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Abstract: Solving complex manipulation tasks in household and factory settings
remains challenging due to long-horizon reasoning, fine-grained interactions, and
broad object and scene diversity. Learning skills from demonstrations can be
an effective strategy, but such methods often have limited generalizability be-
yond training data and struggle to solve long-horizon tasks. To overcome this,
we propose to synergistically combine two paradigms: Neural Object Descrip-
tors (NODs) that produce generalizable object-centric features and Task and Mo-
tion Planning (TAMP) frameworks that chain short-horizon skills to solve multi-
step tasks. We introduce NOD-TAMP, a TAMP-based framework that extracts
short manipulation trajectories from a handful of human demonstrations, adapts
these trajectories using NOD features, and composes them to solve broad long-
horizon, contact-rich tasks. NOD-TAMP solves existing manipulation bench-
marks with a handful of demonstrations andsignificantly outperforms prior NOD-
based approaches on new tabletop manipulation tasks that require diverse gen-
eralization. Finally, we deploy NOD-TAMP on a number of real-world tasks,
including tool-use and high-precision insertion. For more details, please visit
https://nodtamp.github.io/.
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1 Introduction
From children playing with Lego blocks to adults rearranging a room, our remarkable ability to
plan long sequences of actions to achieve our goals is still beyond the capabilities of current robots.
Consider the challenges involved in daily tabletop tasks shown in Fig. 1. First, these tasks are often
long-horizon and full of sequential dependencies. Here, the robot must reason about the best pose
to grasp a mug in order to stow it in a cabinet along with other steps to organize the entire table.
Second, steps such as placing the mug in a tight cabin or stowing the screwdriver on the tool rack
require intentional contact, which can render most motion planners that focus on avoiding collisions
ineffective [1]. Finally, to be effective across broad environments, the robot must handle a wide
variation of object shapes and scene layouts.

Task and Motion Planning (TAMP) [2, 3] is an effective approach for such problems because
it can effectively resolve sequential dependencies through hybrid symbolic-continuous reasoning.
However, TAMP systems typically require accurate, special-purpose perception systems and hand-
engineered manipulation skills. Thus, it is difficult to apply them to unseen objects and tasks that
require complex motion trajectories. Recent works have proposed to learn manipulation skills from
demonstration [4, 5] to partially relax these constraints. However, their generalization ability re-
mains bounded by the training data, which is costly to collect at scale [6].

By contrast, neural representation models have shown remarkable potential in enabling generalizable
manipulation systems [7, 8, 9, 10]. In particular, Neural Object Descriptors (NODs) [8, 11, 12] are
a powerful tool to extract dense, part-level features that generalize across object instances. Neural
Descriptor Fields (NDFs) [8], a type of NOD that encodes SE(3) poses relative to a given object, can
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Figure 1: Overview. NOD-TAMP is a TAMP-based framework that adapts demonstration trajecto-
ries to new situations to accomplish long-horizon, fine-grained tasks.

adapt key-frame poses (e.g. grasps) for one object instance to others in the same object category (e.g.
mugs), thereby achieving category-level generalization. However, existing NOD-based methods [8,
13, 14] are limited to adapting individual key-frame poses and thus struggle tasks involving complex
motion and multi-step reasoning.

In this paper, we propose to combine these complementary paradigms and introduce NOD-TAMP, a
TAMP-based framework that extracts adaptable skills from a handful of human demonstrations us-
ing NOD features and composes them to solve long-horizon tasks. Central to NOD-TAMP is a skill
reasoning module that composes short-horizon skills to solve novel long-horizon goals that were
never demonstrated, thereby achieving compositional generalization. To synthesize fine-grained
manipulation trajectories for new objects, we propose a NOD-based trajectory adaptation module
that can consistently adapt a recorded skill trajectory according to the observed objects. Finally,
NOD-TAMP flexibly integrates the adaptation of recorded trajectories with traditional motion plan-
ning to generalize across drastically different scene layouts.

We empirically evaluate NOD-TAMP on many simulated multi-step manipulation tasks that test
different factors of generalization across long-horizon tasks, including object shapes, number of
objects, scene layout, task length, and task objectives. We find that NOD-TAMP can solve existing
manipulation benchmarks [15], with a fraction (4 vs. 500 demos) of the data required by behavioral
cloning methods. On a new task suite that stress-test generalization capabilities, NOD-TAMP also
outperforms other existing methods [8, 16], some of which share a subset of its traits, highlighting
the value of building a cohesive manipulation planning system. Finally, we successfully demonstrate
NOD-TAMP on 6 real-world manipulation tasks.

2 Related Work
TAMP. Task and Motion Planning (TAMP) is a powerful paradigm for addressing long-horizon
manipulation challenges by decomposing a complex planning problem into a series of simpler sub-
problems [2, 17, 18, 19, 3]. Nonetheless, TAMP techniques presuppose knowledge of the object
models and the underlying system dynamics. Such presuppositions can be limiting, particularly for
domains with diverse objects and complex physical processes such as contact-rich manipulation.

