorealistic rendering was also suc-
cessfully used by OpenAl for reinforcement learning ap-
plications in robotics (OpenAl, 2018). Furthermore, using
realistic static meshes or generative Al would greatly re-
duce this flexibility and make it difficult to generate the

vast number of images with precise and exhaustive measure-
ments needed to train a deep-learning model. In Section
5.1, we demonstrate that models that are pre-trained on our
non-photorealistic synthetic data can transfer well to real
photorealistic datasets.

4.2. Parametrization of Foreground and Scene

FigureSynth renders each parametrically modeled scene us-
ing ray tracing. The geometries in the scene are composed of
spheres, cylinders, cubes, rounded cubes, triangles, planes,
and BLOBs (Binary Large OBjects), explained below.

Each synthetic subject is rendered from multiple view an-
gles to provide a variety of perspectives. The camera is
placed at different positions above the subject to capture
the body from multiple positions. These multiple views
allow one to predict the subject’s height with multi-view
computer vision approaches. FigureSynth renders a depth
image corresponding to each color image for each view by
storing the distance from the camera to the first solid ray
intersection in the scene. This depth image and the color
imagery are precisely co-registered.

Finally, FigureSynth renders a segmentation map for each
subject. The segmentation map is a binary image where
each pixel is equal to 1 if it is part of the subject and 0
if it is part of the background. Along with the color and
depth images, the segmentation map is helpful for training
deep-learning models to predict the subject’s height.

The primary function of FigureSynth is to use pseudoran-
dom numbers to render millions of synthetic images, with
no two being identical. The program accomplishes this
by sampling over 100 parameters from various probability
distributions. For example, FigureSynth may place an op-
tional spotlight around the subject as a light source. The
position of this spotlight is sampled from several normal
distributions, with the light being most likely placed near
the subject. The color of this light source is sampled from
three uniform distributions, one for each of the red, green,
and blue intensities.

Several random distributions are available in FigureSynth,
including Bernoulli, Uniform, Normal, and Binomial. All
parameters can be optionally specified in the command line
and support every probability distribution. Every parameter
has a default distribution that is used when no distribution
is explicitly provided.

Most of the geometry of the synthetic subjects is composed
of BLOBs. BLOBs are a powerful tool for creating smooth
shapes parametrically with ray tracing. BLOBs are created
from one or more subcomponents, each typically defined
by a field of influence. These fields influence the density of
the medium at their respective locations. When combined,
they create a smooth surface based on a density threshold.
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The surface of the BLOB is defined wherever the combined
density of all influence spheres exceeds this threshold.

For example, consider a simple BLOB composed of two
spheres. Sphere 1 has center ¢; = (0,0, 0), radius , = 1,
and strength s; = 1.5. Sphere 2 has center ¢co = (1,0, 0),
radius o = 1, and strength so = 1.5.

We define a threshold ¢, that determines how spread and
smooth the shape is. A lower threshold means a larger, more
spread-out blob as the surface includes points with lower
summed field strengths. A higher threshold creates a tighter,
smaller blob as only points with higher field strengths are
included.

The influence functions for each sphere are given by
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The total strength at any point p is:

S(p) = fi(p) + fa(p).

The points, p, inside the BLOB are all p such that S(p) > t,.

Blobs can consist of spheres and cylinders, and the strength
and shape of each sphere and cylinder can be individually
controlled to create a wide variety of shapes from the re-
sulting field. These composite objects are beneficial for
creating smooth shapes with fine-grained control over the
individual features of the shape. Much of the complexity of
the subject’s body is modeled using BLOBS, especially for
the feet and hands (see figure 2).

Figure 2. Hands and feet are rendered using BLOBs that consist of
a complex arrangement of parametric spheres and cylinders. The
strength and shape of each sphere and cylinder can be individually
controlled to create a variety of shapes from the resulting field.

FigureSynth uses a hierarchical modeling approach to create
the subject’s body, with a central skeleton and parametric
definitions for parent-child relationships. These parent-child
relationships change dynamically as the different body parts
are generated based on the samples from the random dis-
tributions. For example, the allowed upper arm rotations
change based on the position and rotation of the main body

to ensure that the arms are positioned realistically and that
there is no clipping with the mat below.

