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Abstract

With the rise in social media (SM) platforms001
that offer easy access, community formation,002
and online debate, the issue of hate speech has003
risen rapidly. The hate detection, and coun-004
tering it becomes a growing challenge to soci-005
ety, researchers, companies, and policymakers.006
Hate speech is in the form of text or multi-007
modal such as memes, GIFs, audio, or video.008
The scientific study of hate speech from a com-009
puter science view has gained attention in re-010
cent years. Mostly it is considered a supervised011
task where the annotated corpora and shared012
resources play a big role. To combat it, SM,013
employing modern AI tools is getting atten-014
tion. This survey comprehensively examines015
the work done to combat hate in the English016
language so far. This structures the state-of-017
the-art methodologies employed for unimodal018
identification, studies conducted in multimodal019
hate identification, the role of Explainable AI,020
prevention of hate speech through style trans-021
fer, and counter-narrative generation for the022
English language. The efficacy and limitations023
are also discussed. Compared with the ear-024
lier surveys this paper concisely gives a well-025
organized presentation of the methods to com-026
bat hate.027

1 Introduction028

The recent exponential growth of the internet, tech-029

nology, and social media has revolutionized com-030

munication but also provides a platform to dis-031

seminate hateful content. United Nations strategy032

and plan of action on hate speech describes hate033

speech as any kind of communication in speech,034

writing or behavior, that attacks or uses pejorative035

or discriminatory language concerning a person036

or a group based on who they are, in other words,037

based on their religion, ethnicity, nationality, race,038

color, descent, gender or identity factor 1. Hate039

1https://www.un.org/en/hate-speech/un-strategy-and-
plan-of-action-on-hate-speech

speech is used as a broad umbrella term for nu- 040

merous user-created content intended to disparage, 041

or dehumanize, any individual or any group based 042

on some characteristics such as race, color, gen- 043

der, nationality, ethnicity, etc (Nockleby, 2000). 044

With the advancement of natural language pro- 045

cessing (NLP) technology, substantial research has 046

been conducted on automatic textual hate speech 047

detection in recent years. There are large-scale 048

publicly available datasets collected from vari- 049

ous social medial platforms and tagged into sub- 050

variants of hate such as aggression ((Kumar et al., 051

2018),(Bhattacharya et al., 2020) Hate( (Toraman 052

et al., 2022)(Davidson et al., 2017), (Mathew et al., 053

2021), (Mollas et al., 2020)), Offensive ((Davidson 054

et al., 2017), (Zampieri et al., 2019), (Rosenthal 055

et al., 2021)), Abusive (Nobata et al., 2016),(Curry 056

et al., 2021), (Caselli et al., 2020),(Founta et al., 057

2018)), Harassment((Golbeck et al., 2017)) Toxic 058

((Wulczyn et al., 2017),(Sarker et al., 2023b), (Bhat 059

et al., 2021),(Georgakopoulos et al., 2018)), Cy- 060

berbullying (Dadvar et al., 2012) (Dinakar et al., 061

2012), Racism (Waseem and Hovy, 2016)(Kwok 062

and Wang, 2013), Sexism (Waseem and Hovy, 063

2016),Flame (Spertus et al., 1997) Misogynistic 064

(Fersini et al., 2022). Facebook reports 510K com- 065

ments/minute and X reports 350 tweets per minute 066
2. Recent research has focused on developing auto- 067

matic systems to detect hate speech on social media 068

platforms. These typically employ semantic con- 069

tent analysis techniques built on Natural Language 070

Processing (NLP) and Machine Learning (ML) 071

methods such as Support vector machine (SVM), 072

Logistic regression (LR), Convolution neural net- 073

work (CNN), Long short-term memory (LSTM), 074

Gated recurrent unit (GRU), Bidirectional encoder 075

representations from the transformer (BERT), etc. 076

The task typically involves classifying a comment 077

into non-hate or hateful and measured in terms of 078

2https://bernardmarr.com/how-much-data-do-we-create-
every-day-the-mind-blowing-stats-everyone-should-read/
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performance metrics. Hate speech is disseminated079