Learning for TAMP. Recent works have set to address such limitations by replacing hand-crafted
components in a TAMP system with learned ones. Examples include environment models [20,
21, 22, 23, 24], object relationships [25, 26, 27], skill operator models [28, 4] skill samplers [29,
30], and learned policies [31, 32, 33]. However, these learned components are often limited to
the tasks and environments that they are trained on. Two notable exceptions are M0M [34] and
GenTP [35], but both methods plan with predefined manipulation skills. In contrast, our work
directly tackles the generalization challenge at the level of motion generation. Closely related to
our work are methods that learn manipulation skills for TAMP systems [4, 36, 37]. However, the
resulting systems remain bottlenecked by the generalizability of the skills, which are trained using
conventional Reinforcement Learning [36] or Behavior Cloning [4, 37]. Instead, our work develops
TAMP-compatible skills with object category-level generalization.
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Learning from Human Demonstrations. Modern deep imitation learning techniques have shown
remarkable performance in solving real-world manipulation tasks [38, 39, 40, 6, 41, 42]. However,
the prominent data-centric view of imitation learning [43, 6, 42], i.e. scaling up robot learning via
brute-force data collection, remains limited by the sample efficiency of the existing learning algo-
rithms and the challenges in collecting demonstrations for long-horizon tasks in diverse settings.
Other recent works have proposed to replay a small set of human demos in new situations to facil-
itate sample-efficient generalization [16, 44, 45, 46, 47, 48, 49, 50], but replay without adaptation
can fail for novel object instances. Some other works leverage pretrained object representations to
dramatically improve the generalization of policies given a handful of demonstrations [10, 8, 14].
However, these methods are limited to adapting a short skill [10] or a single manipulation action [8].
Our work develops a long-horizon planning framework that seamlessly integrates skills augmented
with latent object representations into a classical TAMP framework.

3 Problem Setup and Background
The central question we aim to answer is: given a set of demonstration trajectories, can we adapt
and recompose segments of them to solve new tasks? Our solution adopts the TAMP framework,
where a high-level planner orchestrates a set of short-horizon motion generators (skills) to produce
coherent long-horizon plans. The framework allows us to divide the problem into three technical
sub-problems. (1) How to represent demonstration trajectory snippets as TAMP skills? In particular,
how should we represent their precondition and effect constraints? (2) How to adapt skills instanti-
ated with recorded trajectories to new scenes and objects? (3) Given a new task goal, how to chain
these skills together to generate a trajectory plan? Our insight is that NOD features will enable us
to adapt both motion trajectories and skill constraints to new scene layouts and object shapes. Our
goal is to develop a cohesive TAMP framework that addresses these sub-problems by building its
core components on NOD representations.
3.1 Problem Setup
We consider the problem of object rearrangement, where a robot must manipulate objects to achieve
a desired scene configuration. The robot observes the scene in RGB-D frames and uses off-the-shelf
segmentation models [51] to extract instance point cloud Po ∈ RN×3 for each manipulable object
o. Accordingly, we represent the environment state as a set of object point clouds and the robot end-
effector pose s = ⟨{Po}, T e

w⟩, where T e
w ∈ SE(3) is the end-effector pose in the world frame. The

goal is specified as a set of task-relevant object point clouds g = {Po}, for example, a mug inside
a cabinet. The robot must generate a sequence of actions [a1, ..., aT ] that manipulate the objects
to reach a final configuration that closely matches the goal g, each action is an end-effector pose
in the world frame T e

w ∈ SE(3). We measure task success by checking whether the desired scene
configuration is reached. Our framework assumes access to a set of demonstration trajectories {τi},
each of which is a sequence of actions τi = [a

(i)
0 , a

(i)
1 , ..., a

(i)
T ], and the object point clouds capturing

the initial state of the recorded scene. The objective is to adapt and compose the trajectories to
generate action plans for solving a new task given a new scene layout with unseen objects.

Neural Descriptor Fields (NDF). Our approach leverages Neural Descriptor Fields (NDFs) [8] to
compactly represent object poses and features. An NDF is a learned function ψNDF that maps an ob-
ject point cloud P ∈ RN×3 and a query pose T q ∈ SE(3) in the same frame to a feature descriptor
z ∈ Rd: z ← ψNDF(T

q | P ) ∈ Rd (1). We focus on two key properties of NDFs: Intra-category
consistency: For objects of the same category (e.g., mugs), a trained ψNDF maps geometrically sim-
ilar query points (e.g., mug rims) to similar feature descriptors z. Pose invariance: The descriptors
are invariant to the object’s global pose T o

w, enabling generalization to new layouts.

We use NDF to solve an inverse problem: given a query pose T q
w and its feature z derived from object

point cloud Po, recover the pose T q′

w relative to a new object cloud Po′ . This optimization problem
can be solved with gradient descent: NDF-OPTIMIZE(Po′ , z) ≡ argmin

T q′
w

||z − ψNDF(T
q′

w | Po′)|| (2).

3.2 Skill Representation

We employ NDFs in our skills to represent not only their control trajectories but also their start
and end states. Accordingly, we represent each skill π as a tuple: π = ⟨name, param, pre, eff, traj⟩.
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Figure 2: NOD-TAMP Pipeline. Given a goal specification, a task planner plans a sequence of skill
types. Then, a skill reasoner searches for the combination of skill demonstrations that maximizes
compatibility. Using learned neural object descriptors (e.g., NDFs), each selected skill demonstra-
tion is adapted to the current scene. Finally, the adapted skills are executed in sequence.

We show a concrete example of skill representation in supplementary material Fig. 16. Here, name

denotes the skill type (e.g., PICK, INSERT). param
△
= {o : Po ∈ RN×3|o ∈ Oπ} are skill parameters,

which include the skill-relevant objects Oπ and their observed point clouds. Preconditions pre
specifies a set of constraints that must hold before skill execution. The eff is change in conditions,
i.e., adding or removing constraints, as a result of successfully executing the skill. A constraint
is represented by the relative configuration of two point clouds, which is encoded through NDF
features (e.g., zpre ∈ Rd). For example, an INSERT skill may require the robot to hold a object in
a specific way. Executing the skill results in a new constraint between the object and a receptacle.
Finally, let traj = τi be a set of end-effector poses for this skill. A core objective of our method
is to compose coherent multi-step plans by selecting and adapting a suitable trajectory within each
constituent skill. We include details of all skills in our experiments in the supplementary material.

4 NOD-TAMP
We present NOD-TAMP, a method for adapting and recomposing a set of skill demonstrations to
solve new tasks. First, we show how a single skill can be adapted to a new environment using
NDFs (Sec. 4.1). Then, we propose a planning algorithm that identifies skill segments from multi-
ple demonstrations to maximize compatibility (Sec. 4.2). Finally, we use motion planning to connect
each skill in order to efficiently and robustly generalize to new environments (Sec. 4.3). The work-
flow for NOD-TAMP is illustrated in Fig. 2.

