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Abstract: Learning reward functions from human demonstrations is criti-1

cal for scalable robot learning, yet most approaches either require impractical2

ground-truth state access, costly online retraining, or yield domain-specific mod-3

els with poor transferability. We propose SPUR, a unified reward modeling4

framework that combines a large pre-trained vision-language model (VLM) back-5

bone fine-tuned to encode robot image sequences and language instructions, a6

progress-based reward objective trained on successful demonstrations augmented7

with video rewind to simulate failures, and a preference-learning objective over8

mismatched and rewound trajectories to enable training on failed executions with-9

out explicit progress labels. This design leverages the generalization of VLMs10

while integrating complementary progress and preference signals for improved ro-11

bustness and generalization. Experiments on out-of-distribution tasks in LIBERO12

and Meta-World show that each component contributes to performance gains13

across a set of reward metrics, and their combination achieves state-of-the-art14

results compared to recent baselines, demonstrating scalable training of reward15

models.16

Keywords: CoRL, Robots, Learning17

1 Introduction18

An important problem in robot learning is that of learning rewards from human demonstrations [1]19

to guide policy learning. When deploying robots in the real world, it’s important that reward models20

generalize to new tasks so that humans do not need to provide additional demonstrations, which is21

expensive to scale, or train the reward models in tandem with the robot policies, which is sample-22

inefficient and time-consuming. In this work, we investigate how to train reward functions that can23

effectively generalize to new tasks without online training or additional demonstrations.24

Prior works have attempted to develop generalizable reward functions, but they often assume access25

to ground-truth states that may be difficult to provide in the real world [2, 3, 4, 5, 6, 7] or the ability26

to train reward models from scratch in tandem with the policy [1, 8, 9], limiting their practical27

applicability.28

Some recent works instead propose reward models that can be directly used at test time, condi-29

tioned solely on image observations and language instructions. One common approach is to leverage30

the generalization capabilities of large vision-language models (VLMs) by querying them for task31

progress to be used as reward [10, 11, 12, 13, 14], but these models have been shown to predict noisy32

rewards difficult to be directly used for training robot policies [12, 13, 15]. Another is to directly33

train a smaller reward model on human demonstrations. These methods use either a task-progress-34

based training objective [16, 17, 15], or a preference-based or contrastive objective [18, 19, 20], but35

they result in domain-specific reward models that are unlikely to generalize well to new domains.36

Instead, we aim to train a generalizable reward model that can provide useful rewards, even on sig-37
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nificantly out-of-distribution tasks and settings. We hypothesize that ideas from all three threads of38

work are useful, and combining them can lead to a reward model whose generalization is greater39

than the sum of its parts.40

To this end, we investigate how to blend together large-scale VLM backbones, progress-based41

rewards, and preference-based rewards into one scalable, unified reward model we call SPUR42

(Scalable Progress and Preference Unified Reward). Firstly, we investigate the use of a large-scale43

pre-trained VLM backbone, not for zero-shot robot reward queries, but instead as a trainable back-44

bone for encoding robot image sequences and language instruction tokens. SPUR then directly pre-45

dicts task progress coming from successful demonstration trajectories, along with simulating failed46

trajectories with video rewind augmentation [15], to produce useful per-timestep rewards for robots.47

Finally, to help the model scale, SPUR also trains to predict binary preferences over mismatched48

and rewound video sequences. This preference objective complements the reward prediction objec-49

tive while also allowing for training with trajectories with failed execution, which progress-based50

methods cannot train on without explicit progress labels for each failed trajectory.51

Through reward analysis experiments on new tasks in LIBERO [21] and Metaworld [22], we demon-52

strate how each component complements the others for scalable training of generalizable reward53

models. We also outperform recent, state of the art baselines across comparisons in both domains.54

