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Abstract—In this paper, we present a low-complexity
image compression model based on the Swin Transformer,
which only requires 100kMACs/pixel. We introduce a per-
ceptual optimization strategy by incorporating adversarial
training. Experimental results demonstrate that our model
improves the perceptual quality of compressed images. This
paper is a solution of CLIC2025 challenge and our team name
are TestC and RunRun for GPU and CPU tracks, respectively.

Index Terms—Generative Image Compression, Learned
Image Compression

I. Introduction

Recent advances in neural image compression have

achieved superior performance compared to traditional

codecs in terms of PSNR and MS-SSIM. However, these

models often suffer from perceptual artifacts like blur-

ring and texture loss, especially at low bitrates, which de-

grade the visual quality of reconstructed images. In this

work, we propose a low-complexity image compression

model based on the Swin Transformer [10], which only

requires 100kMACs/pixel. We introduce a perceptual

optimization strategy by incorporating adversarial train-

ing. Experimental results demonstrate that our model

improves the perceptual quality of compressed images.

This paper is a solution of CLIC2025 challenge and our

team name are TestC and RunRun for GPU and CPU

tracks, respectively. Please note that we adopt the same
variable model for GPU and CPU tracks.

II. Method

A. Architecture

The Swin Transformer [10] has recently demonstrated

state-of-the-art (SOTA) performance in various vision

tasks, such as image classification and object detection,

due to its hierarchical architecture and efficient self-

attention mechanism. Inspired by its success, several

studies [8], [9], [15], [16] have explored the application of
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Swin Transformer in the field of learned image compres-

sion. In our work, we build upon the Swin Transformer-

based architecture as described in [16], and further tailor

it for efficient and effective image compression.

Our model consists of an encoder-decoder framework,

both of which are constructed using Swin Transformer

blocks. The encoder progressively downsamples the in-

put image to a compact latent representation. Specifi-

cally, the input image is reduced to 1/16 of its original

spatial resolution through four consecutive downsam-

pling stages, each implemented by the analysis trans-

form network. Each stage contains a certain number of

Swin Transformer blocks, with the encoder comprising

{1, 2, 2} blocks at each respective stage. The number of

hidden channels in the encoder is set to {128, 256, 384},

allowing the network to capture increasingly abstract

features as the resolution decreases.

The decoder mirrors the encoder structure, recon-

structing the image from the latent representation. It

upsamples the latent features back to the original reso-

lution through four upsampling stages, each realized by

the synthesis transform network. The decoder employs

{1, 1, 2} Swin Transformer blocks at each stage, with

hidden channel dimensions of {64, 112, 256}, which are

carefully chosen to balance reconstruction quality and

computational efficiency. Additionally, we increase the

number of latent channels to 256 and the number of

hyper latent channels to 192, which enhances the model’s

capacity to represent complex image content and im-

proves the accuracy of entropy modeling.

For entropy modeling, we also leverage the Swin

Transformer to capture dependencies within the latent

representation. The latent features are divided into four

groups along both spatial and channel dimensions to

facilitate parallel processing and efficient context mod-

eling. Initially, the latent representation is split into two

groups using a checkerboard pattern [5], ensuring that

each group contains spatially interleaved information.

Each of these groups is then further divided into two

sub-groups along the channel dimension, resulting in

a total of four groups. To model the dependencies



TABLE I: Performance of our model on the CLIC2025 Test set. Objective results at 0.075, 0.15 and 0.30bpp. ↑ means

higher is better and ↓ vice versa. The decoding time is measured on whole CLIC2025 Test set using a single NVIDIA

L4 GPU and AMD EPYC 7R13 CPU.

BPP PSNR↑ MSSSIM↑ LPIPS↓ DISTS↓ MACs/pixel Decoding Time (s)

0.075 27.25 0.9169 0.2532 0.0763 100k 26

0.15 29.56 0.9525 0.1847 0.0434 100k 26

0.30 32.28 0.9751 0.1260 0.0233 100k 26

among these groups in a causal manner, we employ

a Swin Transformer block with masked self-attention,

which prevents information leakage from future (yet-

to-be-encoded) groups. The output of this Swin Trans-

former block is used to predict the probability distribu-

tion parameters for each group. We model the probabil-

ity distribution of each group using a single Gaussian

distribution. The mean and variance of the Gaussian

distribution are predicted by a Swin Transformer block,

which follows a group-wise causal modeling [8].

