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Abstract001

Noisy Preferences (NPs) present a significant002
challenge in aligning Large Language Models003
(LLMs), as incorrect preference labels can sub-004
stantially degrade alignment quality. However,005
existing strategies to mitigate NPs often face006
two key limitations: (1) applying global-level007
adjustments that result in imprecise instance-008
level noise handling, and (2) relying on heuris-009
tic rules that limit the capacity to adaptively010
optimize alignment tasks. In response to these011
challenges, this paper proposes Meta-Align,012
a novel framework designed to address the013
aforementioned limitations. Meta-Align pio-014
neers a perplexity-aware meta-learning strat-015
egy for adaptive sample reweighting, with016
Perplexity Difference (PPLDiff) serving as a017
fine-grained, instance-level signal. Unlike tra-018
ditional methods employing static rules, Meta-019
Align trains an adaptive weighting function020
via meta-learning. This function dynamically021
assigns sample weights based on their PPLD-022
iff, guided by performance on a small, clean023
meta-dataset. Such a design enables pre-024
cise instance-level noise modulation while op-025
timizing the weighting strategy in an adap-026
tive manner. Comprehensive experiments on027
benchmark datasets demonstrate that Meta-028
Align substantially outperforms state-of-the-art029
robust alignment methods, effectively down-030
weighting potentially noisy preferences while031
emphasizing reliable ones.032

1 Introduction033

Large Language Models (LLMs) show remarkable034

abilities in many tasks (Brown et al., 2020; Tou-035

vron et al., 2023). Aligning these models with036

human preferences is crucial to ensure they are037

helpful, harmless, and honest (Cao et al., 2021;038

Bai et al., 2022). This alignment often uses prefer-039

ence datasets, where humans or AI systems indicate040

preferred responses among candidates (Christiano041

et al., 2017; Stiennon et al., 2020; Rafailov et al.,042

2023b).043

Figure 1: Conceptual comparison of PPLDiff-based
weighting.

A significant challenge in this process is the 044

presence of Noisy Preferences (NPs) within these 045

datasets (Gao et al., 2024; Zheng et al., 2023). NPs 046

occur when the recorded preference label is in- 047

correct. Such noise can arise from annotator dis- 048

agreement, subjective biases, or errors in AI-based 049

labeling (Baumgärtner et al., 2024; Yi et al., 2024). 050

Studies suggest that NPs can comprise a substantial 051

portion, potentially 20-40% or more, of commonly 052

used preference data (Gao et al., 2024; Rafailov 053

et al., 2023b). Standard alignment algorithms strug- 054

gle with NPs, which can lead to poor model per- 055

formance, reduced alignment quality, and the re- 056

inforcement of undesirable behaviors. Therefore, 057

developing alignment methods robust to noisy pref- 058

erences is essential for building reliable LLMs. 059

Existing strategies to mitigate NPs often face 060

limitations. Some apply global-level adjustments 061

to the loss function or data (Rafailov et al., 2023a; 062

Chowdhury et al., 2024), offering some robustness 063

but potentially leading to imprecise instance-level 064

noise handling due to uniform effects. A notable 065

advancement involves using instance-specific sig- 066

nals like Perplexity Difference (PPLDiff) (Kong 067

et al., 2024). PPLDiff, calculated from the LLM 068

being aligned, can flag inconsistencies between 069

preference labels and model likelihoods. For exam- 070
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ple, PerpCorrect (Kong et al., 2024) uses a PPLD-071

