

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MODEL PREDICTIVE ADVERSARIAL IMITATION LEARNING FOR PLANNING FROM OBSERVATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Humans can often perform a new task after observing a few demonstrations by inferring the underlying intent. For robots, recovering the intent of the demonstrator through a learned reward function can enable more efficient, interpretable, and robust imitation through planning. A common paradigm for learning how to plan-from-demonstration involves first solving for a reward via Inverse Reinforcement Learning (IRL) and then deploying it via Model Predictive Control (MPC). In this work, we unify these two procedures by introducing planning-based Adversarial Imitation Learning, which simultaneously learns a reward and improves a planning-based agent through experience while using observation-only demonstrations. We study advantages of planning-based AIL in generalization, interpretability, robustness, and sample efficiency through experiments in simulated control tasks and real-world navigation from few or single observation-only demonstration.

1 INTRODUCTION

Inverse Reinforcement Learning (IRL) offers a principled approach to imitation learning by inferring the underlying intent, or reward function, that explains expert behavior. A fundamental advantage of IRL is that this reward is often readily generalizable beyond the support of the demonstration data, enabling the discovery of new policies through interaction and plans through self-prediction. Especially when demonstrations are sparse, ambiguous, or suboptimal, IRL’s interpretability is particularly well-suited for domains where understanding preferences and ensuring reliable planning are essential, such as routing on Google Maps (Barnes et al., 2023), socially aware navigation (Kretzschmar et al., 2016), and autonomous driving (Bronstein et al., 2022).

For real-time systems, learned IRL and Inverse Optimal Control (IOC) rewards are typically deployed via Model Predictive Control (MPC) (Lee et al., 2022b; Rosbach et al., 2019; Triest et al., 2023; Das et al., 2021; Lee et al., 2021; Kuderer et al., 2015; Lee et al., 2022a). Here, the offline IRL algorithm iteratively solves a Reinforcement Learning (RL) problem in an inner loop, guided by the current reward estimate. An outer loop then updates this reward to minimize the discrepancy between the agent’s and the expert’s behavior. Once training is complete, the resulting reward is integrated with MPC for real-time planning and control.

Adversarial Imitation Learning (AIL) has made significant improvements over IRL in algorithmic complexity and sample efficiency (Ho & Ermon, 2016; Baram et al., 2017). However, the reliance on an RL policy in AIL methods complicates their use in applications with safety constraints (Lee

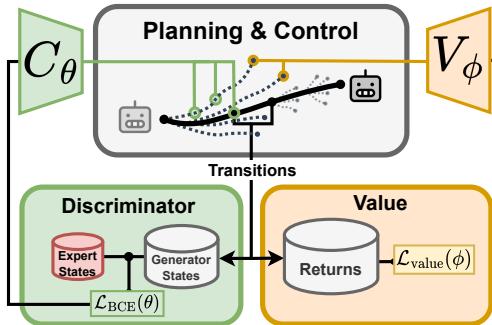


Figure 1: Model Predictive Adversarial Imitation Learning (MPAIL) learns costs for a planning-based, Model Predictive Control (MPC) agent from observation-only demonstration. Interactions with these costs are simultaneously used to learn a value function for experience-based reasoning beyond the horizon of the planner.

054 et al., 2022b; Triest et al., 2023; Das et al., 2021). Further limited by partial observability, these
 055 deployments will often prioritize planning using a model for the sake of real-time performance,
 056 trustworthiness, and interpretability (Han et al., 2024a; Katrakazas et al., 2015; Choudhury et al.,
 057 2018).

058 In this work, we derive *planning-based AIL*, yielding key benefits:

060 1. **Planning-from-Observation (PfO).** Towards interpretable yet scalable imitation learning,
 061 a predictive model precludes the need for expert action data and enables access to the
 062 agent’s optimization landscape. This grants crucial insight and steerability into the agent’s
 063 decision making process even as it learns from ambiguous expert data. *We further show that*
 064 *this improves on out-of-distribution generalization, robustness, and sample efficiency when*
 065 *compared to policy-based AIL. We also demonstrate how policy-based AIL is fundamentally*
 066 *limited by the absence of reward deployment.*

067 2. **Unification of IRL and MPC.** Otherwise considered independent training and deployment
 068 procedures, planning-based AIL allows for end-to-end interactive learning of the entire
 069 planner. Critical online settings (e.g., dynamics, preferences, control constraints) can thus
 070 be brought into training while enabling experience-based reasoning beyond the planning
 071 horizon, which we demonstrate in this work. *We also find this induces a more effective*
 072 *adversarial dynamic than policy-based generators when learning from partial observations*
 073 *in the real world.*

074 To our knowledge, this work presents the first end-to-end planning-from-observation (PfO) frame-
 075 work, extending PfO to continuous spaces and interactive learning. By choosing Model Predictive
 076 Path Integral control (MPPI) (Williams et al., 2017) as the embedded planner, we further gain the-
 077 oretical perspective on planning-based AIL and its relationship to the seminal GAIL objective (Ho
 078 & Ermon, 2016; Torabi et al., 2019a). Thus, we name this learning algorithm: Model Predictive
 079 Adversarial Imitation Learning (MPAIL {*impale*}).

082 2 RELATED WORK

084 **IRL-MPC.** High-dimensional continuous control applications often require an online planner for
 085 real-time control, trustworthiness, safety, or additional constraints. When using IRL to learn a re-
 086 ward, online deployments of these reward functions tend to rely on an independent online MPC
 087 procedure. To enable learning local costmaps across perception and control for off-road navigation,
 088 Lee et al. (2022b) and Triest et al. (2023) similarly propose solving the forward RL problem by
 089 using MPPI but deploy the learned reward on a different configuration more suitable for real-time
 090 planning and control. This reward deployment framework of *IRL-then-MPC* is currently the domi-
 091 nant approach for planning in high-dimensional continuous control tasks from demonstration (Lee
 092 et al., 2022b; Rosbach et al., 2019; Triest et al., 2023; Das et al., 2021; Lee et al., 2021; Kuderer
 093 et al., 2015; Lee et al., 2022a).

094 **Model-Based IRL and Planning-Based RL.** The proposed framework, MPAIL, might naively be
 095 categorized as a model-based AIL approach. Various other works have also explored model-based
 096 AIL (Baram et al., 2016; Bronstein et al., 2022; Sun et al., 2021). However, scope is directed
 097 at training stabilization and policy optimization rather than examining planning with the learned
 098 reward. When the reward is known, as in RL, planning-based algorithms have demonstrated consid-
 099 erable improvement in simulation benchmarks over existing state-of-the-art RL algorithms through
 100 developments such as: online trajectory optimization, value bootstrapping, latent state planning,
 101 policy-like or learned sampling priors, and much more (Hansen et al., 2024; Bhardwaj et al., 2021;
 102 Lowrey et al., 2019; Jawale et al., 2024). This work’s implementation of MPAIL performs online
 103 trajectory optimization and value bootstrapping. This work *does not* implement latent state planning
 104 nor a policy-based prior to better isolate our investigations in interpretability and planning (Fu et al.,
 105 2018; Sun et al., 2021). Other existing integrations of planning-based RL with imitation learning
 106 also rely on access to expert actions (Li et al., 2025; Yin et al., 2022). No aforementioned works,
 107 save (Jawale et al., 2024), evaluate planning-based RL or AIL on a real world platform. However,
 108 we find that it is precisely real-world and out-of-distribution settings in which planning and control
 109 is most advantageous.

108 3 MODEL PREDICTIVE ADVERSARIAL IMITATION LEARNING
109110 3.1 THE POMDP SETTING AND THE MODEL PREDICTIVE AGENT
111

112 We adopt the Partially Observable Markov Decision Process (POMDP) to best consider highly desir-
113 able applications of IRL in which partial observability and model-based planning play crucial roles.
114 In an unknown world state $s_w \in \mathcal{S}_w$, the agent makes an observation $o \sim p(o|s_w)$. From a history
115 of observations $\mathbf{o}_{0:t}$, the Agent perceives its state $s_t \sim p(s|o_{0:t})$. Actions $a \in \mathcal{A}$ and states $s \in \mathcal{S}$
116 together allow the agent to self-predict forward in time using its *predictive model* $f : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$.
117 Note that these definitions crucially suggest the partial observability of s due to the implicit de-
118 pendence on the observation history $\mathbf{o}_{0:t}$ through the agent’s perception (e.g. mapping (Jung et al.,
119 2024)). However, partial observations in \mathcal{S} are desirably used for demonstrations to perform IRL
120 and AIL, as full observation history would quickly become intractable (Triest et al., 2023).
121

122 The planner itself is a model predictive agent. It is capable of performing *model rollouts* $\tau_t^{(H)} =$
123 $\{s_t', a_t'\}_{t'=t}^{t+H}$ such that $s_{t'+1} = f(s_t, a_t')$, and each rollout can thus be evaluated with a cost $C(\tau_t)$.
124 The agent’s objective is to create an H -step action sequence $\mathbf{a}_{t:t+H}$, or *plan*, that best minimizes the
125 plan’s corresponding trajectory cost. The true costs or rewards under which the expert is acting is not
126 known. Towards learning-from-observation (LfO) and lower-level policies, we consider expert data
127 in which only states are available, as actions may be challenging or impossible to observe (Torabi
128 et al., 2019b).
129

3.2 ADVERSARIAL IMITATION LEARNING FROM OBSERVATION

130 IRL algorithms aim to learn a cost function that minimizes the cost of expert trajectories while
131 maximizing the cost of trajectories induced by other policies (Torabi et al., 2019a; Ho & Ermon,
132 2016). As the problem is ill-posed and many costs can correspond to a given set of demonstrations,
133 the principle of maximum entropy is imposed to obtain a uniquely optimal cost. It can be shown
134 that the entropy maximizing distribution is a Boltzmann distribution (Ziebart et al.). The state-only
135 IRL from observation problem can be formulated by costing state-transitions $c(s, s')$ rather than
136 state-actions $c(s, a)$ as in (Torabi et al., 2019a):
137

$$\text{IRLfO}_\psi(\pi_E) = \arg \max_{c \in \mathbb{R}^{s \times s}} -\psi(c) + \left(\min_{\pi \in \Pi} -\lambda \mathbb{H}(\pi) + \mathbb{E}_\pi[c(s, s')] \right) - \mathbb{E}_{\pi_E}[c(s, s')], \quad (1)$$

140 where $\psi(c)$ is a convex cost regularizer, π_E is the expert policy, $\mathbb{H}(\cdot)$ is the entropy, and Π is a family
141 of policies.