4.1 Skill Adaptation
We seek to adapt a skill to a newly observed scene, which may be populated with new objects and
layouts. To do so, we leverage a key invariance: the skill trajectory still needs to satisfy the recorded
constraints (i.e., relative configurations between pairs of objects). Our skill adaptation module (1)
transforms the skill trajectories τ to constraint-centric NDF feature trajectories Zτ = [z1, z2, ..., ]
using Equation 1 and (2) adapts the trajectory to the observed scene via sequential optimization
using Equation 2. Specifically, to encode a recorded skill trajectory and adapt it to the test scenarios,
we consider common rearrangement skills that can be divided into two categories: hand-object
interaction, such as grasping and manipulating constrained mechanisms (doors, etc.), and object-
object interaction, where a robot uses the object in hand to interact with another object, such as
placing and insertion.

Hand-object interaction. In this case, the constraint is between the manipulated object o and
robot end-effector e at the end of a trajectory. Thus we use the recorded object point cloud as the
conditioning input to the NDF to encode the demonstrated robot end-effector trajectory as an NDF
feature trajectory Zτ = [z1, z2, ..., ] where zi = ψNDF(T

e
w[i] | Po).

Object-object interaction. Here, the constraint is between a pair of objects (o, o′), where o′ is
the in-hand source object, and o is a target object, e.g., a receptacle. Assuming a rigid transform
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between the end-effector and o′ (i.e. a secure grasp), we can place a query pose T q′

w on o′ and
create an object-centric demonstration trajectory. The encoded trajectory is thus Zτ = [z1, z2, ..., ],
where zi = ψNDF(T

q′

w [i] | Po). Note that the robot may also manipulate an unseen in-hand object
o′ during deployment. For example, the robot may be asked to stow a larger mug in a bin when
the demonstration is with a small mug. Thus we must also featurize the query pose with respect
to o′ in order to satisfy the precondition constraint between o′ and the end-effector. To do so, we
encode the constraint between the query frame and object o′ as zq = ψNDF(T

q′

w | Po′). This way,
with feature zq and Zτ , we can fully characterize the constraints between object o and o′ across time
while considering their shapes.

Trajectory adaptation. Given the feature trajectory Zτ , we will use the NDF func-
tion conditioned on the observed point cloud to recover a transformed skill trajectory, i.e.,
NDF-OPTIMIZE(Pobserved, z), for each z ∈ Zτ . We employ a sequential optimization procedure
to speed up the convergence, where each optimized pose serves as the initialization to warm-start
the optimization of the next pose. In the case of object-hand interaction, the optimization output is
an end-effector trajectory that can be directly used as a sequence of robot control setpoints. In the
case of object-object interaction, the output is an object-centric trajectory (the constraint between
query frame and the receptacle object across time), which we need to convert to robot controls. To
do this, we first adapt the constraint between the query frame and the in-hand object in test scenarios
using the recorded feature zq , resulting a rigid transform between the query frame and the in-hand
object. Then with the in-hand pose, we can derive the end-effector poses for control. We describe
the skill adaptation with extended notation and pseudocode algorithm in the supplementary material.

4.2 Skill Planning
Given a set of skills, the goal of the skill planner is to select a sequence of skills and their motion
trajectories that can be chained together to reach a task goal. The trajectories are then adapted using
the procedure described in Sec. 4.1.

While our system can generate task plans independently or be embedded in an outer TAMP algo-
rithm thanks to our skills functioning as PDDL operators, we assume the task plan is given. Our
focus is on the bi-level planning problem of chaining and adapting skill trajectories to create coher-
ent long-horizon motion plans. For a given task, we assume anH-step task plan skeleton [π̂1, ..., π̂H ]
that defines a sequence of selected skills, e.g., [PICK(mug), PLACE(mug, bin), ...]. Recall that each
skill can contain multiple candidate demonstration trajectories. The start and end of each trajectory
represent its precondition and effect constraint, respectively. The essential step in skill planning is,
for each skill in the plan, choose a candidate trajectory that is most compatible with the constraints
of its adjacent skills. We calculate compatibility based on the distance between pairs of constraints
in the NDF space. For simplicity, for the i-th skill in the plan, we denote the NDF-encoded precon-
dition of a candidate skill trajectory as zipre , and the effect as zi

eff
. The compatibility is calculated as

c = ||zipre−z
i−1
eff
|| + ||zi

eff
−zi+1

pre ||. Finally, we parse the goal configuration g into a set of pair-wise
object constraints and encode them as a set of NDF features Zg . We then compute the plan cost as
the distance between Zg and the final accumulated constraints of the entire plan sequence.

We use Depth-first search (DFS) to traverse over possible skill plans. After we obtain all costs for all
skill trajectory combinations, the plan with the lowest plan-wide NDF feature distance is returned.
For simplicity, we present this as a Cartesian product over relevant skills, but this can be done more
efficiently by performing a Uniform Cost Search in plan space, where the NDF feature distance
serves as a the cost function. Algorithm 2 in the supplementary material displays the pseudocode
for the NOD-TAMP planner.

4.3 Transit & Transfer Motion
Adapting demonstrated skills is particularly effective at generating behavior that involves contact.
However, demonstrations typically contain long segments without contact (outside of holding an
object). Because these components do not modify the world, it is often not productive to replicate
them. Thus, we temporally trim skill demonstrations to focus on the data points that involve contact.
In our implementation, we simply select the 20 steps before contact.
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After trimming, and in often before trimming, two adjacent skills might be far away in task space.
While linear interpolation is an option, this is not generally safe because the straight-line path may
cause the robot to unexpectedly collide. To address this, we use motion planning to optimize for
safe and efficient motion that reaches the start of next the skill. Motion planning generally requires
some characterization of the collision volume of the obstacles to avoid. Because we do not assume
access to object models, we use the segmented point clouds as the collision representation. For each
pose yielded by the skill, we use Operational Space Controller (OSC) [52] to track them.

