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Abstract

Graphs, fundamental in modeling various re-
search subjects such as computing networks, con-
sist of nodes linked by edges. However, they typi-
cally function as components within larger struc-
tures in real-world scenarios, such as in protein-
protein interactions where each protein is a graph
in a larger network. This study delves into the
Graph-of-Net (GON), a structure that extends the
concept of traditional graphs by representing each
node as a graph itself. It provides a multi-level
perspective on the relationships between objects,
encapsulating both the detailed structure of in-
dividual nodes and the broader network of de-
pendencies. To learn node representations within
the GON, we propose a position-aware neural net-
work for Graph-of-Net which processes both intra-
graph and inter-graph connections and incorpo-
rates additional data like node labels. Our model
employs dual encoders and graph constructors
to build and refine a constraint network, where
nodes are adaptively arranged based on their posi-
tions, as determined by the network’s constraint
system. Our model demonstrates significant im-
provements over baselines in empirical evalua-
tions on various datasets.

1. Introduction
Graphs, as mathematical structures that represent relation-
ships between entities, pervade diverse domains. A con-
ventional graph is a fundamental construct in graph theory,
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Figure 1: An example of a Graph-of-Net, where each node
is a graph in itself, interconnected to form a net.

comprising a set of nodes and a set of edges, with each edge
connecting two nodes. For example, in computing networks,
nodes can represent computational units (such as servers,
CPUs), while edges denote communication links between
them. To address the intricacies of real-world applications,
more intricate graph structures such as hypergraphs and het-
erogeneous graphs (Zhou et al., 2006; Zhang et al., 2019)
have been employed. Hypergraphs extend the notion of
standard graphs by allowing edges to connect any number
of nodes, while heterogeneous graphs encompass various
types of nodes and/or edges. Recent years have witnessed
a burgeoning interest in the utilization of graph-structured
data, including graph kernels (Tang & Yan, 2022), graph
embeddings (Zhou et al., 2023), and graph neural networks
(Liu et al., 2023; Wang et al., 2024a).

Despite substantial exploration in mathematics and various
scientific fields, it becomes apparent that existing graph
structures may inadequately capture the nuances of modern,
complex real-world data, thereby hindering effective graph-
based learning. Real-world scenarios exhibit a spectrum of
graph structures that encompass diverse scales, types, and
hierarchical levels. A myopic focus on individual graphs
may overlook the intricate multi-level structures and inter-
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dependencies inherent in these datasets.

To address this gap and effectively model a majority of real-
world systems, this paper investigates a new graph structure,
named Graph-of-Net (GON). Within a Graph-of-Net, each
node itself is a graph. This construct incorporates two types
of links: 1) intra-graph connections within each node-graph,
and 2) inter-graph dependency links between node-graphs.
Such a framework facilitates in-depth analysis and permits
the exploration of relationships spanning multiple layers.
An example, illustrated in Fig.1, arises in biological net-
works, where individual proteins are represented as small-
scale graphs, while protein-protein interaction networks
constitute large-scale graphs, often referred to as networks.

Existing graph learning methodologies typically either uti-
lize multiple small-scale graphs to independently represent
proteins, overlooking critical interactions, or amalgamate all
proteins into a single large-scale graph, representing nodes
as vectors, thus neglecting the intricate internal structure
of proteins. GON shares conceptual similarities with pre-
viously used data structures in specific domains, such as
the exploration of theoretical properties in physical sciences
(Gao et al., 2011; Ni et al., 2014) or the prediction of in-
teractions among drug molecules in the field of biology
(Wang et al., 2021). However, it exhibits versatility across
diverse domains. For instance, an Internet can be modeled
as a GON, where local area networks interconnect as nodes
within a vast web of data exchange. Similarly, a citation
network can be captured as a GON, wherein individual pa-
pers, conceptualized as text graphs, interconnect through
citations.

This paper delves into the intricacies of GON structures,
their representation, and their applicability in modeling
complex real-world systems. By embracing the inherent
graph-of-net paradigm, we aim to provide a comprehensive
framework that addresses the multifaceted nature of modern
data structures and their interdependencies.

The Graph-of-Net (GON) presents a paradigm divergent
from conventional graphs. As such, traditional graph learn-
ing methodologies, such as graph neural networks (GNNs),
are not inherently suited for direct application to GONs.
To efficaciously learn the representations within GONs, we
introduce an position-aware neural network specifically tai-
lored for Graph-of-Net (N2GON). This model meticulously
incorporates the dual link types inherent in GONs while
synergistically integrating supplementary data, such as node
labels, to discern and encapsulate more nuanced patterns and
structural complexities. Our approach involves the develop-
ment of dual graph encoders: one dedicated to embedding
the constituent node-graphs and the other to embedding
the overarching network, utilizing the representations de-
rived from the first encoder. Furthermore, we construct an
implicit constraint network that interconnects these graph

nodes based on their labels and contextual relationships with
positions. This network is conceived from two critical in-
sights: firstly, nodes with similar labels should have closely
aligned embeddings, whereas those with dissimilar labels
should diverge; secondly, the interactive proximity between
node-graphs diminishes as the separation between their rela-
tive positions grows. By employing this constraint network,
we refine the similarities among the node embeddings. This
layered, network-wide approach, which accounts for both
intra-graph and inter-graph dynamics provides a framework
for understanding the complex structures. Our contributions
are summarized as follows:

• We explore a novel Graph-of-Net structure that lends
itself to easy generalization across various fields, e.g.,
citation networks, and biomedical networks.

• We propose a position-aware neural network designed
specifically for the GON structure. Our model innova-
tively manages both intra- and inter-graph interactions,
significantly enhancing our ability to decipher and in-
terpret intricate data.