142 As shown in (Ho & Ermon, 2016; Torabi et al., 2019a), this objective can be shown to be dual to the
143 Adversarial Imitation Learning (AIL) objective under a specific choice of cost regularizer ψ ,
144

$$\min_{\pi \in \Pi} \max_{D \in [0, 1]^{s \times s}} \mathbb{E}_\pi[\log(D(s, s'))] + \mathbb{E}_{\pi_E}[\log(1 - D(s, s'))] - \lambda \mathbb{H}(\pi), \quad (2)$$

147 where $D(\cdot)$ is the discriminator function. The exact form of D has consequences on the policy ob-
148 jective and differs by AIL algorithm. Now equipped with the optimization objective, we continue in
149 our derivation of planning-based AIL by choosing the form of the policy class and reward function.
150

3.3 CHOOSING A POLICY AND REWARD

152 To reiterate, we set our sights on the AIL objective (Equation (2)) which aims to simultaneously learn
153 reward and policy from demonstration. However, the formulation remains intimately connected
154 with policy optimization through the assumption of an RL procedure. Towards planning-based
155 optimization, we proceed by modifying the RL formulation in Equation (1) as described in (Ho &
156 Ermon, 2016; Fu et al., 2018). Similar to (Bhardwaj et al.), we replace the entropy loss $-\lambda \mathbb{H}(\pi)$
157 with a Kullback-Leibeler (KL) divergence constraint on the previous policy $\bar{\pi}$:

$$\min_{\pi \in \Pi} \mathbb{E}_\pi[c(s, s')] + \beta \text{KL}(\pi || \bar{\pi}). \quad (3)$$

160 Note that this incorporates prior information about the policy (i.e. previous plans) while seeking the
161 next maximum entropy policy. Specifically, as shown in Section B.1, the closed form solution to

162 **Algorithm 1** Model Predictive Adversarial Imitation Learning

163
Require: Expert state-transitions $\mathcal{D}_E = \{(s, s')\}$
164 Maximum-Entropy Planner π_{MPPI} , Discriminator D_θ , Value V_ϕ
165
166 1: **while** not converged **do**
167 2: Collect transitions $(s, s', r_\theta(\cdot)) \in d^\pi$ by running π_{MPPI} (Alg. 3) in the environment
168 3: Update Discriminator parameters θ with Binary Cross Entropy (BCE) loss:
169
$$\nabla_\theta \mathbb{E}_{s, s' \sim d^\pi} [\log(D_\theta(s, s'))] + \nabla_\theta \mathbb{E}_{s, s' \sim d^{\pi_E}} [\log(1 - D_\theta(s, s'))] \quad (5)$$

170 4: Update Value parameters ϕ using estimated returns:
171
172
$$\nabla_\phi \mathbb{E}_{s \sim d^\pi} [(G_t - V_\phi(s))^2] \quad (6)$$

173 5: **end while**

174
175
176 Equation (3) is $\pi^*(a|s) \propto \bar{\pi}(a|s) e^{\frac{-1}{\beta} \bar{c}(s, a)}$, where $\bar{c}(s, a) = \sum_{s' \in \mathcal{S}} \mathcal{T}(S_{t+1} = s' | S_t = s) c(s, s')$
177 and $\mathcal{T}(S_{t+1} = s' | S_t = s)$ denotes the transition probability from state s to s' .
178

179 We then observe that a choice of planner satisfies the RL objective as in Equation (3). By choosing
180 Model Predictive Path Integral (MPPI) as the planner, as proven in Section B.1, we solve an equiv-
181 alent problem provided the MDP is uniformly ergodic. Namely, MPPI solves for a KL-constrained
182 cost-minimizer over trajectories (Bhardwaj et al.):

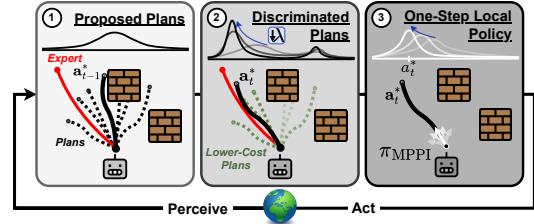
183
$$\min_{\pi \in \Pi} \mathbb{E}_{\tau \sim \pi} [C(\tau) + \beta \text{KL}(\pi(\tau) || \bar{\pi}(\tau))] \quad (4)$$

184 where $C(\tau)$ is the discounted cost of a trajectory and $\text{KL}(\pi(\tau) || \bar{\pi}(\tau))$ is the discounted KL diver-
185 gence over a trajectory.

186 Model rollouts must practically be limited to some timestep length H , resulting in myopic plans and
187 limiting applications to short-horizon tasks (Bhardwaj et al., 2021). To resolve this, infinite-horizon
188 MPPI bootstraps the final states in the rollout using a terminal cost-to-go, or value, function (Bhard-
189 waj et al., 2021; Hatch & Boots, 2021; Lowrey et al., 2019) $V_\phi : \mathcal{S} \rightarrow \mathbb{R}$ that estimates the expected
190 return G_t of a state s_t as $G_t = \mathbb{E}_\pi [R_{t+1} + \gamma R_{t+2} + \dots | S_t = s_t]$, where $R_{t+1} = R(s_t, s_{t+1})$. The
191 result of MPPI’s approximately global policy optimization at each timestep is what is referred to as
192 the *MPPI policy*, π_{MPPI} . Section B.1 proves how this formulation can be equivalent to the entropy-
193 regularized RL objective, while also in the observation-only setting. Pseudocode for the MPPI
194 procedure can be found in Algorithm 2 as well as for its adaptation as an RL policy in Algorithm 3.
195 Figure 2 illustrates the policy.
196

197 Our chosen AIL agent, infinite-horizon MPPI,
198 can be viewed as optimizing for a new policy at
199 every state. As in the online learning perspec-
200 tive (Wagener et al., 2019), these MPPI optimi-
201 zations can occur online rather than offline
202 as part of, for instance, a slower actor-critic up-
203 date. **By deconstructing the agent this way, we**
204 **require not the policy to generalize but the re-**
205 **ward.**

206 Provided the agent, we now proceed with se-
207 lecting its objective. Recent work has shown
208 many potential choices of valid policy ob-
209 jectives, each with various empirical trade-
210 offs (Orsini et al., 2021). We found the re-
211 ward as defined in Adversarial Inverse Rein-
212 forcement Learning (AIRL) (Fu et al., 2018)
213 to be most stable when combined with the
214 value function when applied to infinite-horizon
215 MPPI. In the state-only setting, the policy ob-
216 jective becomes $r(s, s') = \log(D(s, s')) - \log(1 - D(s, s'))$ and the discriminator $D(s, s') =$
217 $\sigma \circ d_\theta(s, s')$. Simply put, the reward is the logit of the discriminator $r(s, s') = d_\theta(s, s')$.



207
208 Figure 2: Illustration of π_{MPPI} in MPAIL. (1) A set
209 of action sequences (plans) are sampled and rolled
210 out. (2) Plans are costed according to the dis-
211 criminator, shifting the distribution towards the expert.
212 Temperature λ optionally decays over episodes,
213 narrowing the distribution. (3) The policy π_{MPPI} is
214 the result of a Gaussian fit to the optimized plans
215 and their respective first actions.

In short, our choice of π_{MPPI} and $r(s, s')$ yields MPAIL. As proven in Section B.2, MPAIL is indeed an AIL algorithm in the sense that it minimizes divergence from the expert policy. The procedure (Algorithm 1) itself closely resembles the original GAIL procedure. However, upon updating the value network, MPAIL does not require a policy update thereafter, since “policies” are in theory solved online. In practice a temperature decay can be helpful for preventing early collapse, especially in the case of online model learning. We leave a theoretical justification for this choice for future work. An overview of the training procedure can be found in Figure 1. A discussion of further meaningful implementation details, like spectral normalization, can be found in Section C. Though, these modifications are kept to a minimum towards our analysis of π_{MPPI} in AIL.

4 EXPERIMENTAL RESULTS

Advancements in IRL and AIL continue to demonstrate improvements in sample efficiency. However, there remains an apparent gap with applications to robot learning. In addition to fundamental investigations about the MPAIL algorithm itself, our experiments target evaluations critical towards real-world robustness and generalization.

Without a policy, vanilla MPPI possesses no “memory” about actions taken in previous episodes, save for those implied through the value $V_\phi(s)$. And as discussed in Section 3, MPPI’s approximate online optimization is more practical for robustness and generalization but potentially less accurate for producing policies. These novelties raise a critical question about planning-based AIL; are policies solved online through planning sufficient as adversarially generative policies? We find that MPAIL indeed trains an effective imitator, provoking our follow-up questions:

- Q1** What is the advantage of deploying an AIL planner over an AIL policy?
- Q2** How does MPAIL help enable real-world planning capabilities from observation?
- Q3** How does MPAIL compare to existing AIL algorithms?

Hyperparameter settings are kept consistent across all experiments. Exact values and other implementation details such as regularization and computation are reported and discussed in Section C.