2 Related Works55

2.1 Learning Reward Functions56

Several prior works explored learning reward functions from various forms of supervision. One line57

of research leverages direct human feedback, such as comparisons [23, 24, 25, 26, 27], rankings [28],58

language annotations [9], and trajectory corrections [29, 30], to infer rewards. While these methods59

can align reward functions with human intent, they typically require substantial human supervision60

and are often sample-inefficient.61

Another major direction is inverse RL (IRL), where reward functions are inferred from demonstra-62

tions [1, 31, 32, 33] or implicitly from expert and goal-state distributions [34, 35, 36]. However, IRL63

methods struggle to scale to high-dimensional state–action spaces and usually require new demon-64

strations for every new task. In general, both human-feedback–based and IRL-based approaches65

lack effective transfer mechanisms: when faced with a novel task, they often need to be retrained66

from scratch. In contrast, our method leverages the semantic representations in VLM backbone to67

transfer learned reward functions to unseen tasks without requiring additional human supervision.68

2.2 Large Vision and Language Models as Reward Functions69

Recently, LLMs and VLMs have been applied to reward design through code generation [5, 4, 37],70

embedding-based reward estimation [38, 10], and preference-based feedback [8, 2]. However, most71

of these methods assume access to privileged state information that is rarely available in real-world72

settings. Another line of work employs VLMs as zero-shot success detectors, treating them as sparse73

reward models [39, 40, 41]. While promising, this approach provides only episodic feedback and74

misses the dense supervision signals present throughout the trajectory.75

Some prior work explores task progress as a proxy reward, either by using VLMs as progress es-76

timators [10, 11, 12, 13, 14] or by training task-specific models with progress-prediction objec-77

tives [16, 17, 15]. VLM-based estimators, however, often yield noisy outputs, while smaller per-task78

models tend to overfit to domain-specific dynamics, limiting their generalization to new domains.79

In this work, we combine progress prediction with preference feedback over video sequences to80

improve the reward learning objective. We further show that incorporating failure trajectory pairs81

improves generalization across tasks82
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Figure 1: SPUR. Given two video trajectories, we train our VLM-based reward model, SPUR,
to predict progress-based and preference-based rewards. We use four strategies (left) for curating
training examples from our given datasets, which are further detailed in Section 3.2.

3 Method83

We introduce SPUR, a generalizable reward model, as illustrated in Figure 1. We start with a dataset84

D = {τ1, τ2, τ3, ...} consisting of robot demonstration trajectories τ = {o1:T , l,success} with85

image observations o, language instructions l, and a success label success ∈ {0, 1}. To enable86

generalization to unseen tasks, environments, and domains, we first instantiate the reward model87

with a large-scale, pre-trained vision-language model (VLM) backbone. Then, we fine-tune it on88

two objectives that complement each other: predicting preferences over pairs of video trajectories89

and predicting continuous task progress as rewards.90

3.1 VLM Base Model91

Our base model is QWEN2.5-VL-INSTRUCT-3B [42], a 3B parameter, open-source, image and92

video-input VLM which demonstrates strong zero-shot performance across various vision and lan-93

guage tasks. SPUR can incorporate any base VLM model which supports language and video input,94

but we found QWEN to be easy to tune and performant. SPUR uses this model to take as input a95

natural language task description l and up to two different video sequences, o11:T and o21:T of arbi-96

trary length. SPUR encodes both the language and videos as a single sequence of tokens with the97

base model’s tokenizer to construct its inputs as depicted below:98

(l, o1, o2) → Token(l) ⟨|video start|⟩ Token(o1) ⟨|split token|⟩ Token(o2) ⟨|pref token|⟩, (1)

where ⟨|split token|⟩ is a special token that delinates the two video sequences. The VLM then pro-99

duces a sequence of hidden states, which we use for preference and progress prediction, as detailed100

next.101

3.2 Preference Prediction102

To predict preferences, we attach an MLP head to the final hidden state corresponding to the special103

token ⟨|pref token|⟩ from Equation (1) to produce preference logits. The model is trained to discern104

which of the two video sequences, o11:T or o21:T , is better aligned with the given natural language105

task description, l. We denote the preference label as y, where y = 1 if o1 is preferred over o2, and106
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y = 0 otherwise. Formally, the learned preference head MLPpref produces a probability:107

P (o1 ≻ o2 | l) = σ
(
MLPpref

(
h⟨|pref token|⟩

))
.

where σ is the sigmoid function and h⟨|pref token|⟩ is the hidden state corresponding to the location of108

the ⟨|pref token|⟩ in the input from Equation (1). The preference objective is optimized using the109

binary cross-entropy loss and backpropagated through MLPpref and the VLM through h⟨|pref token|⟩:110

Lpreference = −
[
y logP (o1 ≻ o2 | l) + (1− y) log(1− P (o1 ≻ o2 | l))

]
.