• We conduct extensive experiments on various types of
data, including 9 benchmark network datasets and 7
biomedical datasets. The results show that our model
significantly outperforms SOTA baselines.

2. Related Work
2.1. Graph and Graph-of-Net

Graphs, with vertices and edges, serve well for depicting bi-
nary relationships (West et al., 2001; Wang et al., 2024b;c).
The discipline has evolved, incorporating complex struc-
tures such as hypergraphs (Zhou et al., 2006) and heteroge-
neous graphs (Liu et al., 2024a; Mo et al., 2024). Hyper-
graphs permit edges to connect multiple vertices, enabling
the representation of complex many-to-many relationships.
Heterogeneous graphs, characterized by their diverse types
of vertices and edges. In this evolving landscape, the con-
cept of the GON introduces a distinct conceptual framework.
In contrast to these traditional graphs, the GON incorpo-
rates complete graphs within the nodes of a larger graph.
This approach offers a unique perspective for representing
hierarchical and multi-layered relationships. However, exist-
ing research on Graph-of-Net is primarily domain-specific.
For instance, in the physical sciences, (Gao et al., 2011)
has been dedicated to establishing a precise percolation law
applicable to a network comprising n interdependent net-
works. Similarly, in the pharmaceutical sector, research
(Wang et al., 2021) has predominantly focused on the pre-
diction of drug-drug/chemical-chemical interactions. In
contrast to these specialized domains, our study adopts a
broader approach. We concentrate on universal structure
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Figure 2: The framework of the N2GON model.

of GON, aiming for applicability in a wide range of fields.
This includes, but is not limited to, social networks, citation
networks, and biomedical networks.

2.2. Graph Representation Learning

Graph representation learning (GRL) is experiencing signifi-
cant development, focusing on transforming input nodes into
low-dimensio- nal vectors. These vectors are primarily used
for tasks at both the graph and node levels. The initial phase
of GRL centered around shallow networks, with notable
examples including DeepWalk (Perozzi et al., 2014), which
employed random walks to generate node embeddings, and
Node2Vec (Grover & Leskovec, 2016), which introduced
a more flexible approach for neighborhood sampling. In
recent years, the rise of graph neural networks (GNNs)
has marked a significant advancement in graph-based learn-
ing. GNNs operate by aggregating the representations of
both a node and its neighbors in a recursive manner. They
achieved state-of-the-art performance on various tasks (Liu
et al., 2024b), such as node classification (Zhang et al., 2024;
Wang et al., 2023), node clustering (Tsitsulin et al., 2023),
etc. Nevertheless, despite these significant strides, applying
these advanced techniques to GON structures, known for
their hierarchical and multi-relational complexity, remains
a challenging and active area of research. This highlights
the need for exploration in the domain of GON learning.

2.3. Graph Coasrening Learning

Graph coarsening, a technique devised to reduce the com-
plexity of large graphs, involves the consolidation of mul-
tiple nodes into a single node. This process traditionally
relies on mathematical methods, which is exemplified in
(Dhillon et al., 2007) through graph cuts. Recent advance-
ments, like those by (Cai et al., 2021), have incorporated
graph neural networks to refine edge weights, enhancing
coarsening efficiency. Additionally, (Jin et al., 2022) have
contributed by focusing on preprocessing and graph conden-
sation, crucial for the scalability and acceleration of graph
meural networks. Graph coarsening and GON differ sig-
nificantly in their functions. Graph coarsening simplifies a
single graph for better processing efficiency, while GON, a
complex structure, represents multi-layered systems with

each node as a graph, highlighting data’s hierarchical and
interconnected aspects.

3. Methodology
In this section, we will introduce a structure, named Graph-
of-Net (GON), and propose a novel neural network model
for learning from Graph-of-Net data. Actually, the Graph-
of-Net structure is a generalization of the traditional graph
structure, where each node is a graph. Given an input Graph-
of-Net, we aim to learn the representations of nodes in it. To
effectively achieve this goal, we propose an position-aware
neural network model, which considers both intra-graph
connections within node-graphs and inter-graph dependen-
cies among them and integrates additional data like node
labels to capture complex patterns.

The framework of the proposed model is illustrated in Fig.2.
We employ two encoders, Encoder I and Encoder II, to en-
code the Graph-of-Net, with the former targeting the node-
graphs and the latter focusing on the Net formed between
these node-graphs. Two graph constructors, Grapher I and
Grapher II, are utilized to build a node-graph constraint
network. Grapher I, based on the labels of the node-graphs,
connects two nodes with the same label with an edge. Gra-
pher II, leveraging this preliminary network in conjunction
with the Graph-of-Net’s inherent structure, computes the
final constraint network, which features edge weights indi-
cating the similarity between nodes. Guided by this network,
the Constrainer strategically arranges the node-graph repre-
sentations based on their relative positions, aligning those
with greater similarities in closer proximity to each other,
while distancing those is dissimilar (i.e., with different la-
bels).

