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Abstract

Noisy Preferences (NPs) present a significant
challenge in aligning Large Language Models
(LLMs), as incorrect preference labels can sub-
stantially degrade alignment quality. However,
existing strategies to mitigate NPs often face
two key limitations: (1) applying global-level
adjustments that result in imprecise instance-
level noise handling, and (2) relying on heuris-
tic rules that limit the capacity to adaptively
optimize alignment tasks. In response to these
challenges, this paper proposes Meta-Align,
a novel framework designed to address the
aforementioned limitations. Meta-Align pio-
neers a perplexity-aware meta-learning strat-
egy for adaptive sample reweighting, with
Perplexity Difference (PPLDiff) serving as a
fine-grained, instance-level signal. Unlike tra-
ditional methods employing static rules, Meta-
Align trains an adaptive weighting function
via meta-learning. This function dynamically
assigns sample weights based on their PPLD-
iff, guided by performance on a small, clean
meta-dataset. Such a design enables pre-
cise instance-level noise modulation while op-
timizing the weighting strategy in an adap-
tive manner. Comprehensive experiments on
benchmark datasets demonstrate that Meta-
Align substantially outperforms state-of-the-art
robust alignment methods, effectively down-
weighting potentially noisy preferences while
emphasizing reliable ones.

1 Introduction

Large Language Models (LLMs) show remarkable
abilities in many tasks (Brown et al., 2020; Tou-
vron et al., 2023). Aligning these models with
human preferences is crucial to ensure they are
helpful, harmless, and honest (Cao et al., 2021;
Bai et al., 2022). This alignment often uses prefer-
ence datasets, where humans or Al systems indicate
preferred responses among candidates (Christiano
et al., 2017; Stiennon et al., 2020; Rafailov et al.,
2023Db).
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Figure 1: Conceptual comparison of PPLDiff-based
weighting.

A significant challenge in this process is the
presence of Noisy Preferences (NPs) within these
datasets (Gao et al., 2024; Zheng et al., 2023). NPs
occur when the recorded preference label is in-
correct. Such noise can arise from annotator dis-
agreement, subjective biases, or errors in Al-based
labeling (Baumgértner et al., 2024; Yi et al., 2024).
Studies suggest that NPs can comprise a substantial
portion, potentially 20-40% or more, of commonly
used preference data (Gao et al., 2024; Rafailov
et al., 2023b). Standard alignment algorithms strug-
gle with NPs, which can lead to poor model per-
formance, reduced alignment quality, and the re-
inforcement of undesirable behaviors. Therefore,
developing alignment methods robust to noisy pref-
erences is essential for building reliable LLMs.

Existing strategies to mitigate NPs often face
limitations. Some apply global-level adjustments
to the loss function or data (Rafailov et al., 2023a;
Chowdhury et al., 2024), offering some robustness
but potentially leading to imprecise instance-level
noise handling due to uniform effects. A notable
advancement involves using instance-specific sig-
nals like Perplexity Difference (PPLDiff) (Kong
et al., 2024). PPLDiff, calculated from the LLM
being aligned, can flag inconsistencies between
preference labels and model likelihoods. For exam-



ple, PerpCorrect (Kong et al., 2024) uses a PPLD-
iff threshold to detect and flip noisy labels. This
targeted approach is a step forward. Yet, these
PPLDiff-based methods typically employ heuris-
tic rules with inherent drawbacks. Reliance on
hard thresholds can make them sensitive to tun-
ing. Moreover, they often assign uniform trust to
all samples identified as noisy (and subsequently
corrected), overlooking varying noise severities po-
tentially revealed by the PPLDiff signal itself. Such
fixed rules also struggle to adapt as the main model
and its PPLDiff calculations evolve during training.

These PPLDiff-based heuristics, despite improv-
ing upon global adjustments by using instance-level
information, still lack the fine-grained adaptabil-
ity needed to optimally leverage such signals. Our
work, Meta-Align, directly addresses this gap. We
also utilize PPLDiff, but critically, we replace fixed
rules with a learned, adaptive reweighting mecha-
nism. This makes rule-based PPLDiff methods the
most relevant baseline for comparison, and Figure 1
conceptually illustrates the key differences in how
PPLDiff is handled. Specifically, rule-based meth-
ods, like a PerpCorrect-inspired heuristic (dashed
orange line), make sharp, discrete decisions around
a PPLDiff threshold and might subsequently ap-
ply high, uniform trust to all samples identified
as noisy and corrected. In contrast, Meta-Align
(solid green line) embodies our proposed adaptive
approach. It learns a smooth, continuous weighting
function that adaptively modulates sample influ-
ence based on the PPLDiff signal, enabling a more
graduated response to varying noise levels without
hard cutoffs. This ability to differentiate degrees of
noise severity and reduce sensitivity to any single
threshold placement is central to Meta-Align.

To realize this adaptive weighting, Meta-Align
employs a meta-learning strategy (Ren et al., 2018;
Shu et al., 2019) instead of relying on pre-defined
global adjustments or fixed heuristic rules. The
core of this strategy is an adaptive weighting func-
tion that takes the PPLDiff signal—dynamically
calculated from the LLLM being trained—as input.
This meta-learning process trains the weighting
function to assign instance-specific weights to train-
ing samples, guided by performance feedback from
a small, clean meta-dataset. Consequently, Meta-
Align learns to automatically down-weight samples
whose PPLDiff values suggest they are noisy, while
up-weighting those that appear reliable, leading to
a more precise and robust alignment. The main
contributions of this paper are:

* We pioneer the use of meta-learning for pref-
erence alignment in large language mod-
els (LLMs), and provide theoretical analysis
demonstrating its convergence advantages in
the presence of noisy preference data.