SIMULATED NAVIGATION TASK

For simulated evaluation, we design a navigation task with a 10-DoF vehicle. Reward is proportional to the negative squared distance to $(10, 10)$. Initial poses are within 1 m of $(0, 0)$. *The state is 12-dimensions: position, orientation, linear velocity, and angular velocity.* Actions include target velocity and steering angle. MPAIL plans using an approximate prior model, the Kinematic Bicycle Model (Han et al., 2024b). This approximate model is not tuned to the agent dynamics. For instance, slipping and suspension dynamics occur in simulation but are unmodeled.

The expert for this environment is obtained through running PPO on a known reward (see Section D.2 for details) (Schulman et al., 2017b). At convergence, the optimal policy occasionally circles near the goal instead of remaining on it (see Figure 3). We choose to use the circling demonstrations as expert data, because it is a more challenging behavior to imitate. This is corroborated by (Orsini et al., 2021), who stress that demonstrator suboptimality and multimodality is a critical component in algorithm evaluation towards practical AIL from human data.

This circling behavior acts as a critical “distractor mode”. In training, the policy may begin to only circle around the origin. If the AIL algorithm is not able to sufficiently explore, training collapses such that the policy continuously circles the origin, unable to return to the expert distribution which requires the circling behavior to occur around the goal. For instance, we find that AIRL is unable to successfully learn both behaviors likely due to the instability introduced by its logit shift (Orsini et al., 2021).

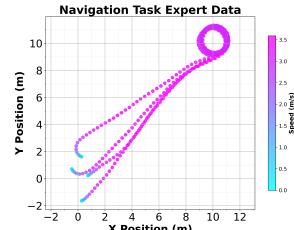


Figure 3: **Four Expert Trajectories in Navigation Task.** Cars initialized around $(0, 0)$.

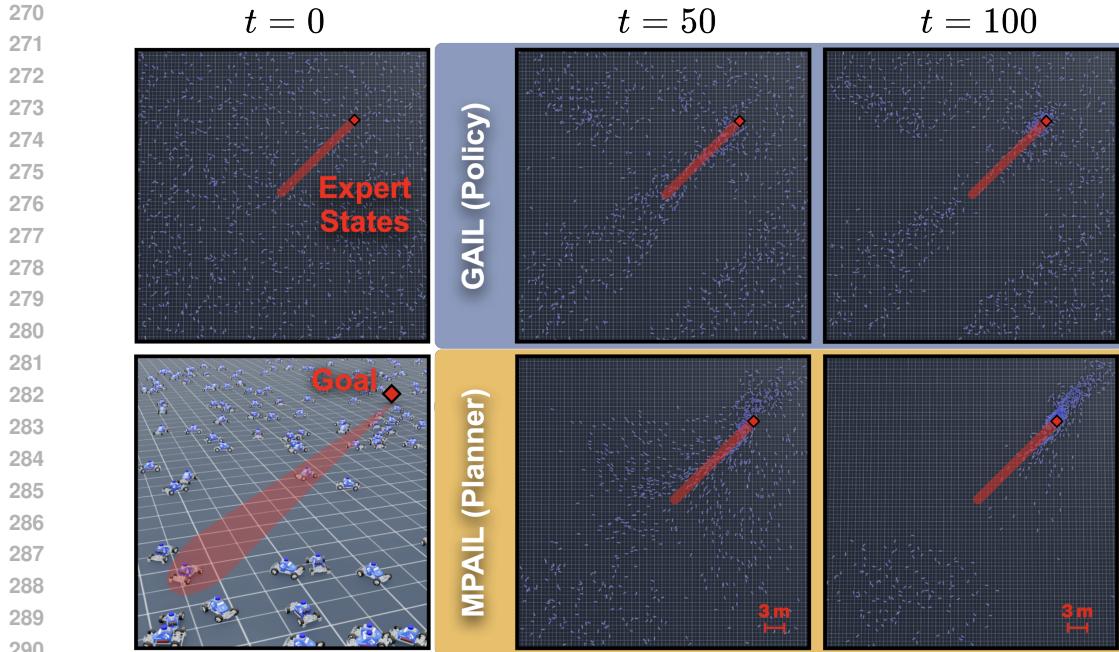


Figure 4: **Comparison of policy-based and planning-based AIL in Out-of-Distribution (OOD) states.** Agents trained on the navigation task (Section 4) are placed uniformly with random orientation between a 40×40 m box centered on $(0, 0)$. The policy and planner are run for 100 timesteps in the environment. Data support of the expert exists mainly between $(0, 0)$ and $(10, 10)$ ¹. Quantitative evaluation of this experiment can be found in Figure 5. A comparison which includes a learned dynamics model can be found in Figure 8.

4.1 OUT-OF-DISTRIBUTION ROBUSTNESS THROUGH PLANNING – Q1

When deploying learning-based methods to the real-world, reliable performance in out-of-distribution (OOD) states are of critical importance, especially in imitation learning when expert data can be extremely sparse. We show that planning-based AIL (MPAIL) improves generalization capabilities when OOD. In this experiment, we use the simulated navigation environment but *expand the region of uniformly distributed initial positions and orientations from a 1×1 square to a large 40×40 m square around the origin* (Figure 4). The policy-based approach is represented by GAIL, as AIRL does not meaningfully converge in the navigation task (Section 4). Only four expert trajectories are used in training.

We find that planning-based AIL generalizes to significantly more states than policy-based AIL when outside the support of expert data. In this experiment, the planner’s horizon is a maximum of 3 meters. As a result, the task horizon may be up to 15 times longer than the planning horizon. Evidently, a planner could not navigate to the goal if the learned optimization landscape (induced by cost c_θ and value V_ϕ) did not also generalize to OOD states. These results suggest a fundamental limitation of current AIL approaches and their single policy solution. The trained reward and value are inefficiently underutilized in policy-based AIL and not utilized at all on deployment. By contrast, *MPAIL re-introduces the reward and value online to solve for new policies each moment in time*. These results illustrate that generalization in AIL is substantially improved through reward deployment in addition to reward learning.

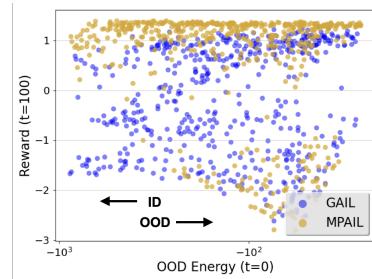


Figure 5: **OOD Navigation Evaluation.** Agent initial poses vary from In-distribution (ID) to OOD relative to the expert data and are plotted with their final reward after 100 timesteps. Metric from (Liu et al., 2020) (see Section D.2).

¹Note that the state space is 12-dimensional; expert data support is extremely sparse in this environment.

324 4.2 REAL-SIM-REAL NAVIGATION FROM A SINGLE OBSERVATION – Q2
325
326
327

328 Real-world evaluation of AIL is currently
329 challenging. RL-like interaction efficiency
330 renders training in simulation more practical
331 than in the real-world (Tai et al., 2018),
332 but demonstrations must realistically still
333 be from the real-world. Nonetheless, it
334 is imperative to evaluate AIL methods on
335 real-world suboptimal data and hardware
336 since results tend to diverge significantly
337 from ideal settings, synthetic data, and
338 simulation (Orsini et al., 2021; Tsurumine
339 & Matsubara, 2022).

340 Our hardware experiment evaluates GAIL,
341 IRL-MPC, and MPAIL through Real-to-
342 Sim-to-Real: 1) a *single* partially observ-
343 able (position and body-centric velocity)
344 trajectory is collected from the real-world
345 subject to sensor noise, 2) the method
346 is trained using interactions from sim-
347 ulation, finally 3) the method is deployed
348 zero-shot to the real-world for evalua-
349 tion. This experiment uses a small-scale
350 RC car platform with an NVIDIA Jetson
351 Orin NX (Srinivasa et al., 2023). For
352 IRL-MPC, the reward and value is trained
353 through GAIL, which subsequently re-
354 quires hand-tuning for deployment on
355 MPPI (Triest et al., 2023).

356 *We remark that the direction of travel can-
357 not be uniquely determined by a single
358 state s due to the partially observ-
359 able body-centric velocity.* Only with the state-transition (s_E, s'_E) is it possible to deduce the direction of travel. This property is detailed in Section D.1. Partial observability and state-transitions play critical roles in the recovery of a cost function for this task, presenting a necessary challenge towards practical AIL (Orsini et al., 2021) and scalable Learning-from-Observation (LfO) (Torabi et al., 2019b).

360 We find that MPAIL is able to qualitatively reproduce the expert trajectory with an average Rela-
361 tive Cross-Track-Error (CTE (Rounsaville et al.)) of 0.17 m while traveling an average of 0.3 m/s
362 slower. In addition, Figure 6 illustrates a key advantage of planning-based AIL. By granting access
363 to the agent’s optimization landscape, MPAIL significantly improves on the interpretability of agents
364 trained through observations of ambiguous and complex human data when compared to black-box
365 policies. Note the lower costing of on-track trajectories and final plan.

366 GAIL does not reliably converge to the ex-
367 pert even in training. During deployment,
368 GAIL’s policy consistently veers off-path or
369 collapses into driving in a circle. Various start-
370 ing configurations were attempted without suc-
371 cess. While literature on the evaluation of AIL
372 methods in the real-world are sparse, we find
373 that AIL policies can be extremely poor per-
374 forming in the real-world, as corroborated by
375 (Sun et al., 2021). A more detailed discussion
376 is provided in Section D.1.