3.1. Definition of Graph-of-Net

A Graph-of-Net is mathematically characterized as a so-
phisticated structure GN = (VG , EG), wherein the node
set VG comprises a collection of N individual graphs,
each paired with its corresponding one-hot label, repre-
sented as {(Gi,Yi)|i ∈ {1, . . . , N}}. The edge set EG ⊆
{(Gi,Gj)|Gi,Gj ∈ VG} delineates the inter-graph relation-
ships within this structure. The adjacency matrix AG for
GN is defined such that each element Aij signifies the con-
nectivity between graphs Gi and Gj , encapsulating the com-
prehensive network of interactions. Each graph node Gi is
defined as Gi = (Vi,Ei,Xi), where Vi = {vi1, . . . , vin} and
Ei ⊆ {(vis, vit)|vis, vit ∈ Vi} represent the vertices and edges
of Gi, respectively. It’s important to note that Ei symbolizes
the intra-graph connections. The feature matrix Xi ∈ Rn×d

encapsulates the attributes of vertices in Gi, with n being
the number of vertices and d the dimensionality of these
features. The adjacency matrix Ai of Gi assigns a value of 1
to Aij if (vis, v

i
t) ∈ Ei and 0 otherwise.
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In this work, given a Graph-of-Net GN, our primary objec-
tive is to engage in the task of Graph-of-Net supervised
learning. This involves learning the representative vectors
vG for the graph nodes, which are instrumental in predicting
their labels.

3.2. Encoders of Graph-of-Net

Given the intricate composition of a Graph-of-Net, where
each node themselves possesses distinct structures and the
inter-node relationships coalesce into a network, we adopt a
dual-encoder strategy. This approach is tailored to harness
the multifaceted structural nuances of the Graph-of-Net:
1) Encoder I, tasked with transforming individual node-
graphs into low-dimensional representations; 2) Encoder II,
which, building upon the foundations laid by the Encoder I,
further refines these representations in alignment with the
GON’s inherent network architecture. This sequential, dual-
encoder setup is meticulously designed to integrate the two-
tiered structural essence of the Graph-of-Net, thus ensuring
that the resultant node representations are a comprehensive
blend of both the nodes’ intrinsic structural details and the
overarching inter-node relational dynamics.

In the context of a specific Graph-of-Net GN, we employs
a message-passing framework to encode the node-graph G,
with a focus on retaining the vital adjacency information
intrinsic to the node-graph as follows. Let h`s ∈ F` de-
notes the feature at layer ` associated with node s, where
F denotes arbitrary finite-dimensional space of the form
Rq (for various values of q) typically representing the
feature space, the updated feature h`+1

s is obtained as:
h`+1
s = fupd(h

`
s, {{h`t |t ∈ Ns}}), where t ∈ Ns means that

nodes t and s are neighbors in the graph G, i.e. (s, t) ∈ E,
and the function fupd : 2F` → F`+1 is a learnable func-
tion taking as input the feature vector of the center vertex
h`s and the multiset of features of the neighboring vertices
{{h`t |t ∈ Ns}}. Indeed, for any such function fupd can be
approximated by a layer of the form

h`+1
s = σ

(
W ` ·

(
h`s ⊗ f `

(
h`s, {{h`t| t ∈ Ns}}

)))
(1)

where f ` : 2F` → F`+1 is injective set functions in the
`-th layer, ⊗ denotes vector concatenation, W ` is learnable
weight matrix and σ is an element-wise activation function.
We get the `-th message passing layer f `G : F` → F`+1 (note
that fG depends implicitly on the node-graph). Then, by the
composition of f `G and pool function fPool

G : FL1
→ FL1+1,

we obtain the representation of each graph node

hG = fPool
G ◦ fL1

G ◦ . . . f
2
G ◦ f1G(X) (2)

where L1 denotes the number of layers used in the node-
graph encoder. Leveraging the derived representations of
node-graphs, the Encoder II adopts a message propagation

technique to further update these representations within the
GON network. Analogously, we establish the `-th message
passing layer f `G : F` → F`+1, with a consideration that fG
is network-dependent. Subsequently, by orchestrating a se-
ries of operations through f `G , we update the representation
of each node

vG = fL2

G ◦ . . . ◦ f
1
G(hG) (3)

in the GON network, where L2 is the number of layers used
in the net encoder.

3.3. Construction of Constraint Network

Upon finalizing the representations of node-graphs within
the context of supervised learning—where each node-
graph’s label is accessible during training—we focus on
constraining these representations using their associated la-
bels. Given the node label matrix Y ∈ Rn×q , where row Yi
denotes the one-hot label of the i-th node-graph, we define
the label identity matrix C as

C = Y× Y> (4)

to construct a constraint network (Grapher I). This matrix’s
elements, Cij , serve to denote whether the labels of the
i-th and j-th node-graphs match, assigning a value of 1 for
identical labels and 0 for differing ones.

A direct approach might suggest that pairs of nodes with
1s in matrix C are similar, whereas those corresponding
to 0s are dissimilar. However, this method neglects the
nuanced interrelations among node-graphs, treating nodes
as if they were independently and identically distributed. It
simplistically presumes uniform similarity for nodes sharing
labels, assigning a consistent weight of 1.

Yet, in practical scenarios, two nodes sharing a label may
exhibit varying levels of similarity. For example, in a cita-
tion network, a paper P1 focused on graph neural networks
(GNNs) and two other papers P2 and P3, although sharing
a common thematic label (e.g., neural networks), may differ
in their degree of relevance to P1. If P2 discusses GNNs
while P3 explores convolutional neural networks (CNNs),
then P2 inherently shares a closer similarity with P1 than
P3. To tackle this, we recognize that the GON’s inherent
network structure provides critical insights to differentiate
such varying degrees of similarity. Nodes sharing a label
and exhibiting closer connections should logically possess
higher similarity, and the converse for less connected nodes.
In our example, paper P1 is more likely to cite paper P2

(directly interconnected) than P3, suggesting a tighter con-
nection within the GON’s citation network.