* We propose Meta-Align, a novel framework
that leverages a dynamically generated PPLD-
iff signal from the training model and a
meta-learning objective to learn an instance-
specific, adaptive reweighting strategy for ro-
bust alignment.

* Extensive experiments demonstrate that Meta-
Align consistently outperforms existing robust
alignment baselines across a wide range of
noise settings by effectively down-weighting
unreliable preferences and emphasizing infor-
mative ones.

2 Related Work

Our work intersects with and extends recent ad-
vances in LLM alignment, learning with noisy su-
pervision, and meta-learning for adaptive training.

2.1 LLM Alignment with Noisy Preferences

Aligning LLMs with human values via preference
data (Ouyang et al., 2022; Bai et al., 2022) is stan-
dard, using methods like RLHF (Christiano et al.,
2017; Stiennon et al., 2020) and DPO (Rafailov
et al., 2023b). However, these are susceptible to
NPs (Gao et al., 2024; Zheng et al., 2023), which
severely impair alignment. Efforts to mitigate NPs
include data filtering (Northcutt et al., 2021), risk-
ing information loss; robust loss adjustments like
cDPO (Rafailov et al., 2023a) and rDPO (Chowd-
hury et al., 2024), which apply uniform corrections
based on global noise estimates; and using aux-
iliary signals like PPLDiff for rule-based correc-
tion (PerpCorrect (Kong et al., 2024)). Our work,
Meta-Align, while inspired by PPLDiff’s utility, de-
parts from rule-based approaches by employing it
within a learned, adaptive reweighting mechanism
for more nuanced noise handling.

2.2 Learning with Noisy Supervision

Learning from noisy labels is a well-studied prob-
lem (Frénay and Verleysen, 2013; Song et al.,
2022), with sample reweighting being a prominent
paradigm (Liu and Tao, 2015; Jiang et al., 2018).
This involves down-weighting likely mislabeled in-
stances. While various heuristics or learning strate-
gies exist to determine weights, often based on



loss values (Han et al., 2018; Shu et al., 2019),
our work adapts sample reweighting to LLM pref-
erence alignment by uniquely using PPLDiff to
inform weights learned via a meta-learning frame-
work.

2.3 Meta-Learning for Adaptive Training

Meta-learning, or “learning to learn” (Ren et al.,
2018), has been successfully applied to learn sam-
ple reweighting schemes for noisy classification
(Ren et al., 2018; Shu et al., 2019) and data imbal-
ance (Jamal et al., 2020), typically by optimizing
weights on a clean meta-dataset. Applying this to
LLM preference alignment is novel. Our Meta-
Align framework adapts this concept, but distinc-
tively uses the PPLDiff signal, not just training
loss, as input to a meta-learned weighting function
optimized for alignment quality on clean prefer-
ences. To our knowledge, Meta-Align is the first to
synergize PPLDiff with meta-learning for adaptive
sample reweighting in noisy LLM preference align-
ment, offering a data-driven, flexible alternative to
heuristic or uniform correction techniques.

3 Method

We propose Meta-Align, a novel approach for
robust LLM alignment against noisy preferences.
Meta-Align uniquely leverages a dynamically com-
puted perplexity difference signal within a meta-
learning paradigm for adaptive sample reweight-
ing. The framework aims to mitigate the neg-
ative impact of NPs in the training data D =
{(z, yg) , yl(i)) N | by learning instance-specific
weights. This learning process is guided by a
small, clean meta-dataset Dyea. The core idea
involves using the perplexity difference, calculated
by the main LLM itself during training, to inform
a meta-learned weighting function V' (z; ). This
dynamic PPLDiff signal allows the noise assess-
ment to co-evolve with the main LLM’s learning
state. Figure 2 depicts the core meta-learning work-
flow for adaptive reweighting.

3.1 Dynamic Perplexity Difference as a Noise
Indicator

A central component of Meta-Align is the use of
PPLDiff as an adaptive indicator of potential pref-
erence noise. For a preference pair (z(*), yl(u) , yl( ))
from a training batch at step ¢, the PPLDiff is com-

puted using the current parameters 6; of the main

LLM 7, :
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where PPL(7y,, s) is the perplexity of sequence s
under the main policy 7y, . Intuitively, as the main
LLM mg, progressively aligns with human pref-
erences, it should assign lower perplexity (higher
probability) to genuinely preferred responses com-
pared to re]ected ones. Thus, for clean preferences
(CPs), zt ) tends to be negative. Conversely, for
NPs, where the chosen response yg)

@ (@)

less preferable than y; 7, z;

PPL(7y,, s) = exp(—

is actually
tends to be positive.

Crucially, this PPLDiff signal 2"’ is computed
dynamically for each batch during the training of
the main LLM my. This ensures that the noise indi-
cator is not static but rather adapts to the evolving
understanding of preferences by the main LLM.
This dynamic signal zt(z) is then immediately used
as an input feature to the meta-learned weighting
function V'(z; W) within the same training itera-
tion. This approach contrasts with methods relying
on pre-computed or fixed noise scores, allowing for
a tighter coupling between the main model’s learn-
ing state and the sample reweighting mechanism.

3.2 Meta-Learning Adaptive Weights with
Dynamic PPLDiff

Meta-Align employs the dynamically computed
PPLDiff signal zt@ as input to a meta-learned
weighting function V' (z; W), parameterized by W.
This function learns to map the current PPLD-

iff values to non-negative sample weights vt(i) =

V(zt(z), W). These weights determine the influ-
ence of each sample in the current batch during
the alignment of the main LLM 7y, using a cho-
sen alignment loss Lyjign. The parameters W of
the weighting function are optimized using a meta-
learning objective defined on the clean meta-dataset
Dmeta-

The training process, simultaneously updates the
main LLM parameters 6 (initialized from a base
model fyys) and the weighting function param-
eters W. At each training step ¢, a mini-batch
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Figure 2: Overview of Meta-Align’s core meta-learning loop for adaptive sample reweighting.