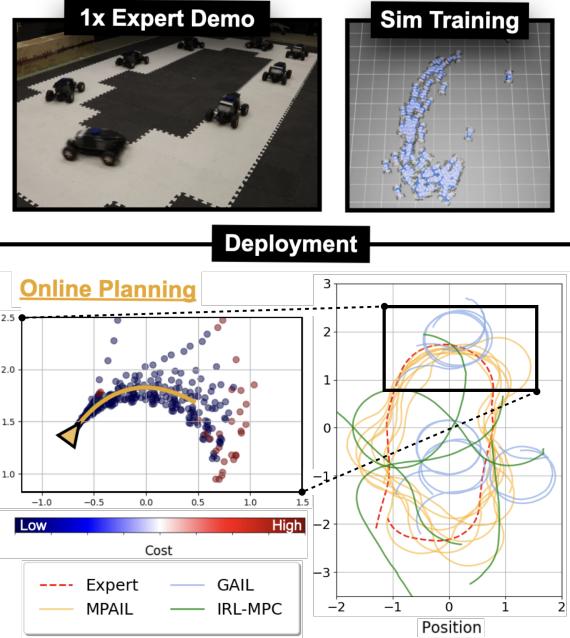


Figure 6: **Real-Sim-Real Experiment. Bottom Left (MPAIL).** Real-time (20 Hz) parallel model rollouts and costing are visualized while the robot navigates through the turn. Current optimal plan for the next 1 second in gold. **Bottom Right.** Trajectories performed by MPAIL, GAIL, and IRL-MPC (see Table 2 for eval-
uation).

	Reward $r(s, s')$	Policy Optimizer	Deployment
GAIL	$\log(D)$	PPO (Offline)	Policy
AIRL	$\log(\frac{D}{1-D})$	PPO (Offline)	Policy
IRL-MPC	$\log(D)$	PPO (Offline)	Planner
MPAIL	$\log(\frac{D}{1-D})$	MPPI (Online)	Planner

Table 1: **Summary of Baselines.** The discrimina-
tor is denoted $D := D(s, s')$. Value estimation is
performed via GAE- λ (Schulman et al., 2018) for
all methods.

378 IRL-MPC acts as a middle-ground between MPAIL and GAIL; the learned reward and value are
 379 exactly the same as GAIL’s and thus differs by the deployment of the reward through planning.
 380 IRL-MPC’s improvements over GAIL provides evidence that: (i) model-based planning can grant
 381 robustness to a model-free reward and, (ii) despite GAIL’s poor performance, the learned reward
 382 was still meaningfully discriminative and suggests a failure of the policy to arrive at a solution under
 383 the reward. On the other hand, IRL-MPC diverges from MPAIL by mainly learned reward and
 384 value. As a result, we find that online policy optimization through π_{MPPI} induces a more competitive
 385 adversarial dynamic than offline policy optimization as in actor-critic RL. In this case, the end-to-end
 386 inclusion of the planner enables training the reward and value to completion.

387 Meanwhile, MPAIL’s success and IRL-MPC’s improvement
 388 over GAIL is attributed to model-based planning capabilities.
 389 If the robot should find itself away from the expert distribution,
 390 the online planner enables the agent to sample back onto the
 391 demonstration. In this sense, an MPC-based (or any online-
 392 optimizing) agent brings control-theoretic disturbance rejec-
 393 tion online. Policies, on the other hand, are far more suscep-
 394 tible to erratic behavior in the real-world due to open-loop ac-
 395 tion prediction. This becomes especially important when the
 396 demonstration data is severely under-defined as in this partially
 397 observable setting, which results in ambiguous reward signal
 398 in most states in the environment; recall that low discrimina-
 399 tor confidence is reflected by low magnitude logit f_θ (cost)
 400 predictions. Real experiment cost values are in the range of
 401 $(-0.022, -0.0180)$ whereas cost values in benchmarking runs
 402 with synthetic demonstrations are in the range of $(-3, 3)$. On
 403 real data, the discriminator also required more frequent up-
 404 dates to provide more reliable signals (see Table 3).

4.3 EFFICIENCY – Q3

405 As mentioned at the beginning of Section 4,
 406 MPAIL does not possess a persistent “pol-
 407 icy” as it employs a zeroth-order optimization
 408 with bootstrapped value estimates (i.e. infinite-
 409 horizon MPPI) to instead resolve these pol-
 410 icies online. While we have shown that this
 411 “deconstructed policy” significantly improves
 412 generalization and robustness, concerns regard-
 413 ing interaction efficiency may arise due to the
 414 lack of gradient-based value optimization as
 415 in actor-critic policy optimization (Schulman
 416 et al., 2017b). Here, we perform additional
 417 benchmarking experiments to evaluate these
 418 hypotheses.

419 We train GAIL, AIRL, and MPAIL on the navi-
 420 gation task and the cartpole task across varying
 421 quantities of expert demonstrations and random
 422 seeds as done in (Ho & Ermon, 2016; Kostrikov
 423 et al., 2018). While MPAIL uses an approx-
 424 imate prior model for the navigation task, we
 425 choose to learn a model during training of the
 426 cartpole task to demonstrate the generality of MPC and support future work on additional tasks.
 427 This is represented by the label, *MPAIL (OM)*, indicating that there is a fully **Online Model**. Imple-
 428 mentation details of the learned model can be found in Section D.3.

429 On the navigation task, MPAIL reaches optimality in less than half the number of interactions when
 430 compared to GAIL. We also observe MPAIL to train more stably than GAIL on this task. AIRL
 431 struggles to learn from the multimodal data (see Section 4). In addition to alleviating concerns

	CTE (m)		
	Max	Mean	Average Speed (m/s)
Expert	-	-	1.0
GAIL	1.29	0.56	0.37
IRL-MPC	1.28	0.37	0.30
MPAIL	0.76	0.17	0.70

Table 2: **Evaluation of Real Experiment.** Relative Cross-Track Error (CTE) and speed are com-
 puted over the best five laps. AIRL is excluded as it does not exhibit meaningful behavior even in sim-
 ulation.

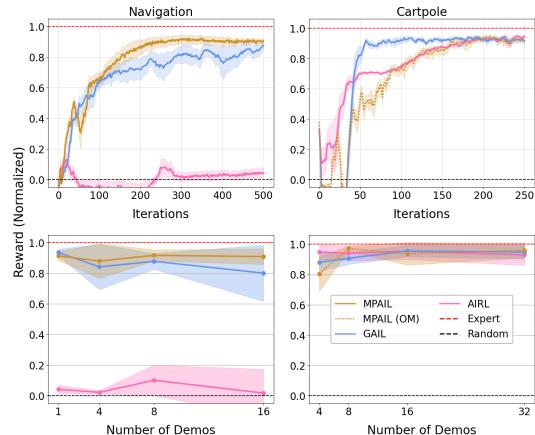


Figure 7: **Benchmarking Results.** Top row rewards are computed across all demonstration quantities and seeds. Bottom row rewards are the average of the final 10 episodes computed across seeds. See Figure 11 for de-aggregated plots.

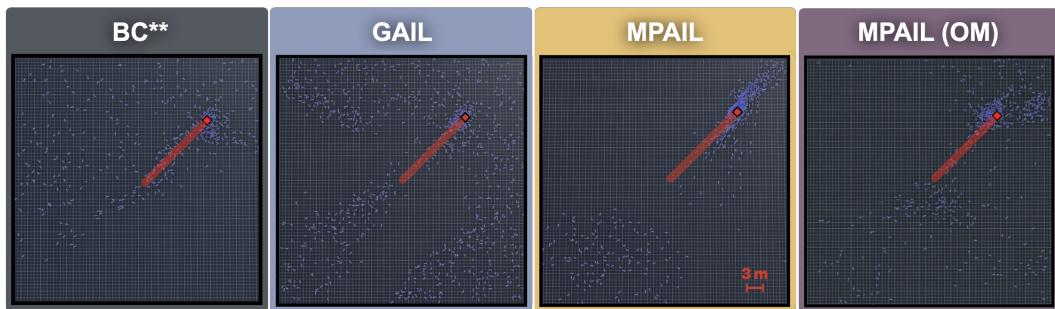


Figure 8: **Out-of-Distribution (OOD) performance evaluation (as in Figure 4) at $t = 100$ with MPAIL (OM) and Behavior Cloning (BC) included.** **BC requires access to expert actions and is not an LfO baseline. MPAIL (OM) indicates that a dynamics model is learned online and used for planning in MPAIL. Without a prior model, MPAIL (OM) is limited to the same amount of total information as GAIL; any improvement in OOD generalization over a policy network is purely a result of learning a deconstructed policy for online planning. Details of MPAIL (OM) in Section 4.3 and Section D.3.

regarding efficiency, these results support MPAIL’s characterization as a model-based algorithm as it is more sample-efficient when provided an (approximate) prior model.

On the cartpole task, expert demonstration data results in optimal-but-sparse state visitation and, equivalently, AIL reward signal. It is likely that, due to online dynamics model learning, MPAIL (OM) requires more exploratory interactions to combat a large local minima induced and reinforced by sparse discriminator reward, model bias, and task dynamics. Similar performance between MPAIL and AIRL may also suggest that GAIL benefits from its inherent reward bias on this task (Kostrikov et al., 2018). Importantly, MPAIL attains comparable performance while maintaining the benefits of model-based planning, such as interpretability, transferability, and robustness.

ADDITIONAL RESULTS

In the Appendix, additional experiments are performed to holistically evaluate MPAIL for the purposes of real-world deployment and robot learning. Wall clock time comparisons, architecture, hyperparameters, model ablations, proofs, de-aggregated benchmark results, and more experiment details and discussion can be found in the appendix. We briefly highlight some key auxiliary results:

Wall Clock Time. Our timing evaluations reveal that “inference” and training times of MPAIL can be faster or slower than GAIL (PPO) depending mostly on the number of MPPI iterations per step and the planning horizon H . For $H = 10$, MPAIL is about 10% faster than GAIL at 2 iterations. At 5 iterations, the same horizon is about 10% slower. More settings are evaluated and shown in Figure 9.

MPAIL (OM) — OOD Experiment. *Does OOD robustness hold when the dynamics model is also learned?* Figure 8 compares the final states of the OOD evaluation in Section 4.1 with MPAIL (OM) included. Note that MPAIL (OM) has access to the same amount of information as the policy-based method. Nevertheless, there is clear improvement in OOD performance by MPAIL (OM) when compared to policy networks. These results crucially suggest that generalizability advantages of the deconstructed policy extends to learned dynamics models in addition to reward and value.