Building upon these insights, we address the issue of uni-
form similarity weights by evaluating node significance and
adjacency within the GON. To this end, we construct a re-
fined constraint network (Grapher II), which recalibrates
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Algorithm 1 N2GON

Input :GON GN. F1,F2: the backbone encoders.
while not converge do

Sample full-batch of node-graphs {Gi}Ni=1 from GN;
Encode {Gi}Ni=1 by F1 Eq.(2) to get {hGi

}Ni=1;
Update {hGi

}Ni=1 by F2 Eq.(3) to get {vGi
}Ni=1;

Generate constraint net C Eq.(4) and Π Eq.(6);
Calculate constrain loss Lcon Eq.(7) and NLL loss, opti-

mize the encoders F1,F2;
end
Output :The well trained model F1,F2

the similarity weights among node-graphs. This recalibra-
tion is inspired by the Personalized PageRank (PPR) algo-
rithm. The PPR algorithm calculates the probability of an
α-random walk, which originates from a source node and
concludes at a target node. In our model, the source node
corresponds to the node-graph Gi, and the target node is
Gj . Here, an α-random walk represents a path taken by a
random surfer on the network, who either halts at the cur-
rent node with a probability of α or proceeds to a randomly
selected outgoing neighbor with a probability of 1−α. The
pairwise score value π(Gi,Gj) can be computed by solving
the following equation:

π(Gi,Gj) = α1(Gi,Gj)+ (1−α)
∑

Gk∈NGj

π(Gi,Gk)

d(Gk)
(5)

wherein NG signifies the set of neighboring node-graphs
of G, 1(·, ·) is an indicator, and d(G) denotes the degree of
node-graph G. Intuitively, as per this definition, the value
π(Gi,Gj) assesses the importance and similarity of a node
Gj in relation to the source Gi. Let Π represent the score
matrix, where (Π)ij corresponds to the importance value
π(Gi,Gj) relative to the source i. We have

Π = α(In − (1− α)AG)−1 (6)

where In is the identity matrix. Hence, our model considers
not only the label information of graph nodes but also the
positional information between nodes, which computes the
topological influence of node-graphs on each other, implic-
itly revealing their relative positions in the network.

3.4. Loss

After establishing the constraint network, we integrate it
with the representations of our node-graphs. The goal here
is to meticulously align these representations based on the
pairwise importance scores defined within the constraint
network. This strategic alignment is crafted to bring rep-
resentations of node-graphs with higher similarity scores
closer together, while placing those with lower similarity
scores at a proportionately greater distance, and explicitly

segregating the representations of node-graphs that are dis-
similar (namely, those with differing labels). To achieve
this goal, for each node-graph, we define a loss function to
constrain it in relation to other nodes (Constrainer):

Lcon = −
N∑
ij

(Π ◦ C)ij log
exp(sim(vGi

, vGj
)/τ)∑N

k 6=i exp(sim(vGi
, vGk

)/τ)

(7)
where ◦ denotes the Hadamard product, vG is the represen-
tation of node-graphs G. sim(a, b) denotes the similarity
between vectors a and b, which is usually defined as the
cosine similarity without normalization. τ is a tempera-
ture parameter. For label-based supervision, we employ
the Negative Log-Likelihood (NLL) as the loss function.
Consequently, the overall loss is formulated as the sum of
the constraint loss and the NLL loss. The algorithm of the
proposed model N2GON is summarized in Algorithm 1.

4. Computational Complexity
In this section, we provide a comprehensive discussion of
the computational complexity of the proposed N2GON ap-
proach. Let the number of node-graphs in the Graph-of-Net
be |V|, and the number of edges between the node-graphs
be |E|. Additionally, the number of nodes and edges within
node-graph are denoted as |V | and |E|, respectively. 1)
Encoder: The time complexity of the graph neural net-
work backbone for Encoder I and II are O(|V |+ |E|) and
O(|V| + |E|), respectively. 2) Grapher I: Since the node
label matrix Y is a sparse one-hot label matrix, the com-
putation of the label identity matrix C is mainly related
to the number of non-zero elements in Y. Therefore, the
time complexity is O(δ|V|q), where δ << 1 represents the
ratio of non-zero elements in Y, and q is the number of
classes. 3) Grapher II: In constructing the refined constraint
network, we use the PageRank local partitioning algorithm,
with a logarithmic running time of O

(
2b log3 |E|

φ2

)
, where φ

is the conductivity and b ∈ [1, logm] is a constant. 4) Loss:
Since the constraint loss requires the computation of the dot
product between pairs of embeddings, the time complexity
is O

(
|V|2d

)
, where d is the dimensionality of the embed-

dings. Therefore, the total computational time complexity
is O

(
δ|V|q + |E|+ 2b log3 |E|

φ2 + |V|2D + |V |+ |E|
)

.

5. Experiments
In this section, we conduct an extensive experimental eval-
uation of N2GON, examining its performance across a
wide range of datasets from various domains, including
social networks, citation networks, web page networks, and
biomedical data. The first three categories are common in
graph learning research, allowing us to compare N2GON
with state-of-the-art graph learning algorithms. However,
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Table 1: Mean test classification accuracy (%) ± stdev on 6 heterophily and 3 homophily datasets. The highest performance
is highlighted, and the second best performance is underlined.

Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

Hom. level h 0.11 0.21 0.22 0.22 0.23 0.3 0.74 0.8 0.81
#Nodes |V| 183 251 7,600 5,201 2,277 183 3,327 19,717 2,708
#Edges |E| 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

MLP 81.89±4.78 85.29±3.61 35.76±0.98 29.68±1.81 46.36±2.52 81.08±6.37 72.41±2.18 86.65±0.35 74.75±2.22

GCN 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.90±1.04

GAT 52.14±5.16 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 86.33±0.48 87.30±1.10

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04

GCNII 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25

H2GCN-1 84.86±6.77 86.67±4.69 35.86±1.03 36.42±1.89 57.11±1.58 82.16±4.80 77.07±1.64 89.40±0.34 86.92±1.37

H2GCN-2 82.16±5.28 85.88±4.22 35.62±1.30 37.90±2.02 59.39±1.98 82.16±6.00 76.88±1.77 89.59±0.33 87.81±1.35

ACM-GCN 87.84±4.40 88.43±3.22 36.28±1.09 54.40±1.88 66.93±1.85 85.14±6.07 77.32±1.70 90.00±0.52 87.91±0.95

WRGAT 83.62±5.50 86.98±3.78 36.53±0.77 48.85±0.78 65.24±0.87 81.62±3.90 76.81±1.89 88.52±0.92 87.95±1.18

GGCN 84.86±4.55 86.86±3.29 37.54±1.56 55.17±1.58 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05

S2GC 68.65±8.05 71.57±9.01 34.17±0.92 41.63±0.98 58.55±5.15 75.25±7.82 76.08±0.45 88.31±0.38 87.73±2.90

SIGN 75.14±7.94 80.59±3.75 36.14±1.01 40.16±2.12 60.48±2.10 78.11±4.67 76.53±1.76 89.58±0.45 86.72±1.37

APPNP 78.37±6.01 81.42±4.34 34.64±1.51 33.51±2.02 47.50±1.76 77.02±7.01 77.06±1.73 87.94±0.56 87.71±1.34

GPRGNN 82.12±7.72 81.16±3.17 33.29±1.39 43.29±1.66 61.82±2.39 81.08±6.59 75.56±1.62 86.85±0.46 86.98±1.33

GCN+JK 66.49±6.64 74.31±6.43 34.18±0.85 40.45±1.61 63.42±2.00 64.59±8.68 74.51±1.75 88.41±0.45 86.79±0.92

GCN-Cheby 77.30±4.07 79.41±4.46 34.11±1.09 43.86±1.64 55.24±2.76 74.32±7.46 75.82±1.53 88.72±0.55 86.76±0.95

MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 76.26±1.33 85.31±0.61 87.61±0.85

FAGCN 78.11±5.01 81.56±4.64 35.41±1.18 42.43±2.11 56.31±3.22 76.12±7.65 74.86±2.42 85.74±0.36 83.21±2.04

DAGNN 70.27±4.93 71.76±5.25 35.51±1.10 30.29±2.23 45.92±2.30 73.51±7.18 76.44±1.97 89.37±0.52 86.82±1.67

HopGNN 82.97±5.12 85.69±5.43 37.09±0.97 64.23±1.33 71.21±1.45 84.05±4.48 76.69±1.56 90.28±0.42 87.57±1.33

N2GON 90.16±4.17 90.29±4.63 42.57±1.97 60.98±2.12 72.13±2.30 92.11±3.66 81.27±1.30 90.64±0.37 89.14±2.01

biomedical data presents distinct challenges due to its di-
verse representation methods. This data is often represented
in multiple complex vector formats, resulting from various
processing techniques. Consequently, our evaluation also
encompasses these alternative representation methods.

5.1. Network Benchmark Datasets

Datasets. To evaluate the effectiveness of N2GON across a
spectrum of datasets, we conducted a comprehensive analy-
sis using 9 benchmark network datasets. These datasets
are diverse, varying in domain, size, and the degree of
data smoothness. Our selection encompasses three stan-
dard homogeneous citation datasets, as mentioned in (Kipf
& Welling, 2017), as well as six well-known heterogeneous
datasets, referenced in (Pei et al., 2020). The statistical
information of these datasets are systematically outlined in
Table 1. The network benchmark datasets focus on graph
node classification, measuring the accuracy of node classi-
fication. Details of datasets are as follows. For homophily
datasets, the benchmarks include CiteSeer, PubMed, and
Cora (Kipf & Welling, 2017), which are prominent in the
domain of citation network analysis. In these datasets, nodes
are utilized to represent academic papers, while edges cor-
respond to the citations amongst these papers. The labels
assigned to each node categorize the paper according to its
research topic. As for heterophily datasets, this group en-
compasses datasets from the WebKB collection for the Uni-

versity of Texas, University of Wisconsin, and Cornell Uni-
versity, as well as Squirrel and Chameleon datasets based on
Wikipedia topics, and the Actor network (Pei et al., 2020).
These datas build networks through nodes (web pages or
actors) and edges (hyperlinks or collaborations). The node
labels are based on metrics such as webpage traffic or the
categorization of actors in their context.

Given that these benchmark datasets predominantly offer
processed graph data, we were tasked with adapting this
data into a GON format suitable for our analysis. To achieve
this, we implemented a strategy wherein the k-hop neighbor
nodes of each node were sampled to induce a correspond-
ing subgraph, effectively representing that particular node.
This transformation method is justified by considering, for
instance, a citation network where a paper’s composition is
not only its content but also the referenced works it cites;
similarly, in social networks, a user’s (node’s) social con-
nections are an integral part of their identity.

Baselines. We compare the proposed model N2GON with
various baselines, including (1) MLP; (2) standard node-
interaction GNN methods: GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al.,
2017) and GCNII (Chen et al., 2020), MixHop (Abu-El-
Haija et al., 2019), GCN-ChebyNet (Defferrard et al., 2016),
GCN+JK (Xu et al., 2018); (3) heterophilic GNNs with
adaptive node interaction: H2GCN (Zhu et al., 2020),
WRGAT (Suresh et al., 2021), ACM-GCN (Luan et al.,
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Table 2: Predictive performance results, ROC-AUC and PR-AUC (%), on 4 relationship classification tasks PPI, PEPMHC,
TCR, and MTI. The highest performance is highlighted, and the second best performance is underlined.