By = {(zU), ),yl )}lBtl is first sampled from
the noisy training set D Then, for each sam-
ple 7 within this batch B;, the dynamic PPLDiff
(] ) is computed using the current main LLM pa-
rameters 0; according to Eq. (1). Concurrently, a
mini-batch Bpea ¢ is sampled from the clean meta-
dataset Dpeta.
The current weighting function V'(-; W) then

uses these dynamic PPLDiff values zt(J ) to compute
()

weights v,”’ for all samples j in 3;. These weights

are subsequently normalized (denoted as 17? )) for
stability. The normalized weights modulate the
alignment loss Lyjign for the training batch. To
evaluate the effectiveness of the current weights
Wy, we perform a virtual update step. We compute
the weighted alignment loss Lyeighted (6, W¢) on

BB; using the dynamic weights 17,5(] )

| E Ut ahgn 77'9t7

J€B: 3)
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Here, L,jign represents the specific alignment loss
function chosen for the main LLM (e.g., DPO,
IPO), and 7t is the corresponding reference policy
if required by Lajign.

A hypothetical one-step gradient descent up-

date using this loss yields virtual LLM parameters
01 (W2):

Hg(Wt) = Ht - a6v0tﬁweighted(9t7 Wt) (4)

Ewelghted (et ) Wt

Tref, L

Next, the quality of this virtual update, and thus
the quality of the weighting parameters W7, is as-
sessed by evaluating the performance of the vir-
tual model Ty, (W) ON the clean meta-batch Bpeta ¢

This yields the meta-loss, Lmeta(W?), calculated us-
ing the standard unweighted alignment loss Ljjign
on the meta-data:

1

Emeta ( Wt ) | B . |
meta,

Z Edhgn 7T6/(Wt)
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The gradient of this meta-loss with respect to
the weighting parameters, Vyy, Liera, provides the
signal for improving the weighting function. The
weighting function parameters W are updated us-
ing this gradient:

Wt+1 =W; — OéWVWtﬁmeta(Wt)- (6)

Finally, the actual update for the main LLM
parameters 6, is performed. This step uti-
lizes the newly updated weighting parame-

(4)

ters Wiy1 to recompute weights Oy ; =

Normalize(V(zt(J ); Wit1)) for the training batch
B; using the same PPLDiff values zlfj ) computed
earlier in the step. The main LLM parame-
ters 6; are then updated by descending the gra-
dient of this newly re-weighted alignment loss,

‘Cwelghted (Ht Wi )

1 (i
9t+1 — 9t aevez <|B ‘ Z Ur(l‘Zt\)N,t
TeB (7

»Calign(ﬂ'ﬁt y Tref x(J)’ yg), yl( ))) .

This iterative refinement allows V'(z; W) to learn
an effective weighting strategy based on the main



LLM’s own dynamically generated PPLDiff signal.
This process is specifically optimized to improve
alignment performance on clean data, thereby ro-
bustly handling noise in D. The complete proce-
dure is detailed in Appendix A. Theoretical under-
pinnings, including an analysis of the weighting
scheme and generalization guarantees, are detailed
in Appendix B.

4 Experiments

This section presents a comprehensive empirical
evaluation of our proposed Meta-Align approach.
Our experiments were designed to investigate its ef-
fectiveness in robustly aligning LL.Ms under noisy
preference conditions and to understand the con-
tributions of its core components. Specifically,
we sought to determine: (1) whether Meta-Align
outperforms existing vanilla and robust alignment
baselines across various levels of preference noise
when using DPO as the base alignment loss; (2)
the individual contributions of using the dynami-
cally computed PPLDiff as an input signal versus
raw loss, and the meta-learning based reweighting
mechanism itself; (3) the sensitivity of Meta-Align
to the size and potential imperfections of the clean
meta-dataset; (4) whether the learned weighting
mechanism behaves in an interpretable manner.

4.1 Experimental Setup

Datasets. Our approach was evaluated on two
widely used public preference datasets: Golden
HH (Bai et al., 2022; Ethayarajh et al., 2024), a
helpfulness-focused subset of Anthropic-HH (ap-
prox. 12K train / 654 test samples), and OASST1
(Kopf et al., 2024), the OpenAssistant Conversa-
tions dataset (multi-turn dialogues), using the pro-
cessed version from Rafailov et al. (2023b) (approx.
18K train / 951 test pairs).

For Meta-Align, a small subset was randomly
sampled from the original training split of each
dataset to serve as the clean meta-dataset (Dypeta).
Unless otherwise specified, we used M = 100 sam-
ples for Dpety. The remaining training data con-
stituted the potentially noisy training set D. The
original test split was used exclusively for evalu-
ation and was assumed to be clean. For general
hyperparameter tuning of Meta-Align and baseline
methods, we utilized a separate held-out clean val-
idation set Dy,, also sampled from the original
training split, ensuring no overlap with D or Dyeta.

Noise Injection. Following common prac-
tice (Kong et al., 2024; Chowdhury et al., 2024),
we simulated noisy preferences by randomly
flipping the preference labels (y, <> y;) of
a fraction € of the samples in the training
set D. We experimented with noise rates
e € {0%,10%, 20%, 30%,40%}. The e = 0%
setting represents training on clean data.