iff threshold to detect and flip noisy labels. This072

targeted approach is a step forward. Yet, these073

PPLDiff-based methods typically employ heuris-074

tic rules with inherent drawbacks. Reliance on075

hard thresholds can make them sensitive to tun-076

ing. Moreover, they often assign uniform trust to077

all samples identified as noisy (and subsequently078

corrected), overlooking varying noise severities po-079

tentially revealed by the PPLDiff signal itself. Such080

fixed rules also struggle to adapt as the main model081

and its PPLDiff calculations evolve during training.082

These PPLDiff-based heuristics, despite improv-083

ing upon global adjustments by using instance-level084

information, still lack the fine-grained adaptabil-085

ity needed to optimally leverage such signals. Our086

work, Meta-Align, directly addresses this gap. We087

also utilize PPLDiff, but critically, we replace fixed088

rules with a learned, adaptive reweighting mecha-089

nism. This makes rule-based PPLDiff methods the090

most relevant baseline for comparison, and Figure 1091

conceptually illustrates the key differences in how092

PPLDiff is handled. Specifically, rule-based meth-093

ods, like a PerpCorrect-inspired heuristic (dashed094

orange line), make sharp, discrete decisions around095

a PPLDiff threshold and might subsequently ap-096

ply high, uniform trust to all samples identified097

as noisy and corrected. In contrast, Meta-Align098

(solid green line) embodies our proposed adaptive099

approach. It learns a smooth, continuous weighting100

function that adaptively modulates sample influ-101

ence based on the PPLDiff signal, enabling a more102

graduated response to varying noise levels without103

hard cutoffs. This ability to differentiate degrees of104

noise severity and reduce sensitivity to any single105

threshold placement is central to Meta-Align.106

To realize this adaptive weighting, Meta-Align107

employs a meta-learning strategy (Ren et al., 2018;108

Shu et al., 2019) instead of relying on pre-defined109

global adjustments or fixed heuristic rules. The110

core of this strategy is an adaptive weighting func-111

tion that takes the PPLDiff signal—dynamically112

calculated from the LLM being trained—as input.113

This meta-learning process trains the weighting114

function to assign instance-specific weights to train-115

ing samples, guided by performance feedback from116

a small, clean meta-dataset. Consequently, Meta-117

Align learns to automatically down-weight samples118

whose PPLDiff values suggest they are noisy, while119

up-weighting those that appear reliable, leading to120

a more precise and robust alignment. The main121

contributions of this paper are:122

• We pioneer the use of meta-learning for pref- 123

erence alignment in large language mod- 124

els (LLMs), and provide theoretical analysis 125

demonstrating its convergence advantages in 126

the presence of noisy preference data. 127

• We propose Meta-Align, a novel framework 128

that leverages a dynamically generated PPLD- 129

iff signal from the training model and a 130

meta-learning objective to learn an instance- 131

specific, adaptive reweighting strategy for ro- 132

bust alignment. 133

• Extensive experiments demonstrate that Meta- 134

Align consistently outperforms existing robust 135

alignment baselines across a wide range of 136

noise settings by effectively down-weighting 137

unreliable preferences and emphasizing infor- 138

mative ones. 139

2 Related Work 140

Our work intersects with and extends recent ad- 141

vances in LLM alignment, learning with noisy su- 142

pervision, and meta-learning for adaptive training. 143

2.1 LLM Alignment with Noisy Preferences 144

Aligning LLMs with human values via preference 145

data (Ouyang et al., 2022; Bai et al., 2022) is stan- 146

dard, using methods like RLHF (Christiano et al., 147

2017; Stiennon et al., 2020) and DPO (Rafailov 148

et al., 2023b). However, these are susceptible to 149

NPs (Gao et al., 2024; Zheng et al., 2023), which 150

severely impair alignment. Efforts to mitigate NPs 151

include data filtering (Northcutt et al., 2021), risk- 152

ing information loss; robust loss adjustments like 153

cDPO (Rafailov et al., 2023a) and rDPO (Chowd- 154

hury et al., 2024), which apply uniform corrections 155

based on global noise estimates; and using aux- 156

iliary signals like PPLDiff for rule-based correc- 157

tion (PerpCorrect (Kong et al., 2024)). Our work, 158

Meta-Align, while inspired by PPLDiff’s utility, de- 159

parts from rule-based approaches by employing it 160

within a learned, adaptive reweighting mechanism 161

for more nuanced noise handling. 162

2.2 Learning with Noisy Supervision 163

Learning from noisy labels is a well-studied prob- 164

lem (Frénay and Verleysen, 2013; Song et al., 165

2022), with sample reweighting being a prominent 166

paradigm (Liu and Tao, 2015; Jiang et al., 2018). 167

This involves down-weighting likely mislabeled in- 168

stances. While various heuristics or learning strate- 169

gies exist to determine weights, often based on 170
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loss values (Han et al., 2018; Shu et al., 2019),171

our work adapts sample reweighting to LLM pref-172

erence alignment by uniquely using PPLDiff to173

inform weights learned via a meta-learning frame-174

work.175

2.3 Meta-Learning for Adaptive Training176

Meta-learning, or “learning to learn” (Ren et al.,177

2018), has been successfully applied to learn sam-178

ple reweighting schemes for noisy classification179

(Ren et al., 2018; Shu et al., 2019) and data imbal-180

ance (Jamal et al., 2020), typically by optimizing181

weights on a clean meta-dataset. Applying this to182

LLM preference alignment is novel. Our Meta-183

Align framework adapts this concept, but distinc-184

tively uses the PPLDiff signal, not just training185

loss, as input to a meta-learned weighting function186

optimized for alignment quality on clean prefer-187

ences. To our knowledge, Meta-Align is the first to188

synergize PPLDiff with meta-learning for adaptive189

sample reweighting in noisy LLM preference align-190

ment, offering a data-driven, flexible alternative to191

heuristic or uniform correction techniques.192

3 Method193

We propose Meta-Align, a novel approach for194

robust LLM alignment against noisy preferences.195

Meta-Align uniquely leverages a dynamically com-196

puted perplexity difference signal within a meta-197

learning paradigm for adaptive sample reweight-198

ing. The framework aims to mitigate the neg-199

ative impact of NPs in the training data D =200

{(x(i), y(i)w , y
(i)
l )}Ni=1 by learning instance-specific201

weights. This learning process is guided by a202

small, clean meta-dataset Dmeta. The core idea203

involves using the perplexity difference, calculated204

by the main LLM itself during training, to inform205

a meta-learned weighting function V (z;W ). This206

dynamic PPLDiff signal allows the noise assess-207

ment to co-evolve with the main LLM’s learning208

state. Figure 2 depicts the core meta-learning work-209

flow for adaptive reweighting.210

3.1 Dynamic Perplexity Difference as a Noise211

Indicator212

A central component of Meta-Align is the use of213

PPLDiff as an adaptive indicator of potential pref-214

erence noise. For a preference pair (x(i), y(i)w , y
(i)
l )215

from a training batch at step t, the PPLDiff is com-216

puted using the current parameters θt of the main217

LLM πθt : 218

z
(i)
t ≡ z(x(i), y(i)w , y

(i)
l ; θt)

= log PPL(πθt , [x
(i); y(i)w ])

− log PPL(πθt , [x
(i); y

(i)
l ]),

(1) 219

PPL(πθt , s) = exp(− 1

|s|

|s|∑
k=1

log πθt(sk|s<k))

(2) 220

where PPL(πθt , s) is the perplexity of sequence s 221

under the main policy πθt . Intuitively, as the main 222

LLM πθt progressively aligns with human pref- 223

erences, it should assign lower perplexity (higher 224

probability) to genuinely preferred responses com- 225

pared to rejected ones. Thus, for clean preferences 226

(CPs), z(i)t tends to be negative. Conversely, for 227

NPs, where the chosen response y
(i)
w is actually 228

less preferable than y
(i)
l , z(i)t tends to be positive. 229

Crucially, this PPLDiff signal z(i)t is computed 230

dynamically for each batch during the training of 231

the main LLM πθ. This ensures that the noise indi- 232

cator is not static but rather adapts to the evolving 233

understanding of preferences by the main LLM. 234

This dynamic signal z(i)t is then immediately used 235

as an input feature to the meta-learned weighting 236

function V (z;W ) within the same training itera- 237

tion. This approach contrasts with methods relying 238

on pre-computed or fixed noise scores, allowing for 239

a tighter coupling between the main model’s learn- 240

ing state and the sample reweighting mechanism. 241

3.2 Meta-Learning Adaptive Weights with 242

Dynamic PPLDiff 243

Meta-Align employs the dynamically computed 244

PPLDiff signal z
(i)
t as input to a meta-learned 245

weighting function V (z;W ), parameterized by W . 246

This function learns to map the current PPLD- 247

iff values to non-negative sample weights v
(i)
t = 248

V (z
(i)
t ;W ). These weights determine the influ- 249

ence of each sample in the current batch during 250

the alignment of the main LLM πθt using a cho- 251

sen alignment loss Lalign. The parameters W of 252

the weighting function are optimized using a meta- 253

learning objective defined on the clean meta-dataset 254

Dmeta. 255

The training process, simultaneously updates the 256

main LLM parameters θ (initialized from a base 257

model θbase) and the weighting function param- 258

eters W . At each training step t, a mini-batch 259
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Figure 2: Overview of Meta-Align’s core meta-learning loop for adaptive sample reweighting.