5 Experiments
We validate NOD-TAMP and how its components contribute to solve long-horizon tasks, perform
fine-grained manipulation, and generalize to new object shapes. We select three evaluation set-
tings: (1) LIBERO [15], a standard manipulation benchmark that feature diverse objects and long-
horizon tasks, (2) a set of custom tabletop tasks that stress test spatial generalization and skill rea-
soning&reuse, and (3) six real-world tasks with noisy perception and multitudes of challenges com-
bined. We highlight key conclusions here and leave additional details in the supplementary material.

5.1 Experimental Setup

LIBERO Benchmark: LIBERO [15] is an existing multi-task manipulation benchmark. Our
evaluation covers the “LIBERO-Spatial” (10 tasks), “LIBERO-Object” (10 tasks), and three
of the “LIBERO-Long” tasks (Task 1, 5, and 8). For “LIBERO-Spatial” tasks, we provide
our system with just one demo of manipulating a bowl instance and test each system’s ability to
generalize over different initial bowl poses and goal configurations. For “LIBERO-Object” tasks,
we provide our system with four demos of manipulating a cheese box, milk box, ketchup bottle, and
soup can and then test our system’s ability to generalize over similar objects shapes (e.g., salad
dressing bottle, pudding box) and poses.

Customized Tabletop Tasks: To push the limit of the system, we design a suite of rearrangement
tasks that have large variation in task horizon, object instances, scene layouts, goal configurations,
and precision tolerances (See Fig 3).“MugPicking” - Pick up mugs with varying shapes and initial
poses; “MugInsertion” - Insert mugs of varying shape into a tight cabinet. Both the mug and the
cabinet are randomly placed on the table; “TableClear” - Place two mugs into two bins, which
aims to test the ability to achieve long-term goals by reusing the skills; “TableClearHard” -
Stow one mug into a cabinet with side opening and place another mug into a bin. The robot must
reason about proper grasp strategy to achieve the goal; “ToolHang” [39] - Insert the frame into
a stand with tight tolerance, and then hang the tool object on the inserted frame, which tests the
cabability of handling fine-grained motions.

Table Clear Hard Tool HangTable ClearMug Insertion

Figure 3: Customized tasks. Examples of initial
state and goal state (in green bounding box).

We provide only two demos, which manipu-
late one mug instance in two different ways
by grasping either the handle or the rim, and
test the methods on other nine different mug
shapes. For the “ToolHang” task, we provide
one demo of how to insert the frame and hang
the tool on the frame after it is assembled.

5.2 Baselines
NDF+ [8] - We augment the original NDF method, which has only shown single-pose optimization,
with task skeleton and the skill planning module. This baseline also uses a motion planner to transi-
tion between key-frame poses; MimicGen+ [16] - MimicGen directly transforms the demonstrated
poses to the relevant object frame and then sent to the controller without further adaptation. For fair
comparison, we augment MimicGen with a motion planner for collision avoidance; BC - The best-
performing BC baseline (ViT-T) from LIBERO benchmark [15]. We list the reported performance
in the multi-task learning setting as it is an upper bound for lifelong imitation learning.

We also compare our full system with different variants: Ours/SR - This ablation removes the skill
planning module. For each skill, we randomly choose a reference trajectory from the collected
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demonstrations belonging to this skill. This baseline validates the importance of skill reasoning for
generalizing across tasks; Ours/MP - This ablation removes the motion planning component and
uses linear trajectory interpolation to achieve transitions between the adapted skill trajectories. This
baseline validates the benefit of leveraging motion planning, a capability present in TAMP systems;
NSC (naı̈ve skill chaining) - This baseline ablates both the skill reasoning and the motion planning
component, it randomly selects a reference trajectory for each skill, adapts the skill with NDF, and
uses linear trajectory interpolation for transitions between the selected trajectories.

5.3 Evaluation on the LIBERO Benchmark

This experiment compares the best behavior cloning (BC) performance provided by the LIBERO
benchmark [15] with methods that combine generalizable neural representations and model-based
planners, such as NOD-TAMP and several baselines (See Tab. 1). For the “LIBERO-Spatial”
and “LIBERO-Object” tasks, the BC method is trained with 500 demos, and achieves 78% suc-
cess rate. In contrast, our system only requires namely 1 demo for “LIBERO-Spatial” and 4
demos for “LIBERO-Object”, the success rates are 84% and 94% respectively.

Table 1: Success rates on LIBERO tasks.
MimicGen+, Ours/MP, and Ours/SR are abbrevi-
ated as M+, O/MP, and O/SR.

Tasks BC NDF+ MG+ NSC O/MP O/SR Ours
Spatial 0.78 0.72 0.82 0.74 0.72 0.86 0.84
Object 0.78 0.80 0.88 0.80 0.76 0.90 0.94
Long1 0.80 0.50 0.40 0.10 0.10 0.70 0.70
Long5 0.52 0.70 0.60 0.20 0.20 0.60 0.70
Long8 0.00 0.30 0.80 0.20 0.10 0.80 0.90

We hypothesize that the performance gap is
caused by different state/action representations
and the structural information leveraged to
build the system. The BC methods directly
learn a mapping from the scene observation
to the actions and thus require a huge broad
data to cover diverse situations. Our method,
along with the action-transferring baselines

(e.g., NDF, MimicGen), utilize object-centric representations to adapt the spatial correspondences
from demo scenes to test scenes. MimicGen+ assumes identical correspondences between demon-
stration objects and test objects, directly replaying trajectories in the local frames of test objects.
In contrast, our approach leverages learned object representations to infer spatial correspondences,
enabling the transferred actions to be more robust to variations in object geometry. Compared to
NDF+, NOD-TAMP transfers a sequence of actions that represent each dynamic manipulation skill
instead of just a single target state, in this case, the last end-effector pose in the demonstration tra-
jectory. This improves NOD-TAMP’s performance in fine-grained manipulation tasks. As LIBERO
tasks are less constrained on grasping strategies (e.g., grasping the bowl to place it on a plate), we
found the O/SR baseline performs similarly to our full system.

