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Abstract: Learning reward functions from human demonstrations is criti-
cal for scalable robot learning, yet most approaches either require impractical
ground-truth state access, costly online retraining, or yield domain-specific mod-
els with poor transferability. We propose SPUR, a unified reward modeling
framework that combines a large pre-trained vision-language model (VLM) back-
bone fine-tuned to encode robot image sequences and language instructions, a
progress-based reward objective trained on successful demonstrations augmented
with video rewind to simulate failures, and a preference-learning objective over
mismatched and rewound trajectories to enable training on failed executions with-
out explicit progress labels. This design leverages the generalization of VLMs
while integrating complementary progress and preference signals for improved ro-
bustness and generalization. Experiments on out-of-distribution tasks in LIBERO
and Meta-World show that each component contributes to performance gains
across a set of reward metrics, and their combination achieves state-of-the-art
results compared to recent baselines, demonstrating scalable training of reward
models.

Keywords: CoRL, Robots, Learning

1 Introduction

An important problem in robot learning is that of learning rewards from human demonstrations [1]
to guide policy learning. When deploying robots in the real world, it’s important that reward models
generalize to new tasks so that humans do not need to provide additional demonstrations, which is
expensive to scale, or train the reward models in tandem with the robot policies, which is sample-
inefficient and time-consuming. In this work, we investigate how to train reward functions that can
effectively generalize to new tasks without online training or additional demonstrations.

Prior works have attempted to develop generalizable reward functions, but they often assume access
to ground-truth states that may be difficult to provide in the real world [2, 3, 4, 5, 6, 7] or the ability

to train reward models from scratch in tandem with the policy [1, 8, 9], limiting their practical
applicability.

Some recent works instead propose reward models that can be directly used at test time, condi-
tioned solely on image observations and language instructions. One common approach is to leverage
the generalization capabilities of large vision-language models (VLMs) by querying them for task
progress to be used as reward [10, 11, 12, 13, 14], but these models have been shown to predict noisy
rewards difficult to be directly used for training robot policies [12, 13, 15]. Another is to directly
train a smaller reward model on human demonstrations. These methods use either a task-progress-
based training objective [16, 17, 15], or a preference-based or contrastive objective [18, 19, 20], but
they result in domain-specific reward models that are unlikely to generalize well to new domains.
Instead, we aim to train a generalizable reward model that can provide useful rewards, even on sig-
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nificantly out-of-distribution tasks and settings. We hypothesize that ideas from all three threads of
work are useful, and combining them can lead to a reward model whose generalization is greater
than the sum of its parts.

To this end, we investigate how to blend together large-scale VLM backbones, progress-based
rewards, and preference-based rewards into one scalable, unified reward model we call SPUR
(Scalable Progress and Preference Unified Reward). Firstly, we investigate the use of a large-scale
pre-trained VLM backbone, not for zero-shot robot reward queries, but instead as a trainable back-
bone for encoding robot image sequences and language instruction tokens. SPUR then directly pre-
dicts task progress coming from successful demonstration trajectories, along with simulating failed
trajectories with video rewind augmentation [15], to produce useful per-timestep rewards for robots.
Finally, to help the model scale, SPUR also trains to predict binary preferences over mismatched
and rewound video sequences. This preference objective complements the reward prediction objec-
tive while also allowing for training with trajectories with failed execution, which progress-based
methods cannot train on without explicit progress labels for each failed trajectory.

Through reward analysis experiments on new tasks in LIBERO [21] and Metaworld [22], we demon-
strate how each component complements the others for scalable training of generalizable reward
models. We also outperform recent, state of the art baselines across comparisons in both domains.

2 Related Works

2.1 Learning Reward Functions

Several prior works explored learning reward functions from various forms of supervision. One line
of research leverages direct human feedback, such as comparisons [23, 24, 25, 26, 27], rankings [28],
language annotations [9], and trajectory corrections [29, 30], to infer rewards. While these methods
can align reward functions with human intent, they typically require substantial human supervision
and are often sample-inefficient.