Even in the case of Behavior Cloning (BC), which is directly supervised with access to expert actions, generalization of the policy network appears random and unpredictable. For policy networks (BC and GAIL), there are numerous agents that are initialized near the expert distribution (within red highlight) but remain there. These agents were often merely initialized facing away from the goal, demonstrating that policy networks tend to learn incredibly brittle representations. Most MPAIL (OM) agents that are seen far away from the goal will continue to slowly arrive at the goal, visually evident by their orientations directed towards the goal. Contrasting with MPAIL, MPAIL (OM)

486 agents tend to follow longer, less optimal paths when strongly OOD. This is likely a result of the
 487 learned dynamics being OOD and disrupting planning.
 488

489 **5 CONCLUSION**
 490

491 This work adopts an imitation learning setting familiar to humans and animals in which: (1) ex-
 492 pert actions are not known, (2) few demonstrations are observed, and (3) the agent infers intent and
 493 improves through interaction. While work in Inverse Reinforcement Learning (IRL) and Adversar-
 494 ial Imitation Learning (AIL) from Observation continue to advance these goals, their applications
 495 to real-world robots lag behind. To bridge this gap, we observe that connections to model-based
 496 planning offers potential towards (a) improved efficiency and transfer, (b) safe and steerable de-
 497 sign, and (c) robustness through online optimization. We call this problem setting Planning-from-
 498 Observation (PfO). We address PfO by introducing planning-based AIL as a unification of IRL and
 499 MPC. Model Predictive Adversarial Imitation Learning (MPAIL) is then introduced as an imple-
 500 mentation of planning-based AIL, where a planner is continually improved through cost and value
 501 learning.

502 Towards robot learning applications, we conducted three elucidating evaluations. In Section 4.1,
 503 we reveal that reward deployment—not only reward learning as in current AIL—is critical towards
 504 generalizable imitation learning. Re-introducing the learned reward online alleviates the burden on
 505 policies to generalize and requires the reward, or intent, to generalize instead. In Section 4.2, we see
 506 that reward deployment must be met with online optimization for real-world robustness. Especially
 507 in partially observable AIL, it may not be sufficient to utilize a planner only during deployment, but
 508 the planner should also be included in the learning process to train the reward to completion. From
 509 a single partially observable demonstration in real-world navigation, we find that MPAIL is the
 510 only successful imitator when compared to policy-based AIL and IRL-MPC. MPAIL also employs
 511 representations (e.g. model, reward, value) which grant direct access to the agent’s optimization
 512 landscape and thus decision-making process—a powerful prerequisite towards safe and interpretable
 513 robot learning. Finally, in Section 4.3, interaction efficiency benchmarks favorable to MPAIL with
 514 an approximate prior model address concerns regarding MPPI’s zeroth-order policy optimization
 515 and empirically supports MPAIL’s characterization as a model-based algorithm.

516 MPAIL is derived from, and naturally admits, abstractions from Model Predictive Control, model-
 517 based RL, and imitation learning. Thus, its open-source implementation aims to reflect this and
 518 offers common ground for instantiating the many possible extensions to adjacent work through
 519 these connections: off-policy value estimation for improved sample efficiency or offline learn-
 520 ing (Kostrikov et al., 2018), policy-like proposal distributions and latent dynamics for scaling MPPI
 521 to higher dimensional spaces (Hansen et al., 2024), model-free and model-based reward blending
 522 for alleviating model bias (Bhardwaj et al., 2021), diffusion-inspired MPPI for improved online op-
 523 timization (Xue et al., 2024), and much more. We envision that this work can provide a theoretically
 524 and empirically justified foundation for future work at the intersection of MPC, RL, and Imitation
 525 Learning.

526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REPRODUCIBILITY
541

542 Included in the supplementary material and to be released publicly, the code for MPAIL is developed
543 with the intention to be released as a standalone package. Configuration files and hyperparameters
544 for experiments are almost entirely “flat” (viewable in the code) and are as presented in Table 3. Sim-
545 ulation environment is built with Isaac Lab (Mittal et al., 2023) and one of its extensions, Wheeled
546 Lab (Han et al., 2025). Instructions for installation can be found in their respective GitHub reposi-
547 tories. Hardware deployment code is also included for the (open-source) platform, MuSHR (Srinivasa
548 et al., 2023); an example script detailing how to save and load an MPAIL planner onto the hardware
549 can be found in the supplementary as well. More details explaining source code organization, as well
550 as experiment videos, can be found in the README.md. We welcome efforts towards reproducibil-
551 ity and encourage practitioners to correspond regarding difficulties.

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Nir Baram, Oron Anschel, and Shie Mannor. Model-based Adversarial Imitation Learning, Decem-
597 ber 2016. URL <http://arxiv.org/abs/1612.02179>. arXiv:1612.02179 [stat].

598 Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor. End-to-End Differentiable Adversarial
599 Imitation Learning. In *Proceedings of the 34th International Conference on Machine Learn-
600 ing*, pp. 390–399. PMLR, July 2017. URL <https://proceedings.mlr.press/v70/baram17a.html>. ISSN: 2640-3498.

601 Matt Barnes, Matthew Abueg, Oliver F. Lange, Matt Deeds, Jason Trader, Denali Molitor, Markus
602 Wulfmeier, and Shawn O’Banion. Massively Scalable Inverse Reinforcement Learning in Google
603 Maps. October 2023. URL <https://openreview.net/forum?id=z3L59iGALM>.

604 Mohak Bhardwaj, Ankur Handa, Dieter Fox, and Byron Boots. Information Theoretic Model Pre-
605 dictive Q-Learning.

606 Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. Blending MPC & Value Function Ap-
607 proximation for Efficient Reinforcement Learning, April 2021. URL <http://arxiv.org/abs/2012.05909>. arXiv:2012.05909 [cs].

608 Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn White, Alex Kuefler, Yiren Lu, Supratik
609 Paul, Payam Nikdel, Paul Mougin, Hongge Chen, Justin Fu, Austin Abrams, Punit Shah, Evan
610 Racah, Benjamin Frenkel, Shimon Whiteson, and Dragomir Anguelov. Hierarchical Model-Based
611 Imitation Learning for Planning in Autonomous Driving, October 2022. URL <http://arxiv.org/abs/2210.09539>. arXiv:2210.09539 [cs].

612 Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja Ranade, Sebastian
613 Scherer, and Debadeepta Dey. Data-driven planning via imitation learning. *The International
614 Journal of Robotics Research*, 37(13-14):1632–1672, December 2018. ISSN 0278-3649. doi:
615 10.1177/0278364918781001. URL <https://doi.org/10.1177/0278364918781001>.
616 Publisher: SAGE Publications Ltd STM.

617 Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai, and Franziska Meier.
618 Model-Based Inverse Reinforcement Learning from Visual Demonstrations. In *Proceedings of
619 the 2020 Conference on Robot Learning*, pp. 1930–1942. PMLR, October 2021. URL <https://proceedings.mlr.press/v155/das21a.html>. ISSN: 2640-3498.

620 Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided Cost Learning: Deep Inverse Optimal
621 Control via Policy Optimization. In *Proceedings of The 33rd International Conference on Ma-
622 chine Learning*, pp. 49–58. PMLR, June 2016. URL <https://proceedings.mlr.press/v48/finn16.html>. ISSN: 1938-7228.

623 Justin Fu, Katie Luo, and Sergey Levine. Learning Robust Rewards with Adversarial Inverse
624 Reinforcement Learning, August 2018. URL <http://arxiv.org/abs/1710.11248>.
625 arXiv:1710.11248 [cs].

626 Jasper Goldenbott and Karen Leung. Legible and Proactive Robot Planning for Prosocial Human-
627 Robot Interactions. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*,
628 pp. 13397–13403, May 2024. doi: 10.1109/ICRA57147.2024.10611294. URL <https://ieeexplore.ieee.org/document/10611294/>.

629 Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A Divergence Minimization
630 Perspective on Imitation Learning Methods. In *Proceedings of the Conference on Robot Learning*,
631 pp. 1259–1277. PMLR, May 2020. URL <https://proceedings.mlr.press/v100/ghasemipour20a.html>. ISSN: 2640-3498.

632 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
633 jil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In *Ad-
634 vances in Neural Information Processing Systems*, volume 27. Curran Associates, Inc.,
635 2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710dbe25-Abstract.html.

648 Tyler Han, Alex Liu, Anqi Li, Alexander Spitzer, Guanya Shi, and Byron Boots. Model Pre-
 649 dictive Control for Aggressive Driving Over Uneven Terrain. In *Robotics: Science and Sys-
 650 tems XX*. Robotics: Science and Systems Foundation, July 2024a. ISBN 9798990284807.
 651 doi: 10.15607/RSS.2024.XX.022. URL [http://www.roboticsproceedings.org/
 652 rss20/p022.pdf](http://www.roboticsproceedings.org/rss20/p022.pdf).

653 Tyler Han, Sidharth Talia, Rohan Panicker, Preet Shah, Neel Jawale, and Byron Boots. Dynamics
 654 Models in the Aggressive Off-Road Driving Regime, May 2024b. URL [http://arxiv.org/
 655 abs/2405.16487](http://arxiv.org/abs/2405.16487). arXiv:2405.16487 [cs].

656 Tyler Han, Preet Shah, Sidharth Rajagopal, Yanda Bao, Sanghun Jung, Sidharth Talia, Gabriel Guo,
 657 Bryan Xu, Bhaumik Mehta, Emma Romig, Rosario Scalise, and Byron Boots. Wheeled Lab:
 658 Modern Sim2Real for Low-cost, Open-source Wheeled Robotics, August 2025. URL [http://arxiv.org/
 659 abs/2502.07380](http://arxiv.org/abs/2502.07380). arXiv:2502.07380 [cs].

660 Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal Difference Learning for Model Predictive
 661 Control, July 2022. URL <http://arxiv.org/abs/2203.04955>. arXiv:2203.04955 [cs].