FigureSynth defines every body part and object in the scene
using a set of parameters and rules to assemble those param-
eters into geometry. For example, the upper leg is defined
as a blob composed of a main cylinder and several spheres.
These sub-components are generated based on the upper leg
length, circumference, and starting and ending positions.

Synthetic subjects and their environments are rendered with
a combination of static and procedural textures. These tex-
tures provide a degree of realism and variability for the mod-
els to learn from diverse scenes and improve their robustness
in real-world applications. By simulating various textures,
the models can be trained to better recognize and analyze
patterns in different contexts, thereby enhancing their accu-
racy in tasks such as predicting the subject’s height.

The material for the mat that the subject is lying on is sam-
pled from 100 static public domain textures, which are avail-
able from OpenGameArt . org (Textures, 2024). These
textures help provide considerable variety in the background
of the images, which helps prevent the neural network from
expecting a specific type of background. The textures are
sampled using the choice distribution by default, which al-
lows one to select one of the 100 textures with uniform
probability.

Most of the textures in the scene are generated dynamically.
Clothing typically has wrinkles and imperfections that are
difficult to model procedurally. To create realistic clothing
textures, FigureSynth uses a combination of procedural mod-
eling, simplex noise, and normal maps. Having a perfectly
smooth texture for the clothing would be unrealistic and
cause the neural network to expect something that would
not be present in real-world images. To simulate wrinkles in
the clothing, a normal map is procedurally generated using
simplex noise and then applied to the geometry.

A dynamic texture is created for the face of every subject
to provide basic facial features. This texture is rendered
from scratch using pycairo (Henstridge). The face texture
is created by drawing a series of shapes, such as circles,
rectangles, and lines, to create a face with eyes, a nose, and
a mouth. The color of the face, by default, is sampled from
a normal distribution to provide a wide variety of skin tones.
Figure 3 shows four example face textures.

4.3. Lighting

By default, FigureSynth provides 4 light sources in each
scene, 2 point lights, and 2 spotlights. The intensity of the
lights is sampled from a uniform distribution to provide soft
lighting for the scene with lights provided from multiple di-
rections. Each of these lights can by controlled by tuning the
intensity and their positions. Figure 4 shows an example of
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Figure 3. Example face textures rendered dynamically using py-
cairo. The color of the face is sampled from a normal distribution
to provide a wide variety of skin tones and is chosen to closely
match the skin color of the rest of the child’s body.

a single subject rendered with various light configurations.

,
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Figure 4. A single subject rendered with various light configu-
rations. The intensity and position of each light source can be
controlled to provide a wide variety of lighting conditions.

FigureSynth provides the ability to add noise to the rendered
images to simulate real-world image noise. This noise is
sampled from a Gaussian distribution with a mean of 0 and
a standard deviation that can be controlled by the user. The
noise is added to the color image and the depth map. Figure
5 shows an example of a subject rendered with varying
levels of image noise. An additional noise type is provided
to exclude small patches of the image and depth maps to
simulate the effect of dropout in the neural network.

Figure 5. A single subject rendered with various noise levels. The
noise is sampled from a Gaussian distribution with a mean of 0 and
a standard deviation that can be controlled by the user. Optionally,
box noise can be applied to the image.

FigureSynth provides a metadata file for each rendered im-
age that contains the height of the subject along with dozens
of other parameters that could be used for prediction tasks,
including all of the random parameters used in the scene,
the camera position, the lighting conditions, the image qual-
ity, and all keypoints, both the 3D coordinates and the 2D
pixel coordinates. This metadata file is saved in text format.
Appendix C shows an example of a portion of a metadata
file or a single render. One could use this information to
train a neural network to predict hair color or the distance
of the camera from the child for example.

Many computer vision tasks require keypoint detection, such
as object tracking, pose estimation, and facial recognition.
FigureSynth provides the ability to generate pixel-perfect

keypoint coordinates for each subject. The keypoints are
generated based on the dynamic geometry of the subjects
and are then projected onto image space and saved to the
metadata file associated with each view.