Another major direction is inverse RL (IRL), where reward functions are inferred from demonstra-
tions [, 31, 32, 33] or implicitly from expert and goal-state distributions [34, 35, 36]. However, IRL
methods struggle to scale to high-dimensional state—action spaces and usually require new demon-
strations for every new task. In general, both human-feedback—based and IRL-based approaches
lack effective transfer mechanisms: when faced with a novel task, they often need to be retrained
from scratch. In contrast, our method leverages the semantic representations in VLM backbone to

transfer learned reward functions to unseen tasks without requiring additional human supervision.

2.2 Large Vision and Language Models as Reward Functions

Recently, LLMs and VLMs have been applied to reward design through code generation [5, 4, 37],
embedding-based reward estimation [38, 10], and preference-based feedback [8, 2]. However, most
of these methods assume access to privileged state information that is rarely available in real-world
settings. Another line of work employs VLMs as zero-shot success detectors, treating them as sparse
reward models [39, 40, 41]. While promising, this approach provides only episodic feedback and
misses the dense supervision signals present throughout the trajectory.

Some prior work explores task progress as a proxy reward, either by using VLMs as progress es-
timators [10, 11, 12, 13, 14] or by training task-specific models with progress-prediction objec-
tives [16, 17, 15]. VLM-based estimators, however, often yield noisy outputs, while smaller per-task
models tend to overfit to domain-specific dynamics, limiting their generalization to new domains.
In this work, we combine progress prediction with preference feedback over video sequences to
improve the reward learning objective. We further show that incorporating failure trajectory pairs
improves generalization across tasks
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Figure 1: SPUR. Given two video trajectories, we train our VLM-based reward model, SPUR,
to predict progress-based and preference-based rewards. We use four strategies (left) for curating
training examples from our given datasets, which are further detailed in Section 3.2.

3 Method

We introduce SPUR, a generalizable reward model, as illustrated in Figure 1. We start with a dataset
D = {n, 72,73, ...} consisting of robot demonstration trajectories 7 = {o01.7,l, success} with
image observations o, language instructions [, and a success label success € {0, 1}. To enable
generalization to unseen tasks, environments, and domains, we first instantiate the reward model
with a large-scale, pre-trained vision-language model (VLM) backbone. Then, we fine-tune it on
two objectives that complement each other: predicting preferences over pairs of video trajectories
and predicting continuous task progress as rewards.

3.1 VLM Base Model

Our base model is QWEN2.5-VL-INSTRUCT-3B [42], a 3B parameter, open-source, image and
video-input VLM which demonstrates strong zero-shot performance across various vision and lan-
guage tasks. SPUR can incorporate any base VLM model which supports language and video input,
but we found QWEN to be easy to tune and performant. SPUR uses this model to take as input a
natural language task description [ and up to two different video sequences, o}, and 07, of arbi-
trary length. SPUR encodes both the language and videos as a single sequence of tokens with the
base model’s tokenizer to construct its inputs as depicted below:

(1,0",0%) — Token(l) {|video_start|) Token(o') (|split_token|) Token(o?) (|pref_token|), (1)

where (|split_token|) is a special token that delinates the two video sequences. The VLM then pro-
duces a sequence of hidden states, which we use for preference and progress prediction, as detailed
next.

3.2 Preference Prediction

To predict preferences, we attach an MLP head to the final hidden state corresponding to the special
token (|pref_token|) from Equation (1) to produce preference logits. The model is trained to discern
which of the two video sequences, o} - or 0,1, is better aligned with the given natural language
task description, . We denote the preference label as 7, where y = 1 if o' is preferred over 02, and
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y = 0 otherwise. Formally, the learned preference head MLPp,.r produces a probability:

P(O1 - 02 ‘ l) =0 (MLPpref (h(|pref,loken\>)) .

where o is the sigmoid function and A |pref_token|) 18 the hidden state corresponding to the location of
the (|pref_token|) in the input from Equation (1). The preference objective is optimized using the
binary cross-entropy loss and backpropagated through MLP,t and the VLM through A |pref token|) :

Lopreterence = — [y log P(o! = 0% | 1) + (1 — y)log(1 — P(o! = 02 | 1))].