662 Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, Robust World Mod-
 663 els for Continuous Control, March 2024. URL <http://arxiv.org/abs/2310.16828>.
 664 arXiv:2310.16828 [cs].

665 Nathan Hatch and Byron Boots. The Value of Planning for Infinite-Horizon Model Predictive Con-
 666 trol. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 7372–7378,
 667 May 2021. doi: 10.1109/ICRA48506.2021.9561718. URL [https://ieeexplore.ieee.org/
 668 document/9561718](https://ieeexplore.ieee.org/document/9561718). ISSN: 2577-087X.

669 Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. In *Ad-
 670 vances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc.,
 671 2016. URL [https://proceedings.neurips.cc/paper_files/paper/2016/
 672 hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html](https://proceedings.neurips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html).

673 Neel Jawale, Byron Boots, Balakumar Sundaralingam, and Mohak Bhardwaj. Dynamic Non-
 674 Prehensile Object Transport via Model-Predictive Reinforcement Learning, November 2024.
 675 URL <http://arxiv.org/abs/2412.00086>. arXiv:2412.00086 [cs].

676 Sanghun Jung, JoonHo Lee, Xiangyun Meng, Byron Boots, and Alexander Lambert. V-STRONG:
 677 Visual Self-Supervised Traversability Learning for Off-road Navigation, March 2024. URL
 678 <http://arxiv.org/abs/2312.16016>. arXiv:2312.16016 [cs].

679 Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka. Real-time motion
 680 planning methods for autonomous on-road driving: State-of-the-art and future research directions.
 681 *Transportation Research Part C: Emerging Technologies*, 60:416–442, November 2015. ISSN
 682 0968-090X. doi: 10.1016/j.trc.2015.09.011. URL [https://www.sciencedirect.com/
 683 science/article/pii/S0968090X15003447](https://www.sciencedirect.com/science/article/pii/S0968090X15003447).

684 Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
 685 son. Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward Bias in Adver-
 686 sarial Imitation Learning, October 2018. URL <http://arxiv.org/abs/1809.02925>.
 687 arXiv:1809.02925 [cs].

688 Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Burgard. Socially com-
 689 pliant mobile robot navigation via inverse reinforcement learning. *The International Journal
 690 of Robotics Research*, 35(11):1289–1307, September 2016. ISSN 0278-3649. doi: 10.1177/
 691 0278364915619772. URL <https://doi.org/10.1177/0278364915619772>. Pub-
 692 lisher: SAGE Publications Ltd STM.

693 Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. Learning driving styles for autonomous
 694 vehicles from demonstration. In *2015 IEEE International Conference on Robotics and Automa-
 695 tion (ICRA)*, pp. 2641–2646, May 2015. doi: 10.1109/ICRA.2015.7139555. URL [https://ieeexplore.ieee.org/
 696 document/7139555/](https://ieeexplore.ieee.org/document/7139555/). ISSN: 1050-4729.

702 Keuntaek Lee, Bogdan Vlahov, Jason Gibson, James M. Rehg, and Evangelos A. Theodorou.
 703 Approximate Inverse Reinforcement Learning from Vision-based Imitation Learning. In *2021*
 704 *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 10793–10799, May
 705 2021. doi: 10.1109/ICRA48506.2021.9560916. URL [https://ieeexplore.ieee.org/](https://ieeexplore.ieee.org/document/9560916/)
 706 document/9560916/. ISSN: 2577-087X.

707 Keuntaek Lee, David Isele, Evangelos A. Theodorou, and Sangjae Bae. Risk-sensitive MPCs with
 708 Deep Distributional Inverse RL for Autonomous Driving. In *2022 IEEE/RSJ International Con-*
 709 *ference on Intelligent Robots and Systems (IROS)*, pp. 7635–7642, October 2022a. doi: 10.
 710 1109/IROS47612.2022.9981223. URL [https://ieeexplore.ieee.org/document/](https://ieeexplore.ieee.org/document/9981223/)
 711 9981223/. ISSN: 2153-0866.

712 Keuntaek Lee, David Isele, Evangelos A. Theodorou, and Sangjae Bae. Spatiotempo-
 713 ral Costmap Inference for MPC Via Deep Inverse Reinforcement Learning. *IEEE*
 714 *Robotics and Automation Letters*, 7(2):3194–3201, April 2022b. ISSN 2377-
 715 3766. doi: 10.1109/LRA.2022.3146635. URL https://ieeexplore.ieee.org/abstract/document/9695208?casa_token=QJYQX8gpAREAAAAA:ViJkcxuQmUk7q-r1EXUndFekQp1Z611k5SDAa1Bwb_XvoHzz5XF7xHassJB_1zmBjd3tdnjd-w. Conference Name: IEEE Robotics and Automation Letters.

716 Shangzhe Li, Zhiao Huang, and Hao Su. Reward-free World Models for Online Imitation Learning.
 717 June 2025. URL <https://openreview.net/forum?id=owEhp0KBKc>.

718 Yunzhu Li, Jiaming Song, and Stefano Ermon. InfoGAIL: Interpretable Imitation Learning from
 719 Visual Demonstrations, November 2017. URL <http://arxiv.org/abs/1703.08840>.
 arXiv:1703.08840 [cs].

720 Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 721 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, July
 722 2019. URL <http://arxiv.org/abs/1509.02971>. arXiv:1509.02971 [cs].

723 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based Out-of-distribution Detec-
 724 tion. In *Advances in Neural Information Processing Systems*, volume 33, pp. 21464–21475. Cur-
 725 ran Associates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html>.

726 Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
 727 Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control, January
 728 2019. URL <http://arxiv.org/abs/1811.01848>. arXiv:1811.01848 [cs].

729 Tianjiao Luo, Tim Pearce, Huayu Chen, Jianfei Chen, and Jun Zhu. C-GAIL: Stabilizing Generative
 730 Adversarial Imitation Learning with Control Theory, October 2024. URL <http://arxiv.org/abs/2402.16349>. arXiv:2402.16349 [cs].

731 Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
 732 Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
 733 Marco Hutter, and Animesh Garg. Orbit: A Unified Simulation Framework for Interactive Robot
 734 Learning Environments. *IEEE Robotics and Automation Letters*, 8(6):3740–3747, June 2023.
 735 ISSN 2377-3766, 2377-3774. doi: 10.1109/LRA.2023.3270034. URL <http://arxiv.org/abs/2301.04195>. arXiv:2301.04195 [cs].

736 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization for
 737 Generative Adversarial Networks, February 2018. URL <http://arxiv.org/abs/1802.05957>. arXiv:1802.05957 [cs].

738 Andrew S. Morgan, Daljeet Nandha, Georgia Chalvatzaki, Carlo D’Eramo, Aaron M. Dollar, and
 739 Jan Peters. Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with Deep Re-
 740inforcement Learning. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 6672–6678, May 2021. doi: 10.1109/ICRA48506.2021.9561298. URL <https://ieeexplore.ieee.org/document/9561298/?arnumber=9561298>. ISSN: 2577-
 741 087X.

756 Manu Orsini, Anton Raichuk, Leonard Hussenot, Damien Vincent, Robert Dadashi, Ser-
 757 tan Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, and Marcin Andrychow-
 758 icz. What Matters for Adversarial Imitation Learning? In *Advances in Neural In-*
 759 *formation Processing Systems*, volume 34, pp. 14656–14668. Curran Associates, Inc.,
 760 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/hash/7b647a7d88f4d6319bf0d600d168dbeb-Abstract.html.

762 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 763 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
 764 ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 765 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
 766 Deep Learning Library, December 2019. URL <http://arxiv.org/abs/1912.01703>. arXiv:1912.01703 [cs].

768 Sascha Rosbach, Vinit James, Simon Großjohann, Silviu Homoceanu, and Stefan Roth. Driving
 769 with Style: Inverse Reinforcement Learning in General-Purpose Planning for Automated Driv-
 770 ing. In *2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*,
 771 pp. 2658–2665, November 2019. doi: 10.1109/IROS40897.2019.8968205. URL <https://ieeexplore.ieee.org/document/8968205/?arnumber=8968205>. ISSN: 2153-
 772 0866.

775 Joseph D Rounsville, Joseph S Dvorak, and Timothy S Stombaugh. Methods for Calculating
 776 Relative Cross-Track Error for ASABE/ISO Standard 12188-2 from Discrete Measurements.

777 Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to Walk in Minutes Using
 778 Massively Parallel Deep Reinforcement Learning. In *Proceedings of the 5th Conference on Robot*
 779 *Learning*, pp. 91–100. PMLR, January 2022. URL <https://proceedings.mlr.press/v164/rudin22a.html>. ISSN: 2640-3498.

782 Jacob Sacks and Byron Boots. Learning Sampling Distributions for Model Predictive Control. In
 783 *Proceedings of The 6th Conference on Robot Learning*, pp. 1733–1742. PMLR, March 2023. URL
 784 <https://proceedings.mlr.press/v205/sacks23a.html>. ISSN: 2640-3498.

786 Jacob Sacks, Rwik Rana, Kevin Huang, Alex Spitzer, Guanya Shi, and Byron Boots. Deep Model
 787 Predictive Optimization. In *2024 IEEE International Conference on Robotics and Automation*
 788 (*ICRA*), pp. 16945–16953, May 2024. doi: 10.1109/ICRA57147.2024.10611492. URL <https://ieeexplore.ieee.org/document/10611492/>.

790 John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust Re-
 791 gion Policy Optimization, April 2017a. URL <http://arxiv.org/abs/1502.05477>. arXiv:1502.05477 [cs].

794 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
 795 Optimization Algorithms, August 2017b. URL <http://arxiv.org/abs/1707.06347>. arXiv:1707.06347 [cs].

798 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 799 Dimensional Continuous Control Using Generalized Advantage Estimation, October 2018. URL
 800 <http://arxiv.org/abs/1506.02438>. arXiv:1506.02438 [cs].