S. Experiments

5.1. Experiment 1: Validating Data Generated from
FigureSynth

In this set of experiments, we demonstrate that data gen-
erated from FigureSynth can be used for training height
prediction models. Specifically, we hypothesize that the
synthetic images we generate contain sufficient elements
of realism to provide a reliable signal for predicting height.
To test this hypothesis, we benchmark several state-of-the-
art Computer Vision models for predicting subjects’ height
based on the input images and show that all models attain
excellent performance.

We anticipate that state-of-the-art models will learn from
synthetic data effectively, achieving high accuracy (95%+),
a high R-Squared value (0.95+), and a low mean abso-
lute error (less than 1). Additionally, we expect these ad-
vanced models to outperform our baseline model, which
only has three convolutional layers. Given that deeper mod-
els and those incorporating self-attention mechanisms pos-
sess greater capacity to discern patterns, they should be
more adept at predicting heights.

5.1.1. SET Up

We consider the following models:

Vanilla 3-Layer Convolutional neural network (CNN)

* ResNet Family: ResNet-18, ResNet-34, ResNet-50,
ResNet-101

VGG Family: VGG-16 with Batch Normalization,
VGG19 with Batch Normalization

* MobileNet Family: MobileNet-V3-Small, MobileNet-
V3-Large

* Vision Transformer (ViT) Family: ViT-base-16, ViT-
base-32

We set our Baseline model to be the 3-layer CNN model.

Except from ViT, all other models are variants of CNN. We
aligned the input and output format among all networks,
and developed a framework to streamline the whole process
from model selection, training, validation, result visual-
ization, and reporting test statistics. We demonstrated the
generalizability of the framework by applying it universally
to all models defined above.
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Comparison of Models Based on MAE
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Figure 6. MAE Performance Comparison

For all the models, we modify their fully connected read-
out by applying the same linear layer sequence, with the
last layer having one neuron, which is used to make height
predictions. We trained the models with consistent hyper-
parameters, with specific settings detailed in the appendix.
We also apply consistent data augmentation on-the-fly
across all model training process.

Inputs and Outputs The input to our models consists
of depth maps with dimensions of 3 x 224 x 224. To ac-
commodate the input specifications of pre-trained models,
we have channel-wise stacked the original single-channel
depth map into three channels. This manipulation ensures
compatibility with the architectures that typically expect
three-channel RGB images. The output across all models is
a scalar value, which stands for the predicted height.

Evaluation Metrics We report and compare model per-
formance with 3 different metrics: Mean-Absolute Error,
One-centimeter Tolerance Accuracy, and R-squared.

5.1.2. RESULT

Figures 6 shows the performance comparison across all mod-
els for MAE. We note that ResNet-34 shows the best per-
formance, with its MAE being only 1/5 that of the baseline
model. Additionally, most SOTA models have an accuracy
and R-Squared score of 1, as detailed in the appendix.

Figures 7 presents diagram comparing the ground truth ver-
sus the predicted values for both the ResNet-18 and the base-
line model. It illustrates a better accuracy of the ResNet-18
model, as evidenced by the majority of its prediction points
falling within the +1 cm error margin, in contrast to the
baseline model.

In essence, all models trained on our dataset, perform well.
This high performance across various models and evaluation
metrics underscores the high quality of our synthetic data
and its applicability in real-world scenarios.

5.2. Experiment 2: Transfer Learning

In addition to validating our synthetic dataset, we conducted
a transfer learning experiment to demonstrate our model’s
potential in real-world applications. Our goal is to employ

baseline_cnn Testset Ground Truth vs Prediction resnet18 Testset Ground Truth vs Prediction

— Ideal: pred = truth
—— Emor Margin +-1 (cm)

— Ideal: pred = truth
—— Error Margin +-1 (cm)

prediction (cm)

6 e 170 75 80 & 0 6 0 75 80 6
Ground Truth (cm)

Figure 7. Ground Truth vs. Prediction: The left-hand side shows
results for the baseline, and the right-hand side shows ResNet-18.
Pink points represent individual samples from the test set. Points
directly on the red line indicate perfect predictions. The pink
points that fall within the boundaries marked by two blue lines are
considered accurate predictions, with an error margin of £1 cm.

transfer learning to make model training for height predic-
tion in real-world settings more efficient. We anticipate
that a model pre-trained on our synthetic data will transfer
learned features to a real-world human height dataset, yield-
ing better performance with fewer epochs of training under
the same hyper-parameter settings.