Preference Sample Construction. Large-scale preference datasets comparing robot trajectories are
not widely available, especially for training generalizable reward models. Given the scarcity of such
data, we instead propose a suite of strategies for scalably curating a larger set of preference samples
from existing trajectories without needing manual human annotations.

We construct preference pairs (1, 0hosen greiected v/} for training by sampling trajectories from D,
always assigning oM®" as the preferred observation sequence (y = 1). Given sampled trajecto-
ries 7 = {o1.1,l, success}, we create batches of preference tuples sampled uniformly over the
following four strategies:

1. Different expertise. Given a task instruction /, sample two trajectories 7, 7o ~ D with the
same instruction where 71 has success == 1 and 7 has success == 0. We extract
ohosen from the observation sequence from 7.

2. Different tasks. Sample a trajectory 0" ~ D corresponding to the task instruction [

and a trajectory o"°“®®d with a different instruction. These samples encourage the model to
ground correct video and language pairs.

3. Trajectory rewind. Following the idea proposed by ReWiND [15] that generated failed
trajectories for reward progress prediction by rewinding videos, we propose to rewind suc-
cessful videos to generate negative preference pairs. For a given trajectory o®"®" = o1.p
with success == 1, we first sample a random contiguous subsegment:

Osub = Ol:tenas 1 <tena <T.

We then generate a rewound trajectory 0'°“d by reversing the last k frames of the ogy,
where k ~ U (1, tena — tstart):

rejected __
o - [Olitcmﬂ Otmd—11tena—k+1]7

where [-] denotes concatenating the videos. This procedure ensures that 0" represents

the full progress along the subsegment, while 0™ exhibits backward progress at the end.

4. Subsequence progress. For the same trajectory 7 with success == 1, sample two
subsequences 01:¢, , 01.¢, With {1 < t2. We assign ochosen — 01:1, as itis further along in the
task.

In practice, for all of these samples, we also sample the first frame randomly from the first half of
the trajectory so that in datasets where the robot’s starting position is consistent across trajectories,
SPUR does not overfit to the robot’s starting position.

3.3 Task Progress Prediction

In addition to preference prediction, SPUR also predicts the per-frame progress for each video as it
can more directly be used for rewarding policies downstream [15]. Given a video o1.7 with language
instruction [, SPUR predicts a continuous progress value p € [0, 1] indicating the fraction of the task
completed at each frame. The tokenized prompt is the same as in Equation (1) except without the
second video 02.
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Specifically, a progress prediction MLP head, MLPpogess, is attached to the hidden states h|,, )
corresponding to each frame ¢, thereby producing per-frame progress predictions. We train SPUR on
the same data as in Section 3.2, with the exception of “Different expertise” where failed trajectories
are not used for progress training as they do not have a ground truth progress to use. For a given
video from a sampled trajectory o1.7 (which can also be a subsequence), the progress prediction loss
is computed as the Mean Squared Error (MSE) between predicted and ground-truth progress values:

M=

MLPyrogress (7o, ]y) — t/T , if not rewound
-

ground truth progress

o~
Il
-

['progress = MLPprogress(hﬂot\)) -0 if wrong task (2)

i

0 progress for mismatched tasks

2 k 2
MLP / MLP progress (B fena —1 i d
proaless( Y(Jog \) + progress (loe]) ) T , 1rewound.
t=1
Loss for original trajectory until teng Rewound video for k frames from tepg —1

o~
a

o
I
—-

We compute progress losses only for success trajectories, ensuring that the model learns mean-
ingful temporal progress where the task is at least partially completed.

Overall, our final pretraining objective for SPUR is: Lpreference + Lprogress-

4 Experiments

Our experiments aim to study the efficacy of each component of SPUR and compare it against
baseline across a wide array of reward metrics. To this end, we organize our experiments to answer
the following experimental questions, in order:

(Q1) Which components of SPUR contribute the most to generalizable reward prediction?
(Q2) How does SPUR compare against baselines across a variety of reward metrics in unseen
tasks?