Bt = {(x(j), y(j)w , y
(j)
l )}|Bt|

j=1 is first sampled from260

the noisy training set D. Then, for each sam-261

ple j within this batch Bt, the dynamic PPLDiff262

z
(j)
t is computed using the current main LLM pa-263

rameters θt according to Eq. (1). Concurrently, a264

mini-batch Bmeta,t is sampled from the clean meta-265

dataset Dmeta.266

The current weighting function V (·;Wt) then267

uses these dynamic PPLDiff values z(j)t to compute268

weights v(j)t for all samples j in Bt. These weights269

are subsequently normalized (denoted as ṽ(j)t ) for270

stability. The normalized weights modulate the271

alignment loss Lalign for the training batch. To272

evaluate the effectiveness of the current weights273

Wt, we perform a virtual update step. We compute274

the weighted alignment loss Lweighted(θt,Wt) on275

Bt using the dynamic weights ṽ(j)t :276

Lweighted(θt,Wt) =
1

|Bt|
∑
j∈Bt

ṽ
(j)
t Lalign(πθt ,

πref, x
(j), y(j)w , y

(j)
l ).

(3)277

Here, Lalign represents the specific alignment loss278

function chosen for the main LLM (e.g., DPO,279

IPO), and πref is the corresponding reference policy280

if required by Lalign.281

A hypothetical one-step gradient descent up-282

date using this loss yields virtual LLM parameters283

θ′t(Wt):284

θ′t(Wt) = θt − αθ∇θtLweighted(θt,Wt). (4)285

Next, the quality of this virtual update, and thus286

the quality of the weighting parameters Wt, is as-287

sessed by evaluating the performance of the vir-288

tual model πθ′t(Wt) on the clean meta-batch Bmeta,t.289

This yields the meta-loss, Lmeta(Wt), calculated us- 290

ing the standard unweighted alignment loss Lalign 291

on the meta-data: 292

Lmeta(Wt) =
1

|Bmeta,t|
∑

k∈Bmeta,t

Lalign(πθ′t(Wt),

πref, x
(k)
m , y(k)mw, y

(k)
ml ).

(5)

293

The gradient of this meta-loss with respect to 294

the weighting parameters, ∇WtLmeta, provides the 295

signal for improving the weighting function. The 296

weighting function parameters W are updated us- 297

ing this gradient: 298

Wt+1 = Wt − αW∇WtLmeta(Wt). (6) 299

Finally, the actual update for the main LLM 300

parameters θt is performed. This step uti- 301

lizes the newly updated weighting parame- 302

ters Wt+1 to recompute weights ṽ
(j)
new,t = 303

Normalize(V (z
(j)
t ;Wt+1)) for the training batch 304

Bt using the same PPLDiff values z(j)t computed 305

earlier in the step. The main LLM parame- 306

ters θt are then updated by descending the gra- 307

dient of this newly re-weighted alignment loss, 308

L′weighted(θt,Wt+1): 309

θt+1 = θt − αθ∇θt

(
1

|Bt|
∑
j∈Bt

ṽ
(j)
new,t

Lalign(πθt , πref, x
(j), y(j)w , y

(j)
l )

)
.