For variable rate compression, we insert into the en-

coder and decoder with AdaLN [4] layers to modulate

the latent representation. The AdaLN layers are inserted

after the last layer of the encoder and the first layer of

the decoder. The AdaLN layers are used to modulate the

latent representation, which is the same as the one in [4].

B. Perceptual Optimization
Inspired by previous works [1], [7], [11], we introduce

a perceptual optimization strategy by incorporating ad-

versarial training.

To enhance the perceptual quality of the compressed

images, we draw inspiration from the multi-stage train-

ing process of RealESRGAN [13]. This state-of-the-art

super-resolution framework leverages a combination of

pixel-wise, perceptual, and adversarial losses to achieve

high-fidelity results. We adapt this paradigm to our

compression model, progressively refining the output

from pixel accuracy to perceptual realism.

Initially, the model is trained exclusively with a Mean

Squared Error (MSE) loss. This stage focuses on min-

imizing the raw distortion between the original and

compressed images, ensuring accurate reconstruction of

low-level details and stabilizing the training process,

which provides a solid foundation for subsequent per-

ceptual enhancement. For variable rate compression, we

randomly sample λ from the range of [16, 1024].
Subsequently, we introduce perceptual Lper and style

L
style

losses, while retaining the MSE loss LMSE. This

combined objective encourages the model to preserve

high-level semantic content and texture information. The

loss function for this stage is:

Lstage2 = 150 · LMSE + 1.0 · Lper + 0.1 · L
style

(1)

The perceptual loss measures the L2 similarity between

feature representations extracted by a pre-trained VGG

network [12]. The style loss captures the correlation

between VGG feature maps using Gram matrices, pro-

moting the retention of fine-grained textures and natural

image statistics.

Finally, we incorporate adversarial training to further

refine the perceptual quality and eliminate artifacts such

as over-smoothing. We introduce a discriminator net-

work, adopting the architecture and non-saturating GAN

loss from RealESRGAN. The generator (our compression

model) is trained to produce images that are indistin-

guishable from real ones, encouraging more realistic and

natural-looking outputs. The discriminator architecture

is the same as the one in RealESRGAN. The complete

loss function for this final stage is:

L
final

= 150 · LMSE +1.0 · Lper +0.1 · L
style

+0.01 · L
adv

(2)

III. Experiments

A. Experimental Setup

We train our model on randomly cropped 256 × 256
image patches sampled from the test split of the OpenIm-

ages V7 dataset [6]. The patches are augmented with ran-

dom horizontal flips and random rotations. The AdamW

optimizer is used with β1 = 0.9 and β2 = 0.999. Each

training stage runs for 2 million iterations.

For evaluation, we utilize the CLIC2025 Test set, which

contains 30 high-resolution 2K images. Model perfor-

mance is measured using a range of metrics, including

MSE, MS-SSIM, LPIPS [14] and DISTS [3].

B. Quantitative Results

We assess the effectiveness of our approach on the

CLIC2025 Test set. The quantitative results are summa-

rized in Table I.

C. Qualitative Analysis

As illustrated in Fig. 1, Fig. 2, and Fig. 3, our method

achieves superior visual quality at comparable bitrates.

Compared to MS-ILLM, our approach better preserves

fine details, such as leaf textures, plant structures, and

eye features, while maintaining high fidelity to the orig-

inal images.



Fig. 1: Visual comparison of Ground Truth, our method, and VTM [2] on

07b9f93f170a0381836bdf301280a5b80b2c4be6e66f793a3c335dc200fb4e5b.png from the CLIC2025 Test set. The

reconstructed image is generated at 0.075bpp.

IV. Conclusion

In this paper, we present a low-complexity image com-

pression model based on the Swin Transformer, which

only requires 100kMACs/pixel. We introduce a percep-

tual optimization strategy by incorporating adversar-

ial training. Experimental results demonstrate that our

model improves the perceptual quality of compressed

images. This paper is a solution of CLIC2025 challenge

and our team name are TestC and RunRun for GPU and

CPU tracks, respectively.
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Fig. 2: Visual comparison of Ground Truth, our method, and VTM [2] on
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reconstructed image is generated at 0.075bpp.
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Fig. 3: Visual comparison of Ground Truth, our method, and VTM [2] on

608cb09e6ffc66d4bc838d4088bf4c0ab889d7e83d4f5d78805cbc4497e432a1.png from the CLIC2025 Test set. The

reconstructed image is generated at 0.075bpp.
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