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Descending feedback connections, together with ascending feedforward
ones, are the indispensable parts of the sensory pathways in the central
nervous system. This study investigates the potential roles of feedback
interactions in neural information processing. We consider a two-layer
continuous attractor neural network (CANN), in which neurons in the
first layer receive feedback inputs from those in the second one. By uti-
lizing the intrinsic property of a CANN, we use a projection method to
reduce the dimensionality of the network dynamics significantly. The
simplified dynamics allows us to elucidate the effects of feedback modu-
lation analytically. We find that positive feedback enhances the stability
of the network state, leading to an improved population decoding perfor-
mance, whereas negative feedback increases the mobility of the network
state, inducing spontaneously moving bumps. For strong, negative feed-
back interaction, the network response to a moving stimulus can lead the
actual stimulus position, achieving an anticipative behavior. The biolog-
ical implications of these findings are discussed. The simulation results
agree well with our theoretical analysis.

1 Introduction

External information is processed layer by layer in the sensory pathways of
the central nervous system. Anatomical data have revealed that apart from
the ascending ones, there exist abundant descending connections between
layers, whose number is even larger than that of the former (Sillito, Cudeiro,
& Jones, 2006). For instance, about 30% of the synaptic inputs received by
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lateral geniculate nucleus (LGN) neurons is from the feedback connections
of layer 6 neurons in V1 and only 10% from the feedforward connections of
retina ganglion cells (Van Horn, Erişir, & Sherman, 2000); for layer 4 neurons
in V1, the feedback connections from layer 6 neurons comprise about 45% of
the total synaptic inputs, whereas the feedforward connections from LGN
neurons contribute only 6% to 9% (Latawiec, Martin, & Meskenaite, 2000).
Thus, understanding the role of feedback interaction in neural information
processing is critical for elucidating brain functions.

A general perspective on the role of feedback interaction is that it con-
veys the information in higher layers and modulates neural responses in
descendant ones, so that the efficiency and accuracy of neural systems ex-
tracting external stimuli are improved (Lee & Mumford, 2003). This view
has been supported by experimental findings. For instance, the feedback
input from V1 can enhance the center surround antagonism of an LGN
neuron, improving its response sharpness to salient features embedded in
noisy backgrounds (Murphy & Sillito, 1987). The V1 feedback input can
also switch the firing pattern of an LGN neuron between burst and tonic,
controlling the features of the information flow relayed to the cortex (Mc-
Clurkin, Optican, & Richmond, 1994). Furthermore, the feedback inputs
from V1 to LGN, and from MT to V1, can enhance motion information
processing. It was found that the feedback input from V1 strengthens the
LGN response to moving stimuli, enabling it to track faster-moving objects
(Gulyas, Lagae, Eysel, & Orban, 1990). The feedback input from MT to V1
conveys the motion information of objects in a wide visual field not available
to V1 neurons and helps solve the aperture problem (Pack & Born, 2001).
Theoretical studies, based on optimal inference, also suggest that feedback
interaction serves to estimate the input information recursively, achieving
efficient predictive coding (Rao & Ballard, 1999; Lee & Mumford, 2003).

Although the importance of feedback interaction has been widely rec-
ognized in the field, there are few modeling studies elucidating its detailed
computational role. Our knowledge on the structure of feedback interac-
tions is very limited, and a dynamical system with feedback connections
is often extremely difficult to analyze. In this study, based on experimental
data and a simple model, we explore the potential computational role of
feedback interaction on modulating the network response properties to ex-
ternal inputs. In particular, we consider a two-layer network with neurons
reciprocally connected between layers. This agrees with the experimental
finding that neurons tend to feed back their activities to those from which
they receive the ascending inputs (Lund, Angelucci, & Bressloff, 2003).
Neurons in both layers are tuned to the same continuous stimulus, and
they are connected recurrently in the same layer, forming a continuous at-
tractor neural network (CANN). CANNs have been successfully applied
to describe the encoding of continuous stimuli in neural systems, includ-
ing orientation (Ben-Yishai, Bar-Or, & Sompolinsky, 1995), head direction
(Zhang, 1996), moving direction (Georgopoulos, Taira, & Lukashin, 1993),
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Figure 1: The structure of the network. It consists of two layers of neurons.
Neurons are aligned according to their preferred stimuli and connected with
each other in the same layer and between layers. Only two neurons’ connection
patterns are shown, with the line width indicating the connection strength.

and spatial location of objects (Samsonovich & McNaughton, 1997). If the
preferred stimulus of neurons is associated with the orientation, our model
can be regarded as a simplified network formed by layers 4 and 6 neurons
in V1 or formed by neurons in V1 and MT (or V2) that are retinotopically
connected. Our model, however, is not directly applicable to the interac-
tion between LGN and V1 neurons, since no evidence shows that the LGN
network can be described as a CANN.

Experimental data have revealed that feedback interaction can be posi-
tive or negative depending on the relationship between neurons’ preferred
stimuli, and the modulation can display either a push or a pull effect or
both (Wang, Jones, Andolina, Salt, & Sillito, 2006). In this study, we con-
sider both positive and negative feedback interactions and compare their
effects on network dynamics. To overcome the high dimensionality of net-
work dynamics, we use a projection method to simplify it significantly: we
approximate the network dynamics by considering only its dominating mo-
tion models. With the simplified dynamics, we systematically investigate
the modulations of feedback interaction on the network response proper-
ties and obtain a number of interesting results that may have important
implications in neural information processing.

2 The Model

We consider a two-layer network with neurons reciprocally connected be-
tween layers (see Figure 1). Neurons in both layers are tuned to the same
one-dimensional stimulus x. We consider the case that the range of all
neurons’ preferred stimulus is much larger than the range of neuronal
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interactions (the neuronal interaction has a gaussian form, and the width
of the gaussian function defines the range of neuronal interactions; see
equation 2.4). We can thus effectively take x ∈ (−∞,∞) in our analysis. In
simulations, however, we set the stimulus range to be −L/2 < x ≤ L/2 and
impose a periodic condition.