Models and Implementation Details. Experi-
ments were conducted using two representative
open-source LLMs: Llama2-7B (Touvron et al.,
2023) and Phi-2 (Javaheripi et al., 2023). All mod-
els were initialized from their standard pre-trained
or supervised fine-tuned (SFT) checkpoints where
applicable. The primary alignment loss L,jign used
in our main comparative experiments and ablation
studies was Direct Preference Optimization (DPO)
(Rafailov et al., 2023b), implemented using the
TRL library (von Werra et al., 2020). This choice
facilitates a fair and direct comparison with preva-
lent robust DPO baselines. The DPO hyperparam-
eter 8 was set to 0.1. For Meta-Align, the PPLD-
iff signal for each batch was computed dynami-
cally using the current main LLM’s parameters as
described in Section 3.1. The Meta-Weight-Net
V(z; W) in Meta-Align was implemented as a two-
layer MLP with ReLU activation and a Sigmoid
output layer, ensuring output weights (before nor-
malization) are between 0 and 1. Learning rates
(avg, ayy) and other optimization details were tuned
based on performance on Dy, and are detailed in
Appendix C. All experiments were repeated with
3 different random seeds, and we report the mean
and standard deviation of the results.

Baselines. We compared Meta-Align (instanti-
ated with DPO as L,jign for these comparisons)
against several methods: Vanilla DPO (Rafailov
et al., 2023b); cDPO (Rafailov et al., 2023a); rDPO
(Chowdhury et al., 2024); and PPLDiff-based
heuristic methods including PerpCorrect (Kong
et al., 2024) and Data Filtering (DF-PPLDiff). For
PerpCorrect and DF-PPLDiff in our experiments,
the PPLDiff signal was pre-computed using a surro-
gate LLM aligned on the clean validation set Dy,;.
This approach is consistent with common imple-
mentations of such heuristic methods and provides
a clear contrast to Meta-Align, where the PPLDiff
signal is computed dynamically by the main LLM
during training. An additional ablation baseline
was Standard MWN (Loss-MWN), which uses the
DPO training loss as input to the meta-weighting
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Figure 3: Reward Accuracy (%) on the Golden HH (top row) and OASST1 (bottom row) test sets, for Llama2-7B
(left column) and Phi-2 (right column) models, under varying training noise rates (¢).

network. Further details on these baselines, includ-
ing their reliance on Dy, for noise estimation or
PPLDiff computation, or Dyt for meta-learning,
are provided where relevant in our analysis.

Evaluation Metric. Following standard practice
(Rafailov et al., 2023b; Chowdhury et al., 2024),
our primary evaluation metric was Reward Accu-
racy. An independent reward model (RM) was
trained on the clean training split of each dataset (or
a designated RM training set). The aligned policy
mp was then evaluated by calculating the percent-
age of test set preference pairs (x, Yw, Yi) € Diest
for which the RM assigned a higher score to the
human-preferred response 4, i.e., RM (x, y,) >
RM (z,y;).

4.2 Comparative Performance with DPO

To comprehensively evaluate the efficacy of Meta-
Align when instantiated with Direct Preference Op-
timization (DPO) as the underlying alignment loss,
we compared its performance against established
baselines under varying degrees of simulated pref-
erence noise. This evaluation was conducted across
two diverse datasets, Golden HH and OASST1, and
using two distinct model architectures, Llama2-7B
and Phi-2. The results, presented as Reward Accu-

racy (%) versus noise rate (¢), are visualized in Fig-
ure 3. For baseline results of Vanilla DPO, cDPO,
and rDPO, we reference performance figures re-
ported in Kong et al. (2024) where experimental
setups align, ensuring a fair comparison. Results
for PerpCorrect (using pre-computed PPLDiff from
a surrogate model as detailed in our setup) and our
Meta-Align (using dynamically computed PPLD-
iff) are generated under matched conditions.

The performance trends across all four settings
(Figures 3a through 3d) consistently highlight the
robustness of Meta-Align. As anticipated, Vanilla
DPQ’s accuracy sharply deteriorates with increas-
ing noise levels (¢) on both datasets and for both
model architectures. While robust baselines such as
cDPO and rDPO offer considerable improvements,
and PPLDiff-based heuristics like PerpCorrect (uti-
lizing a static, pre-computed PPLDiff in our evalu-
ations) also show benefits, Meta-Align consistently
establishes a new state-of-the-art. It achieves the
highest Reward Accuracy across all non-zero noise
conditions, underscoring the advantages of its adap-
tive reweighting mechanism guided by a dynamic
PPLDiff signal.

Specifically, on the Golden HH dataset, Meta-
Align with Llama2-7B (Figure 3a) at ¢ = 40%



1001

S
>
2
3
3
<
= .
<§ —e— Meta-Align Performance
7 Std. Dev. / CI
851
----- PerpCorrect (at € = 40%)

10 50 100 200 300
Clean Meta-Dataset Size (M)

Figure 4: Reward Accuracy of Meta-Align (DPO,

Llama2-7B on Golden HH, main training noise ¢ =

40%) as a function of the clean meta-dataset size (M).

Performance increases with M but saturates relatively

quickly.

noise achieved 95.1% =+ 0.5% accuracy, a sig-
nificant margin over rDPO (90.4% + 0.8%) and
PerpCorrect (92.1% + 0.9% with static PPLDiff).
A similar pattern of superiority was observed for
Meta-Align with Phi-2 on Golden HH (Figure 3b),
where it attained 90.5% + 0.6% at ¢ = 40%.

The performance advantage of Meta-Align was
even more pronounced on the more challenging
OASST1 dataset. For Llama2-7B (Figure 3c),
Meta-Align reached 67.5% + 0.6% at ¢ = 40%,
and for Phi-2 (Figure 3d), it achieved 61.5% =+
0.7% under the same high-noise condition, substan-
tially outperforming all baseline methodologies.
These comprehensive results underscore the effec-
tiveness and robustness of the proposed Meta-Align
framework when integrated with DPO, across dif-
ferent LL.M scales and data distributions.

4.3 Ablation Studies: Dissecting Meta-Align’s
Efficacy

We conducted ablation studies on the Golden HH
dataset to validate Meta-Align’s core components,
with key findings consistent across Llama2-7B and
Phi-2 models, primarily referencing results from
Figure 3.