Preference Sample Construction. Large-scale preference datasets comparing robot trajectories are111

not widely available, especially for training generalizable reward models. Given the scarcity of such112

data, we instead propose a suite of strategies for scalably curating a larger set of preference samples113

from existing trajectories without needing manual human annotations.114

We construct preference pairs (l, ochosen, orejected, y) for training by sampling trajectories from D,115

always assigning ochosen as the preferred observation sequence (y = 1). Given sampled trajecto-116

ries τ = {o1:T , l,success}, we create batches of preference tuples sampled uniformly over the117

following four strategies:118

1. Different expertise. Given a task instruction l, sample two trajectories τ1, τ2 ∼ D with the119

same instruction where τ1 has success == 1 and τ2 has success == 0. We extract120

ochosen from the observation sequence from τ1.121

2. Different tasks. Sample a trajectory ochosen ∼ D corresponding to the task instruction l122

and a trajectory orejected with a different instruction. These samples encourage the model to123

ground correct video and language pairs.124

3. Trajectory rewind. Following the idea proposed by ReWiND [15] that generated failed125

trajectories for reward progress prediction by rewinding videos, we propose to rewind suc-126

cessful videos to generate negative preference pairs. For a given trajectory ochosen = o1:T127

with success == 1, we first sample a random contiguous subsegment:128

osub = o1:tend , 1 ≤ tend ≤ T.

We then generate a rewound trajectory orejected by reversing the last k frames of the osub129

where k ∼ U(1, tend − tstart):130

orejected = [o1:tend , otend−1:tend−k+1
],

where [·] denotes concatenating the videos. This procedure ensures that ochosen represents131

the full progress along the subsegment, while orejected exhibits backward progress at the end.132

4. Subsequence progress. For the same trajectory τ with success == 1, sample two133

subsequences o1:t1 , o1:t2 with t1 < t2. We assign ochosen = o1:t2 as it is further along in the134

task.135

In practice, for all of these samples, we also sample the first frame randomly from the first half of136

the trajectory so that in datasets where the robot’s starting position is consistent across trajectories,137

SPUR does not overfit to the robot’s starting position.138

3.3 Task Progress Prediction139

In addition to preference prediction, SPUR also predicts the per-frame progress for each video as it140

can more directly be used for rewarding policies downstream [15]. Given a video o1:T with language141

instruction l, SPUR predicts a continuous progress value p ∈ [0, 1] indicating the fraction of the task142

completed at each frame. The tokenized prompt is the same as in Equation (1) except without the143

second video o2.144
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Specifically, a progress prediction MLP head, MLPprogress, is attached to the hidden states h⟨|oi|⟩145

corresponding to each frame i, thereby producing per-frame progress predictions. We train SPUR on146

the same data as in Section 3.2, with the exception of “Different expertise” where failed trajectories147

are not used for progress training as they do not have a ground truth progress to use. For a given148

video from a sampled trajectory o1:T (which can also be a subsequence), the progress prediction loss149

is computed as the Mean Squared Error (MSE) between predicted and ground-truth progress values:150

Lprogress =



T∑
t=1

MLPprogress(h⟨|ot|⟩)− t/T︸︷︷︸
ground truth progress


2

, if not rewound

T∑
t=1

MLPprogress(h⟨|ot|⟩)− 0︸ ︷︷ ︸
0 progress for mismatched tasks


2

if wrong task

tend∑
t=1

(
MLPprogress(h⟨|ot|⟩)−

t

T

)2

︸ ︷︷ ︸
Loss for original trajectory until tend

+

k∑
t=1

(
MLPprogress(h⟨|ot|⟩)−

tend − t

T

)2

︸ ︷︷ ︸
Rewound video for k frames from tend−1

, if rewound.