Let Ui(x, t) be the synaptic input at time t to the neurons in the ith layer
whose preferred stimulus is x. The dynamics of Ui(x, t) is determined by
the recurrent input from other neurons in the same layer, the feedback (for
the first layer) or feedforward (for the second layer) input from the other
layer, the external input Iext (x, t) (only for the first layer), and its own decay.
The dynamical equations for Ui(x, t) are written as

τ
∂U1(x, t)

∂t
= −U1(x, t) + ρ

∫
x′

W(x, x′)r1(x
′, t)dx′

+ ρ

∫
x′

WFB(x, x′)r2(x
′, t)dx′ + Iext (x, t), (2.1)

τ
∂U2(x, t)

∂t
= −U2(x, t) + ρ

∫
x′

W(x, x′)r2(x
′, t)dx′

+ ρ

∫
x′

WFF (x, x′)r1(x
′, t)dx′, (2.2)

where τ is the time constant for the synaptic input, which is typically on the
order of 2 to 5 ms. ρ is the neural density. ri(x, t) is the firing rate of neurons
in the ith layer having the preferred stimulus x. ri(x, t) increases with the
synaptic input but saturates in the presence of global inhibition. A solvable
model capturing these features is given by divisive normalization (Deneve,
Latham, & Pouget, 1999; Wu, Amari, & Nakahara, 2002),

ri(x, t) =
[
Ui(x, t)

]2
+

1 + kρ
∫

x′ U2
i (x′, t)dx′ , (2.3)

where the symbol [x]+ denotes a half-rectifying function: [x]+ = 0, for x ≤ 0
and [x]+ = x, for x > 0, and k the global inhibition strength.

It has been suggested that divisive normalization can be achieved by a
shunting inhibition (Heeger, 1992). Here we sketch a possible way to achieve
this. In a recent experimental study, Hao, Wang, Dan, Poo, and Zhang (2009)
showed that if an inhibitory input is on the path for an excitatory current
propagating to the soma of a neuron (called the on-path configuration), then
the total synaptic current generated at the soma can be written as Ui = UE

i +
UI

i + kUE
i UI

i , where UE
i > 0 and UI

i < 0 denote, respectively, the excitatory
and inhibitory currents, and k is a constant. Here, the multiplicative term,
kUE

i UI
i , represents the contribution of shunting inhibition. For simplicity,
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let us assume that due to noise, the firing rate of a neuron has a linear
relationship with its synaptic input, ri ∼ Ui. Consider a network structure in
which all excitatory neurons are connected to a group of inhibitory neurons,
and the inhibitory neurons send feedback inputs to the excitatory ones. Then
the magnitude of the inhibitory input received by an excitatory neuron is
proportional to the total activities of all excitatory neurons: UI

i ∼ −∑ j rE
j .

Furthermore, consider that the inhibitory input to an excitatory neuron is
on path with respect to all excitatory inputs from other neurons (called
global shunting); then the total synaptic input received by this excitatory
neuron is Ui ∼ UE

i −∑ j rE
j − kUE

i
∑

j rE
j , and the firing rate of the neuron is

rE
i ∼ UE

i −∑ j UE
j − kUE

i
∑

j UE
j . Therefore, in this network, the firing rate of

an excitatory neuron increases first with its synaptic input UE
i but saturates

when UE
i is sufficiently large, displaying the divisive normalization effect.

By choosing the parameters properly, we get the normalization form in
equation 2.3.

W(x, x′) denotes the neuronal recurrent interaction in the same layer,
which is of the gaussian form with strength J0 and range a,

W(x, x′) = J0√
2πa

exp
[
− (x − x′)2

2a2

]
. (2.4)

WFF (x, x′) and WFB(x, x′) are, respectively, the feedforward and feedback
interactions between layers, which are chosen to be

WFF (x, x′) =
J f f√
2πb1

exp
[
− (x − x′)2

2b2
1

]
, (2.5)

WFB(x, x′)=
J f b√
2πb2

exp
[
− (x − x′)2

2b2
2

]
, (2.6)

where the parameters Jff and b1 control, respectively, the strength and range
of feedforward interaction, and so do Jfb and b2 for the feedback interaction.
For J f b > 0, the feedback interaction is positive, representing the push effect
from the second- to the first-layer neurons, whereas for J f b < 0, the feedback
interaction has a pull effect. Note that in practice, the direct feedback con-
nection between layers of neurons is typically excitatory, and the negative
modulation is achieved by interneurons (Sillito et al., 2006).

In our model, the neuronal interactions, including the recurrent, feedfor-
ward, and feedback ones, are translationally invariant with respect to the
preferred stimuli of neurons: they are decaying functions of the difference
between neuronal preferred stimuli (x − x′). This implies that the network
can hold a continuous family of localized stationary states if the parameters
are properly chosen (see Figure 2). In the continuum limit, these stationary



1700 W. Zhang and S. Wu

Figure 2: The stationary states of the network when no external input is
applied. They are the solutions of equations 2.1 and 2.2. In both layers, the
profile of neural population activity displays a bump shape and can be approxi-
mated as the gaussian function when the feedforward and feedback interactions
are weak. The network holds a continuous family of such bump-shaped sta-
tionary states. Parameters: N = 200, b1 = b2 = a = 0.5, J0 = √

2πa, J f f = 1, J f b =
−0.1.

states form a continuous manifold in which the network is neutrally stable:
that is, the network state can translate easily when the external stimulus
changes continuously (Amari, 1977; Wu et al., 2002). This property endows
the network with the capacities of reading out the stimulus information
easily (Deneve, Latham, & Pouget, 1999) and tracking time-varying stimuli
smoothly (Samsonovich & McNaughton, 1997; Wu & Amari, 2005). This
type of network, called a continuous attractor neural network (CANN), has
been successfully applied to describe the encoding of continuous stimuli in
neural systems, including orientation (Ben-Yishai et al., 1995), head direc-
tion (Zhang, 1996), moving direction (Georgopoulos et al., 1993), and spatial
locations of objects (Samsonovich & McNaughton, 1997). Compared with
other models in the literature, the network model considered here includes
two layers of neurons.