First, to assess the input signal’s role, we com-
pared Meta-Align (which uses its dynamically com-
puted PPLDiff) against Loss-MWN (which uses the
DPO training loss as input to the meta-weighting
network). Meta-Align consistently and signifi-
cantly outperformed Loss-MWN across all non-
zero noise ratios for both models; on Llama2-7B
at ¢ = 30% noise, Meta-Align achieved 96.0%
accuracy versus Loss-MWN’s 88.0%. This high-
lights the PPLDiff, specifically when computed
dynamically by the main model, as a more effec-

tive noise indicator than raw alignment loss for
adaptive reweighting within our framework.

Second, to demonstrate the benefit of our meta-
learned adaptive weighting, we compared Meta-
Align against heuristic PPLDiff-based methods:
Data Filtering (DF-PPLDiff) and PerpCorrect
(Kong et al., 2024). As established in our ex-
perimental setup, DF-PPLDiff and PerpCorrect in
our evaluations utilize a PPLDiff pre-computed
from a surrogate model. Meta-Align surpassed
both heuristics across noise levels and for both
models; on Llama2-7B at ¢ = 40% noise, Meta-
Align reached 95.1% accuracy compared to Perp-
Correct’s 92.1% (with static PPLDiff). This under-
scores the superiority of Meta-Align’s approach,
which combines meta-learned adaptive weighting
with a dynamic PPLDiff signal, over rule-based uti-
lization of a static PPLDiff signal. These ablations
confirm the synergistic contributions of the dy-
namic PPLDiff signal and the meta-learning frame-
work to Meta-Align’s robustness.

4.4 Sensitivity to Meta-Dataset
Characteristics

We further investigated the impact of the clean
meta-dataset D, characteristics, specifically its
size (M) and its potential contamination with noise,
on the performance of Meta-Align (DPO). These
analyses were conducted using the Llama2-7B
model on the Golden HH dataset.

Impact of Meta-Dataset Size. Figure 4 illus-
trates the performance of Meta-Align (DPO with
Llama2-7B) on Golden HH (main training data
at ¢ = 40% noise) as the size M of Dyera Was
varied from 10 up to 300 samples. A clear trend
of improved performance was observed with in-
creasing M, although diminishing returns became
apparent. Meta-Align achieved strong performance
even with a meta-dataset size of M = 100, signif-
icantly outperforming baselines that do not lever-
age such meta-guidance. Performance tended to
saturate when M reached approximately 100-200
samples, suggesting that a modest amount of clean
meta-data is sufficient for effective meta-learning.
This finding supports the practical applicability of
our method, as acquiring extensive, perfectly clean
meta-datasets can be resource-intensive.

Impact of Meta-Dataset Noise. To assess Meta-
Align’s robustness to imperfections in the meta-
dataset, we intentionally introduced label-flipping
noise into Dyt For this analysis, Dpeta had a



Table 1: Impact of noise rate in Dy, 0n Meta-Align (DPO, Llama2-7B) Reward Accuracy (%) (Golden HH, main

training noise € = 30%, base M = 100).

Meta-Noise Rate in Dpea 0% 1% 3% 5%

Meta-Align Accuracy (%) 96.0+04 955+05 942+0.6 925+0.8
base size of M = 100, and we observed the perfor- 1.0F e P
mance of Meta-Align on the Golden HH dataset, §“ N TSl S
where the main training data contained ¢ = 30% i 0.8 \
noise. The results are presented in Table 1. While § I
Meta-Align’s performance naturally degraded as s 061
the noise level within the meta-set increased, the ii
method exhibited reasonable tolerance to low levels § 04r
of meta-noise, specifically up to 5%. Even when B 0ol
Dmeta contained 5% noise, Meta-Align achieved an E;
accuracy of 92.5% + 0.8%. This remained substan- 0ok

2 ) 2 4

tially higher than Vanilla DPO trained on the main
set with € = 30% noise, which, as observed in our
main DPO comparison for Llama2-7B on Golden
HH (Figure 3a), achieved approximately 68.5% =+
1.5% accuracy. This suggests that although a clean
meta-dataset is ideal, Meta-Align is not overly brit-
tle to minor imperfections, further enhancing its
practical utility.

4.5 Analysis of the Learned Weighting
Mechanism

To ascertain whether Meta-Align learns a meaning-
ful and interpretable weighting strategy, we ana-
lyzed the characteristics of the adaptive weighting
function V' (z; W) learned by Meta-Align (DPO)
with the Llama2-7B model. This analysis focused
on results from training on the Golden HH dataset
with an injected noise rate of ¢ = 30%.

Figure 5 plots the learned weighting function
V(z; W) after training, illustrating the mapping
from a sample’s dynamically computed PPLDiff
signal (z;) during training to its assigned normal-
ized weight (Unew,¢). A clear and interpretable trend
is evident: the function assigns substantially lower
weights to samples exhibiting high positive PPLD-
iff values, which are strong indicators of NPs given
the main model’s evolving understanding. Con-
versely, samples with negative or near-zero PPLD-
iff values, characteristic of CPs, receive markedly
higher weights. The transition in weights is smooth
and continuous, contrasting sharply with the hard
thresholding employed in heuristic methods like
PerpCorrect or DF-PPLDiff (which also operate on
a static PPLDiff). This allows Meta-Align to offer
a more nuanced handling of samples, particularly
those with intermediate or ambiguous PPLDiff sig-

PPLDiff (2)

Figure 5: The weighting function learned by Meta-
Align.

nals reflecting the main model’s current state.