5.2.1. SET-UP

We apply transfer learning for ResNet34 in following ways:

* Trained directly on real-human data by updating all
parameters (resnet34 _all).

* Trained directly on real-human data by updating only
the readout sequence (resnet34_readout).

* Pre-trained on ImageNet-1K and applying transfer
learning on real-human data by updating all param-
eters (resnet34_1k_all).

e Pre-trained on ImageNet-1K and applying transfer
learning on real-human data by updating only the read-
out sequence (resnet34_1k_readout).

e Pre-trained on FigureSynth and applying transfer learn-
ing on real-human data by updating all parameters
(resnet34_syn_all).

¢ Pre-trained on FigureSynth and applying transfer learn-
ing on real-human data by updating only the readout
sequence (resnet34_syn_readout).

For all approaches, we apply consistent and similar hyper-
parameters to the previous experiment, where we validated
FigureSynth. The difference is that we trained the model
for more epochs—250 in total on the real human dataset.
For model pre-training, instead of training on depth maps,
we trained on RGB images from FigureSynth. Regarding
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Comparison of Models Based on MAE
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Figure 9. Validation Loss Comparison

data augmentation, we apply a horizontal flip on the fly. In
addition to MAE, accuracy, and R-squared, we also employ
validation loss (MSE) curve to assess training efficiency.

The real-human dataset (Bhandari, 2020) contains 380 im-
ages of humans with their height labels. We use 80% of the
data for training, 10% for validation, and 10% for testing.
We use zero-padding to fill images to a square format and
transform each image to a size of 3 x 224 x 224.

5.2.2. RESULTS

Figures 8 show the transfer learning results for ResNet34
using mean absolute error. The diagrams indicate that
ResNet34 pre-trained on FigureSynth and ImageNet-1K
and fine-tuned on the real-human dataset achieves the best
performance compared to other transfer learning methods.

Figure 9 shows that ResNet34 pre-trained on FigureSynth
and fine-tuned either on all parameters or just the readout se-
quence (represented by orange and purple curves) converges
faster than other transfer learning methods. The model fine-
tuned on all parameters yields the best validation perfor-
mance. The green curve, representing ResNet34 trained
directly on the real-human dataset without pre-training, in-
dicates that the model struggles to learn effectively.

In summary, the real-human dataset is challenging for
deep neural networks to learn from scratch. Pre-training
ResNet34 on FigureSynth not only substantially improves
performance during transfer learning but also achieves this
performance efficiently with fewer training epochs. This
demonstrates that FigureSynth is a valid dataset for real-
world applications with good generalization capabilities.

6. Discussion

Our experiment has shown that with the synthetic dataset,
we are able to train and improve various computer vision
models for predicting subject height. This shows the effec-
tiveness and usefulness of the synthetic dataset in comparing
and evaluating the performance of computer vision models.

For future work, we plan to enhance the realism of our
synthetic dataset by increasing the variety of poses and
environments. These improvements could help bridge the
gap between synthetic and real-world scenarios, potentially
leading to better generalization of the trained models. In
terms of training and evaluation, we could explore more
complex models that leverage the multi-view nature of our
synthetic dataset. For instance, using a Mixture of Experts
(MOE) model, where different experts specialize in different
views and a gating mechanism combines their outputs, could
lead to improved performance.

7. Conclusion

In this work, we presented a novel generative algorithm,
FigureSynth, for creating synthetic images, depth maps, seg-
mentation masks, and keypoints of human subjects. This
synthetic data provides a scalable and ethical solution for
training and benchmarking computer vision models to accu-
rately predict a child’s height, which is a critical component
for the early detection of childhood malnutrition.