5.4 Evaluation on Customized Tabletop Tasks

In the tabletop tasks, NOD-TAMP consistently achieves a high success rate (80-90%) across all
tasks and outperforms the other baselines and ablations (see Tab. 2). Below, we highlight specific
comparisons and underscore the importance of each component in NOD-TAMP. Additional analysis
is in supplementary material.

Table 2: Success rates on customized tabletop
tasks. MimicGen+, Ours/MP, and Ours/SR are
abbreviated as M+, O/MP, and O/SR.

Tasks NDF+ MG+ NSC O/MP O/SR Ours
MugPicking 0.80 0.70 0.85 0.80 0.85 0.85
MugInsertion 0.75 0.55 0.80 0.85 0.80 0.90
TableClear 0.60 0.75 0.80 0.75 0.85 0.85
TableClearHard 0.40 0.55 0.15 0.50 0.10 0.80
ToolHang 0.00 0.35 0.75 0.70 0.75 0.75

NOD-TAMP exhibits strong performance
across long-horizon tasks and is able to reuse
skills in new contexts. The “TableClear”
task requires re-using the existing two pick-
and-place human demonstrations, which only
consisted of single mug and bin interactions,
to stow two mugs into two bins. NOD-TAMP
achieves strong performance and outperforms MimicGen+ by 15% and NDF+ by 25% on this task,
showcasing a superior ability on re-purposing short-horizon skills for long-horizon manipulation.

NOD-TAMP exhibits strong generalization capability across goals, objects, and scenes in long-
horizon tasks. The “TableClearHard” task requires intelligent selection and application of
demonstration trajectories to achieve diverse mug placements. We see the clear benefit of the skill
planning component to achieve the different goals in this task – NOD-TAMP outperforms Ours/SR
by 70% and NSC by 65%. The omission of the skill planning module results in an incompatible
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Figure 4: Real-world tasks. Examples of initial and intermediate / goal states.

composition of skills. For example, the robot may grip the rim of a mug and attempt to insert it into
the cabinet, leading to collisions between the cabinet and the gripper.

NOD-TAMP is able to solve low-tolerance manipulation tasks. The ToolHang task requires fine-
grained manipulation skills that adapt to various object poses. NOD-TAMP achieves 75% success
rate, outperforming NDF+ and MimicGen+ that cannot adapt their trajectories based on environ-
ment changes. Since this task does not require obstacle avoidance or constrained grasping strategies,
our ablated baselines (Ours/MP, Ours/SR, and NSC) perform similarly to our full method.

5.5 Real-world Evaluation

We deploy NOD-TAMP on a real Franka Panda robot to solve six challenging manipulation tasks
(Fig. 4): “SortTableware” - Insert a dish into a narrow slot on the rack and stack two bowls on
top of it; “MakeCoffee” - Place a mug under the coffee machine, insert a coffee pod into a tight
holder, close the lid and then press the button; “InsertScrewdriver” - Insert a screwdriver
into a tight slot on the storage rack; “UseTool” (inspired by [19, 53]) - Use the L-shape tool
to poke a box out from a narrow tunnel, and hook another box that out of reach, and stack them;
“ClearMugs(SameGoal)” - Hang two mugs on the mug tree; “ClearMugs(MultiGoal)”
- Hang one mug on the tree, and insert another mug into the cabinet. We provide a single demon-
stration for each ⟨skill, object category⟩ pair and test skill reasoning and reuse across tasks, object
instances (e.g., round vs. square plates), and scene configurations. We include more details, includ-
ing the list of object instances and reset range in the supplementary material.

We use a front-mounted Microsoft Azure Kinect camera to capture RGB-D images and SAM [51]
to segment object point cloud. NOD-TAMP plans directly based on the partial-view object point
cloud and executes the plans with impedance control. NOD-TAMP achieves a 60% success rate
on “MakeCoffee”, 70% success rate on “InsertScrewdriver”, showing its capability on
handling fine-grained motions (e.g., inserting the coffee pod or screwdriver with tight tolerance).
It achieves 90% success rate on “SortTableware” and “UseTool”, and 80% success rate
on “ClearMugs(SameGoal)” and “ClearMugs(MultiGoal)”, suggesting its capability on
skill reusing and reasoning based on long-horizon goals, e.g., how to grasp the mug to store into bin
vs. hang on mug tree and grasping different part of the tool to poke and hook.

6 Conclusions and Limitations
We introduced NOD-TAMP, a planning algorithm for long-horizon and fine-grained manipulation
that can generalize across object shapes. NOD-TAMP directly leverages human demonstrations to
implement manipulation skills. To ensure that these skills generalize to new settings, NOD-TAMP
uses NDFs to adapt demonstrated object-centric motion to new, unseen objects. These skills are
chained together using feature matching to ensure plan feasibility. Finally, they are executed using
traditional motion planning and control to generalize across environments. We evaluated NOD-
TAMP and competitive baselines on two simulated task suites and six real-world tasks.

A limitation of NOD-TAMP is the computational efficiency in NOD-based trajectory adaptation.
This bottleneck might be addressed with lightweight neural networks or more efficient optimization
techniques. For skill planning, we use DFS to traverse over possible skill plans, this part can be
further accelerated through optimization in the implementation (e.g., parallel DFS or building K-
D trees in the NDF constraint space) to accommodate large-scale demos. Besides, extending the
system to handle deformable objects would necessitate adapting the current NOD to account for
time-varying features, which represents a challenging but interesting area for future work.
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Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[4] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez. Learning sym-
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[18] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners
and blackbox samplers via optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages 440–448, 2020.