801 Siddhartha S. Srinivasa, Patrick Lancaster, Johan Michalove, Matt Schmitt, Colin Summers,
 802 Matthew Rockett, Rosario Scalise, Joshua R. Smith, Sanjiban Choudhury, Christoforos Mavro-
 803 giannis, and Fereshteh Sadeghi. MuSHR: A Low-Cost, Open-Source Robotic Racecar for Ed-
 804 ucation and Research, December 2023. URL <http://arxiv.org/abs/1908.08031>. arXiv:1908.08031 [cs].

807 Jiankai Sun, Lantao Yu, Pinqian Dong, Bo Lu, and Bolei Zhou. Adversarial Inverse Reinforcement
 808 Learning With Self-Attention Dynamics Model. *IEEE Robotics and Automation Letters*, 6(2):
 809 1880–1886, April 2021. ISSN 2377-3766. doi: 10.1109/LRA.2021.3061397. URL <https://ieeexplore.ieee.org/document/9361118>.

810 Lei Tai, Jingwei Zhang, Ming Liu, and Wolfram Burgard. Socially Compliant Navigation Through
 811 Raw Depth Inputs with Generative Adversarial Imitation Learning. In *2018 IEEE International*
 812 *Conference on Robotics and Automation (ICRA)*, pp. 1111–1117, May 2018. doi: 10.1109/ICRA.
 813 2018.8460968. URL <https://ieeexplore.ieee.org/document/8460968/>. ISSN:
 814 2577-087X.

815 Faraz Torabi, Garrett Warnell, and Peter Stone. Generative Adversarial Imitation from Observation,
 816 June 2019a. URL <http://arxiv.org/abs/1807.06158>. arXiv:1807.06158 [cs].

817 Faraz Torabi, Garrett Warnell, and Peter Stone. Recent Advances in Imitation Learning from Ob-
 818 servation, June 2019b. URL <http://arxiv.org/abs/1905.13566>. arXiv:1905.13566
 819 [cs].

820 Samuel Triest, Mateo Guaman Castro, Parv Maheshwari, Matthew Sivaprakasam, Wenshan Wang,
 821 and Sebastian Scherer. Learning Risk-Aware Costmaps via Inverse Reinforcement Learning
 822 for Off-Road Navigation. In *2023 IEEE International Conference on Robotics and Automa-
 823 tion (ICRA)*, pp. 924–930, May 2023. doi: 10.1109/ICRA48891.2023.10161268. URL <https://ieeexplore.ieee.org/document/10161268/>.

824 Yoshihisa Tsurumine and Takamitsu Matsubara. Goal-aware generative adversarial imitation
 825 learning from imperfect demonstration for robotic cloth manipulation. *Robotics and Au-
 826 tonomous Systems*, 158:104264, December 2022. ISSN 0921-8890. doi: 10.1016/j.robot.
 827 2022.104264. URL <https://www.sciencedirect.com/science/article/pii/S0921889022001543>.

828 Bogdan Vlahov, Jason Gibson, David D. Fan, Patrick Spieler, Ali-akbar Agha-mohammadi, and
 829 Evangelos A. Theodorou. Low Frequency Sampling in Model Predictive Path Integral Control.
 830 *IEEE Robotics and Automation Letters*, 9(5):4543–4550, May 2024. ISSN 2377-3766, 2377-
 831 3774. doi: 10.1109/LRA.2024.3382530. URL <http://arxiv.org/abs/2404.03094>. arXiv:2404.03094 [cs].

832 Bogdan Vlahov, Jason Gibson, Manan Gandhi, and Evangelos A. Theodorou. MPPI-Generic: A
 833 CUDA Library for Stochastic Trajectory Optimization, March 2025. URL <http://arxiv.org/abs/2409.07563>. arXiv:2409.07563 [cs].

834 Nolan Wagener, Ching-An Cheng, Jacob Sacks, and Byron Boots. An Online Learning Approach
 835 to Model Predictive Control, October 2019. URL <http://arxiv.org/abs/1902.08967>. arXiv:1902.08967 [cs].

836 Nolan Wagener, Grady Williams, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and
 837 Evangelos A. Theodorou. Information theoretic MPC for model-based reinforcement learning.
 838 In *2017 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1714–1721,
 839 May 2017. doi: 10.1109/ICRA.2017.7989202. URL <https://ieeexplore.ieee.org/document/7989202>.

840 Haoru Xue, Chaoyi Pan, Zeji Yi, Guannan Qu, and Guanya Shi. Full-Order Sampling-Based MPC
 841 for Torque-Level Locomotion Control via Diffusion-Style Annealing, September 2024. URL
 842 <http://arxiv.org/abs/2409.15610>. arXiv:2409.15610 [cs].

843 Zhao-Heng Yin, Weirui Ye, Qifeng Chen, and Yang Gao. Planning for Sample Efficient Imitation
 844 Learning. 2022.

845 Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum Entropy Inverse
 846 Reinforcement Learning.

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

APPENDIX

A INFINITE HORIZON MODEL PREDICTIVE PATH INTEGRAL

In this section we present the full algorithm in detail, including MPPI as described in (Williams et al., 2017). Modifications to “conventional” MPPI for MPAIL are **highlighted in blue**. Where applicable, $(\mathbf{x})_i$ indicates the i th entry of \mathbf{x} (in its first dimension, if \mathbf{x} is a tensor).

Algorithm 2 MPPI**Require:**

Number of trajectories to sample N ;
 Planning horizon H ;
 Number of optimization iterations J
 Fixed action sampling variance Σ ;
 Previous optimal plan $\mathbf{a}_{t-1}^* = \{(\mathbf{a}_{t-1}^*)_{t'}\}_{t'=0}^H$;
 Current state s_t ;
 Dynamics model $f_\psi(s, a)$
 Costs $c_\theta(s, s')$
 Value $V_\phi(s)$

1: **Procedure** MPPI(s_t, \mathbf{a}_{t-1}^*)
 2: $(\mathbf{a}_t)_i^0 \leftarrow (\mathbf{a}_{t-1}^*)_{i+1}$ \triangleright Roll previous plan one timestep forward
 3: $(\mathbf{a}_t)_H^0 \leftarrow 0$ \triangleright Set sampling mean to 0 for last timestep
 4: **for** $j \leftarrow 0$ **to** $J - 1$ **do**
 5: **for** $k \leftarrow 0$ **to** $N - 1$ **do** \triangleright Model rollouts and costing (parallelized)
 6: $\tilde{s}_0^k \leftarrow s_t$
 7: **for** $t' \leftarrow 0$ **to** $H - 1$ **do**
 8: $a_{t'}^k \sim \mathcal{N}((\mathbf{a}_t)_{t'}, \Sigma)$ \triangleright Sample action at predicted state
 9: $\tilde{s}_{t'+1}^k \leftarrow f_\psi(\tilde{s}_{t'}^k, a_{t'}^k)$ \triangleright Predict next state
 10: $c_{t'}^k \leftarrow c_\theta(s_{t'}^k, \tilde{s}_{t'+1}^k)$ \triangleright Compute state-transition costs
 11: **end for**
 12: $\mathcal{C}(\tau_k) \leftarrow -\eta^H V_\phi(\tilde{s}_H^k) + \sum_{t'=0}^{H-1} \eta^{t'} c_{t'}^k$ \triangleright Total trajectory cost
 13: **end for**
 14: $\beta \leftarrow \min_k [\mathcal{C}(\tau_k)]$
 15: $\mathcal{Z} \leftarrow \sum_{k=1}^N \exp -\frac{1}{\lambda} \mathcal{C}(\tau_k)$
 16: **for** $k \leftarrow 0$ **to** $N - 1$ **do** \triangleright Weight using exponential negative cost
 17: $w(\tau_k) \leftarrow \frac{1}{\mathcal{Z}} \exp -\frac{1}{\lambda} \mathcal{C}(\tau_k)$
 18: **end for**
 19: **for** $t' \leftarrow 0$ **to** $H - 1$ **do** \triangleright Optimal plan from weighted-average actions
 20: $(\mathbf{a}_t^j)_{t'} \leftarrow \sum_{k=0}^{N-1} w(\tau_k) a_{t'}^k$
 21: **end for**
 22: **end for**
 23: **for** $i \leftarrow 0$ **to** $|\mathcal{A}|$ **do** \triangleright Compute optimized standard deviations for policy
 24: $(\sigma_t)_i \leftarrow \sqrt{\sum_{k=0}^{N-1} w(\tau_k) [((\mathbf{a}_t^j)_0)_i - (a_0^k)_i]^2}$
 25: **end for**
 26: **return** \mathbf{a}_t^J, σ_t
 27: **End Procedure**

B PROOFS

In Section 3, we introduce the replacement of the entropy loss in Equation (2) with a KL divergence loss. This replacement allows the MPPI planner, in place of a policy, to solve the required forward RL problem. Integrated with the AIL objective in Equation (2), we further show that this allows MPAIL to correctly recover the expert state occupancy distribution $\rho_E(s, s')$. In this section, we prove both of these claims.

Algorithm 3 π_{MPPI}

Require:

- Reward $r_\theta := -c_\theta$;
- Value V_ϕ ;
- $\text{MPPI}(s, a) = \text{MPPI}(s, a; N, H, J, \Sigma, f_\psi, c_\theta, V_\phi)$ (Algorithm 2);
- T length of episode

1: $\mathbf{a}_0^* \leftarrow 0$ ▷ Initialize optimal plan

2: $\mathcal{B} \leftarrow \{\}$

3: **for** $t \leftarrow 1$ **to** T **do**

4: $s_t \sim \mathcal{T}(\cdot | s_{t-1}, a_{t-1})$ ▷ Step and perceive environment

5: $\mathbf{a}_t^*, \sigma_t \leftarrow \text{MPPI}(s_t, \mathbf{a}_{t-1}^*)$

6: **if** Train **then**

7: $a_t \sim \mathcal{N}((\mathbf{a}_t^*)_0, I\sigma_t)$

8: **else if** Deploy **then**

9: $a_t \leftarrow (\mathbf{a}_t^*)_0$

10: **end if**

11: $r_t \leftarrow r_\theta(s_t, s_{t+1})$ ▷ Reward from discriminator

12: $\mathcal{B} \leftarrow \mathcal{B} \cup (s_t, a_t, r_t, s_{t+1})$

13: **end for**

14: **return** \mathcal{B}

B.1 MPPI AS A POLICY

In this section we justify claims regarding MPPI in the forward RL problem. For completeness, we also verify that known results remain consistent with our state-only restriction.