via multimodal data such as memes (text superim-080

posed within images), audio, and video. Most of081

the work revolves around meme identification with082

the concept of early fusion and late fusion. With083

the emergence of LLM, the employment of a vision084

transformer-based approach for identification has085

risen. However, little research focus is on audio086

or video identification. Recently model has been087

aided with the explanability information for better088

classification. The multimodal approach focuses on089

leveraging the multi modalities features. (Gomez090

et al., 2020), (Suryawanshi et al., 2020), (Kirk et al.,091

2022) covers the task. Recently the identification092

of hate span, transforming/ rephrasing the offensive093

into non-offensive has been in attention to counter094

the hate speech. The remainder of this paper is095

structured as follows. Section 2 reviews the dataset096

organized for the different subtasks of hate identifi-097

cation, Section 3 describes the features related to098

hate speech detection in the uni-modal identifica-099

tion. Section 4 introduces the tasks done to solve100

multimodal hate prediction, Section 5 presents the101

study to counter hate speech; and finally, Section 6102

is about the implementation and role of explainable103

AI, Section 7 reports some challenges and Section104

8 concludes this work and discusses future work.105

2 Corpus Details106

This section covers the dataset collection process,107

the annotator’s role, available datasets, and chal-108

lenges associated.109

2.1 Data set collection and preparations110

Most of the work done in hate speech detection111

for unimodal and multimodal relies on the labeled112

data. These corpus are mainly crawled through113

Twitter (Wijesiriwardene et al., 2020) (Jha and114

Mamidi, 2017) (Fersini et al., 2018), Facebook (Ku-115

mar et al., 2018), Reddit (Mollas et al., 2020), Gab116

(Kennedy et al., 2018), Wikipedia comments (Wul-117

czyn et al., 2017) (Pavlopoulos et al., 2020). Nearly118

all the user-generated content has been crawled119

using a keywords-based approach (Waseem and120

Hovy, 2016) (De Gibert et al., 2018) with words121

being in negative polarity. Most of the datasets are122

topical focus (Kumar et al., 2018) (Founta et al.,123

2018) i.e the specific topics and abusive phenom-124

ena addressed The preprocessing is performed de-125

pending on the data quality and structure. This126

typically involves filtering and normalizing textual127

inputs, such as tokenization, stopword removal, 128

misspelling correction, noise reduction, stemming, 129

and lemmatization. 130

2.2 Annotations 131

The preprocessed data requires a manual review 132

of the post/meme/audio to tag it into further gran- 133

ularity of hate. The data annotation is a relevant 134

source of variability. There are various annota- 135

tion frameworks (Founta et al., 2018)(Bhattacharya 136

et al., 2020) (Zampieri et al., 2019). Typically 137

the annotations are performed by hiring the ex- 138

perts, amateur/non-experts, or on crowdsourcing 139

platforms such as Crowdflower (Davidson et al., 140

2017), and Amazon Mechanical Turk (Zampieri 141

et al., 2019) (Founta et al., 2018). The annotators 142

are generally pre-informed about the task. As per 143

the annotation scheme, there are three main strate- 144

gies. The first is a binary scheme: two mutually- 145

exclusive values, (typically yes/no) to mark the 146

presence or absence of a given phenomenon. The 147

second is a non-binary scheme: more than two mu- 148

tually exclusive values. The third strategy features 149

multi-level annotation, with finer-grained schemes 150

accounting for different phenomena. The quality of 151

annotated data is measured by the Inter Annotators 152

agreement score. Most of the authors did not give 153

much about the annotation process and only pro- 154

vided an Inter-annotator agreement score. Fleiss 155

Kappa (Zampieri et al., 2019), Cohen Kappa (Gol- 156

beck et al., 2017) (De Gibert et al., 2018), Kripen- 157

drof’s Kappa (Kumar et al., 2018) (Bhattacharya 158

et al., 2020) 159

2.3 Available datasets 160

The most common binary annotated corpus is 161

(Golbeck et al., 2017) (De Gibert et al., 2018), 162

(Bretschneider and Peters, 2016), (Ghosh et al., 163

2022) (Gao and Huang, 2017). To have bet- 164

ter coverage of the hate variants, the binary task 165

shifted to the single layer 3-class (Davidson et al., 166

2017)(Waseem and Hovy, 2016)(Toraman et al., 167

2022)(Mathew et al., 2021) or multi-class (Founta 168

et al., 2018)(Waseem, 2016)annotated data. There 169

is an issue of imbalance in the number of hate 170

and non-hate instances. (Davidson et al., 2017), 171

(De Gibert et al., 2018), (Curry et al., 2021) con- 172

stitutes 6%-20% hateful instances. (Kurrek et al., 173

2020) (Mathew et al., 2021) (Pavlopoulos et al., 174

2021) constitute 50%-60% of the abusive instances. 175

(Röttger et al., 2021), (Borkan et al., 2019) consists 176

of around 70%-80% hate instances. The single 177
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layer tagging is shifted towards the creation of hier-178