(7) 310

This iterative refinement allows V (z;W ) to learn 311

an effective weighting strategy based on the main 312

4



LLM’s own dynamically generated PPLDiff signal.313

This process is specifically optimized to improve314

alignment performance on clean data, thereby ro-315

bustly handling noise in D. The complete proce-316

dure is detailed in Appendix A. Theoretical under-317

pinnings, including an analysis of the weighting318

scheme and generalization guarantees, are detailed319

in Appendix B.320

4 Experiments321

This section presents a comprehensive empirical322

evaluation of our proposed Meta-Align approach.323

Our experiments were designed to investigate its ef-324

fectiveness in robustly aligning LLMs under noisy325

preference conditions and to understand the con-326

tributions of its core components. Specifically,327

we sought to determine: (1) whether Meta-Align328

outperforms existing vanilla and robust alignment329

baselines across various levels of preference noise330

when using DPO as the base alignment loss; (2)331

the individual contributions of using the dynami-332

cally computed PPLDiff as an input signal versus333

raw loss, and the meta-learning based reweighting334

mechanism itself; (3) the sensitivity of Meta-Align335

to the size and potential imperfections of the clean336

meta-dataset; (4) whether the learned weighting337

mechanism behaves in an interpretable manner.338

4.1 Experimental Setup339

Datasets. Our approach was evaluated on two340

widely used public preference datasets: Golden341

HH (Bai et al., 2022; Ethayarajh et al., 2024), a342

helpfulness-focused subset of Anthropic-HH (ap-343

prox. 12K train / 654 test samples), and OASST1344

(Köpf et al., 2024), the OpenAssistant Conversa-345

tions dataset (multi-turn dialogues), using the pro-346

cessed version from Rafailov et al. (2023b) (approx.347

18K train / 951 test pairs).348

For Meta-Align, a small subset was randomly349

sampled from the original training split of each350

dataset to serve as the clean meta-dataset (Dmeta).351

Unless otherwise specified, we used M = 100 sam-352

ples for Dmeta. The remaining training data con-353

stituted the potentially noisy training set D. The354

original test split was used exclusively for evalu-355

ation and was assumed to be clean. For general356

hyperparameter tuning of Meta-Align and baseline357

methods, we utilized a separate held-out clean val-358

idation set Dval, also sampled from the original359

training split, ensuring no overlap with D or Dmeta.360

Noise Injection. Following common prac- 361

tice (Kong et al., 2024; Chowdhury et al., 2024), 362

we simulated noisy preferences by randomly 363

flipping the preference labels (yw ↔ yl) of 364

a fraction ϵ of the samples in the training 365

set D. We experimented with noise rates 366

ϵ ∈ {0%, 10%, 20%, 30%, 40%}. The ϵ = 0% 367

setting represents training on clean data. 368

Models and Implementation Details. Experi- 369

ments were conducted using two representative 370

open-source LLMs: Llama2-7B (Touvron et al., 371

2023) and Phi-2 (Javaheripi et al., 2023). All mod- 372

els were initialized from their standard pre-trained 373

or supervised fine-tuned (SFT) checkpoints where 374

applicable. The primary alignment loss Lalign used 375

in our main comparative experiments and ablation 376

studies was Direct Preference Optimization (DPO) 377

(Rafailov et al., 2023b), implemented using the 378

TRL library (von Werra et al., 2020). This choice 379

facilitates a fair and direct comparison with preva- 380

lent robust DPO baselines. The DPO hyperparam- 381

eter β was set to 0.1. For Meta-Align, the PPLD- 382

iff signal for each batch was computed dynami- 383

cally using the current main LLM’s parameters as 384

described in Section 3.1. The Meta-Weight-Net 385

V (z;W ) in Meta-Align was implemented as a two- 386

layer MLP with ReLU activation and a Sigmoid 387

output layer, ensuring output weights (before nor- 388

malization) are between 0 and 1. Learning rates 389

(αθ, αW ) and other optimization details were tuned 390

based on performance on Dval and are detailed in 391

Appendix C. All experiments were repeated with 392

3 different random seeds, and we report the mean 393

and standard deviation of the results. 394

Baselines. We compared Meta-Align (instanti- 395

ated with DPO as Lalign for these comparisons) 396

against several methods: Vanilla DPO (Rafailov 397

et al., 2023b); cDPO (Rafailov et al., 2023a); rDPO 398

(Chowdhury et al., 2024); and PPLDiff-based 399

heuristic methods including PerpCorrect (Kong 400

et al., 2024) and Data Filtering (DF-PPLDiff). For 401

PerpCorrect and DF-PPLDiff in our experiments, 402

the PPLDiff signal was pre-computed using a surro- 403

gate LLM aligned on the clean validation set Dval. 404

This approach is consistent with common imple- 405

mentations of such heuristic methods and provides 406

a clear contrast to Meta-Align, where the PPLDiff 407

signal is computed dynamically by the main LLM 408

during training. An additional ablation baseline 409

was Standard MWN (Loss-MWN), which uses the 410

DPO training loss as input to the meta-weighting 411
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(a) Golden HH with Llama2-7B (b) Golden HH with Phi-2

(c) OASST1 HH with Llama2-7B (d) OASST1 with Phi-2

Figure 3: Reward Accuracy (%) on the Golden HH (top row) and OASST1 (bottom row) test sets, for Llama2-7B
(left column) and Phi-2 (right column) models, under varying training noise rates (ϵ).

network. Further details on these baselines, includ-412

ing their reliance on Dval for noise estimation or413

PPLDiff computation, or Dmeta for meta-learning,414

are provided where relevant in our analysis.415

Evaluation Metric. Following standard practice416

(Rafailov et al., 2023b; Chowdhury et al., 2024),417

our primary evaluation metric was Reward Accu-418

racy. An independent reward model (RM) was419

trained on the clean training split of each dataset (or420

a designated RM training set). The aligned policy421

πθ was then evaluated by calculating the percent-422

age of test set preference pairs (x, yw, yl) ∈ Dtest423

for which the RM assigned a higher score to the424

human-preferred response yw, i.e., RM(x, yw) >425

RM(x, yl).426

4.2 Comparative Performance with DPO427

To comprehensively evaluate the efficacy of Meta-428

Align when instantiated with Direct Preference Op-429

timization (DPO) as the underlying alignment loss,430

we compared its performance against established431

baselines under varying degrees of simulated pref-432

erence noise. This evaluation was conducted across433

two diverse datasets, Golden HH and OASST1, and434

using two distinct model architectures, Llama2-7B435

and Phi-2. The results, presented as Reward Accu-436

racy (%) versus noise rate (ϵ), are visualized in Fig- 437

ure 3. For baseline results of Vanilla DPO, cDPO, 438

and rDPO, we reference performance figures re- 439

ported in Kong et al. (2024) where experimental 440

setups align, ensuring a fair comparison. Results 441

for PerpCorrect (using pre-computed PPLDiff from 442

a surrogate model as detailed in our setup) and our 443

Meta-Align (using dynamically computed PPLD- 444

iff) are generated under matched conditions. 445

The performance trends across all four settings 446

(Figures 3a through 3d) consistently highlight the 447

robustness of Meta-Align. As anticipated, Vanilla 448

DPO’s accuracy sharply deteriorates with increas- 449

ing noise levels (ϵ) on both datasets and for both 450

model architectures. While robust baselines such as 451

cDPO and rDPO offer considerable improvements, 452

and PPLDiff-based heuristics like PerpCorrect (uti- 453

lizing a static, pre-computed PPLDiff in our evalu- 454

ations) also show benefits, Meta-Align consistently 455

establishes a new state-of-the-art. It achieves the 456

highest Reward Accuracy across all non-zero noise 457

conditions, underscoring the advantages of its adap- 458

tive reweighting mechanism guided by a dynamic 459

PPLDiff signal. 460

Specifically, on the Golden HH dataset, Meta- 461

Align with Llama2-7B (Figure 3a) at ϵ = 40% 462
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Figure 4: Reward Accuracy of Meta-Align (DPO,
Llama2-7B on Golden HH, main training noise ϵ =
40%) as a function of the clean meta-dataset size (M ).
Performance increases with M but saturates relatively
quickly.