(2)

We compute progress losses only for success trajectories, ensuring that the model learns mean-151

ingful temporal progress where the task is at least partially completed.152

Overall, our final pretraining objective for SPUR is: Lpreference + Lprogress.153

4 Experiments154

Our experiments aim to study the efficacy of each component of SPUR and compare it against155

baseline across a wide array of reward metrics. To this end, we organize our experiments to answer156

the following experimental questions, in order:157

(Q1) Which components of SPUR contribute the most to generalizable reward prediction?158

(Q2) How does SPUR compare against baselines across a variety of reward metrics in unseen159

tasks?160

Setup: We conduct experiments using the LIBERO-90 dataset from the Lifelong Robot Learning161

Suite [21]. This dataset provides a diverse set of household manipulation tasks with various levels of162

distribution shift. Models are trained on demonstrations for 90 tasks in LIBERO-90 and evaluated163

on four benchmark splits: LIBERO-10, Object, Spatial, and Goal, which measure generalization164

across different dimensions such as goal, object, and spatial configurations. The original benchmark165

includes 4500 trajectories (50 per task) rendered at 128x128; following Kim et al. [43], we replay166

and re-render them at 256x256 and discard trajectories that did not replay successfully. We also167

include a corresponding set of failed trajectories constructed by replaying demonstration trajectories168

with added Gaussian noise on the actions.169

We additionally compare on MetaWorld [22], specifically the 20-task training split consisting of170

5 demonstrations each from Zhang et al. [15]. Correspondingly, we evaluate on the corresponding171

17-task evaluation dataset across a variety of metrics proposed in Zhang et al. [15] that were shown172

to be reflective of downstream policy performance.173

We list all dataset sizes in Table 4.174

Baselines: We compare SPUR against several strong reward learning baselines:175

• ReWiND [15]: trains a transformer-based network with a direct progress prediction objective176

using frozen language and image encoders along with video rewinding to simulate failed policy177

rollouts.178

• Generative Value Learning (GVL) [14]: prompts a pre-trained Gemini LLM [44] with shuffled179

video frames to predict task progress for subsampled frames across the video sequence. We also180
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Table 1: LIBERO Ablation Analysis. Comparison of ablations across preference and progress
accuracy metrics across unseen tasks in LIBERO-10, Object, Spatial, and Goal after training on
LIBERO-90. – indicates metrics that are not applicable to the given model.
Category Metric Base Model w/o Pref. w/o Progress w/o Fail. Traj. SPUR
Preference Accuracy Failed Trajs. ↑ 0.5 0.64 0.82 0.69 0.91

Progress Accuracy MSE ↓ – 0.04 – 0.04 0.03
Reward Alignment ρ ↑ – 0.73 – 0.73 0.81

convert its progress predictions to preference predictions by comparing last-frame predicted task181

progress between queried trajectories.182

• RL-VLM-F [8]: prompts a pre-trained LLM to obtain preference-based feedback predictions. We183

query Gemini for these preference predictions.184

4.1 Q1: Which Components of SPUR Contribute the Most?185

First, we ablate individual components of SPUR to measure the effect of each. For these exper-186

iments, we train exclusively on LIBERO-90 data (both success and failure) and evaluate on the187

unseen LIBERO-10, Object, Spatial, and Goal datasetes.188

• Base Model: Uses the pre-trained QWEN-2.5-VL-INSTRUCT-3B model to produce preference189

and progress predictions via direct text prompticng.190

• w/o Preference: Removes preference losses from the training objective. Preference accuracy is191

computed by using final-frame progress comparisons instead.192

• w/o Progress: Removes progress losses from the training objective.193

• w/o Failure Data: Removes unsuccessful trajectories from the preference training objective.194

Reward Metrics. We compute: preference accuracy when comparing paired successful and failed195

trajectories, and progress prediction accuracy in terms of mean-squared-error (MSE) against the196

ground-truth progress target of successful trajectories and in terms of reward alignment in terms of197

spearman correlation (ρ), measuring how well the predicted progress is ordered with respect to the198

ground truth progress ordering of successful demonstrations.199

Results averaged across our 4 unseen task distributions are displayed in Table 1, where the base200

model performs at random chance on predicting preferences. We found it almost always produced201

deterministically increasing progress predictions, so we do not include progress accuracy metrics.202

Meanwhile, removing preference predictions hurts the progress accuracy and reward alignment com-203

pared to SPUR, and removing progress predictions hurts the preference accuracy relative to SPUR.204

Removing failed trajectories also predictably hurts unseen failed trajectory preference accuracy.205

Overall, we demonstrate that SPUR performs the best across all comparisons and that each compo-206

nent we ablate complements each other to increase overall performance.207

4.2 Q2: Reward Function Analysis in Unseen Tasks208

Table 2: LIBERO Metrics. Baseline comparison across preference and progress accuracy metrics
across unseen tasks in LIBERO-10, Object, Spatial, and Goal after training on LIBERO-90.