archical annotation schema (Zampieri et al., 2019)179

(Basile et al., 2019) (Mandl et al., 2021) covering180

the targets associated with hate in the subsequent181

layers. The targets are trans people (Röttger et al.,182

2021), religion (Mathew et al., 2021)(Kennedy183

et al., 2020), misogyny (Fersini et al., 2018). The184

tagging is also done at the multinomial level (Mol-185

las et al., 2020), on a scale (Wulczyn et al., 2017),186

multi-task multi-tagging (Vidgen et al., 2020). The187

recent shift in marking the toxic span is also gain-188

ing pace. (Pavlopoulos et al., 2021) proposed anno-189

tated data for toxic span. (Sarker et al., 2023a) re-190

leased ≈ 20K comments marked for toxic phrases.191

The shift in data creation from unimodal to multi-192

modal is slow. The creation of multimodal data has193

recently gained pace with the datasets like (Kiela194

et al., 2020), (Gomez et al., 2020), (Suryawanshi195

et al., 2020), (Fersini et al., 2022), (Ramamoorthy196

et al., 2022), (Aprosio et al., 2020), (Yang et al.,197

2019) (Tekiroglu et al., 2022) (Qian et al., 2019a).198

To combat the hate and generate counter-narrative199

statements some datasets (Chung et al., 2019)(Fan-200

ton et al., 2021)(Qian et al., 2019a)201

3 Unimodal: Textual Identification202

The distinguishing approach in the classification203

tasks is the usage of features. This section covers204

the various approaches utilized to compute the fea-205

tures, and various methods employed to improve206

the performance of the classifier. The encoded fea-207

tures are generally applied to the machine learning208

or deep neural network to get the probability distri-209

bution of the classes.210

3.1 Simple surface features211

Traditional Machine learning algorithms utilize sur-212

face features such as word n-gram, and char n-213

grams features (Nobata et al., 2016) (Waseem and214

Hovy, 2016) (Zhang et al., 2018) (Chen et al., 2012)215

(Xu et al., 2012). These features were feded into216

Support vector machine (SVM) (Kapil and Ekbal,217

2020)(Zhang et al., 2018), logistic Regression (LR)218

(Waseem and Hovy, 2016)(Qian et al., 2018), Ran-219

dom Forest (RF)(Davidson et al., 2017). The other220

linguistic features such as Part-of-Speech (PoS) tag221

unigrams, bigrams, and trigrams, weighted by their222

TF-IDF and removing any candidates with a docu-223

ment frequency lower than 5; number of syllables;224

Flesch-Kincaid Grade Level and Flesch Reading225

Ease scores that to measure the ‘readability’ of a226

document (Zhang et al., 2018), (Davidson et al., 227

2017). (Gambäck and Sikdar, 2017), (Kapil and 228

Ekbal, 2020) (Gambäck and Sikdar, 2017) used 229

CNN with n-gram approach. Character n-grams 230

provide the model to capture the obfuscation such 231

as fck, kll, a$$hole. It is found to be more pre- 232

dictive than token n-grams (Mehdad and Tetreault, 233

2016) 234

3.2 Word Embeddings 235

With the passage of time, distributed word rep- 236

resentations (based on neural networks) also re- 237

ferred to as word embeddings are developed. These 238

are Word2vec (Mikolov et al., 2013), FastText 239

(Bojanowski et al., 2017), GloVE (Pennington 240

et al., 2014). Word Embedding is based on dis- 241

tributed assumptions and mapped words into a 242

high-dimension feature space and maintains the 243

semantic information. For each target sentence 244

S = w1, w2, , wN , each token wi is substituted 245

into a real-valued vector xi using word embedding, 246

where xi ∈Rd is the word vector, d is the dimen- 247

sions of word vectors. These word embeddings 248

were used with CNN (Badjatiya et al., 2017)(Kapil 249

and Ekbal, 2020), LSTM (Zhou et al., 2021a) (Pit- 250

silis et al., 2018), GRU (Zhang et al., 2018), (Zhou 251

et al., 2021a) 252

3.3 Transformer based approaches 253

The inclusion of transformer-encoder-based fea- 254

tures outperformed the traditional machine learn- 255

ing and deep neural network techniques. It is 256

leveraging the concept of multi-head self-attention 257

(Vaswani et al., 2017). These models have emerged 258

as the preferred approach for a variety of NLP 259

tasks, owing to their capacity for effectively han- 260

dling long-range dependencies while processing 261

text in parallel. This parallel processing makes 262

them more efficient and scalable than standard 263

RNNs and CNNs. Transformer-based models’ ba- 264

sic notion is their attention mechanism, which al- 265

lows the model to focus on relevant areas of the 266

input text while making predictions. More than 267

60% of the models submitted in the shared task 268

(Bhattacharya et al., 2020)(Mandl et al., 2021) were 269

based on transformer encoder embeddings (Curry 270

et al., 2021)(Basile et al., 2019) (Fersini et al., 271

2022). Specifically BERT is used by (Mozafari 272

et al., 2020a)(Zhou et al., 2021a)(Mathew et al., 273

2021). 274
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3.4 Lexical resources275