noise achieved 95.1% ± 0.5% accuracy, a sig-463

nificant margin over rDPO (90.4% ± 0.8%) and464

PerpCorrect (92.1% ± 0.9% with static PPLDiff).465

A similar pattern of superiority was observed for466

Meta-Align with Phi-2 on Golden HH (Figure 3b),467

where it attained 90.5% ± 0.6% at ϵ = 40%.468

The performance advantage of Meta-Align was469

even more pronounced on the more challenging470

OASST1 dataset. For Llama2-7B (Figure 3c),471

Meta-Align reached 67.5% ± 0.6% at ϵ = 40%,472

and for Phi-2 (Figure 3d), it achieved 61.5% ±473

0.7% under the same high-noise condition, substan-474

tially outperforming all baseline methodologies.475

These comprehensive results underscore the effec-476

tiveness and robustness of the proposed Meta-Align477

framework when integrated with DPO, across dif-478

ferent LLM scales and data distributions.479

4.3 Ablation Studies: Dissecting Meta-Align’s480

Efficacy481

We conducted ablation studies on the Golden HH482

dataset to validate Meta-Align’s core components,483

with key findings consistent across Llama2-7B and484

Phi-2 models, primarily referencing results from485

Figure 3.486

First, to assess the input signal’s role, we com-487

pared Meta-Align (which uses its dynamically com-488

puted PPLDiff) against Loss-MWN (which uses the489

DPO training loss as input to the meta-weighting490

network). Meta-Align consistently and signifi-491

cantly outperformed Loss-MWN across all non-492

zero noise ratios for both models; on Llama2-7B493

at ϵ = 30% noise, Meta-Align achieved 96.0%494

accuracy versus Loss-MWN’s 88.0%. This high-495

lights the PPLDiff, specifically when computed496

dynamically by the main model, as a more effec-497

tive noise indicator than raw alignment loss for 498

adaptive reweighting within our framework. 499

Second, to demonstrate the benefit of our meta- 500

learned adaptive weighting, we compared Meta- 501

Align against heuristic PPLDiff-based methods: 502

Data Filtering (DF-PPLDiff) and PerpCorrect 503

(Kong et al., 2024). As established in our ex- 504

perimental setup, DF-PPLDiff and PerpCorrect in 505

our evaluations utilize a PPLDiff pre-computed 506

from a surrogate model. Meta-Align surpassed 507

both heuristics across noise levels and for both 508

models; on Llama2-7B at ϵ = 40% noise, Meta- 509

Align reached 95.1% accuracy compared to Perp- 510

Correct’s 92.1% (with static PPLDiff). This under- 511

scores the superiority of Meta-Align’s approach, 512

which combines meta-learned adaptive weighting 513

with a dynamic PPLDiff signal, over rule-based uti- 514

lization of a static PPLDiff signal. These ablations 515

confirm the synergistic contributions of the dy- 516

namic PPLDiff signal and the meta-learning frame- 517

work to Meta-Align’s robustness. 518

4.4 Sensitivity to Meta-Dataset 519

Characteristics 520

We further investigated the impact of the clean 521

meta-dataset Dmeta characteristics, specifically its 522

size (M ) and its potential contamination with noise, 523

on the performance of Meta-Align (DPO). These 524

analyses were conducted using the Llama2-7B 525

model on the Golden HH dataset. 526

Impact of Meta-Dataset Size. Figure 4 illus- 527

trates the performance of Meta-Align (DPO with 528

Llama2-7B) on Golden HH (main training data 529

at ϵ = 40% noise) as the size M of Dmeta was 530

varied from 10 up to 300 samples. A clear trend 531

of improved performance was observed with in- 532

creasing M , although diminishing returns became 533

apparent. Meta-Align achieved strong performance 534

even with a meta-dataset size of M = 100, signif- 535

icantly outperforming baselines that do not lever- 536

age such meta-guidance. Performance tended to 537

saturate when M reached approximately 100-200 538

samples, suggesting that a modest amount of clean 539

meta-data is sufficient for effective meta-learning. 540

This finding supports the practical applicability of 541

our method, as acquiring extensive, perfectly clean 542

meta-datasets can be resource-intensive. 543

Impact of Meta-Dataset Noise. To assess Meta- 544

Align’s robustness to imperfections in the meta- 545

dataset, we intentionally introduced label-flipping 546

noise into Dmeta. For this analysis, Dmeta had a 547

7



Table 1: Impact of noise rate in Dmeta on Meta-Align (DPO, Llama2-7B) Reward Accuracy (%) (Golden HH, main
training noise ϵ = 30%, base M = 100).

Meta-Noise Rate in Dmeta 0% 1% 3% 5%

Meta-Align Accuracy (%) 96.0 ± 0.4 95.5 ± 0.5 94.2 ± 0.6 92.5 ± 0.8

base size of M = 100, and we observed the perfor-548

mance of Meta-Align on the Golden HH dataset,549

where the main training data contained ϵ = 30%550

noise. The results are presented in Table 1. While551

Meta-Align’s performance naturally degraded as552

the noise level within the meta-set increased, the553

method exhibited reasonable tolerance to low levels554

of meta-noise, specifically up to 5%. Even when555

Dmeta contained 5% noise, Meta-Align achieved an556

accuracy of 92.5%± 0.8%. This remained substan-557

tially higher than Vanilla DPO trained on the main558

set with ϵ = 30% noise, which, as observed in our559

main DPO comparison for Llama2-7B on Golden560

HH (Figure 3a), achieved approximately 68.5% ±561

1.5% accuracy. This suggests that although a clean562

meta-dataset is ideal, Meta-Align is not overly brit-563

tle to minor imperfections, further enhancing its564

practical utility.565

4.5 Analysis of the Learned Weighting566

Mechanism567

To ascertain whether Meta-Align learns a meaning-568

ful and interpretable weighting strategy, we ana-569

lyzed the characteristics of the adaptive weighting570

function V (z;W ) learned by Meta-Align (DPO)571

with the Llama2-7B model. This analysis focused572

on results from training on the Golden HH dataset573

with an injected noise rate of ϵ = 30%.574

Figure 5 plots the learned weighting function575

V (z;W ) after training, illustrating the mapping576

from a sample’s dynamically computed PPLDiff577

signal (zt) during training to its assigned normal-578

ized weight (ṽnew,t). A clear and interpretable trend579

is evident: the function assigns substantially lower580

weights to samples exhibiting high positive PPLD-581

iff values, which are strong indicators of NPs given582

the main model’s evolving understanding. Con-583

versely, samples with negative or near-zero PPLD-584

iff values, characteristic of CPs, receive markedly585

higher weights. The transition in weights is smooth586

and continuous, contrasting sharply with the hard587

thresholding employed in heuristic methods like588

PerpCorrect or DF-PPLDiff (which also operate on589

a static PPLDiff). This allows Meta-Align to offer590

a more nuanced handling of samples, particularly591

those with intermediate or ambiguous PPLDiff sig-592

4 2 0 2 4
PPLDiff (z)

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ne
d 

N
or

m
al

iz
ed

 S
am

pl
e 

W
ei

gh
t

Learned Weighting Function Trend V(z;W)

Training Samples (Subset)
z= 0 (PPLDiff Reference)

Figure 5: The weighting function learned by Meta-
Align.