It is instructive to first review the network dynamics when no feed-
forward or feedback interactions exist. In this case, the two layers of the
network are independent of each other, and each of them can support a
continuous family of gaussian-shaped stationary states when the global in-
hibition is below a critical value (Fung, Wong, & Wu, 2010; Wu, Amari, &
Nakahara, 2002). These steady states without the external inputs are given
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Figure 3: The two dominant motion modes. The first two wave functions of
quantum harmonic oscillators and their corresponding physical meanings to
the bump dynamics. (Left) The bump height change. (Right) The bump position
change.

by (only the case for the first layer is shown)

Ũ1(x) =Ũ1exp
[
− (x − z1)

2

4a2

]
, (2.7)

where z1 is a free parameter, representing the peak position of the bump,
and Ũ1 = [1 + (1 − kc)

1/2]J0/(4ak
√

π). They exist for 0 < k < kc, with kc =
ρJ2

0/(8a
√

2π), the critical global inhibition strength above which only silent
states with Ũ1 = 0 exist.

3 Simplifying the Network Dynamics

The key to analyzing the dynamics of a large network is to reduce its dimen-
sionality. A recent approach to solve the dynamics of a CANN analytically
(Wu, Hamaguchi, & Amari, 2008; Fung et al., 2010) involves using the wave
functions of the quantum harmonic oscillators as the motion modes of a
bump state. These modes have clear physical meanings, corresponding to
distortions in the height, position, and other higher-order features of the
gaussian bump (see Figure 3). The neutral stability of a CANN implies that
its dynamics is dominated by a few motion modes. Therefore, by projecting
the network dynamics onto these dominant modes, one can simplify the
network dynamics significantly.
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Figure 4: The changes of the network state in response to an abrupt change
input. (Top) The bump states in the first layer. (Bottom) The bump states in the
second layer.

It turns out that in the case of weak feedforward and feedback interac-
tions, the network stationary states can be well approximated to be of the
gaussian form (see Figure 2). Furthermore, for weak external inputs, it is
sufficient to include only the first two motion modes, the changes in the
bump position and height, to describe the network dynamics. An exam-
ple displaying the network state changes in a tracking task is presented in
Figure 4. We see that during the tracking process, the main changes in the
bump state are its position and height, with other higher-order distortions
in the shape negligible. Thus, we propose the following gaussian ansatz to
approximate the network states:

Ũ1(x, t)≈ A1(t)exp

{
−
[
x − z1(t)

]2
4a2

1

}
, (3.1)

Ũ2(x, t)≈ A2(t)exp

{
−
[
x − z2(t)

]2
4a2

2

}
, (3.2)

where Ai(t) and zi(t) are variables describing the height and position
changes of the bumps and a1 and a2 are the width of the bumps in two layers.

The wave functions for the two dominating motion modes in the first
layer are given by (see Figure 3)

height : v0(x|z)= exp
[
− (x − z)2

4a2
1

]
, (3.3)

position : v1(x|z)=
(

x − z
a1

)
exp

[
− (x − z)2

4a2
1

]
. (3.4)
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The two dominant motion modes in the second layer have the similar forms,
except that a1 is replaced by a2. By projecting a function f (x) on a motion
mode u(x|z), we mean to compute the quantity,

∫
x f (x)u(x|z)/

∫
x u(x|z) (see

appendix A).
In the following study, we choose the external input to be

Iext (x, t)= αexp

{
−
[
x − z0 + σξ (t)

]2
4a2

1

}
, (3.5)

where z0 denotes the stimulus value, Iext drives the network state to be stable
at z0 when no noise exists, and α is the input strength. ξ (t) is gaussian white
noise of zero mean and unit variance, and σ the noise strength. The exact
form of Iext is not critical once it has a unimodal form.

Substituting equations 3.1, 3.2, and 3.5 into the network dynamics,
equations 2.1 and 2.2, and projecting them on the two modes, equations 3.3
and 3.4, we obtain the dynamics for the height and position of the bumps
in two layers (see appendix A),

τ
dA1

dt
=−A1 +

√
2ρJ0a1(

3a2
1 + a2

)1/2 B1 +
√

2ρJ f ba2(
2a2

1 + a2
2 + b2

2

)1/2 B2

+αe−(z0−z1 )2/8a2
1 , (3.6)

τA1

2a1

dz1

dt
= −

2
√

2ρJ f bB2a1a2(
2a2

1 + a2
2 + b2

2

)3/2

(
z1 − z2

)+ α

2a1
(z0 − z1 + σξ ), (3.7)

τ
dA2

dt
=−A2 +

√
2ρJ0a2(

3a2
2 + a2

)1/2 B2 +
√

2ρJ f f a1(
2a2

2 + a2
1 + b2

1

)1/2 B1, (3.8)

τA2

2a2

dz2

dt
= −

2
√

2ρJ f f B1a1a2(
2a2

2 + a2
1 + b2

1

)3/2

(
z2 − z1

)
, (3.9)

where Bi = [Ai]
2
+/(1 + √

2πkρaiA
2
i ).

The physical meanings of the above equations are straightforwardly un-
derstandable. Consider the dynamics of A1. The first term on the right-hand
side of equation 3.6 corresponds to the decay of neural activity, the second
one to the effect of recurrent interaction, the third one to the modulation of
feedback interaction from the second layer, and the last one to the contri-
bution of the external input. For the dynamics of z1, the first term on the
right-hand side of equation 3.7 corresponds to the modulation of feedback
interaction, and the second one to the driving force of the external input.

Notably, for J f b > 0, the positive feedback modulation tends to reduce
the separation between two bumps, that is, it decreases the absolute value
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of (z1 − z2) (z2 > z1, the first term in the right-hand side of equation 3.7, is
positive and contributes to the increase of z1; for z2 < z1, the effect is the
opposite), whereas for J f b < 0, the negative feedback modulation has the
opposite effect.