To make use of the general assumption that hateful276

posts contain negative words, these words can be277

used as the feature. There are many publicly avail-278

able hate-related lexicons. The domain-specific lex-279

icons is created by (Davidson et al., 2017) of size280

179, (Bassignana et al., 2018) created HurtLeX, a281

multilingual lexicon of <100,000 hate words in 53282

languages,(Olteanu et al., 2018) created 163 hate283

words, (Qian et al., 2019b) collected 2105 lexicons,284

and (Wiegand et al., 2018) proposed 1651 words.285

(Gitari et al., 2015) created a lexicon using subjec-286

tivity and syntactic features related to hate speech.287

(Xiang et al., 2012), (Nobata et al., 2016) (Bur-288

nap and Williams, 2016), (Burnap and Williams,289

2015) employed lexicon lists, recently BERT based290

methods (Koufakou et al., 2020) leveraged from291

the lexicon. The recent development in encoding292

has seen lesser creation of lexicon to capture stan-293

dardized vocabulary and semantic information.294

3.5 Knowledge enriched features295

The creation of a large number of annotated data296

poses a great challenge. It is therefore a wise idea297

to transfer this knowledge via Multi-task learning298

(MTL), transfer learning, zero-shot learning, few-299

shot learning etc. Given m learning tasks300

{Ti}mi=1 (1)301

where all the tasks or subset of them are re-302

lated, multi-task learning aims to help improve303

the learning of a model for classification task Ti304

by using the knowledge in some or all of the m305

tasks. (Kapil and Ekbal, 2020) experimented CNN-306

based MTL on five hate datasets. (Ghosh et al.,307

2023a) transformer-based multi-task network, to308

address (a) aggression identification, (b) misog-309

ynistic aggression identification, (c) identifying310

hate-offensive and non-hate-offensive content, (d)311

identifying hate, profane, and offensive posts, (e)312

type of offense. The other form of MTL were313

employed such as Fuzzy based (Liu et al., 2019),314

multi-task multi-lingual (Mishra et al., 2021). The315

empirical analysis showed the approaches follow-316

ing MTL outperformed the other classifier with the317

(Maity et al., 2023) analyzing the efficacy of MTL318

over Single task learning (STL). Transfer learn-319

ing: Transfer learning aims to transfer the learned320

knowledge in one domain or application to another321

domain for which no data exists. (Mozafari et al.,322

2020a) fine-tuning BERT-based transfer learning,323

and (Yuan et al., 2023) explored deep transfer learn- 324

ing by projecting multiple datasets in a common 325

space. (Qian et al., 2021) proposed Variational 326

Representation Learning (VRL) along with a mem- 327

ory module based on LB-SOINN (Load-Balancing 328

Self-Organizing Incremental Neural Network) to 329

lifelong data learning without forgetting the pre- 330

viously learned knowledge, There are some other 331

learning such as Few-shot learning (FSL) i.e gen- 332

erally as n-shot learning, a category of artificial 333

intelligence that also includes one-shot learning 334

(in which there is only one labeled example of 335

each class to be learned) and zero-shot learning (in 336

which there are no labeled examples at all). Several 337

work involved the usage of these learning (Moza- 338

fari et al., 2022), (Awal et al., 2023), (Pamungkas 339

et al., 2021) 340

3.6 Relation with Sentiment analysis and 341

emotion 342

Hate speech data is closely related to sentiment and 343

emotion analysis, as understanding the underlying 344

negative sentiments and intense emotions is crucial 345

for accurate detection and effective intervention. 346

(Gitari et al., 2015) (Dinakar et al., 2012) followed 347

the approach where a classifier dedicated to detect- 348

ing negative polarity is applied prior to the classifier 349

specifically checking for evidence of hate speech. 350

(Van Hee et al., 2015) uses sentiment lexicon to 351

identify the number of positive, negative, and neu- 352

tral words in a comment text. The BERT-based 353

models have also leveraged the sentiment and emo- 354

tion data in the training. (Min et al., 2023) validate 355

the correlations between hate speech and certain 356

negative emotion states and propose an emotion- 357

correlated hate speech detector. (Rajamanickam 358

et al., 2020) advantage of the affective features to 359

gain auxiliary knowledge through a Hard-sharing 360

double encoder model and gated double encoder 361

based on BILSTM. (Zhou et al., 2021a) use mul- 362

tiple feature extraction units to share multi-task 363

parameters to better share sentiment knowledge, 364

and then gated attention is used to fuse features for 365

hate speech detection. (Kapil and Ekbal, 2021) pro- 366

posed CNN-based MTL sharing sentiment analysis 367

data. (Kapil and Ekbal, 2022) (Ghosh et al., 2023a) 368

make use of sentiment and emotion recognition 369

data in the BERT-based MTL. 370

3.7 Augmentation 371

As the neural networks are data-specific the perfor- 372

mance of the model can be enhanced by increasing 373
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the training data by augmentation and solving the374