Furthermore, our qualitative analysis of weight
assignments confirmed that samples known to be
synthetically injected NPs in our simulation con-
sistently received, on average, significantly lower
weights compared to samples known to be CPs.
This observation validates that the meta-learned
mechanism, guided by the dynamic PPLDiff, ef-
fectively identifies and down-weights preferences
likely corrupted by noise, which is pivotal to Meta-
Align’s robust performance. Additional analyses
and visualizations are provided in Appendix D.

5 Conclusion

This work introduced Meta-Align, a novel frame-
work for robust LLM preference alignment in the
presence of noisy data. Meta-Align uniquely lever-
ages a dynamically computed PPLDiff signal from
the main LLM, synergized with a meta-learning
objective, to achieve adaptive sample reweighting.
Guided by a small clean meta-dataset, Meta-Align
learns to effectively down-weight noisy preferences
based on the LLM’s evolving understanding. Exten-
sive experiments demonstrated Meta-Align’s sig-
nificant outperformance over state-of-the-art base-
lines. Our findings highlight the efficacy of combin-
ing dynamic, instance-level noise indicators with
meta-learned reweighting for robust LLM align-
ment.



6 Limitations

Despite its strong performance, Meta-Align has
limitations. Firstly, its efficacy depends on the qual-
ity of the dynamically computed PPLDiff signal
from the main LLM. If this signal is suboptimal for
certain noise types or training stages, reweighting
accuracy may be affected. The dynamic PPLDiff
calculation also introduces computational overhead
compared to static scores. Secondly, the framework
relies on a clean meta-dataset, whose acquisition
can be challenging, and its quality impacts meta-
learning performance. Future work could explore
more advanced dynamic noise indicators and strate-
gies to reduce dependency on pristine meta-data or
improve computational efficiency.
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A Algorithm

The core training procedure of Meta-Align, detail-
ing the simultaneous optimization of the main LLM
parameters 6 and the weighting function parame-
ters W using the dynamic PPLDiff signal, is pre-
sented in Algorithm 1.

B Theoretical Analysis

B.1 Weighting Scheme Derivation and
Interpretation

The update rule for the meta-learner parameters 11/
in Meta-Align is (Eq. (6) in main text):

WtJrl =W — anWtheta(Wt) (8)

where Lpea(Wy) is the meta-loss on Dy, using
virtual LLM parameters 6;(W;). These are ob-
tained by (Eq. (4) in main text):

Hé(Wt) = et - aGVGtheighted(eta Wt) (9)

Lmeta(Wt)
Using the chain rule

The is
Lalign (71-62 (Wr)» Dmeta) .

for Vi, Limeta(W?):

meta-loss

VWt Lmeta(Wt) :vag(Wt)Lalign (Weg(Wt) , Dmeta)
A0)
d(Wy)
(10)

From 60;(W,)’s definition, assuming 0; is fixed for
this partial derivative:
d(0;(W+))
d(Wy)

d(0: — Vg, Lyeighted (01, Wt))
d(Wy)
—agViy, g, Lweighied (61, Wr)

(11)

This VIQ/Vt,et Lyeighted 18 a second-order derivative
term. The update for W involves:

Wi =Wy
+ awog |:v9£ (Wt)Lalign(ﬂ-Gi(Wt)a Dmeta)]

: [VIQ/Vt 04 Lweighted (Gt; Wt)]
(12)

This update rule is analogous to those in meta-
learning for re-weighting or label correction (Ren
et al., 2018). The term V@;(Wt)Lalign reflects meta-
loss sensitivity to virtual model parameters. The
term V3, o Lueighted (0T an approximation) reflects


https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://github.com/huggingface/trl
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex
https://openreview.net/forum?id=NIouO0COex

Algorithm 1 Meta-Align Algorithm (with Dynamic PPLDiff)

Require: Noisy data D, clean meta-data Dyeq,; Base LLM parameters 6p,ge, reference policy meer (if
required by Lyjign); Learning rates ag, ayy; Total main training steps Tinain; Alignment loss function

»Calign-
Ensure: Aligned LLM parameters 61

main *

— Z(fv(j),yg),yl(j); 0¢) using Eq. (1).

| Brmeta, ¢
) k:mfd - Dmeta-

Compute weighted alignment 10ss Lyeighted (f¢, W) on By using Eq. (3) (with @EJ )).
Compute virtual LLM parameters 6 (W;) < 6; — a9V, Lueighiea (01, W) using Eq. (4).
Compute meta-10ss Lineta(W:) 00 Bpeta,r using virtual parameters 65 (1;) via Eq. (5).
Update weighting function parameters: Wyy1 < Optyw (Wi, Viy, Limeta(W?)) using Eq. (6).

L Normalize({vl(lg;zyt}jxegt) for j € B;.

o~ ()
weighted(9t7 Wt-‘rl) on B using Unew, t*

Update main LLM parameters: 6¢11 < Optg(0r, Vo, Lieighea(0r: Wit1)) using Eq. (7) (with

2: Initialize main LLM parameters 0y < Gpase.

3: Initialize weighting function parameters ).

4: Initialize optimizers Opty (for 6) and Opty, (for W).

5: for t = 0 to Tipain — 1 do

6: Sample mini-batch B; = {(z7), yg), yl(j))}yitl cD.
T

8: For each sample j € B;, compute 29

9: Sample mini-batch Bt = {(a:,‘fi) , yﬁ,]fq)u, yfrlfl)

10: Compute weights vt(j ) V(z,gj ), W) for j € By.

11: Normalize weights: 17§j ) Normalize({vgj /)}j/egt) for j € B;.
12:

13:

14:

15:

16:

17: Recompute weights vr(lf;zv,t — V(zgj ); W) for j € By.
18: Normalize weights: 171(1]8&,

19: Compute newly re-weighted alignment loss £/
20:

O )
21: end for
22: return 7, . .

how the training loss gradient w.r.t. 6, is influenced
by Wt.