Reorganizing the above equations into the vector and matrix forms, we
get

dZ
dt

= MZZ + IZ + βξ (t), (3.10)

dA
dt

= − 1
τ

A + MAB + IA, (3.11)

where Z = (z1, z2)
T, IZ = (αz0/τA1, 0

)T
, β = (ασ/τA1, 0

)T
, A = (A1, A2)

T,

B = (B1, B2)
T, IA = (α/τ e−(z0−z1 )2/8a2

1 , 0)T, and

MZ =

⎡⎢⎢⎢⎢⎢⎢⎣
−

4
√

2ρJ f bB2a2
1a2

τA1

(
2a2

1 + a2
2 + b2

2

)3/2 − α

τA1

4
√

2ρJ f bB2a2
1a2

τA1

(
2a2

1 + a2
2 + b2

2

)3/2

4
√

2ρJ f f B1a1a2
2

τA2

(
2a2

2 + a2
1 + b2

1

)3/2 −
4
√

2ρJ f f B1a1a2
2

τA2

(
2a2

2 + a2
1 + b2

1

)3/2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(3.12)

MA =

⎡⎢⎢⎢⎢⎢⎢⎣

√
2ρJ0a1

τ
(
3a2

1 + a2
)1/2

√
2ρJ f ba2

τ
(
2a2

1 + a2
2 + b2

2

)1/2

√
2ρJ f f a1

τ
(
2a2

2 + a2
1 + b2

1

)1/2

√
2ρJ0a2

τ
(
3a2

2 + a2
)1/2

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.13)

4 Spontaneous Moving Bumps States

We first investigate the stationary states of the network when no external
input is applied (by setting α = 0 in equation 3.5). With the feedback modu-
lation, the network exhibits new dynamical behaviors. Apart from the static
bumps, the network also holds spontaneous moving bump solutions.

The distinguishing difference between static and moving bump states is
that in the latter, the bump position is unstable. Hence, by analyzing the
stability of bump positions, we can obtain the phase boundary between
two states. Suppose z∗

1 and z∗
2 are the bump positions in the first and second

layers. Denote δz1 = z1 − z∗
1 and δz2 = z2 − z∗

2 the fluctuations of the bump
positions. Since the bump heights are constants in both states, by linearizing
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Figure 5: Phase diagram of the intrinsic states of the first-layer CANN in the
presence of feedback. Line: theory result. Square: simulation result. The bound-
aries between the moving and static states are obtained by equation 4.4. Param-
eters: (A) k = 0.1, (B) J f f = 1; the others are the same as in Figure 2.

equations 3.7 and 3.9, we get

d
dt

(
δz1

δz2

)
= MZ

(
δz1

δz2

)
. (4.1)

The stability of bump positions is determined by the eigenvalues of matrix
MZ, which is calculated to be λ± = (TZ ±√(TZ)2 − 4DZ)/2, with TZ and DZ,
respectively, the trace and determinant of MZ. They are calculated to be

TZ = −
4
√

2ρJ f bB2a2
1a2

τA1

(
2a2

1 + a2
2 + b2

2

)3/2 −
4
√

2ρJ f f B1a1a2
2

τA2

(
2a2

2 + a2
1 + b2

1

)3/2 , (4.2)

DZ =
4
√

2αρJ f f B1a1a2
2

τ 2A1A2

(
2a2

2 + a2
1 + b2

1

)3/2 . (4.3)

The bump positions are stable if the real parts of all eigenvalues are smaller
than zero. Hence, the boundary between static and moving bumps is deter-
mined by the fact that the real part of λ+ equals zero, that is,

Re{λ+} = Re{(TZ +
√

(TZ)2 − 4DZ)} = 0 (4.4)

The phase diagram for network states in the first layer is summarized
in Figure 5. The theoretical predictions based on the simplified network
dynamics agree well with the simulations. When the feedback interaction
is negative, the network can hold spontaneous moving bump states when
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Figure 6: Decoding performance of the network. (A) The typical response be-
haviors of the network to noisy inputs. The first-layer bump position fluctuates
around the true stimulus value z0 = 0. The fluctuations are smaller for positive
than negative feedback. (B) The statistical result of the decoding error, which
decreases with the positive feedback strength. The parameter regime in which
the network holds a static bump is considered. Parameters: α = 0.1, J f f = 1,
k = 0.1, σ = 0.1; the others are the same as in Figure 2.

|J f b| is sufficiently large. Thus, negative feedback has the role of enhancing
the mobility of network states.

5 Performances of Population Decoding

A CANN can be interpreted as an efficient framework for implementing
population decoding (Deneve et al., 1999; Wu et al., 2002). In response to a
transient noisy input, the network bump will evolve to a location having
the maximum overlap with it, and the corresponding bump position is the
estimated stimulus value. Here, we investigate how the feedback interaction
modulates the accuracy of population decoding.

We consider that the network receives an external input in the form of
equation 3.5. Due to noise, the bump position in the first layer fluctuates
around the true stimulus value z0 and is modulated by the feedback interac-
tion from the second layer (see Figure 6A). We measure the decoding error of
the network by the variance of the bump position after the network reaches
a stationary state. By using the simplified dynamics, equations 3.7 and
3.9, we can also analytically calculate the decoding error (see appendix B),
which is given by

〈(z1 − z0)
2〉 = ασ 2

2τA1

√
2αA2 + ρJ f f A1B1

ρ(J f f A1B1 + J f bA2B2) + √
2αA2

. (5.1)
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From the denominator of the above equation, we see that positive feedback
(J f b > 0) decreases the error, whereas negative feedback (J f b < 0) increases
the error. The error diverges for strong negative feedback, since in this pa-
rameter regime, the network state becomes a spontaneously moving bump.
The simulation results agrees with our theoretical predictions very well (see
Figure 6B).