problem of data scarcity and data imbalance. Most375

researchers have employed pre-trained transform-376

ers to generate synthetic posts. (Wullach et al.,377

2021) utilized GPT LLM (BERT, RoBERTa, AL-378

BERT) for generating synthetic data (Ilan and Vi-379

lenchik, 2022) applied data augmentation using380

real unlabelled data, selected from the online plat-381

form. Unlike other data augmentation approaches382

that generate synthetic data, HARALD (Hate Aug-383

mentation with ReAL Data) generates a continuous384

stream of relevant real data authored by multiple385

authors with diverse stylistic, grammatical, and se-386

mantic forms. (Hartvigsen et al., 2022) created387

machine-generated datasets TOXIGEN by develop-388

ing a demonstration-based prompting framework389

and an adversarial classifier-in-the-loop decoding390

method to generate subtly toxic and benign text391

with a massive trained language model. (Kim et al.,392

2023) proposed TOXIGEN-CONPROMPT, a pre-393

training strategy to leverage machine-generated394

data via contrastive learning. (Cao and Lee, 2020)395

deep generative reinforcement learning adversarial396

generated based data augmentation to enhance the397

performance by 5%.398

3.8 Impliciteness399

The detection method mainly works well for hate400

expressed explicitly. One of the challenging as-401

pects is to detect hate expressed in an implicit402

manner (Kumar et al., 2018)(Kim et al., 2022)403

(Hartvigsen et al., 2022). Previous research has404

mostly addressed overt or explicit hate speech,405

in an accurate way neglecting the more prevalent406

type of coded or indirect language.(ElSherief et al.,407

2021) proposed benchmark corpus. In (Wiegand408

et al., 2021), Wiegand discusses the challenges409

of learning implicit abuse in existing datasets and410

suggests improvements to their design. (Qian411

et al., 2019b)deciphered hate symbols using a412

sequence-to-sequence model using Urban Dictio-413

nary. (Ocampo et al., 2023a) generated adversarial414

implicit hate messages leveraging auto-regressive415

models. (Ghosh et al., 2023b) explicitly incorpo-416

rates user- and conversational context to detect im-417

plicit hate (Wiegand et al., 2023) proposed new data418

set generated from GPT-3 to identify euphemistic419

abuse. (Cooper et al., 2023) designed Hate speech420

detection models inoculated against real-world ho-421

moglyphs. (Ocampo et al., 2023b) investigate im-422

plicit and explicit embedding representations. (Kim423

et al., 2022) leveraged contrastive learning to learn 424

implicit posts. 425

4 Multi-modal 426

The early works of multimodal hate identification 427

involve the usage of meta tweet features aided to 428

the main tweet (Founta et al., 2018), (Qian et al., 429

2018). (Pitsilis et al., 2018) proposed an ensem- 430

ble of recurrent neural network(RNN) classifiers, 431

incorporating various features associated with user- 432

related information, such as users’ tendency to- 433

wards racism or sexism. (Founta et al., 2019) 434

(Chatzakou et al., 2017) utilizes a wide variety 435

of metadata such as tweet-based, user-based, and 436

network-based features. The properties of bullies 437

and aggressors were studied. (Rajadesingan et al., 438

2015) derived 10 features grouped into text-based 439

features, emotion-based features, familiarity-based 440

features, contrast-based features, and complexity- 441

based features (Waseem and Hovy, 2016) leveraged 442

the gender and demographic information, (Unsvåg 443

and Gambäck, 2018) investigates the potential ef- 444

fects of users’ features such as gender, network 445

(number of followers and friends), activity (num- 446

ber of statuses and favorites), and profile informa- 447

tion (geo-enabled, default profile, default image, 448

and number of public lists). (Chaudhry and Lease, 449

2022) investigate profiling users by their past utter- 450

ances as an informative prior. But in the current 451

scenario, social media has also seen an upsurge in 452

memes, GIFs, audio, and video to propagate hate. 453

However, most of the data are available for mul- 454

timodal meme identification. Memes – that have 455

recently emerged as popular engagement tools and 456

which, in their usual form, are image macros shared 457

through social media platforms mainly for amuse- 458

ment – are also being increasingly used to spread 459

hate and/or instigate social unrest, and therefore 460

seem to be a new form of expression of hate speech 461

on online platforms (Fersini et al., 2022)(Suryawan- 462

shi et al., 2020). Some of these multimodal publi- 463

cations are only hate speech because of the combi- 464

nation of the text with a certain image (Kiela et al., 465

2020). Multimodal hate speech detection integrates 466

various data types, such as text, images, audio, and 467

video, to enhance the accuracy and robustness of 468

identifying hate speech. The next part covers the 469

feature extractor and usage of a multimodal pre 470

trained transformer. 471
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4.1 Feature Extraction472