Category Metric RL-VLM-F GVL SPUR
Preference Accuracy Failed Trajs. 0.39 0.65 0.91

Progress Accuracy MSE ↓ – 0.07 0.03
Reward Alignment ρ ↑ – 0.68 0.81

Now, we compare SPUR against reward model baselines across unseen tasks in both LIBERO and209

Metaworld. We first list LIBERO comparisons in Table 2 to GVL and Rl-VLM-F. All methods are210
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trained on the same LIBERO-90 datasets where applicable (GVL and RL-VLM-F instead prompt211

pre-trained, closed-source generative models). We can see that SPUR outperforms RL-VLM-F by212

2.9x and GVL by 1.4x on preference accuracy. Additionally, it outperforms GVL with less than half213

the progress prediction MSE and 1.19x improvement on reward alignment correlation.214

Table 3: Metaworld Reward Metrics. Comparison of reward models in terms of reward alignment
(ρ) on Metaworld. Baseline results taken from ReWiND [15].
Category Metric LIV-FT RoboCLIP VLC GVL ReWiND w/o OXE ReWiND w/ OXE SPUR
Reward Alignment ρ ↑ 0.55 -0.01 0.62 0.57 0.64 0.79 0.83

Next we compare MetaWorld performance against an additional set of baselines on the MetaWorld215

evaluation dataset from ReWiND [15]. For a more comprehensive comparison, we also include216

additional baselines listed in Zhang et al. [15], namely LIV-FT [16], VLC [19], and RoboCLIP [10],217

along with ReWiND trained with and without the Open X-Embodiment (OXE) Dataset [45] as218

proposed in Zhang et al. [15]. We refer readers to Zhang et al. [15] for additional details about219

these baselines. Results in Table 3 indicate that SPUR outperforms the best-performing model,220

beating ReWiND even when it’s trained with additional data from OXE, and beating ReWiND’s221

performance by 1.29x when both models are trained on the same data (w/o OXE).222

5 Conclusion223

We studied the problem of learning reward functions that generalize to unseen tasks without rely-224

ing on additional demonstrations or online training. To address these challenges, we introduced225

SPUR a unified reward learning framework that leverages a large-scale VLM backbone together226

with both progress-based and preference-based objectives. By combining per-timestep progress227

prediction with preference supervision over mismatched and rewound trajectories, SPUR learns228

from both successful and failed executions while producing denser and more transferable rewards.229

Our experiments on LIBERO and Metaworld show that each component of SPUR contributes to230

improved generalization, and that the full model consistently outperforms recent state-of-the-art231

baselines across diverse reward metrics.232

Looking forward, we believe that scalable reward learning frameworks such as SPUR offer a233

promising path toward reducing reliance on costly demonstrations and enabling more robust robot234

policy training in real-world settings. Future directions include extending our framework to longer-235

horizon tasks, enabling cross-embodiment reward transfer including human videos, and evaluating236

deployment in real-robot experiments.237
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Table 4: Dataset
Dataset Splits

Dataset Num Trajectories
LIBERO90 3950
LIBERO10 388
LIBERO-Goal 432
LIBERO-Spatial 433
LIBERO-Object 456
LIBERO90 Failure 4312
LIBERO10 Failure 498
MetaWorld Train 100
MetaWorld Eval 85

Table 5: Configuration Parameters for SPUR Training
Training Configuration for RFM

Parameter Value
Base Model Qwen/Qwen2.5-VL-3B-Instruct
Max frames (downsampled) 16
Per device training batch size 16
Learning rate 2e-5
Training steps 5000
Max sequence length 1024
LR scheduler Cosine
Warmup ratio 0.1
Expertise / Task / Rewind / Subsequence ratio [0.3, 0.3, 0.4, 0.0]
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