The fact that positive feedback improves population decoding can be
intuitively understood as follows. The neural response in the second layer
is the integrated result of neural activities in the first layer, and it serves
as if holding a memory trace of external inputs. When this information
is fed back, the bump position in the first layer is determined by both the
instant value and the history of the external inputs. Consequently, temporal
noise in the external inputs is largely averaged out, leading to an improved
population decoding result.

6 Tracking Performances of the Network

We further investigate how feedback interaction modulates network re-
sponses to time-varying stimuli. Two computational tasks are considered:
the network catches up to an abrupt change in external stimuli, and it tracks
continuously moving stimuli. In the former, we compute the reaction time
for the network catching up to the change; in the latter, we measure the
maximal speed of a moving stimulus the network can track and quantify
the lagging or leading behavior of the bump with respect to the moving
stimulus.

6.1 Reaction Time. Consider the value of the external stimulus as it
jumps abruptly from z0 = 0 to z0 = h at time t = 0. Because of neutral sta-
bility, the network can catch up to this change. The reaction time is defined
as the bump position reaches a threshold distance θ to the target location h.
Depending on the parameter values, the tracking behavior of the network
exhibits two forms: under- and overdamping situations (see Figure 7). The
underdamping case is characterized by the bump position’s overshooting
the target location, which occurs for large negative feedback. For the con-
venience of presenting results, we introduce the notations conventionally
used in control theory (Ogata, 2002), which are

ω2
n = DZ; 2ζωn = −TZ; ωd = ωn

√
1 − ζ 2, (6.1)

where TZ and DZ are given by equations 4.2 and 4.3. The variables ωn, ωd,
and ζ are called undamped natural frequency, damped natural frequency,
and damping ratio, respectively. With these notations, the eigenvalues of
the matrix MZ are written as λ± = (ζ ±

√
ζ 2 − 1)ωn.
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Figure 7: The trace of the bump position in response to an abrupt change
in stimuli. z0 = 0 for t < 0, and z0 = 1 for t ≥ 0. (A) The overdamping case.
(B) The underdamping case. Reaction time tr is defined as the time that the
bump position falls into a region within a threshold distance to the target.
Parameters: α = 0.1, k = 0.1. (A) J f f = 0.8, J f b = −0.15. (B) J f f = 0.8, J f b = −0.3.
Other parameters are the same as in Figure 2.

The bump position oscillates during tracking if the damping ratio 0 <

ζ < 1, corresponding to the imaginary part of the eignevalue, is smaller than
0, that is, Im{λ±} < 0. If ζ ≥ 1, the bump position approaches the target from
below without overshooting, corresponding to the overdamping situation.

With the new denotations, the dynamics of bump positions in equations
3.7 and 3.9 are rewritten as

z′′
1 + 2ζωnz′

1 + ω2
nz1 = a0(z

′
0 − m22z0), (6.2)

z′′
2 + 2ζωnz′

2 + ω2
nz2 = a0m21z0, (6.3)

where mij is the element of the matrix MZ, and a0 = α/τA1
The solutions of the above equations are presented below. The detailed

derivation is given in appendix C:

� Underdamping case. In the underdamping situation (ζ < 1), the dy-
namics of the bump position is solved to be

z1(t)= h + he−ζωnt
[

a0 − ζωn

ωd
sin(wdt) − cos(ωdt)

]
. (6.4)

� Overdamping case. In the overdamping situation (ζ ≥ 1), the dynam-
ics of the bump position is solved to be

z1(t)≈ h − he−(ζ−
√

ζ 2−1)ωnt
[(

a0

ωn
− ζ +

√
ζ 2 − 1)(ζ −

√
ζ 2 − 1

)]
.

(6.5)
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Figure 8: The reaction time of the network to an abrupt change in stimuli.
The dashed line is the boundary between under- and overdamping cases. The
minimal reaction time is obtained when the bump position oscillates a little at
ζ = 0.7. Parameters: α = 0.1, k = 0.1, J f f = 1.2, h = 0.5, θ = 5%; the others are
the same as in Figure 2.

Figure 8 shows the dependence of reaction time on the feedback strength.
The simulation results agree well with our theoretic analysis. We observe
the following interesting properties:

� Compared with positive feedback, negative feedback tends to de-
crease the reaction time. This agrees with our previous analysis that
negative feedback increases the mobility of the network state.

� The minimal reaction time is obtained when the bump position os-
cillates a bit (the damping ratio is about 0.7), suggesting that a little
overshooting is helpful for tracking.

� The reaction time does not increase smoothly with the feedback
strength when the bump position oscillates. This is because a small
change in ζ induces a dramatic change in the reaction time, agreeing
with the control theory (Ogata, 2002).

6.2 Effect of the Range of Feedback Interaction. We also investigate the
effect of the feedback range on network performance. For the convenience of
analysis, we consider the widths of the feedforward, the feedback, and the
recurrent interactions to be same (b1 = b2 = a). This ensures that the gaus-
sian ansatz equations 3.1 and 3.2, holds well, and the network behaviors
can be well approximated by equations 5.1, 6.4, and 6.5. When these widths
are not equal, the network performances are still qualitatively similar
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Figure 9: Network performance in three feedback ranges. The parameter
regime in which the network holds a static bump is considered. (A) Decod-
ing error of the network. The results are obtained by equation 5.1. (B) Reaction
time of the network in response to an abrupt change in stimuli. The results
are obtained by equations 6.4 and 6.5. The other parameters are the same as in
Figures 6 and 8.

(data not shown), but we need to include high-order distortions in the
bump state to get good theoretical predictions.

Figure 9 shows the network decoding performances to noisy inputs and
the network reaction times to an abrupt change in inputs in three different
feedback widths (for clarity, only the theoretical results are shown). We find
that the feedback range tends to have a trade-off effect on the decoding
error and the reaction time of the network and that this effect is opposite for
positive and negative feedback interactions: for negative feedback, narrow
feedback (with small b2) increases the decoding error but decreases the
reaction time of the network, and for positive feedback, narrow feedback
decreases the decoding error but increases the reaction time of the network.