nals reflecting the main model’s current state. 593

Furthermore, our qualitative analysis of weight 594

assignments confirmed that samples known to be 595

synthetically injected NPs in our simulation con- 596

sistently received, on average, significantly lower 597

weights compared to samples known to be CPs. 598

This observation validates that the meta-learned 599

mechanism, guided by the dynamic PPLDiff, ef- 600

fectively identifies and down-weights preferences 601

likely corrupted by noise, which is pivotal to Meta- 602

Align’s robust performance. Additional analyses 603

and visualizations are provided in Appendix D. 604

5 Conclusion 605

This work introduced Meta-Align, a novel frame- 606

work for robust LLM preference alignment in the 607

presence of noisy data. Meta-Align uniquely lever- 608

ages a dynamically computed PPLDiff signal from 609

the main LLM, synergized with a meta-learning 610

objective, to achieve adaptive sample reweighting. 611

Guided by a small clean meta-dataset, Meta-Align 612

learns to effectively down-weight noisy preferences 613

based on the LLM’s evolving understanding. Exten- 614

sive experiments demonstrated Meta-Align’s sig- 615

nificant outperformance over state-of-the-art base- 616

lines. Our findings highlight the efficacy of combin- 617

ing dynamic, instance-level noise indicators with 618

meta-learned reweighting for robust LLM align- 619

ment. 620
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6 Limitations621

Despite its strong performance, Meta-Align has622

limitations. Firstly, its efficacy depends on the qual-623

ity of the dynamically computed PPLDiff signal624

from the main LLM. If this signal is suboptimal for625

certain noise types or training stages, reweighting626

accuracy may be affected. The dynamic PPLDiff627

calculation also introduces computational overhead628

compared to static scores. Secondly, the framework629

relies on a clean meta-dataset, whose acquisition630

can be challenging, and its quality impacts meta-631

learning performance. Future work could explore632

more advanced dynamic noise indicators and strate-633

gies to reduce dependency on pristine meta-data or634

improve computational efficiency.635
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A Algorithm 781

The core training procedure of Meta-Align, detail- 782

ing the simultaneous optimization of the main LLM 783

parameters θ and the weighting function parame- 784

ters W using the dynamic PPLDiff signal, is pre- 785

sented in Algorithm 1. 786

B Theoretical Analysis 787

B.1 Weighting Scheme Derivation and 788

Interpretation 789

The update rule for the meta-learner parameters W 790

in Meta-Align is (Eq. (6) in main text): 791

Wt+1 = Wt − αW∇WtLmeta(Wt) (8) 792

where Lmeta(Wt) is the meta-loss on Dmeta using 793

virtual LLM parameters θ′t(Wt). These are ob- 794

tained by (Eq. (4) in main text): 795

θ′t(Wt) = θt − αθ∇θtLweighted(θt,Wt) (9) 796

The meta-loss is Lmeta(Wt) = 797

Lalign(πθ′t(Wt), Dmeta). Using the chain rule 798

for∇WtLmeta(Wt): 799

∇WtLmeta(Wt) =∇θ′t(Wt)Lalign(πθ′t(Wt), Dmeta)

· d(θ
′
t(Wt))

d(Wt)
(10)

800

From θ′t(Wt)’s definition, assuming θt is fixed for 801

this partial derivative: 802

d(θ′t(Wt))

d(Wt)
=

d(θt − αθ∇θtLweighted(θt,Wt))

d(Wt)

= −αθ∇2
Wt,θtLweighted(θt,Wt)

(11)

803

This ∇2
Wt,θt

Lweighted is a second-order derivative 804

term. The update for W involves: 805

Wt+1 =Wt

+ αWαθ

[
∇θ′t(Wt)Lalign(πθ′t(Wt), Dmeta)

]
·
[
∇2

Wt,θtLweighted(θt,Wt)
]

(12)

806

This update rule is analogous to those in meta- 807

learning for re-weighting or label correction (Ren 808

et al., 2018). The term∇θ′t(Wt)Lalign reflects meta- 809

loss sensitivity to virtual model parameters. The 810

term∇2
Wt,θt

Lweighted (or an approximation) reflects 811

10

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://github.com/huggingface/trl
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex


Algorithm 1 Meta-Align Algorithm (with Dynamic PPLDiff)

Require: Noisy data D, clean meta-data Dmeta; Base LLM parameters θbase, reference policy πref (if
required by Lalign); Learning rates αθ, αW ; Total main training steps Tmain; Alignment loss function
Lalign.

Ensure: Aligned LLM parameters θTmain .
1: # Meta-Learning Weighted Alignment with Dynamic PPLDiff
2: Initialize main LLM parameters θ0 ← θbase.
3: Initialize weighting function parameters W0.
4: Initialize optimizers Optθ (for θ) and OptW (for W ).
5: for t = 0 to Tmain − 1 do
6: Sample mini-batch Bt = {(x(j), y(j)w , y

(j)
l )}|Bt|

j=1 ⊂ D.
7: # Dynamically compute PPLDiff for the current batch using πθt
8: For each sample j ∈ Bt, compute z

(j)
t ← z(x(j), y

(j)
w , y

(j)
l ; θt) using Eq. (1).

9: Sample mini-batch Bmeta,t = {(x(k)m , y
(k)
mw, y

(k)
ml )}

|Bmeta,t|
k=1 ⊂ Dmeta.

10: Compute weights v(j)t ← V (z
(j)
t ;Wt) for j ∈ Bt.

11: Normalize weights: ṽ(j)t ← Normalize({v(j
′)

t }j′∈Bt) for j ∈ Bt.
12: Compute weighted alignment loss Lweighted(θt,Wt) on Bt using Eq. (3) (with ṽ

(j)
t ).

13: Compute virtual LLM parameters θ′t(Wt)← θt − αθ∇θtLweighted(θt,Wt) using Eq. (4).
14: Compute meta-loss Lmeta(Wt) on Bmeta,t using virtual parameters θ′t(Wt) via Eq. (5).
15: Update weighting function parameters: Wt+1 ← OptW (Wt,∇WtLmeta(Wt)) using Eq. (6).
16: # Recompute weights using updated Wt+1 and the same z

(j)
t from this step

17: Recompute weights v(j)new,t ← V (z
(j)
t ;Wt+1) for j ∈ Bt.

18: Normalize weights: ṽ(j)new,t ← Normalize({v(j
′)

new,t}j′∈Bt) for j ∈ Bt.
19: Compute newly re-weighted alignment loss L′weighted(θt,Wt+1) on Bt using ṽ

(j)
new,t.

20: Update main LLM parameters: θt+1 ← Optθ(θt,∇θtL′weighted(θt,Wt+1)) using Eq. (7) (with

ṽ
(j)
new,t).