Through extensive experimentation, we demonstrated the
effectiveness of our synthetic dataset in training state-of-
the-art computer vision models, including CNNs and Vision
Transformers, for height prediction task. The results demon-
strated high accuracy and low mean absolute error, high-
lighting the potential of the synthetic data for such tasks.

By addressing the challenges of data scarcity and privacy
concerns, our work clears the path for the ethical develop-
ment of computer vision models for predicting the height of
children, ultimately contributing to the early detection and
prevention of malnutrition in children worldwide.

8. Reproducibility Statement

We provide the following links to enable reproducibility. To
access the code and dataset for FigureSynth, please visit:
FigureSynth. To access the code for the computer vision
models and the modeling pipeline, please visit: Modeling.
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A. Details for Model Training Experiments

Height Prediction with CNN Backbone The output of
pretrained Convolutional Neural Network models is pro-
cessed through a custom fully connected network. For all
models, we have standardized the fully connected network
architecture to follow the structure of 512, 256, and finally 1
neuron. This means that the last linear layer outputs a scalar
value, which represents the predicted height. Additionally,
this same fully connected network setting is also applied to
our baseline 3-layer CNN model.

Height Prediction with ViT Backbone The Vision Trans-
former (ViT) processes the input image into an array of fea-
ture vectors corresponding to the number of image patches,
plus an additional class token [CLS]. In alignment with the
fully connected network used for CNN backbone models,
the output head of the ViT applies the same architecture
to the [CLS] token. This results in a final output that is a
single scalar value, representing the predicted height.

Training Procedure We trained on Google Colab with
an A100 GPU. All models, except for the baseline CNN,
are pre-trained, and we performed transfer learning by fine-
tuning all parameters. Each model was trained for 100
epochs with a learning rate of 0.00002 using the Adam
optimizer and a batch size of 128. The read-out fully con-
nected layer has a dropout rate of 0.1. Early stopping with
a patience of 30 epochs is implemented, which is triggered
when the model’s validation loss does not improve. The best
model is saved based on the lowest validation mean squared
error (MSE) loss.

In addition to the training parameters, we applied data aug-
mentation techniques on-the-fly exclusively for the training
set. These techniques include random rotations within a
range of +15 degrees and random horizontal flips to intro-
duce variability and prevent over-fitting. Furthermore, we
normalized the data with a mean of [0.3568, 0.3568, 0.3568]
and a standard deviation of [0.3512, 0.3512, 0.3512]. This
normalization process adjusts the pixel values of the images
so that the dataset has a mean of zero and a standard devia-
tion of one, which helps in accelerating the training process
and achieving more consistent performance.

Evaluation Metrics We report and compare model per-
formance with 3 different metrics: Mean-Absolute Error,
One-centimeter Tolerance Accuracy and R-squared.

N
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Validating Experiment results Figures 10 and 11 show
the performance comparison across all models for Accu-
racy and R-squared respectively. We note that almost all
models except the baseline have exceptional accuracy and
R-squared of almost 1.0. Specifically, ResNet-18 having
the highest accuracy and ResNet-34 having the highest R-
squared.

Transfer Learning results For the transfer learning exper-
iment where we train ResNet34 using different approaches,
the R-Squared and accuracy metrics show similar trends, as
illustrated in Figures 12 and 13

B. Ablation Studies

Mutation of ViT We further experimented with a slight
modification of the Vision Transformer architecture by
jointly predicting on multiple views simulated from dif-
ferent angles of the same subject. We implemented two
versions of this collective decision algorithm:

» Simple Aggregation: An aggregator takes in output
features from all views of a single subject, combines
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the feature representations by averaging across simu-
lated views, and applies the MLP regression head to
the combined feature. Algorithm workflow is demon-
strated as Figure 14.

* Aggregation with Concatenation: An aggregator first
combines information from multiple views, and then
concatenates the aggregated feature with individual
features from each view. The MLP regression head acts
on a combination of combined and individual features.
Algorithm workflow is demonstrated as Figure 15.