6.3 Tracking Continuously Moving Stimuli. We explore the tracking
performances of the network to continuously moving stimuli. Without loss
of generality, we consider that the stimulus value increases with time at a
constant positive speed, z0 = vt, with v > 0. We investigate how the feed-
back interaction modulates the tracking performance of the network.

Let us denote the discrepancies between the bump positions and the
stimulus value to be si = z0 − zi, for i = 1, 2. si > 0 (si < 0) means the bump
position is lagging (leading) the true stimulus value. Substituting si in the
simplified dynamics, equations 3.7 and 3.9, we obtain

v − ds1

dt
= −m12(s2 − s1)e

−(s2−s1 )2/8a2 + αs1e−s2
1/8a2

/(τA1), (6.6)

v − ds2

dt
= m21(s2 − s1)e

−(s2−s1 )2/8a2
. (6.7)
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Figure 10: The maximal speed of a moving stimulus the network can track.
It increases with the strength of negative feedback. Parameters: N = 400, k =
0.1, J f f = 1, α = 0.1; the others are the same as in Figure 2.

In a steady state, si, for i = 1, 2, become constants. From the above equations,
we get

v = a0m21

m12 + m21
s1e−s2

1/8a2
. (6.8)

6.3.1 The Maximum Trackable Speed. From equation 6.8, we can estimate
the maximal speed of the moving stimulus the network can track, which is
the largest value of the function on the right-hand side of the equation, that
is,

vmax = maxs1

[
a0m21

m12 + m21
s1e−s2

1/8a2
]

,

=
2aαJ f f B1

τ
√

e(J f f A1B1 + J f bA2B2)
. (6.9)

Above vmax, the network is unable to catch up with the stimulus. The rela-
tionship between the maximal trackable speed and the feedback strength
is shown in Figure 10. The simulation results agree well with our analysis.
We see that the maximal speed the network can track increases with the
magnitude of negative feedback.
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Figure 11: The tracking behaviors of the network to a moving stimulus. z0 =
t. Parameters: N = 400, k = 0.1, J f f = 1.5,V = 0.07, α = 0.1; the others are the
same as in Figure 2.

6.3.2 Lagging or Leading of the Bump with Respect to the Moving Stimulus.
Since v ≥ 0 as predefined, equations 3.12 and 6.8 tell us that

(m12 + m21)s1 ≥ 0, (6.10)

where (m12 + m21) = −TZ with TZ the trace of the matrix MZ given by
equation 3.12. We make the following observations (see Figure 11):

� When Tz < 0, we have s1 > 0. The bump is lagging behind the moving
stimulus. In the parameter regime for Tz < 0, the network holds static
bumps (see Figure 5).

� When Tz > 0, we have s1 < 0. The bump is leading the moving stim-
ulus. In the parameter regime for Tz < 0, the network holds sponta-
neous moving bumps (see Figure 5).

� When Tz = 0, we have s1 = 0. The bump tracks the moving stimulus
seamlessly. The parameter values in this case are on the boundary
between static and moving bumps (see Figure 5).

7 Conclusion and Discussion

In this study, we have explored the potential roles of feedback interactions
in neural information processing. We consider a two-layer network model
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in which neurons in the first layer receive feedback inputs from those in the
second layer. The neuronal connections are structured so that the network
can hold a continuous family of bump states, mimicking, for instance, the
orientation tuning in the visual system. By utilizing the intrinsic dynamics
of a CANN, we use a projection method to reduce the dimensionality of
the network dynamics significantly, that is, we consider only the changes
in the height and position of a bump, the two dominating motion modes
of the network. The simplified dynamics allows us to elucidate the effects
of feedback interactions analytically and hence gives us insight into un-
derstanding the principles of feedback modulations. The simulation results
agree very well with our theoretic predictions. We have observed a number
of interesting behaviors that may have far-reaching implications in neural
information processing.

First, we find that negative feedback increases the mobility of network
states, inducing spontaneously moving bumps in a neural system. The
moving bump solution may be related to the traveling wave phenomenon
widely observed in the cortex (Wu, Huang, & Zhang, 2008). Previous stud-
ies have shown the Mexican hat recurrent interaction (Pinto & Ermentrout,
2001), short-term depression (York & van Rossum, 2009), and spike adap-
tation (Hansel & Sompolinsky, 1997) can all generate moving bumps. Our
result provides another potential mechanism for the origin of traveling
waves.

Second, we show that positive feedback improves the accuracy of popu-
lation decoding. The working mechanism is as follows. The neural activity
in the second layer holds a memory trace of external inputs due to time
delay and temporal integration. This information is then passed back to
the first layer through feedback connections. Consequently, the neural re-
sponse in the first layer is determined by both the instant value and the
history of external inputs, which largely averages out temporal noise. This
view agrees with the general idea of predictive coding that recognizing
objects needs the interplay between top-down and bottom-up information
(Lee & Mumford, 2003; Rao & Ballard, 1999).

Third, we show that negative feedback enhances the tracking perfor-
mance of the network to time-varying stimuli. For an abrupt change in
stimuli, negative feedback shortens the reaction time. For continuously
moving stimuli, negative feedback increases the maximal speed the net-
work can track.

Furthermore, we find that with strong negative feedback, the network
response can seamlessly track or even lead the actual position of exter-
nal stimuli, achieving anticipative behavior. Anticipative neural response
is important for motion extrapolation and movement control. It has been
observed in the head-direction system and hippocampus (Blair & Sharp,
1995; O’Keefe & Recce, 1993). Our study reveals a potential mechanism
for realizing these functions. Notably, the parameter regime for a net-
work having anticipatory behaviors is also the one for the network holding
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spontaneously moving bumps, suggesting that the widely observed trav-
eling wave phenomenon may be an unavoidable consequence for neural
systems with prediction powers.