Setup: We conduct experiments using the LIBERO-90 dataset from the Lifelong Robot Learning
Suite [21]. This dataset provides a diverse set of household manipulation tasks with various levels of
distribution shift. Models are trained on demonstrations for 90 tasks in LIBERO-90 and evaluated
on four benchmark splits: LIBERO-10, Object, Spatial, and Goal, which measure generalization
across different dimensions such as goal, object, and spatial configurations. The original benchmark
includes 4500 trajectories (50 per task) rendered at 128x128; following Kim et al. [43], we replay
and re-render them at 256x256 and discard trajectories that did not replay successfully. We also
include a corresponding set of failed trajectories constructed by replaying demonstration trajectories
with added Gaussian noise on the actions.

We additionally compare on MetaWorld [22], specifically the 20-task training split consisting of
5 demonstrations each from Zhang et al. [15]. Correspondingly, we evaluate on the corresponding
17-task evaluation dataset across a variety of metrics proposed in Zhang et al. [15] that were shown
to be reflective of downstream policy performance.

We list all dataset sizes in Table 4.
Baselines: We compare SPUR against several strong reward learning baselines:
* ReWIND [15]: trains a transformer-based network with a direct progress prediction objective

using frozen language and image encoders along with video rewinding to simulate failed policy
rollouts.

* Generative Value Learning (GVL) [14]: prompts a pre-trained Gemini LLM [44] with shuffled
video frames to predict task progress for subsampled frames across the video sequence. We also
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Table 1: LIBERO Ablation Analysis. Comparison of ablations across preference and progress
accuracy metrics across unseen tasks in LIBERO-10, Object, Spatial, and Goal after training on
LIBERO-90. — indicates metrics that are not applicable to the given model.

Category Metric Base Model w/o Pref. w/o Progress w/o Fail. Traj. SPUR
Preference Accuracy Failed Trajs. 1 0.5 0.64 0.82 0.69 0.91
MSE | - 0.04 - 0.04 0.03

Progress Accuracy Reward Alignment p 1 _ 0.73 _ 0.73 0.81

convert its progress predictions to preference predictions by comparing last-frame predicted task
progress between queried trajectories.

* RL-VLM-F [8]: prompts a pre-trained LLM to obtain preference-based feedback predictions. We
query Gemini for these preference predictions.

4.1 Q1: Which Components of SPUR Contribute the Most?

First, we ablate individual components of SPUR to measure the effect of each. For these exper-
iments, we train exclusively on LIBERO-90 data (both success and failure) and evaluate on the
unseen LIBERO-10, Object, Spatial, and Goal datasetes.

* Base Model: Uses the pre-trained QWEN-2.5-VL-INSTRUCT-3B model to produce preference
and progress predictions via direct text prompticng.

* w/o Preference: Removes preference losses from the training objective. Preference accuracy is
computed by using final-frame progress comparisons instead.

* w/o Progress: Removes progress losses from the training objective.

» w/o Failure Data: Removes unsuccessful trajectories from the preference training objective.

Reward Metrics. We compute: preference accuracy when comparing paired successful and failed
trajectories, and progress prediction accuracy in terms of mean-squared-error (MSE) against the
ground-truth progress target of successful trajectories and in terms of reward alignment in terms of
spearman correlation (p), measuring how well the predicted progress is ordered with respect to the
ground truth progress ordering of successful demonstrations.

Results averaged across our 4 unseen task distributions are displayed in Table |, where the base
model performs at random chance on predicting preferences. We found it almost always produced
deterministically increasing progress predictions, so we do not include progress accuracy metrics.
Meanwhile, removing preference predictions hurts the progress accuracy and reward alignment com-
pared to SPUR, and removing progress predictions hurts the preference accuracy relative to SPUR.
Removing failed trajectories also predictably hurts unseen failed trajectory preference accuracy.
Overall, we demonstrate that SPUR performs the best across all comparisons and that each compo-
nent we ablate complements each other to increase overall performance.