Method PPI:HuRI PEPMHC:MHC1 TCR:Weber MTI:miRTarBase
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

AAC 88.81± 4.14 90.62± 3.09 90.57± 9.01 83.18± 4.39 86.51± 6.91 83.97± 4.20 86.48± 7.36 81.24± 5.74
ConjointTriad 87.43± 5.29 91.01± 7.18 93.19± 5.29 87.21± 3.52 85.96± 6.77 83.98± 8.34 84.40± 5.35 82.82± 4.56
Quasi-Seq 79.28± 4.72 82.62± 5.23 90.75± 3.19 85.08± 2.99 76.65± 4.90 73.15± 5.21 71.44± 2.66 73.16± 3.29
ESPF 82.94± 6.20 86.38± 4.85 93.31± 5.12 87.46± 6.18 85.51± 3.96 83.32± 5.69 89.53± 6.71 85.01± 4.55
CNN 87.19± 3.38 90.45± 6.17 91.36± 4.27 84.99± 3.86 86.24± 6.30 83.72± 3.49 87.81± 4.28 81.39± 6.50
CNN RNN 86.61± 3.77 89.81± 5.10 86.25± 7.23 81.30± 4.38 71.38± 6.96 76.11± 3.32 82.11± 3.45 80.41± 3.67
Transformer 88.20± 4.91 90.35± 4.16 91.78± 4.39 85.28± 3.42 86.30± 4.76 84.35± 3.80 88.45± 6.01 82.22± 4.79

N2GON 89.83± 3.52 91.37± 5.23 93.77± 6.23 86.94± 4.65 89.78± 7.38 89.75± 2.35 91.55± 7.49 84.66± 3.95

Table 3: Predictive performance results, ROC-AUC and
PR-AUC (%), on DTI datasets. The best performance is
highlighted, and the second best performance is underlined.

Method DAVIS KIBA
ROC-AUC PR-AUC ROC-AUC PR-AUC

Morgan+AAC 85.19± 6.12 76.77± 4.63 86.90± 5.53 83.48± 6.70
Morgan+ESPF 85.96± 3.07 75.93± 7.58 87.13± 6.88 85.56± 3.59
Morgan+CNN 82.01± 4.78 73.96± 4.09 90.36± 8.61 87.43± 5.89

PubChem+AAC 86.87± 3.29 77.75± 7.99 85.51± 8.14 84.74± 4.98
PubChem+ESPF 86.13± 3.67 78.40± 4.91 85.72± 8.38 82.23± 3.52
PubChem+CNN 88.23± 5.22 81.18± 4.16 92.61± 7.36 90.72± 6.27

Daylight+AAC 85.54± 3.78 81.79± 6.18 83.95± 6.29 76.78± 5.22
Daylight+ESPF 84.13± 4.80 76.85± 4.34 85.84± 8.52 82.04± 6.66
Daylight+CNN 84.43± 3.32 75.78± 7.08 91.33± 6.92 92.30± 5.99

RDKIT+AAC 84.71± 6.94 80.80± 7.32 87.02± 6.38 84.86± 4.45
RDKIT+ESPF 85.99± 4.47 75.19± 6.52 85.92± 5.33 82.26± 4.07
RDKIT+CNN 84.52± 5.33 78.56± 5.71 88.68± 5.32 85.45± 6.47

ESPF+AAC 85.38± 6.52 77.58± 7.45 87.54± 7.97 84.44± 4.94
ESPF+ESPF 85.14± 3.04 76.83± 7.29 85.80± 5.43 69.81± 4.22
ESPF+CNN 84.83± 3.31 77.65± 6.69 88.45± 8.60 85.14± 5.72

CNN+AAC 83.73± 5.42 80.21± 4.57 86.87± 6.88 85.15± 6.55
CNN+ESPF 82.96± 4.70 74.81± 7.91 85.55± 5.34 83.43± 6.31
CNN+CNN 84.39± 3.06 76.39± 7.34 88.46± 8.06 84.58± 6.30

MPNN+AAC 86.27± 6.87 78.96± 6.56 81.41± 6.97 83.41± 5.76
MPNN+ESPF 85.99± 3.75 80.93± 4.26 81.09± 7.54 78.51± 6.85
MPNN+CNN 82.78± 3.86 73.59± 7.10 89.41± 5.47 86.76± 5.97

N2GON 91.53± 4.26 83.68± 5.65 95.27± 5.15 95.08± 3.11

2022), GGCN (Yan et al., 2022), FAGCN (Bo et al., 2021),
Geom-GCN (Pei et al., 2020) (4) sampling GNNs: Fast-
GCN (Chen et al., 2018), AS-GCN (Huang et al., 2018),
ClusterGNN (Chiang et al., 2019), GraphSAINT (Zeng
et al., 2020); and (5) decoupled GNNs: S2GC (Zhu & Ko-
niusz, 2020), SIGN (Frasca et al., 2020), APPNP (Klicpera
et al., 2019), GPRGNN (Chien et al., 2021), DAGNN (Liu
et al., 2020), HopGNN (Chen et al., 2023). We report results
from previous studies using the same experimental setup
when available. For unreported results with available codes,
we implement them using official codes.