The text superimposed is generally extracted473

through Optical character recognition (OCR).474

Unimodal feature extraction: The textual feature is475

extracted by using pre-trained word embedding476

(Mikolov et al., 2013)(Pennington et al., 2014)477

through LSTM ((Gomez et al., 2020), (Botelho478

et al., 2021), (Aman et al., 2021) RF ((Gomez et al.,479

2020) CNN (Suryawanshi et al., 2020). The trans-480

former encoder BERT ((Sabat et al., 2019), (Kiela481

et al., 2020), (Hossain et al., 2022), (Prasad et al.,482

2021)), to get encoded text representations. Sev-483

eral pre-trained CNN architectures have been used.484

These are Imagenet used by (Gomez et al., 2020)485

(Sabat et al., 2019)(Hossain et al., 2022) Xcep-486

tion (Botelho et al., 2021) VGG 16 (Suryawanshi487

et al., 2020) (Aman et al., 2021) (Lee et al., 2021)488

ResNET (Ma et al., 2022) (Zhang et al., 2023a).489

Early multimodal identification work generally in-490

volves merging the unimodal features through fu-491

sion. To have better representations unimodal fea-492

tures were fused based on concatenation (Kumar493

et al., 2021) (Kiela et al., 2020) (Hossain et al.,494

2022)(Kumar and Nandakumar, 2022). The fusion495

based on summation (Kumar et al., 2021),(Zhou496

et al., 2021b). The transformer architecture serves497

as the foundation for today’s cutting-edge vision498

language learning models. There are two main499

approaches: Single-stream models/ early fusion,500

such as VisualBERT (Kiela et al., 2020), UNITER501

(Zhang and Wang, 2022) (Lippe et al., 2020), OS-502

CAR (Lippe et al., 2020) (Kiela et al., 2020), uses503

a single transformer to process the image and lan-504

guage input at the same time. Dual-stream mod-505

els/ late fusion, such as LXMERT (Lippe et al.,506

2020), CLIP (Kumar and Nandakumar, 2022), De-507

VLBERT, VilBERT (Lee et al., 2021), rely on sep-508

arate transformers for vision and language, which509

are then combined towards the end of the model.510

New approaches leveraging the multi-modal tech-511

niques to enhance the performance have been pro-512

posed.513

4.2 Context aware information514

(Zhou et al., 2021b) utilizes image captioning515

process (Xu et al., 2022) proposed MET-Meme516

rich in metaphors . (Cao et al., 2022) proposed517

PromptHATE to prompt pre-trained language mod-518

els (PLMs) for multimodal classification. (Shang519

et al., 2021)developed GNN based KnowMeme520

to enrich from human commonsense knowledge.521

(Hossain et al., 2024) developed context-aware 522

framework, (Pramanick et al., 2021) proposed MO- 523

MENTA that leverages local and global perspec- 524

tives to detect memes. (Botelho et al., 2021) deci- 525

pher implicit hate (Yang et al., 2022) uses cross- 526

domain knowledge transfer (Chhabra and Vish- 527

wakarma, 2023) leverages knowledge distillation 528

architecture 529

4.3 Audio and Video detection 530

(Rana and Jha, 2022) proposed new Video hate 531

detection data and combined the auditory features 532

representing emotion and the semantic features to 533

detect hateful content. (Das et al., 2023) curate 534

43 hours of videos from BitChute and manually 535

annotate them as hate or non-hate, along with the 536

frame spans which could explain the labelling de- 537

cision. They showed that models having multiple 538

modalities surpasses the performance obtained by 539

uni-modal variants. (Gupta et al., 2023) explore the 540

context for hate detection for video pages by using 541

like description, transcript, and vsual input) (Ibañez 542

et al., 2021) develop a hate speech classifier from 543

online short-form TikTok videos (Bhesra et al.) col- 544

lected audio based hate speech data, (Prasad et al., 545

2023) video frame features in the multimodal iden- 546

tification. 547

5 Dehatify 548

This section mainly deals with the advancement in 549

the style transfer and counter-narrative response. 550

Preventing hate speech through style transfer en- 551

tails rephrasing toxic information in neutral or posi- 552

tive language, and using advanced NLP techniques 553

to change the tone while preserving content. In 554

NLP, style transfer involves adding certain stylistic 555

attributes to text while maintaining its basic struc- 556

ture and meaning. It follows the concept of encoder 557

and decoder. The model is trained using unsuper- 558

vised (no parallel data) or in a supervised manner 559

(parallel data). 560

5.1 Span Prediction 561

Span prediction refers to identifying the start and 562

end positions of a relevant text segment within 563

a larger document. the inclusion of shared task 564

(Pavlopoulos et al., 2021)To ease the modera- 565

tors, this part will predict the toxic span. There 566

were 36 system submission, winner employing 567

BERT with CRF. The results were computed us- 568

ing character-based F1. (Ranasinghe and Zampieri, 569
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2021) present MUDES, a multilingual system to de-570