21: end for
22: return θTmain .

how the training loss gradient w.r.t. θt is influenced812

by Wt.813

Interpretation: The meta-learning objective ad-814

justs Wt so that re-weighted training samples guide815

θt towards a θ′t performing well on Dmeta. If a816

weighting choice improves Lmeta, it is reinforced;817

otherwise, it is penalized. This process learns to up-818

weight "helpful" samples and down-weight "harm-819

ful" (likely noisy) ones for better generalization.820

B.2 Generalization Bound821

We provide a generalization bound for Meta-822

Align, inspired by (Zhao et al., 2019) and823

standard learning theory. Let R(W ) =824

E(x,y)∼Pclean [Lalign(πθ∗(W ), (x, y))] be the true risk825

on Pclean, where θ∗(W ) are LLM parameters826

learned using weights W . Let R̂meta(W ) =827
1
M

∑
(xi,yi)∈Dmeta

Lalign(πθ∗(W ), (xi, yi)) be the828

empirical risk on Dmeta of size M . Let W829

be the hypothesis space for parameters W of830

V (z;W ). Let W ∗ = argminW∈W R(W ) and 831

Ŵ = argminW∈W R̂meta(W ). 832

Assume Lalign is bounded by BL. Let RM (FW ) 833

be the Rademacher complexity of the function class 834

FW = {(x, y) 7→ Lalign(πθ∗(W ), (x, y)) | W ∈ 835

W}. Using standard generalization bounds, with 836

probability at least 1− δ: 837

sup
W∈W

|R(W )−R̂meta(W )| ≤ 2RM (FW )

+BL

√
ln(2/δ)

2M

(13) 838

This implies: 839

R(Ŵ ) ≤ R̂meta(Ŵ ) + 2RM (FW )

+BL

√
ln(2/δ)

2M

(14) 840

Since R̂meta(Ŵ ) ≤ R̂meta(W
∗) by definition of 841
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Ŵ :842

R(Ŵ ) ≤ R̂meta(W
∗) + 2RM (FW )

+BL

√
ln(2/δ)

2M

(15)843

And using the bound for W ∗:844

R̂meta(W
∗) ≤ R(W ∗) + 2RM (FW )

+BL

√
ln(2/δ)

2M

(16)845

Combining (15) and (16):846

R(Ŵ ) ≤ R(W ∗) + 4RM (FW )

+ 2BL

√
ln(2/δ)

2M

(17)847

The complexity RM (FW ) depends on V (z;W )848

and its interaction with LLM training. RM (FW ) is849

bounded by O(
√

d/M). Thus, Eq. (17) suggests850

R(Ŵ ) ≤ R(W ∗)+O(
√

d/M). This bound shows851

that R(Ŵ ) approaches R(W ∗) as M increases, if852

meta-weight-net complexity (related to d) is con-853

trolled.854

C Implementation Details855

This appendix provides further details on the hy-856

perparameters used in our experiments, specifics857

of our implementation, and additional analyses to858

support our findings and ensure reproducibility.859

C.1 Dataset Preprocessing and Splits860

The public preference datasets, Golden HH (Bai861

et al., 2022; Ethayarajh et al., 2024) and OASST1862

(Köpf et al., 2024) (using the version processed by863

Rafailov et al. (2023b)), underwent minimal fur-864

ther preprocessing beyond standard tokenization.865

For Meta-Align, the clean meta-dataset Dmeta was866

constructed by randomly sampling M = 100 pref-867

erence pairs from the original training split of each868

dataset, unless stated otherwise. The clean vali-869

dation set Dval, used for tuning hyperparameters870

for Meta-Align and certain baselines, comprised871

300 randomly sampled preference pairs from the872

original training split, ensuring no overlap with the873

main training data D, Dmeta, or the test set Dtest.874

The remaining portion of the original training split875

formed the potentially noisy training set D for our876

experiments.877

C.2 Main LLM Alignment: Meta-Align and 878

Baselines 879

For the alignment of the main LLM πθ, both for 880

Meta-Align and the DPO-based baselines, exper- 881

iments were conducted with consistent base con- 882

figurations to ensure fair comparisons. The chosen 883

alignment loss for these primary experiments was 884

DPO (Lalign = LDPO), with β = 0.1. The refer- 885

ence policy πref was the initial SFT checkpoint of 886

the respective LLM. 887

For Meta-Align, the PPLDiff signal z(i)t was 888

computed dynamically for each batch using the 889

current main LLM parameters θt as described in 890

Section 3.1. The Meta-Weight-Net V (z;W ) con- 891

sisted of a two-layer MLP: an input layer pro- 892

cessing the PPLDiff z (1 neuron), a hidden layer 893

with 100 neurons and ReLU activation, and a Sig- 894

moid output layer (1 neuron) producing weights 895

v ∈ [0, 1]. These raw weights v
(i)
t were normal- 896

ized within each mini-batch Bt by dividing by their 897

sum: ṽ
(i)
t = v

(i)
t /

∑
j∈Bt

v
(j)
t . The learning rate 898

for the main LLM parameters (αθ) was 5× 10−6 899

for Llama2-7B and 1× 10−5 for Phi-2, while the 900

learning rate for the Meta-Weight-Net parameters 901

(αW ) was 1× 10−4. Training was performed with 902

a batch size (Bt) of 16 for Phi-2 and 8 for Llama2- 903

7B, and a meta-batch size (Bmeta,t) of 16 (or |Dmeta| 904

if M ≤ 32). Training proceeded for approximately 905

one epoch over the noisy training setD. Both θ and 906

W were optimized using AdamW with a weight 907

decay of 0.01. 908

The baselines (Vanilla DPO, cDPO, rDPO, Per- 909

pCorrect, DF-PPLDiff) shared the same main LLM 910

learning rate, batch size, and training duration as 911

Meta-Align where applicable. For PerpCorrect 912

and DF-PPLDiff, as detailed in Section 4.1, the 913

PPLDiff signal was pre-computed using a surro- 914

gate LLM aligned on Dval. The threshold τ for 915

DF-PPLDiff was selected from the 10th to 90th 916

percentiles of these pre-computed PPLDiff values 917

on Dval. The Loss-MWN baseline utilized the 918

same Meta-Weight-Net architecture and learning 919

rate αW as Meta-Align, with DPO loss as its input. 920

For the generalizability study with IPO, Meta- 921

Align (IPO) used IPO as Lalign. The IPO-specific 922

hyperparameter κ was set to 0.05. PPLDiff was 923

computed dynamically. Other Meta-Align hyperpa- 924

rameters (e.g., αθ, αW ) were kept consistent with 925

the DPO setup or fine-tuned on Dval. Vanilla IPO 926

was trained with a learning rate of 5× 10−6. 927
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C.3 Reward Model (RM) for Evaluation928