Implementation Details. In this study, we utilized PyTorch
to implement our methodology. Our experimental setup con-
sisted of a server equipped with two NVIDIA A6000 GPUs
running Ubuntu 20.04. We configured the hidden dimension
of N2GON as 32 for the nine datasets. We tune the hops k
from {1, 2, . . . , 6}. We determined the layer counts for En-
coder I and Encoder II, denoted as L1 and L2, by selecting

Table 4: Predictive performance results, ROC-AUC and
PR-AUC (%), on DDI datasets. The best performance is
highlighted, and the second best performance is underlined.

Method TWOSIDES
ROC-AUC PR-AUC

Morgan 82.68± 5.17 79.30± 8.76
Pubchem 81.69± 6.40 78.24± 8.03
Daylight 81.97± 4.11 78.76± 5.59
RDKIT 82.29± 4.82 78.75± 6.74
CNN 62.29± 5.24 79.35± 7.16
CNN RNN 62.58± 5.77 78.61± 5.17
Transformer 70.30± 5.18 78.26± 5.35
MPNN 80.27± 3.15 77.34± 5.70

GoGNN 83.03± 4.72 79.19± 5.85

N2GON 85.53± 5.67 80.96± 6.35

from the set {1, 2, 3}. The selection of the probability pa-
rameter α ranged from {0.1, . . . , 0.6}, while the parameter
temperature τ was chosen from a range of {0.1, . . . , 0.5}.
For the training phase, the Adam optimizer (Kingma & Ba,
2014) was utilized. Regarding the prediction tasks, our
benchmarks included a network dataset aimed at predicting
graph node labels and a biomedical dataset focused on iden-
tifying relationships between graph nodes. Accordingly, our
model was adapted to each dataset’s unique requirements:
the former directly leveraged the labels of nodes, while in
the latter, treated adjacent nodes as sharing the same labels.

Results. Table 1 displays the node classification results
comparing our N2GON algorithm with various established
graph representation learning algorithms. The data in Table
1 indicates that N2GON outperforms the SOTA algorithms
across a range of datasets. Notably, on the homogeneous
dataset CiteSeer, N2GON shows a 3.94% improvement in
performance over GCNII, and on the heterogeneous dataset
ACTOR, it exceeds the performance of GGCN by 5.03%.
These results suggest the potential effectiveness of N2GON
in various dataset contexts. The results collectively suggest
that the GON data structure, and our algorithm’s approach
to leveraging this structure, could offer certain advantages
in capturing and representing the complexities of different
types of datasets.
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Table 5: The statistics of the biomedical datasets. # En1 and
# En2 represent entity counts in the first and second sets,
respectively, and # Link signifies the number of interactions.

Data DAVIS KIBA TWOSIDES HuRI MHC-1 miRTarBase Weber

# En1 68 2,068 645 8,248 43,018 3,465 192

# En2 379 229 645 8,248 150 21,242 23,139

# Link 25,772 117,657 63,462 51,813 185,985 400,082 47,182

5.2. Biomedical Datasets

Datasets. We conducted an evaluation of N2GON on
biomedical datasets, which includes 7 datasets from di-
verse domains: Drug-Target Interaction (DTI) with datasets
DAVIS and KIBA (Davis et al., 2011; Tang et al., 2014),
Drug-Drug Interaction (DDI) with Twosides (Tatonetti et al.,
2012), Protein-Protein Interaction (PPI) with HuRI (Luck
et al., 2020), Peptide-MHC Binding Prediction (PEPMHC)
with MHC-I (Nielsen & Andreatta, 2016), MicroRNA-
Target Interaction (MTI) with miRTarBase (Chou et al.,
2018), and TCR-Epitope Binding Affinity (TCR) with We-
ber (Weber et al., 2021). The biomedical datasets focus
on biological entity interaction prediction. The statistics
of the biomedical datasets are shown in Table 5. These
datasets were assembled by experts in the biomedical field,
focusing on the prediction of affinity relationships between
various entities (Koh et al., 2024). For example, the DTI
dataset DAVIS includes data on drug-target affinities, while
the DDI dataset TWOSIDES contains information on drug-
drug affinities. This type of data is naturally suited for
representation in the GON format. In this structure, individ-
ual nodes (e.g., drug molecules) are graph structures, and
the inter-node relationships (e.g., interactions between drug
molecules and targets) constitute a network of graphs. In our
study, drug molecules are represented as graphs with nodes
symbolizing atoms and edges denoting chemical bonds.
For the node features of drug molecule construction, we
can use the transformation methods provided by the library
Therapeutics Data Commons to extract node features from
SMILES sequences. Similarly, proteins (or peptides) are
represented as graphs with nodes depicting amino acids and
edges illustrating the chemical bonds between these amino
acids.

Baselines. In the analysis of biomedical datasets, it’s com-
mon to use one or two encoders for encoding entities like
drugs or proteins. The resulting encoded vectors are then fed
into a decoder to predict the relationship between two enti-
ties. Typically, this prediction task falls under binary classi-
fication, where an output of 1 signifies a relationship, and 0
denotes its absence. To establish a comprehensive baseline
for comparative analysis, various encoders for drugs and pro-
teins, specified in a domain-specific benchmark library, were
employed. The drug encoding options include Morgan, Pub-

chem, Daylight, RDKIT, CNN, CNN RNN, Transformer,
and MPNN, while protein encoding options are AAC, Con-
jointTriad, Quasi seq, ESPF, CNN, CNN RNN, and Trans-
former. Details of these encoders can be found in (Huang
et al., 2020). Therefore, our study conducts comparisons
of N2GON against encoder-based classification. Addition-
ally, since the GoGNN (Wang et al., 2021) is specifically
designed for drug-drug interaction data, we also compare
N2GON with GoGNN on the DDI dataset Twosides.