We trained and validated the two algorithms with inputs of
raw simulated subject photos in RGB format, and directly
predicting height values. We realized a performance in-
crease from 46% accuracy on non-mutated, vanilla ViT to
55% accuracy with Simple Aggregation and 65% accuracy
with Aggregation with Concatenation.

Performance boost from vanilla Vision Transformer to Sim-
ple Aggregation demonstrates the effectiveness of informa-
tion sharing among different simulated viewpoints, and a
further increase with the concatenation operation implies the
value of larger feature dimensions and fusion of individual
and collective information.

However, we would also like to note the difference between
vanilla Vision Transformer performance reported here and
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Figure 14. Simple Aggregator Pipeline
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Figure 15. Aggregation with Concatenation

that shown in Figure 10. The latter one was trained on depth
images, while the former one was trained with raw photos.
A performance degradation with RGB input may be due to
depth maps having less noisy inputs. One could regard the
depth map as the segmentation map of the subject from
raw RGB images. The use of depth maps avoids additional
overhead for the model backbone to re-segment the subject,
which would lead to higher prediction accuracy, especially
when the pre-loaded ViT backbone weights were initially
trained for classification tasks.

C. Metadata Files

FigureSynth provides a metadata file associated with each
rendered RGB image, depth map, and segmentation map.
These files contain precise values for all of the scene’s fea-
tures, including the child’s height, in simple text format.

child height (cm):
seed: 1
head_size: 2.5488135039273248
skin_color: [I1. 0.95529137 0.37316718]
shorts_color: [1. 0.07863797 1. 1
mat_texture: 171

camera.-distance: 6.188992975388076
rotation_adj: -0.429241808987133
right_arm_angle_xy: 13.654671795124212
left_arm_angle_xy: -0.9769572171942498
right_arm_angle_z: -12.12977285006469
left_arm_angle_z: -2.26527900963526
left_leg_angle_xy: -4.707710044024339
right_leg_angle_xy: 9.730159968843793
right_leg_angle_z: -6.390745588515077
left_leg_.angle_z: 7.186853402106025
body_height: 2.4675672693585855
light_x: 3.0091075197964425

light_y: 0.2047747955120478

lightl: 0.7752156710832722

light2: 0.8044428583081418

light3: 0.6656158336600857

light4: 0.6761612606143075
backcolorl: 0.7586156243223572
backcolor2: 0.10590760718779213
backcolor3: 0.4736004193466574
haircolor_red: 1.0

haircolor_green: 0.6089630164928302
haircolor_blue: 0.559124280628426
eye_color_index: 2

smile_factor: -21.06945572323671
mat_rotate_y: —0.7034359688271437
mat._rotate_z: —2.101950796897901
child_rotate_y: —-4.696653025600872
child_rotate_z: -3.245497790353857
child_rotate_x: -0.013232273685800534
hair_count: 3634.7442832352676
hair_length: 0.1359959991928982
image_noise_level: 4.904507663073059
child_shift_x: 0.040234858317398425

138.55981802462807

child_shift_y:
child_shift_z:
head_height:

child_height:

keypoint_head_top_3d:
keypoint_head_top_2d: [
keypoint_right_hand_.3d:
keypoint_right_-hand.-2d:
keypoint_left_hand_3d:

keypoint_left_hand_2d:

keypoint_right_foot_.3d:

-0.15772090320115337,

keypoint_right_foot.2d:
keypoint_left_foot_3d:

(o,

—-0.04007196496410262
0.04698090677467488
4.379177397304079
6.927990901231404

6.927990901231404, 0)
0.5 ~0.06258539]
[1.46428544 1.67462614 0.
[0.59401776 0.39838777]
[-1.48621079 2.20292239 —0.4
[0.40503942 0.43565807]
(0.3674759165589824

0.0)

[0.52157343 0.68697878]
(-0.45565292322531353,

-0.14781180773030586, 0.0)

keypoint_left_foot_2d:

Listing 1. Example portion of a metadata file associated with a

[0.47618232 0.68637685]

single view of a rendered scene