Interpretation: The meta-learning objective ad-
justs Wy so that re-weighted training samples guide
6, towards a 0 performing well on Dyer,. If a
weighting choice improves Ly, it is reinforced;
otherwise, it is penalized. This process learns to up-
weight "helpful” samples and down-weight "harm-
ful" (likely noisy) ones for better generalization.

B.2 Generalization Bound

We provide a generalization bound for Meta-
Align, inspired by (Zhao et al., 2019) and
standard learning theory. Let R(W)
E(2y)~ Paean [Lalign (To+ (), (7, 9))] be the true risk
on Prean, where 6*(W) are LLM parameters
learned using weights W. Let ]%meta(W)
T 2 (1,5 D Latin (T, (23, 9:))  be  the
empirical risk on Dpey of size M. Let W
be the hypothesis space for parameters W of

11

V(z;W). Let W* = argminwew R(W) and
W = arg miny ey Rmewa(W).

Assume Lyjign is bounded by By.. Let R/ (Fw)
be the Rademacher complexity of the function class
Fw = {(IE, y) — Lalign(ﬂe*(W)v (z,9)) ‘ W e
W}. Using standard generalization bounds, with
probability at least 1 — 4:

sup |R(W)—Rmeta(W)| < 2927 (Fw)
wew

13
4B In(2/9) (13
LV 7omr
This implies:
R(W) < Rmeta(W) + QmM(IW)
In(2/3) (14)
2M

Since Rmea(W) < Riew(W*) by definition of



R(W) < Rmeta(W*) + Q%JV[(FW)

g, [m/9) (15)
Vo
And using the bound for W*:
Ruea(W*) < R(OW*) + 29 (Fw)
g [m2/9) (16)
YV om
Combining (15) and (16):
R(W) < R(W*) + 4%y (Fw)
n(2/5) {7
2B
+ 25, oM

The complexity 2Ry (Fy) depends on V(z; W)
and its interaction with LLM training. R/ (Fy ) is
bounded by O(\/d/M). Thus, Eq. (17) suggests
R(W) < R(W*)40O(+/d/M). This bound shows
that R(W) approaches R(W*) as M increases, if
meta-weight-net complexity (related to d) is con-

trolled.

C Implementation Details

This appendix provides further details on the hy-
perparameters used in our experiments, specifics
of our implementation, and additional analyses to
support our findings and ensure reproducibility.

C.1 Dataset Preprocessing and Splits

The public preference datasets, Golden HH (Bai
et al., 2022; Ethayarajh et al., 2024) and OASST1
(Kopf et al., 2024) (using the version processed by
Rafailov et al. (2023b)), underwent minimal fur-
ther preprocessing beyond standard tokenization.
For Meta-Align, the clean meta-dataset Dpen Was
constructed by randomly sampling M = 100 pref-
erence pairs from the original training split of each
dataset, unless stated otherwise. The clean vali-
dation set Dy,, used for tuning hyperparameters
for Meta-Align and certain baselines, comprised
300 randomly sampled preference pairs from the
original training split, ensuring no overlap with the
main training data D, Dipeta, Or the test set Dieg.
The remaining portion of the original training split
formed the potentially noisy training set D for our
experiments.
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C.2 Main LLM Alignment: Meta-Align and
Baselines

For the alignment of the main LLM 7y, both for
Meta-Align and the DPO-based baselines, exper-
iments were conducted with consistent base con-
figurations to ensure fair comparisons. The chosen
alignment loss for these primary experiments was
DPO (Laign = Lppo), with 3 = 0.1. The refer-
ence policy mer was the initial SFT checkpoint of
the respective LLM.

For Meta-Align, the PPLDiff signal z,ﬁz) was
computed dynamically for each batch using the
current main LLM parameters 6; as described in
Section 3.1. The Meta-Weight-Net V' (z; W) con-
sisted of a two-layer MLP: an input layer pro-
cessing the PPLDiff z (1 neuron), a hidden layer
with 100 neurons and ReLU activation, and a Sig-
moid output layer (1 neuron) producing weights
v € [0,1]. These raw weights vél) were normal-
ized within each mini-batch B; by dividing by their
sum: @fi) = vfi)/ Zje& v,gj). The learning rate
for the main LLM parameters (ag) was 5 X 1076
for Llama2-7B and 1 x 10~° for Phi-2, while the
learning rate for the Meta-Weight-Net parameters
(o) was 1 x 1074, Training was performed with
a batch size (B;) of 16 for Phi-2 and 8 for Llama2-
7B, and a meta-batch size (Beta,t) Of 16 (0r | Dietal
if M < 32). Training proceeded for approximately
one epoch over the noisy training set D. Both 6 and
W were optimized using AdamW with a weight
decay of 0.01.

The baselines (Vanilla DPO, cDPO, rDPO, Per-
pCorrect, DF-PPLDiff) shared the same main LLM
learning rate, batch size, and training duration as
Meta-Align where applicable. For PerpCorrect
and DF-PPLDIff, as detailed in Section 4.1, the
PPLDiff signal was pre-computed using a surro-
gate LLLM aligned on Dy,. The threshold 7 for
DF-PPLDiff was selected from the 10th to 90th
percentiles of these pre-computed PPLDiff values
on Dy,. The Loss-MWN baseline utilized the
same Meta-Weight-Net architecture and learning
rate ayy as Meta-Align, with DPO loss as its input.