The independent reward model (RM), pivotal for929

calculating Reward Accuracy, was trained on the930

entirety of the clean training split for each dataset931

(Golden HH: approx. 12K samples; OASST1: ap-932

prox. 18K samples). The RM architecture was933

initialized from the same base SFT checkpoint as934

the policy models and included a final linear layer935

to output a scalar reward. Training employed a stan-936

dard pairwise preference ranking loss, a learning937

rate of 1× 10−5, a batch size of 4, and proceeded938

for 1 epoch using the AdamW optimizer with a939

weight decay of 0.01. This RM remained fixed940

during the evaluation of all aligned policy models.941

C.4 Computational Resources942

All experiments were conducted on NVIDIA A100943

GPUs. Training Meta-Align for one epoch on the944

Golden HH dataset with Llama2-7B typically re-945

quired approximately 8 hours on a single GPU,946

while the standard DPO baselines took about 6947

hours. The dynamic computation of PPLDiff in948

Meta-Align contributes to a moderate increase in949

training time per epoch compared to methods using950

pre-computed scores or no PPLDiff signal.951

D Additional Analysis952

D.1 PPLDiff Distribution953

To further illustrate the efficacy of PPLDiff as a954

noise indicator, Figure 6 visualizes the distribution955

of PPLDiff values for samples known to be CPs ver-956

sus those synthetically injected as NPs. This analy-957

sis was performed on data simulating the Golden958

HH dataset with an injected noise rate of ϵ = 30%.959

The PPLDiff values for this visualization were com-960

puted using the main LLM after it had undergone961

some initial alignment steps, to reflect the dynamic962

nature of the signal used by Meta-Align. As de-963

picted, the PPLDiff distribution for CPs is con-964

centrated primarily in the negative regime, with965

a peak density around z ≈ −1.5. In stark con-966

trast, the distribution for injected NPs is clearly967

shifted towards positive PPLDiff values, exhibit-968

ing a broader spread with a peak density around969

z ≈ 2.0. A notable, albeit small, overlap exists970

between the tails of the two distributions, particu-971

larly around the z = 0 reference line. Nonetheless,972

this clear separation in the primary modes of the973

distributions underpins the utility of PPLDiff as a974

strong discriminative feature for our Meta-Weight-975

Net, enabling it to distinguish and subsequently976

Figure 6: Distribution of PPLDiff (CPs in blue, injected
NPs in red) on simulated Golden HH data (ϵ = 30%).
Values were computed using the main LLM after initial
alignment steps, reflecting Meta-Align’s dynamic signal.
NPs show notably higher PPLDiff.

reweight potentially noisy samples based on this 977

dynamically generated signal. 978

Figure 7: Distribution of learned sample weights (nor-
malized ṽnew) assigned by Meta-Align to original Clean
Preferences (CPs, blue) and synthetically created Noisy
Preferences (Injected NPs, red) under varying training
data noise ratios (ϵ) on the Golden HH dataset. Boxes
(or violins) illustrate the distribution, showing Meta-
Align adaptively assigns lower weights to injected NPs.

D.2 Adaptivity of Learned Weights to Varying 979

Noise Ratios 980

To further investigate the adaptive nature of the 981

weighting mechanism learned by Meta-Align, we 982

analyzed the distribution of final normalized sam- 983

ple weights (ṽ(i)new,t) assigned to known CPs and 984

synthetically injected NPs across different overall 985

training data noise ratios (ϵ). This analysis was 986

conducted on the Golden HH dataset. 987

Figure 7 presents box plots of these learned 988

weights. A consistent pattern is evident: Meta- 989

Align assigns significantly higher weights to sam- 990

ples that are genuinely CPs across all tested noise 991

ratios from ϵ = 10% to ϵ = 40%. For exam- 992
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ple, at ϵ = 10%, the median weight for CPs is993

approximately 0.75, and this remains relatively994

high even as noise increases, being around 0.6995

at ϵ = 40%. Conversely, samples synthetically996

labeled as NPs consistently receive substantially997

lower weights; their median weight starts around998

0.23 at ϵ = 10% and stays within a low range999

(around 0.17 at ϵ = 40%). The interquartile ranges1000

for CPs and NPs show minimal overlap, especially1001

at lower to moderate noise ratios, clearly indicating1002

that Meta-Align’s weighting function, informed by1003

the dynamic PPLDiff, effectively learns to differ-1004

entiate between reliable and likely corrupted pref-1005

erence signals. This adaptive down-weighting of1006

suspicious samples is crucial for maintaining robust1007

alignment performance in noisy environments.1008

D.3 Generalizability to Other Alignment1009

Algorithms1010

To provide initial empirical evidence supporting1011

this generalizability, we conducted experiments ap-1012

plying Meta-Align to Identity Preference Optimisa-1013

tion (IPO) (Azar et al., 2024). These experiments1014

were performed on the Golden HH dataset with a1015

training noise rate of ϵ = 30%. Meta-Align (IPO)1016

utilized its standard architecture with dynamically1017

computed PPLDiff, with IPO serving as the under-1018

lying alignment loss Lalign. We evaluated Meta-1019

Align (IPO) against a Vanilla IPO baseline. The1020

results, presented in Table 2, show that Meta-Align1021

(IPO) substantially improved Reward Accuracy for1022

both Llama2-7B (75.8% vs. Vanilla IPO’s 60.3%)1023

and Phi-2 (72.5% vs. Vanilla IPO’s 58.1%), sug-1024

gesting the versatility of our PPLDiff-guided adap-1025

tive reweighting approach.1026

Table 2: Reward Accuracy (%) on Golden HH test set
(ϵ = 30% training noise) for IPO-based methods. Mean
± Std over 3 runs. Meta-Align (IPO) uses dynamic
PPLDiff.

Method Model Architecture

Llama2-7B Phi-2

Vanilla IPO 60.3 ± 1.2 58.1 ± 1.5
Meta-Align (IPO) 75.8 ± 0.9 72.5 ± 1.1
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