In general, we find that positive and negative feedback tends to have op-
posite effects on modulating the network dynamics. The former enhances
the stability of the network state, leading to improved population decod-
ing accuracy, whereas the latter increases the mobility of the network state,
accelerating the network reaction to time-varying stimuli. So can a neu-
ral system have the advantages of both? A possible solution is that the
feedback interaction is biphasic in time, being positive initially and nega-
tive subsequently, as often observed in feedforward temporal filters. With
biphasic feedback modulation, the network can average out high-frequency
noise and track slow-frequency changes in external inputs (the latter de-
fines the stimuli in practice, see Wiskott & Sejnowski, 2002). In future
work, we seek to extend the current model to include biphasic feedback
modulations.

Appendix A: The Projection Method

Substituting the gaussian ansatz, equations 3.1 and 3.2, into the network
dynamics, equations 2.1 and 2.2, we obtain the following results.

For equation 2.1, its left-hand side (LHS) and right-hand side (RHS) are
given by

LHS = τ
dA1

dt
exp

[
− (x − z1)

2

4a2
1

]
+ τA1

2a1

dz1

dt

(
x − z1

a1

)
exp

[
− (x − z1)

2

4a2
1

]
.

(A.1)

RHS =−A1exp
[
− (x − z1)

2

4a2
1

]
+ ρ

∫
x′

J0B1

a
√

2π
exp

[
− (x − x′)2

2a2

]

× exp
[
− (x′ − z1)

2

2a2
1

]
dx′ + ρ

∫
x′

J f bB2

b2

√
2π

exp
[
− (x − x′)2

2b2
2

]

× exp
[
− (x′ − z2)

2

2a2
2

]
dx′ + αexp

[
− (x − z0)

2

4a2
1

]
+ σξ (x, t)

=−A1exp
[
− (x − z1)

2

4a2
1

]
+ ρJ0B1a1(

a2 + a2
1

)1/2 exp
[
− (x − z1)

2

2(a2 + a2
1)

]
,

+
ρJ f bB2a2(
b2

2 + a2
2

)1/2 exp
[
− (x − z2)

2

2(b2
2 + a2

2)

]
+ αexp

[
− (x − z0 + σξ (t))2

4a2
1

]
.

(A.2)
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For equation 2.2,

LHS = τ
dA2

dt
exp

[
− (x − z2)

2

4a2
2

]
+ τA2

2a2

dz2

dt

(
x − z2

a2

)
exp

[
− (x − z2)

2

4a2
2

]
.

(A.3)

RHS =−A2exp
[
− (x − z2)

2

4a2
2

]
+ ρ

∫
x′

J0B2

a
√

2π
exp

[
− (x − x′)2

2a2

]

× exp
[
− (x′ − z2)

2

2a2
2

]
dx′ + ρ

∫
x′

J f f B1

b1

√
2π

exp
[
− (x − x′)2

2b2
1

]

× exp
[
− (x′ − z1)

2

2a2
1

]
dx′

=−A2exp
[
− (x − z1)

2

4a2
2

]
+ ρJ0B2a2(

a2 + a2
2

)1/2 exp
[
− (x − z2)

2

2(a2 + a2
2)

]

+
ρJ f f B1a1(
b2

1 + a2
1

)1/2 exp
[
− (x − z1)

2

2(b2
1 + a2

1)

]
. (A.4)

Projecting equations A.1 and A.2 onto the motion modes, equations 3.3
and 3.4, we get

τ
dA1

dt
= −A1 +

√
2ρJ0B1a1

(3a2
1 + a2)1/2

+
√

2ρJ f bB2a2

(2a2
1 + a2

2 + b2
2)

1/2

× exp

[
−

(
z1 − z2

)2
2
(
2a2

1 + a2
2 + b2

2

)]+ αexp
[
− (z0 − z1 + σξ (t))2

8a2
1

]
,

(A.5)

τA1

2a1

dz1

dt
= −

2
√

2ρJ f bB2a1a2(
2a2

1 + a2
2 + b2

2

)3/2

(
z1 − z2

)
exp

[
−

(
z1 − z2

)2
2
(
2a2

1 + a2
2 + b2

2

)]

+ α

2a1
(z0 − z1 + σξ (t))exp

[
− (z0 − z1 + σξ (t))2

8a2
1

]
. (A.6)

When (z1 − z2)
2/(2a2

1 + a2
2 + b2

2) is sufficiently small (which is the case
for the parameters we choose) and noise is small enough σ 2/(8a2

1) � 1, we
obtain the dynamical equations 3.6 and 3.7.
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Similarly, we project equations A.3 and A.4 onto the motion modes and
obtain

τ
dA2

dt
= −A2 +

√
2ρJ0B2a2

(3a2
2 + a2)1/2

+
√

2ρJ f f B1a1

(2a2
2 + a2

1 + b2
1)

1/2

× exp

[
−

(
z1 − z2

)2
2
(
2a2

2 + a2
1 + b2

1

)] , (A.7)

τA2

2a2

dz2

dt
= −

2
√

2ρJ f f B1a1a2(
2a2

2 + a2
1 + b2

1

)3/2

(
z2 − z1

)
exp

[
−

(
z1 − z2

)2
2
(
2a2

2 + a2
1 + b2

1

)] .

(A.8)

Under the conditions that (z1 − z2)
2/(2a2

2 + a2
1 + b2

1) and σ 2/(8a2
2) are suffi-

ciently small, we get the dynamical equations, 3.8 and 3.9.