For the generalizability study with IPO, Meta-
Align (IPO) used IPO as L,jign. The IPO-specific
hyperparameter x was set to 0.05. PPLDiff was
computed dynamically. Other Meta-Align hyperpa-
rameters (e.g., ay, ay) were kept consistent with
the DPO setup or fine-tuned on D,,. Vanilla IPO
was trained with a learning rate of 5 x 1076,



C.3 Reward Model (RM) for Evaluation

The independent reward model (RM), pivotal for
calculating Reward Accuracy, was trained on the
entirety of the clean training split for each dataset
(Golden HH: approx. 12K samples; OASST1: ap-
prox. 18K samples). The RM architecture was
initialized from the same base SFT checkpoint as
the policy models and included a final linear layer
to output a scalar reward. Training employed a stan-
dard pairwise preference ranking loss, a learning
rate of 1 x 1075, a batch size of 4, and proceeded
for 1 epoch using the AdamW optimizer with a
weight decay of 0.01. This RM remained fixed
during the evaluation of all aligned policy models.

C.4 Computational Resources

All experiments were conducted on NVIDIA A100
GPUs. Training Meta-Align for one epoch on the
Golden HH dataset with Llama2-7B typically re-
quired approximately 8 hours on a single GPU,
while the standard DPO baselines took about 6
hours. The dynamic computation of PPLDiff in
Meta-Align contributes to a moderate increase in
training time per epoch compared to methods using
pre-computed scores or no PPLDiff signal.

D Additional Analysis

D.1 PPLDIff Distribution

To further illustrate the efficacy of PPLDiff as a
noise indicator, Figure 6 visualizes the distribution
of PPLDiff values for samples known to be CPs ver-
sus those synthetically injected as NPs. This analy-
sis was performed on data simulating the Golden
HH dataset with an injected noise rate of ¢ = 30%.
The PPLDiff values for this visualization were com-
puted using the main LLM after it had undergone
some initial alignment steps, to reflect the dynamic
nature of the signal used by Meta-Align. As de-
picted, the PPLDiff distribution for CPs is con-
centrated primarily in the negative regime, with
a peak density around z ~ —1.5. In stark con-
trast, the distribution for injected NPs is clearly
shifted towards positive PPLDiff values, exhibit-
ing a broader spread with a peak density around
z ~ 2.0. A notable, albeit small, overlap exists
between the tails of the two distributions, particu-
larly around the z = 0 reference line. Nonetheless,
this clear separation in the primary modes of the
distributions underpins the utility of PPLDiff as a
strong discriminative feature for our Meta-Weight-
Net, enabling it to distinguish and subsequently
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2= 0 (PPLDiff Reference)

Density

Log-Perplexity Difference (z)

Figure 6: Distribution of PPLDiff (CPs in blue, injected
NPs in red) on simulated Golden HH data (e = 30%).
Values were computed using the main LLM after initial
alignment steps, reflecting Meta-Align’s dynamic signal.
NPs show notably higher PPLDiff.

reweight potentially noisy samples based on this

dynamically generated signal.
ld% 20‘% 30‘% 4(;%
Figure 7: Distribution of learned sample weights (nor-

Training Data Noise Ratio (¢)
malized vpew) assigned by Meta-Align to original Clean
Preferences (CPs, blue) and synthetically created Noisy
Preferences (Injected NPs, red) under varying training
data noise ratios (¢) on the Golden HH dataset. Boxes
(or violins) illustrate the distribution, showing Meta-
Align adaptively assigns lower weights to injected NPs.

1.0
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D.2 Adaptivity of Learned Weights to Varying
Noise Ratios

To further investigate the adaptive nature of the
weighting mechanism learned by Meta-Align, we
analyzed the distribution of final normalized sam-
ple weights (61(1?%,5) assigned to known CPs and
synthetically injected NPs across different overall
training data noise ratios (¢). This analysis was
conducted on the Golden HH dataset.

Figure 7 presents box plots of these learned
weights. A consistent pattern is evident: Meta-
Align assigns significantly higher weights to sam-
ples that are genuinely CPs across all tested noise
ratios from € = 10% to ¢ = 40%. For exam-



ple, at ¢ = 10%, the median weight for CPs is
approximately 0.75, and this remains relatively
high even as noise increases, being around 0.6
at e = 40%. Conversely, samples synthetically
labeled as NPs consistently receive substantially
lower weights; their median weight starts around
0.23 at ¢ = 10% and stays within a low range
(around 0.17 at € = 40%). The interquartile ranges
for CPs and NPs show minimal overlap, especially
at lower to moderate noise ratios, clearly indicating
that Meta-Align’s weighting function, informed by
the dynamic PPLDiff, effectively learns to differ-
entiate between reliable and likely corrupted pref-
erence signals. This adaptive down-weighting of
suspicious samples is crucial for maintaining robust
alignment performance in noisy environments.

D.3 Generalizability to Other Alignment
Algorithms

To provide initial empirical evidence supporting
this generalizability, we conducted experiments ap-
plying Meta-Align to Identity Preference Optimisa-
tion (IPO) (Azar et al., 2024). These experiments
were performed on the Golden HH dataset with a
training noise rate of € = 30%. Meta-Align (IPO)
utilized its standard architecture with dynamically
computed PPLDiff, with IPO serving as the under-
lying alignment loss L,jign. We evaluated Meta-
Align (IPO) against a Vanilla IPO baseline. The
results, presented in Table 2, show that Meta-Align
(IPO) substantially improved Reward Accuracy for
both Llama2-7B (75.8% vs. Vanilla IPO’s 60.3%)
and Phi-2 (72.5% vs. Vanilla IPO’s 58.1%), sug-
gesting the versatility of our PPLDiff-guided adap-
tive reweighting approach.

Table 2: Reward Accuracy (%) on Golden HH test set
(e = 30% training noise) for [PO-based methods. Mean
£ Std over 3 runs. Meta-Align (IPO) uses dynamic
PPLDiff.

Model Architecture
Llama2-7B Phi-2

Vanilla IPO 603+12 581X1.5
Meta-Align IPO) 758+09 725+1.1

Method
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