tect offensive spans in texts. It features pre-trained571

models, a Python API for developers, and a user-572

friendly web-based interface. (Pouran Ben Veyseh573

et al., 2022) proposed multi-task setting for toxic574

span prediction, and (Nouri, 2022) developed data575

augmentation with dual training for Offensive Span576

Detection577

5.2 Style transfer578

(Mangal and Jindal) filtered out hate words based579

on a lexicon. The void is predicted by using580

Google with the CBOW model. The second ap-581

proach uses back translation to lose the original582

style but preserves content, it is then regenerated583

using desired styles. (Santos et al., 2018) trained584

GRU-based encoder-decoder using non-parallel585

data. The framework combines collaborative classi-586

fier, attention, and cycle consistency loss. (Ahmad587

et al., 2022) proposed a decoding technique follow-588

ing lexical constraints over the zero-shot style trans-589

fer method. (Masud et al., 2022) curated a parallel590

corpus of hate texts and their counterpart. A model591

NACL, a hate speech normalization operating in592

three stages: identifying the hate posts identifying593

the toxic span, and then rephrasing it to non-hate.594

(Tran et al., 2020) designed a retrieve, generate,595

and edit unsupervised style transfer pipeline. The596

part of Speech (POS) tag sequences is identified597

followed by the generation of suitable candidates598

and corrected by the edit module. (Atwell et al.,599

2022) released a parallel corpus of comments with600

its style-transferred counterparts. The proposed601

model leverages discourse framework and parsing602

to preserve content.603

5.3 Counter Narratives604

The counter-narrative data is prepared with the in-605

tervention of humans. These data will be trained606

and the output is to generate counter narration with607

respect to the post. (Bonaldi et al., 2022)presented608

generated dialogue data aided by the intervention609

of human expert annotators to automatize counter-610

narrative writing. (Hong et al., 2024) proposed611

constrained generation of counter speech by in-612

corporating two conversation outcomes in the text613

generation by prompt with instructions, prompt614

and select, LLM finetune, and LLM Transformer615

reinforcement learning. (Tekiroglu et al., 2020) em-616

ployed Generative pre-trained transformer (GPT)-617

2 to generate silver counter-narratives followed618

by expert validation/post-editing. (Chung et al.,619

2019) described the creation of the first large-scale 620

multilingual hate speech/counter-narrative pairs by 621

experts. (Fanton et al., 2021) presented a HITL 622

framework for data collection based on an author- 623

reviewer paradigm. (Chung et al., 2021) presented 624

a knowledge-bound counter-narrative incorporat- 625

ing external knowledge retrieved through extracted 626

and generated keyphrases. The process of de- 627

hatification needs to be more researched into with 628

the sota methods. 629

6 Model Implementation and Explainable 630

AI 631

6.1 Model parameters and Evaluation metric 632

The experiments were performed using a 5-fold 633

cross-validation (Zampieri et al., 2019)(Ghosh 634

et al., 2022) (Kapil and Ekbal, 2020) approach. The 635

4-fold training set is split into 15% validation and 636

85% training while the last fold is treated as the test 637

set to evaluate the model. Most of the deep learn- 638

ing models were implemented using Keras (Zhang 639

et al., 2018) (Pitsilis et al., 2018) with Tensorflow 640

as the backend. Evaluation of the performance of 641

hate speech (and also other related content) detec- 642

tion typically adopts the classic Precision, Recall, 643

and F1 metrics. Precision measures the percent- 644

age of true positives among the set of hate speech 645

messages identified by a system. The model em- 646

ploying precision (Badjatiya et al., 2017) (Dinakar 647

et al., 2012)(Wiegand et al., 2018), recall (Burnap 648

and Williams, 2015)(Gitari et al., 2015)(Waseem 649

and Hovy, 2016) The model performance for uni- 650

modal is measured by F1 (harmonic mean of preci- 651

sion, and recall) (Kapil and Ekbal, 2020)(Waseem 652

and Hovy, 2016)(Zhang et al., 2018)(Badjatiya 653

et al., 2017). Most of the multimodal models em- 654

ploy AUC-ROC (Kumar et al., 2021)(Kiela et al., 655

2020) (Shome and Kar, 2021) as its metric. The 656

F1 score also used (Hossain et al., 2022)(Aman 657

et al., 2021)(Lee et al., 2021) The quantitative 658

metrics generally used in the generative task are 659

consistency preservation (Santos et al., 2018), per- 660

plexity (Santos et al., 2018) (Masud et al., 2022), 661

BLEU (Bilingual Evaluation Understanding) (Ah- 662

mad et al., 2022) (Masud et al., 2022)(Tran et al., 663

2020)(Atwell et al., 2022), ROGUE (Tran et al., 664

2020), METEOR (Tran et al., 2020) The novelty 665

of generated text is also measured using relevance, 666

and effectiveness (Hong et al., 2024)(Bonaldi et al., 667

2022) 668
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6.2 Mitigating Bias669