Appendix B: The Error of Population Decoding

The solution of equation 3.11 is given by

Z(t) = eMZt
[

Z(0) +
∫ t

0
e−MZsIZ(s)ds +

∫ t

0
e−MZsβdWs

]
, (B.1)

where dWs denotes the standard Wiener process.
The mean and variance of Z(t) are calculated:

E[Z(t)] = eMZtE[Z(0)] +
∫ t

0
eMZ(t−s)IZ(s)ds, (B.2)

Z(t) − E[Z(t)] = eMZt
[

Z(0) − E[Z(0)] +
∫ t

0
e−MZsβdWs

]
, (B.3)

Var[Z(t)] = E
[
(Z(t) − E[Z(t)])(Z(t) − E[Z(t)])T]

= eMZt

{
Var[Z(0)] + E

(∫ t

0
e−MZsβdWs

)

×
(∫ t

0
e−MZsβdWs

)T
}

(eMZt )T. (B.4)

Let B(t) = Var[Z(0)] + E
(∫ t

0
e−MZsβdWs

)(∫ t

0
e−MZsβdWs

)T

, so
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dVar[Z(t)]
dt

=deMZt

dt
B(t)(eMZt )T+ eMZt dB(t)

dt
(eMZt )T+ eMZtB(t)

d(eMZt )T

dt

= MZeMZtB(t)(eMZt )T + ββT + eMZtB(t)(eMZt )TMT
Z

= MZVar[Z(t)] + Var[Z(t)]MT
Z + ββT. (B.5)

Since Var[Z(t)] is symmetric, we have

dVar[Z(t)]
dt

= MZVar[Z(t)] + (MZVar[Z(t)])T + ββT. (B.6)

The steady value of Var[Z(t)] is the decoding error of the network, which
satisfies

MZVar(Z) + [MZVar(Z)]T = −ββT. (B.7)

Denote

Var[Z(t)] ≡
(

V11 V12

V21 V22

)
, MZ ≡

(
m11 m12

m21 m22

)
. (B.8)

where V12 = V21. Equation B.7 becomes

MZVar(Z) + [MZVar(Z)]T

=

⎛⎜⎜⎜⎜⎜⎝
2m11V11 − 2(m11 + a0)V21 m21(V11 − V21) + m11V12

−(m11 + a0)V22

m21(V11 − V21) + m11V12 2m21(V12 − V22)

−(m11 + a0)V22

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎝−α2σ 2

τ 2A2
1

0

0 0

⎞⎟⎟⎠ , (B.9)

where a0 = α/τA1. Therefore,

Var(z1)= ασ 2

2τA1

a0 + m21

m21 − m11

= ασ 2

2τA1

√
2αA2 + ρJ f f A1B1

ρ(J f f A1B1 + J f bA2B2) + √
2αA2

, (B.10)
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Var(z2) = m21

a0 + m21
Var(z1)

= ασ 2

2τA1

ρJ f f A1B1

ρ(J f f A1B1 + J f bA2B2) + √
2αA2

. (B.11)

Appendix C: The Network Response to an Abrupt Change
in Stimuli

Without loss of generality, we consider the bump position z1(t) = z2(t) =
0, for t < 0. The Laplace transformations of equations 6.2 and 6.3
are

z1(s) = a0(s − m22)

s2 + 2ζωns + ω2
n

z0(s), (C.1)

z2(s) = a0m21

s2 + 2ζωns + ω2
n

z0(s), (C.2)

where zi(s) is the Laplace transform of zi(t). z0(s) = h/s is the Laplace trans-
form of the abrupt change in the stimulus values, where h is the size of
abrupt change.

Substituting z0(s) into equation C.2, the solution of the first-layer dynam-
ics is divided into under-(0 < ζ < 1) and over-(ζ > 1) damping situations:

� Underdamping situation:

z1(s) = h
s

+ 1

2ωn

√
ζ 2 − 1

[
a0 − ωn(ζ +

√
ζ 2 − 1)

s + ζωn − ωn

√
ζ 2 − 1

−a0 − ωn(ζ −
√

ζ 2 − 1)

s + ζωn + ωn

√
ζ 2 − 1

]
. (C.3)

Using the inverse-Laplace transform, we get

z1(t)= z0 + z0e−ζωnt
[

a0 − ζωn

ωd
sin(wdt) − cos(ωdt)

]
. (C.4)

� Overdamping situation:

z1(s) = h
s

− z0

[
1

s + ζωn − ωn

√
ζ 2 − 1

− (a0 + ωn

√
ζ 2 − 1 − ζωn)

(s + ζωn + ωn

√
ζ 2 − 1)(s + ζωn − ωn

√
ζ 2 − 1)

]
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≈ h
s

− z0

[
1

s + ζωn − ωn

√
ζ 2 − 1

− (a0 − ζωn + ωn

√
ζ 2 − 1)(ζωn − ωn

√
ζ 2 − 1)

ω2
n(s + ζωn − ωn

√
ζ 2 − 1)

]
(C.5)

In order to get the expression of reaction time tr, an approximation
is made that neglects the smaller polar point in the complex plane of
frequency domain in the above equation. By using inverse-Laplace
transform, we obtain

z1(t)≈ z0 − z0e−(ζ−
√

ζ 2−1)ωnt

×
[

1 −
(

a0

ωn
− ζ +

√
ζ 2 − 1

)
(ζ −

√
ζ 2 − 1)

]
. (C.6)
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Van Horn, S., Erişir, A., & Sherman, S. (2000). Relative distribution of synapses in
the α-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative
Neurology, 416(4), 509–520.

Wang, W., Jones, H., Andolina, I., Salt, T., & Sillito, A. (2006). Functional alignment
of feedback effects from visual cortex to thalamus. Nature Neuroscience, 9(10),
1330–1336.

Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of
invariances. Neural Computation, 14(4), 715–770.

Wu, J., Huang, X., & Zhang, C. (2008). Propagating waves of activity in the neocortex:
What they are, what they do. Neuroscientist, 14(5), 487–502.

Wu, S., & Amari, S. (2005). Computing with continuous attractors: Stability and
online aspects. Neural Computation, 17(10), 2215–2239.

Wu, S., Amari, S., & Nakahara, H. (2002). Population coding and decoding in a
neural field: A computational study. Neural Computation, 14(5), 999–1026.



Neural Information Processing with Feedback Modulations 1721

Wu, S., Hamaguchi, K., & Amari, S. (2008). Dynamics and computation of continuous
attractors. Neural Computation, 20(4), 994–1025.

York, L., & van Rossum, M. (2009). Recurrent networks with short term synaptic
depression. Journal of Computational Neuroscience, 27(3), 607–620.

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of
the head-direction cell ensemble: A theory. Journal of Neuroscience, 16(6), 2112–
2126.

Received September 30, 2011; accepted December 21, 2011.