[19] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and
stable modes for tool-use and manipulation planning. 2018.

[20] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. Journal of Artificial Intelligence Research, 61:
215–289, 2018.

[21] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models
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B Real-world Experiments

B.1 System Setup

We demonstrate deploying our method on a real Franka Emika Panda robot in Fig. 5. The system
perceives the scene with a Microsoft Azure Kinect camera and uses the Segment Anything Model
(SAM) [51] to generate instance segmentation masks. To identify the target objects for each task, we
extract visual features for each mask region using a CLIP model [54], and retrieve the target masks
through the text descriptions of target objects. We project the pixels belonging to each target object
into the robot base frame to generate point clouds. For a pixel with coordinate (u, v) and depth d,
the corresponding 3D location can be recovered by

p = R ·K−1 · I + t,
where I = (ud, vd, d), [R|t] denotes the camera pose obtained through calibration, and K denotes
the camera intrinsic matrix.

The motion planning component is built on [55]. We execute trajectories using open-loop control
and track them with a joint impedance controller [56] operating at a frequency of 20 Hz.

Camera

Robot

Figure 5: Hardware Setup. An illustration of the hardware setup.

B.2 Task Details

The objects used in each task, an example of start/goal state, reset range, and skills recorded are
illustrated in Fig. 6 and Fig. 7. The skills are extracted from a single demonstration of the full task.
Below we describe each real world task setup and the skill demonstrated.

• “InsertScrewdriver”: A fine-grained manipulation task. Pick up a screwdriver by
the handle and insert it into a tight slot (approx. 5mm) on the storage rack.

• “SortTableware”: A multi-step manipulation where the robot must place dishes onto
a dish rack. Grasp and insert a dish into a narrow slot on the dish rack and stack two bowls
next to it. Dishes and bowls vary in shapes and size in each evaluation trial.

• “MakeCoffee”: Operate a Keurig machine to make coffee — a multi-step task with fine-
grained manipulation steps. Pick up a mug by the handle and place it the coffee machine,
insert a coffee pod into the tight holder, close the lid and then press the button.

• “ClearMugs(SameGoal)”: Grasp and hang two mugs on the mug tree. The robot must
reason about how to pick up the mug (by the rim, not the handle), in order to hang the mugs.

• “ClearMugs(MultiGoal)”: Grasp and hang one mug on the mug tree, and grasp and
stwo another mug into the cabinet. The robot must reason about how to pick up the mug:
to hang the mug, pick up by the rim. To stow a mug, pick up by the handle.
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Pick (tool) Pick (tool) Poke (block) Hook (block)

Pick (block) Place (block) Place (tool)

Figure 6: Real-world Task Setup (part 1). Visualization of the real world tasks. For each row,
we show the objects used for the task. The objects used in the demonstration are visualized using
bounding boxes with green dotted lines. We then show an example start and goal state, the reset
range by overlaying the initial frames of each trial, and the skills recorded for the task.
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Figure 7: Real-world Task Setup (part 2).

• “UseTool”: A classical physical problem-solving task that requires multi-step reason-
ing [19, 53]. The robot must reason about how to pick up the tool in order to use the tool to
interact with objects in the scene. Grasp the junction of an L-shape tool and use it to poke a
box out from a narrow tunnel, and then regrasp the long handle of this tool to hook another
box that out of reach, and finally stack the two boxes.

Skill reuse. For the “ClearMugs(SameGoal)” task, we only record a demonstration of how
to grasp a mug and hang it on the mug tree, as the skills of grasping a mug and stow it into cab-
inet can be re-used from the “MakeCoffee” task; For “ClearMugs(MultiGoal)”, we do
not record any new demonstration as all the required skills for this task can be re-used from the
“ClearMugs(SameGoal)” task.

Evaluation setup. We conduct 10 evaluations per task. Select tasks involve different object in-
stances for each evaluation. Objects are placed randomly within their respective initialization range.

B.3 Performance Analysis

The quantitative results are shown in Tab. 3.

Table 3: Success rates of our system on real world tasks.
Tasks SortTableware MakeCoffee InsertScrewdriver

Success Rate 9/10 6/10 7/10
Tasks UseTool ClearMugs (SameGoal) ClearMugs (MultiGoal)

Success Rate 9/10 8/10 8/10

The task execution process is visualized in Fig. 8 and Fig. 9. NOD-TAMP can handle fine-grained
motions (e.g., inserting the coffee pod or screwdriver with tight tolerance), and demonstrate its
capability to re-use skills and reasoning over them to achieve long-horizon goals (e.g., grasping
different parts of the tool to achieve poking and hooking behaviors). We also notice the major
failures are caused by that the robot fails to grasp the handle of the mug, or not precisely align the
pod with the holder of the machine, where the errors can be attributed to noisy depth perception,
or incomplete object point clouds due to partial view observation. We conduct further analysis on
perception noise in Sec. E.
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Figure 8: Real-world Results. Key frames of real world task execution processes, the planning
results are shown below each frame.

18



ClearM
ugs(M

ultiGoal)
ClearM

ugs(M
ultiGoal)

ClearM
ugs(Sam

e
Goal)

ClearM
ugs(Sam

e
Goal)

Use Tool

Figure 9: Real-world Results (Continued).
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C Skill Reasoning Visualization

To analyze the skill planning process, we use real world trials of “ClearMugs(SameGoal)”,
“ClearMugs(MultiGoal)”, and “UseTool” for visualizing the feature distance of different
skill combinations (See Fig. 10). For the left part of the figure, each row represent different strategies
of picking a mug (i.e., grasp the rim or grasp the handle), each column represent different strategies
of placing the holding mug (i.e., insert the mug into cabinet, or hang it on mug tree). For the right
part of the figure, each row represents different ways of pick up the tool (i.e., grasp either the junction
or the long handle), and each column show different ways of using the tool (i.e., poke object out of
a tunnel or hook object that out of reach). Lower feature distance means better compatibility of the
skill combination. The results show that by leveraging the learned object descriptor features that
characterizing geometric configurations, our skill planning module is able to correctly evaluate the
skill compatibility.