Implementation Details. For the baselines, we followed
the default settings from the benchmark library (Huang et al.,
2020), and the original work (Wang et al., 2021) with its
specified hyperparameters. Our N2GON model, being well-
suited for affinity network data, utilizes the adjacency matrix
to construct the label identity matrix, assuming neighboring
nodes share the same label. In these tasks, N2GON aims to
predict connections between two nodes, and the aforemen-
tioned assumptions align seamlessly with the requirements
of the tasks. We maintained consistent hyperparameter set-
tings for N2GON as outlined previously. It should be noted
that within these datasets, PPI and DDI are homogeneous
networks, whereas other datasets, such as DTI and MTI,
are heterogeneous networks, meaning the nodes have differ-
ing properties. For heterogeneous networks, we utilize the
method described in the paper (Schlichtkrull et al., 2018) to
convert a homogeneous GNN model into its heterogeneous
equivalent. The edge splits for training, validation, and test-
ing datasets were uniformly distributed across all methods
using an 80/10/10 ratio. Note that during test phase, the
encoder utilizes edges from both the training and validation
sets for encoding and subsequently predicts edges from the
testing set. We conduct 10 runs and report the average and
standard deviation of ROC-AUC and PR-AUC scores for
each method.

Results. Tables 2, 3, and 4 present the comparative per-
formance results of our N2GON algorithm against corre-
sponding baselines. Analysis of these tables reveals that
N2GON consistently outperforms other methods across all
datasets. For example, on the KIBA dataset within the
DTI domain, N2GON shows a performance improvement
of 2.66% with regard to ROC-AUC over the top encoder-
based classification method, Pubchem+CNN RNN. This
suggests that N2GON may offer advantages over traditional
encoder-based method and the GoGNN, in the context of
biomedical data.

5.3. Analysis of N2GON

Ablation Study. In this analysis, we evaluate the impact
of the constraint network components, Grapher I and Gra-
pher II, on the N2GON model’s performance. We compare
N2GON’s effectiveness both with and without these com-
ponents, designating the models without Grapher I and
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Figure 3: t-SNE embeddings of nodes in the network data.

Grapher II as w/o Grapher I and w/o Grapher II, respec-
tively. The comparative performance data for these models
is delineated in Table 6. An examination of the results shows
that the versions of the model lacking Grapher I and Gra-
pher II generally exhibit lower performance compared to
the full implementation of N2GON. It is noteworthy that
the performance of w/o Grapher II is superior to that of
w/o Grapher I, indicating a greater impact of Grapher I on
the overall effectiveness of N2GON. This finding suggests
that Grapher I is a fundamental component for Grapher II’s
functionality, as the construction of an importance-based
constraint network relies on the presence of similar or iden-
tical labels between nodes. Thus, these results collectively
indicate that the incorporation of an importance constraint
network contributes positively to the performance of the
proposed N2GON model.

Table 6: Ablation study on the key components of N2GON.

Variants Squirrel Cora Citeseer Pubmed

N2GON 60.98±2.12 89.14±2.01 81.27±1.30 90.64±0.37
w/o GrapherII 59.10±2.48 87.22±1.83 78.76±2.33 88.60±0.36
w/o GrapherI 58.34±3.16 85.81±1.35 77.93±1.51 88.55±0.42

Visualization Analysis. To demonstrate the strengths of our
model in an objective manner, we utilized 2D projections
for visual analysis, as shown in Fig.3. These projections de-
pict the representations of the Cora and Chameleon datasets
as processed by GCN, HopGNN, and N2GON, using the
t-SNE algorithm (Van der Maaten & Hinton, 2008). The vi-
sualizations employ different colors to distinguish between
various classes of nodes. In these representations, N2GON
notably achieves a more pronounced separation, implying an
enhanced ability to maintain class structures when compared
to the other methods. This distinct separation achieved by
N2GON suggests its effectiveness in accurately capturing

and differentiating between node classes, highlighting its
potential utility in such applications.

6. Conclusion

In this paper, we investigate a structure, graph-of-net (GON),
to model real-world systems. GON provides a multi-level
perspective on the coupled dependency relations of objects,
it contains: 1) node as graph, where each such graph can
model entities like computing networks; 2) edge connect
graph. We propose a position-aware neural network to learn
the representations of GON, integrating both the structural
information of nodes and their interdependencies, while also
considering auxiliary information between nodes (i.e., label).
To demonstrate the superiority of the GON representation
and the effectiveness of our proposed model, experiments
were conducted across various types of datasets. The results
show that our model significantly outperforms state-of-the-
art algorithms in these domains.

7. Limitations and Future Work
In GON, noise in any part of the data can adversely af-
fect the learned representations. For instance, inaccuracies
in node attributes or connectivity can propagate through
successive encoding layers, potentially degrading overall
performance. To mitigate this issue, future work may ex-
plore noise-robust strategies, including more sophisticated
regularization techniques applied across multiple layers.

The process of constructing both intra-graph and inter-graph
connections can influence the performance of the model.
Different graph construction strategies—such as diverse
node/edge selection criteria or varying ways of creating
inter-graph links—could alter the quality of the resulting
representations. A comprehensive comparative study on
multiple construction methods would therefore be valuable.
Such an investigation would offer insights into the most
effective techniques for building multi-layer graphs in dif-
ferent applications.

In addition, several integration approaches can be explored
with GON in future work. For example, integrating rein-
forcement learning could allow for dynamic graph adapta-
tion, where RL agents iteratively rewire inter-graph connec-
tivity in applications like drug discovery and evolving rec-
ommender systems. Additionally, meta-learning approaches
can be used to pre-train GON encoders on diverse tasks, es-
pecially when encountering limited labeled data.
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