4.2 Q2: Reward Function Analysis in Unseen Tasks

Table 2: LIBERO Metrics. Baseline comparison across preference and progress accuracy metrics
across unseen tasks in LIBERO-10, Object, Spatial, and Goal after training on LIBERO-90.

Category Metric RL-VLM-F GVL SPUR

Preference Accuracy Failed Trajs. 0.39 0.65 0.91

Progress Accuracy MSE | B 0.07 0.03
Reward Alignment p 1 - 0.68 0.81

Now, we compare SPUR against reward model baselines across unseen tasks in both LIBERO and
Metaworld. We first list LIBERO comparisons in Table 2 to GVL and RI-VLM-F. All methods are
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trained on the same LIBERO-90 datasets where applicable (GVL and RL-VLM-F instead prompt
pre-trained, closed-source generative models). We can see that SPUR outperforms RL-VLM-F by
2.9x and GVL by 1.4x on preference accuracy. Additionally, it outperforms GVL with less than half
the progress prediction MSE and 1.19x improvement on reward alignment correlation.

Table 3: Metaworld Reward Metrics. Comparison of reward models in terms of reward alignment
(p) on Metaworld. Baseline results taken from ReWiND [15].

Category Metric LIV-FT RoboCLIP VLC GVL ReWiND w/o OXE ReWiND w/ OXE SPUR
Reward Alignment p 1 0.55 -0.01 0.62 0.57 0.64 0.79 0.83

Next we compare MetaWorld performance against an additional set of baselines on the MetaWorld
evaluation dataset from ReWiND [15]. For a more comprehensive comparison, we also include
additional baselines listed in Zhang et al. [15], namely LIV-FT [16], VLC [19], and RoboCLIP [10],
along with ReWiND trained with and without the Open X-Embodiment (OXE) Dataset [45] as
proposed in Zhang et al. [15]. We refer readers to Zhang et al. [15] for additional details about
these baselines. Results in Table 3 indicate that SPUR outperforms the best-performing model,
beating ReWiND even when it’s trained with additional data from OXE, and beating ReWiND’s
performance by 1.29x when both models are trained on the same data (w/o OXE).

5 Conclusion

We studied the problem of learning reward functions that generalize to unseen tasks without rely-
ing on additional demonstrations or online training. To address these challenges, we introduced
SPUR a unified reward learning framework that leverages a large-scale VLM backbone together
with both progress-based and preference-based objectives. By combining per-timestep progress
prediction with preference supervision over mismatched and rewound trajectories, SPUR learns
from both successful and failed executions while producing denser and more transferable rewards.
Our experiments on LIBERO and Metaworld show that each component of SPUR contributes to
improved generalization, and that the full model consistently outperforms recent state-of-the-art
baselines across diverse reward metrics.

Looking forward, we believe that scalable reward learning frameworks such as SPUR offer a
promising path toward reducing reliance on costly demonstrations and enabling more robust robot
policy training in real-world settings. Future directions include extending our framework to longer-
horizon tasks, enabling cross-embodiment reward transfer including human videos, and evaluating
deployment in real-robot experiments.
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Table 4: Dataset

Dataset Splits
Dataset Num Trajectories
LIBERO90 3950
LIBERO10 388
LIBERO-Goal 432

LIBERO-Spatial 433
LIBERO-Object 456
LIBERO90 Failure 4312
LIBEROI10 Failure 498
MetaWorld Train 100
MetaWorld Eval 85

Table 5: Configuration Parameters for SPUR Training

Training Configuration for RFM

Parameter Value

Base Model Qwen/Qwen?2.5-VL-3B-Instruct
Max frames (downsampled) 16

Per device training batch size 16

Learning rate 2e-5

Training steps 5000

Max sequence length 1024

LR scheduler Cosine

Warmup ratio 0.1

Expertise / Task / Rewind / Subsequence ratio

[0.3,0.3,0.4, 0.0]
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