Figure 10: Feature Matching. The NOD feature distance of different skill combinations for real
world trials. Lower score indicates more compatible skills (pre-post condition matching).

20



D Simulation Experiments

We visualize all reference demos used in the customized tabletop tasks in Fig. 11. We record just one
demo for each task and post process the recorded data into skills. We conduct 20 evaluation trials for
each task, and we change the object shapes and poses for each trial to test the generalization of the
system, we visualize the task reset ranges by overlying the first image frame of each trial in Fig. 12.

Fig. 13 show the generated trajectories of our framework and the execution process for our proposed
tabletop tasks in simulation, highlighting the capability of our system on handling diverse shapes,
configurations, and task goals.

Pick (mug) Place (mug) Pick (mug) Place (mug)

Pick (frame) Insert (frame) Pick (tool) Hang (tool)

Figure 11: Simulation Demos. A visualization of the reference skill demos used for each cus-
tomized tabletop task. Here, the trajectories for each skill are projected into the camera coordinate
frame and drawn on top of the initial RGB image.

Table Clear Hard Tool HangTable ClearMug Insertion

Mug Insertion Table Clear Table Clear Hard Tool Hang

Figure 12: Customized Tabletop Task Reset Ranges. The task reset ranges.

21



Figure 13: Simulation Results. Key frames of task execution and planning.
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E Robustness to Perception Noise

To understand the performance of our system under different levels of perception noise, such as
levels present in real-world sensors, we perform an experiment where we inject noise in the point
cloud observation in simulation. We peform evaluation on the first stage of the “ToolHang” task,
a high-precision task with tolerance of approximately 5mm. The robot needs to pick up the frame
object and insert it into a stand. A study of the depth accuracy of the Microsoft Azure Kinect [57]
showed that, within a distance of 0.8 meters, the noise standard deviation is 5.546× 10−4 meters.

To simulate this and settings with increased noise, we inject Gaussian noise with standard devia-
tions of 0.05, 0.1, 0.15, and 0.2 centimeters. The results of the experiment are shown in Fig. 14.
NOD-TAMP only experiences a 5% reduction in success rate for real-world levels of noise. Our ex-
periments show that NOD-TAMP can robustly complete precise tasks even in the presence of typical
sensor noise.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Noise Level 1e 3
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Figure 14: Robustness to Perception Noise. We evaluate the performance of NOD-TAMP under
different levels of perception noise on the first stage of the simulated “ToolHang” task. The vertical
dotted line represents the Gaussian noise standard deviation of a Microsoft Azure Kinect. The
success rate of NOD-TAMP only slightly decreases for real-world levels of noise, indicating that
NOD-TAMP is robust to sensor noise.
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F Computation Efficiency

We provide a planning runtime analysis of our system in Fig. 15. We evaluate NOD-TAMP on a
two-stage task that involves skill chaining and reasoning. We report the runtime of the trajectory
adaptation, constraint transfer & skill reasoning, and trajectory tracking components. Since most
daily tasks can be achieved through sparsely represented trajectories with around 10-20 poses, al-
together, the planning time is typically 1-2 minutes, where the gradient-based NDF optimization
occupies most of the runtime.
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Figure 15: Time v.s. Trajectory Lengths. We show the runtime of our full system for a two-
stage task. TA is short for trajectory adaptation, CT & SR is short for constraint transfer and
skill reasoning. Tr is short for trajectory tracking. We see that trajectory adaption is the most
computationally expensive operation in NOD-TAMP.

We also observe that the computational bottleneck is trajectory adaptation, which involves NDF
optimization of individual poses to align with the reference trajectory feature. The runtime of this
component can be improved by utilizing lightweight neural networks for feature encoding and lever-
aging more efficient optimization techniques. This is left for future work.
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G Demonstration Extraction and Skill Representation

Here, we provide additional detail on segmenting and representing skills from recorded demos, to
supplement Sec. III.B and IV.B-C in the main text. To segment skill-level demonstrations from
a longer task demonstration, we identify kinematic switches, which can be detected from gripper
open & close actions and contact. Specifically, we detect object contacts and pinpoint the time step
at which these changes occur to establish the boundaries of each skill, similar to prior works that
uses signals such as gripper-object contact [58]. Some data sources, such as LIBERO, contain noisy
actions such as repeated grasps and accidental contacts. To correct for this, we manually inspect and
filter out low-quality skill demonstrations. To better leverage transit and transfer motion planning,
we trim the skill segments to be just the actions before changes in contact. In our implementation,
we simply consider the 50 steps before contact. Further discussion is included in Sec. IV.C.

Skill name: Place (mug, bin)

Categories: mug, bin

Trajectory feature

Required constraints: 
{Z0=NDF(eef. pose|mug)}

Add constraints: 
{Z1=NDF(bin pose|mug)}

Delete constraints: 
{Z0=NDF(eef. pose|mug)}

t0

t1

Figure 16: Skill Representation. How we represent a pick skill in NOD-TAMP: the “required
constraints” represent preconditions and the “add & delete constraints” represent effects.

Fig. 16 illustrates how a skill is represented in the skill planning step (Sec. III.B). During skill
planning, a candidate skill is currently executable only if the currently active set of constraints,
which are updated after each skill is added to the current partial plan during the search, include the
required constraints of the candidate skill. Additionally, we use a compatibility score in the form of
the feature distance between two matched constraints to rank plan viability.
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H Demo Quality Analysis

To analyze how demo quality affects the performance of our system, we use the “Can” task from
Robomimic benchmark [59] to test our system, which paired with hybrid human demos. Accord-
ing to Robomimic, the demos are categorized into three groups with quality “better”, “okay”, and
“worse”. We randomly sampled 4 demos from each group, and we run 10 evaluation trials for each
source demo with randomly initialized object placements, the results are presented in Fig. 17.
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Figure 17: Task success rate v.s. Demo Quality for the “Can” task in Robomimic [59]. Demon-
strations of different qualities are extracted from the accompanying dataset.