Annotator bias refers to the systematic errors or ten-670

dencies introduced by individuals who label or an-671

notate data used in machine learning and other data-672

driven applications. (Wich et al., 2021)(Al Kuwatly673

et al., 2020) This bias can affect the quality, reli-674

ability, and generalizability of the annotated data,675

leading to skewed or misleading results in mod-676

els trained on such data. (Waseem, 2016) con-677

cluded that annotator bias can stem from various678

sources, including personal biases, unclear tagging679

details, task complexity, social bias, etc. Several680

bias mitigation methods are proposed to make the681

model more efficient. (Cheng et al., 2021) pro-682

posed debiasing strategy based on Reinforcement683

learning (RL), (Sahoo et al., 2022)extraction of so-684

cial bias data, (Zhang et al., 2023b) introduced two685

mitigation approaches such as multi-task interven-686

tion, and data-specific intervention. (Mun et al.,687

2023)(Elsafoury et al., 2022) investigated counter-688

ing of stereotypical bias,(Badjatiya et al., 2019)689

(Maity et al., 2019) mitigated internal stereotypical690

bias through knowledge representations, (David-691

son et al., 2019)studied racial bias (Xia et al., 2020)692

proposed demoting racial bias by adversarial train-693

ing, (Mozafari et al., 2020b) mitigated racial bias694

(Ahmed et al., 2022) tackled racial bias using ge-695

ometric learning, (Halevy et al., 2021) mitigating696

racial bias using ensemble and (Shah et al., 2021)697

studied reducing target group bias.698

6.3 Explanable AI699

The performance of the model can be enhanced700

by making the model learn the human rationale of701

the input in an explainable form. (Lin et al., 2024)702

explainable approach through reasoning (?) in-703

troduced knowledge informed encoder-decoder to704

generate implications of biased text, (Clarke et al.,705

2023) introduced rule By example, an exemplar-706

based contrastive learning framework to explain-707

able hate speech detection. (Yang et al., 2023)708

introduced the framework HARE, harnessing the709

reasoning capabilities of LLMs.710

7 Challenges711

Degradation of datasets, non-uniform definitions of712

hate, non-disclosure of the annotation guidelines,713

annotators’ bias, time-consuming annotation, men-714

tal illness, etc. The mental health of hate victims715

has also been studied.716

7.1 Effect on Mental Health 717

Cyberbullying and other subhate can be a detri- 718

mental cause in mental health. The computational 719

approach has not solved it, rather a string of sur- 720

veys based on questionnaires, and responses, the 721

degree of scale of depression is studied. (Bucur 722

et al., 2021) analyzed the mental depression states 723

related to postings (Saha et al., 2019) psychologi- 724

cal effects of hateful speech related to depression. 725

(Wachs et al., 2022) relationship between online 726

hate speech victimization and adolescents’s men- 727

tal well-being. The questionnaires were adminis- 728

tered to assess OHSV, depressive symptoms, and 729

resilience. (Torres et al., 2020) analyzed the ef- 730

fect of social, verbal, physical, and cyberbullying 731

victimizations on academic performances. 732

8 Conclusion and Future Work 733

In this survey, we provided a critical assessment 734

of how the automatic identification of hate speech 735

in text has advanced over the last several years. 736

Other realms of hate speech that we examined in- 737

cluded cyberbullying, abusive language, discrimi- 738

nation, sexism, extremism, and radicalization. The 739

work done in the unimodal text identification, mul- 740

timodal hate identification, style transfer, counter 741

narrative generation, discussion on mental health is 742

done. The future work should more focus on fine 743

grained hate detection, more mathematical efficient 744

fusion approach, adding more explanability, and 745

via continuous learning paradigm. 746

Limitations 747

Hate speech detection is a very vast domain cov- 748

ering multiple languages. This survey covers only 749

the research done so far for the English language. 750

The number of open repositories is very few, and 751

the inconsistent guidelines and differences in anno- 752

tator expertise further complicate the reliability of 753

the data, impacting the effectiveness and accuracy 754

of detection models. The data in most cases very 755

difficult to share because of privacy issues. Most 756

of the work completed is not deployed and if de- 757

ployed released by very few. The multimodal audio 758

and video identification are in the very preliminary 759

stage. 760
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