The results show that our system’s performance is affected by the quality of the reference demonstra-
tions, similar to other learning from demonstration methods. However, the performance degradation
is minimal. We also notice that some of the failure cases come from insecure grasps. This is proba-
bly due to sub-optimal grasp poses. Incorporating failure detection and re-planning capability could
further mitigate this issue.
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I NDF Training

We train per-category NDF models using 3D mesh models extracted from ShapeNet [60]. We adopt
the same model architecture and learning hyperparameters as Simeonov et al. [8], namely a learning
rate of 0.0001 and batch size of 16. The model is optimized using the Adam optimizer [61] and
trained for 80k epochs. We employ 3D occupancy prediction as a pre-training task to acquire object
descriptor features, and we randomly rotate and scale the object model to make the learned model
more robust to shape variation. We use the same NDF models across all experiments in simulation.
For real-world experiments, we further augment the training data by synthesizing partial point cloud
to reflect the real-world perception input.
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J LIBERO Qualitative Results and Failure Modes

Fig. 18 visualizes the execution of several LIBERO tasks. Typical failure modes of our approach
include gripper collisions due to a tight cabinet drawers and object slippage due to sub-optimal grasp
poses. Our system’s performance is affected by the quality of the reference demonstrations, similar
to other learning-from-demonstration methods. Thus, some of the failures can be improved through
providing higher-quality demos. Additionally, incorporating the ability to replan would make the
system more robust to skill execution failures.

Figure 18: LIBERO Results. Key frames of three task execution processes for LIBERO benchmark.
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K Pseudocode

Algorithm 1 shows the trajectory adaption process. Let o and o′ be the source and target objects in
the test scene for the adapted skill. Let Cacc denote all the acquired constraints during the execution
of prior skills (e.g., the grasp pose after executing PICK). Finally, let T o

w and T o′

w be poses for object
o and o′ respectively.

Algorithm 1 Trajectory adaptation

Declare: Source object in test scene o, target object in test scene o′, robot end-effector e
Declare: Global accumulated constraints Cacc

Declare: Planned skills π∗ = {d1, ..., dn}
1: procedure ADAPT-TRAJ(o, o′, d)
2: zq,Zτ ← d
3: Po ← PERCEPTION(o)
4: Po′ ← PERCEPTION(o′)
5: T q

w ← NDF-OPTIMIZE(Po′ , zq)
6: ▷ Adapt query pose to test scene based on target object
7: T q

o′ ← (T o′
w )−1 · T q

w

8: if d.mode=obj-obj then
9: T o′

e ← Cacc[⟨o′, e⟩] ▷ Extract constraints from Cacc

10: for z ∈ Zτ do
11: T q

w ← NDF-OPTIMIZE(Po, z)
12: ▷ Adapt motion to test scene based on source object
13: if d.mode=obj-obj then
14: T e

w ← T q
w · (T q

o′)
−1 · (T o′

e )−1

15: else
16: T e

w ← T q
w

17: yield T e
w ▷ Yield target to controller

18: if d.mode=obj-obj then
19: delete Cacc[⟨o′, e⟩] ▷ Remove constraint from Cacc

20: else
21: T o

o′ ← T q
o′ · (T

q
w)

−1 · T o
w ▷ Acquire the last constraint

22: Cacc[⟨o, o′⟩]← T o
o′ ▷ Append constraint to Cacc

Note that the object poses used in our equations are just intermediate variables that help bridge the
desired transformations, therefore these object poses do not need to carry any actual meaning. Here,
we explain how we use NDFs to estimate novel object Pnew’s point cloud transform Tnew w.r.t. a
given reference object Pref with pose Tref . To do so, we simply define the rotation of T as identity,
and define translation as the mean of Pref :

zref ← ψNDF(Tref | Pref )

Tnew ← NDF-OPTIMIZE(Pnew, zref ).

The overall NOD-TAMP planning algorithm is shown in Algorithm 2.
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Algorithm 2 NOD-TAMP planner

Declare: Plan skeleton [π̂1, π̂2, ..., π̂H ]
Declare: Task goal specification Zg

1: procedure PLAN-NDF-SKILLS([π̂1, π̂2, ..., π̂H ], Zg)
2: D ← [ ] ▷ List of demos per skill
3: for i ∈ [1, ..., H] do
4: D ← D + [{τ}i], where {τ}i is the trajectory set of skill π̂i

5: π∗ ← None ▷ Optimal trajectory plan
6: c∗ ←∞ ▷ Lowest cost
7: for π ∈ PRODUCT(D) do ▷ All valid traj. sequences
8: c← 0 ▷ Feature cost
9: Zacc ← {} ▷ All accumulated constraints

10: for i ∈ [1, ..., H − 1] do
11: zipre , z

i
eff ← PARSE(π[i]) ▷ Parse pre. and eff. constraints

12: zi+1
pre , zi+1

eff ← PARSE(π[i+ 1])

13: c← c+ ||zieff − zi+1
pre ||

14: ▷ Compute feature distance among skills
15: Zacc ← Zacc ∪ {zieff}
16: ▷ Update acquired constraints
17: for ⟨k, zk⟩ ∈ Zg do ▷ Enumerate goal constraints
18: ẑk ← Zacc [k]
19: c← c+ ||ẑk − zk||
20: ▷ Compute feature distance of the goal configuration
21: if c < c∗ then ▷ Update best plan
22: π∗ ← π; c∗ ← c

23: return π∗
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