Proposition B.1.1. *The closed form solution of Equation (3),*

$$\min_{\pi \in \Pi} \mathbb{E}_\pi[c(s, s')] + \beta \text{KL}(\pi || \bar{\pi}), \quad (3)$$

is

$$\pi^*(a|s) \propto \bar{\pi}(a|s) e^{\frac{-1}{\beta} \bar{c}(s, a)} \quad \text{where} \quad \bar{c}(s, a) = \sum_{s' \in S} \mathcal{T}(S_{t+1} = s' | S_t = s) c(s, s') \quad (7)$$

Proof. We begin by noting that

$$\mathbb{E}_\pi[c(s, s')|S_t = s] = \sum_a \pi(a|s)\bar{c}(s, a) \quad (8)$$

where the weighted cost $\bar{c}(s, a)$ is defined as

$$\bar{c}(s, a) := \sum_{s' \in S} \mathcal{T}(S_{t+1} = s' | S_t = s) c(s, s') \quad (9)$$

Then for a fixed state $s \in \mathcal{S}$, noting that the policy is normalized over actions $\sum_{a \in \mathcal{A}} \pi(a|s) = 1$, we may form the Lagrangian with respect to the objective in Equation (3) as:

$$\mathcal{L}(\pi, \beta, \lambda) = \sum_{s \in \mathcal{A}} \pi(a|s) \bar{c}(s, a) + \beta \sum_{s \in \mathcal{A}} \pi(a|s) \log \frac{\pi(a|s)}{\bar{\pi}(a|s)} + \lambda \sum_{s \in \mathcal{A}} \pi(a|s) - 1 \quad (10)$$

Taking the partial derivative with respect to $\pi(a|s)$ and setting to 0 we have

$$\frac{\partial \mathcal{L}}{\partial \pi(a|s)} = \bar{c}(s, a) + \beta \log \frac{\pi(a|s)}{\bar{\pi}(a|s)} + 1 + \lambda = 0 \quad (11)$$

Finally

$$\beta \log \frac{\pi(a|s)}{\bar{\pi}(a|s)} = -\bar{c}(s, a) - 1 - \lambda \quad (12)$$

$$\pi(a|s) = \frac{1}{1 + e^{-(\bar{c}(s,a) + 1 + \lambda)}} \quad (12)$$

$$\pi(a|s) \propto \pi(a|s) e^{-\beta V(s,a)} \quad (15)$$

972 **Remark B.1.2.** Given a uniform policy prior, the KL Objective in Equation (3),
 973

$$974 \min_{\pi \in \Pi} \mathbb{E}_{\pi}[c(s, s')] + \beta \mathbb{KL}(\pi || \bar{\pi}), \quad (3)$$

975 is equivalent to the Entropy Objective,
 976

$$977 \min_{\pi \in \Pi} \mathbb{E}_{\pi}[c(s, s')] - \lambda \mathbb{H}(\pi). \quad (14)$$

979 *Proof.* In order to prove this, it suffices to note that minimizing KL is equivalent to maximizing
 980 entropy:
 981

$$983 \mathbb{KL}(\pi || \bar{\pi}) = \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi(a|s) \log \frac{\pi(a|s)}{\bar{\pi}(a|s)} \quad (15)$$

$$986 \mathbb{KL}(\pi || \bar{\pi}) = \sum_{s \in \mathcal{S}} d^{\pi}(s) \left[-\mathbb{H}(\pi(\cdot|s)) - \sum_{a \in \mathcal{A}} \pi(a|s) \log \bar{\pi}(a|s) \right] \quad (16)$$

$$989 \mathbb{KL}(\pi || \bar{\pi}) = -\sum_{s \in \mathcal{S}} d^{\pi}(s) \mathbb{H}(\pi(\cdot|s)) - \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \pi(a|s) \log \bar{\pi}(a|s) \quad (17)$$

$$991 \mathbb{KL}(\pi || \bar{\pi}) = -\mathbb{H}(\pi) - \sum_{s \in \mathcal{S}} \log k_s \quad (18)$$

994 where $k_s = \bar{\pi}(a|s)$ for any $a \in \mathcal{A}$. Note that the sum on the left collapses by definition and the inner
 995 sum on the right collapses since the probability of taking an action in any given state is 1. Finally,
 996 since all the k_s are constant, the second term on the right hand side is constant. Since both objectives
 997 differ by a constant, minimizing the KL is equivalent to maximizing the Entropy given a uniform
 998 policy prior. \square

999 **Proposition B.1.3.** Provided the MDP is uniformly ergodic, the MPPI objective in Equation (4),
 1000

$$1001 \min_{\pi \in \Pi} \mathbb{E}_{\tau \sim \pi} [C(\tau) + \beta \mathbb{KL}(\pi(\tau) || \bar{\pi}(\tau))] \quad (4)$$

1003 is equivalent to the RL objective in Equation (3),
 1004

$$1005 \min_{\pi \in \Pi} \mathbb{E}_{\pi}[c(s, s')] + \beta \mathbb{KL}(\pi || \bar{\pi}). \quad (3)$$

1007 *Proof.* Before continuing, we verify that infinite horizon MPPI indeed predicts an infinite horizon
 1008 estimate of the return. For simplicity, we momentarily revert to a reward only formulation, replacing
 1009 the cost $c_{\theta}(s, s')$ with the reward $R_{\theta}(s, s')$ and the control discount η with γ . We proceed by
 1010 expanding the return,
 1011

$$1012 \mathbb{E}_{\tau \sim \pi}[R(\tau)] = \mathbb{E}_{\tau \sim \pi} [\gamma^H V_{\phi}(s_H) + \sum_{t=1}^{H-1} \gamma^t R(s_t, s_{t+1})] \quad (19)$$

$$1016 \mathbb{E}_{\tau \sim \pi} [\mathbb{E}_{\pi} [\sum_{t=H}^{\infty} \gamma^t R(s_t, s_{t+1}) | S_H = s_H] + \sum_{t=1}^{H-1} \gamma^t R(s_t, s_{t+1})] \quad (20)$$

$$1019 \mathbb{E}_{\tau \sim \pi} [\sum_{t=H}^{\infty} \gamma^t R(s_t, s_{t+1}) + \sum_{t=1}^{H-1} \gamma^t R(s_t, s_{t+1})] \quad (21)$$

$$1022 \mathbb{E}_{\tau \sim \pi} [\sum_{t=1}^{\infty} \gamma^t R(s_t, s_{t+1})] \quad (22)$$

1024 where we have made use of the definition of a value function V_{ϕ} (Equations 18 to 19) and the tower
 1025 property of expectation (Equations 19 to 20).

1026 Let $f(s, s') = c(s, s') + \beta \mathbb{KL}(\pi(\cdot|s) || \bar{\pi}(\cdot|s))$. For either objective to be valid the cost and KL
 1027 Divergence would have to be bounded. Thus, we may safely assume that f is uniformly bounded
 1028 $\|f\|_\infty \leq K$. Let $\delta_t = \mathbb{E}_{s_t, s_{t+1} \sim d^t} [f(s_t, s_{t+1})] - \mathbb{E}_{s, s' \sim d^\pi} [f(s, s')]$ be the error between estimates
 1029 of the objective.

1030 Since the MDP is uniformly ergodic, we may bound the rate of convergence of the state distribution
 1031 at a time t , d^t to the stationary distribution d^π
 1032

$$1033 \exists \lambda \in (0, 1), M \in \mathbb{N} \text{ s.t } \|d^t - d^\pi\|_{\text{TV}} \leq M \lambda^t \quad (23)$$

1034 where $\|\cdot\|_{\text{TV}}$ is the total variation metric.
 1035

1036 Continuing by bounding error δ_t ,
 1037

$$1038 |\delta_t| \leq \|f\|_\infty \|d^t - d^\pi\|_{\text{TV}} \leq KM \lambda^t \quad (24)$$

1039 We then have that $|\sum_{t=0}^{\infty} \eta^t \delta_t| \leq KM \sum_{t=0}^{\infty} (\eta \lambda)^t = \frac{KM}{1-\eta \lambda} = C < \infty$.
 1040

1041 We may now begin working with the MPPI Objective in Equation (4)
 1042

$$1044 \mathbb{E}_{\tau \sim \pi} [C(\tau) + \beta \mathbb{KL}(\pi(\tau) || \bar{\pi}(\tau))] \quad (25)$$

$$1046 = \sum_{t=0}^{\infty} \eta^t \mathbb{E}_{s_t, s_{t+1} \sim d^t} [f(s_t, s_{t+1})] \quad (26)$$

$$1049 = \sum_{t=0}^{\infty} \eta^t [\mathbb{E}_{s, s' \sim d^\pi} [f(s, s')] + \delta_t] \quad (27)$$

$$1052 = \frac{1}{1-\eta} \mathbb{E}_{s, s' \sim d^\pi} [f(s, s')] + \sum_{t=0}^{\infty} \eta^t \delta_t \quad (28)$$

1054 Note that the MPPI objective and Entropy Regularized RL objective differ by scaling and a bounded
 1055 additive constant, independent of π . Thus, minimizing both objectives are equivalent. \square
 1056

1058 B.2 MPAIL AS AN ADVERSARIAL IMITATION LEARNING ALGORITHM

1059 In this section, we integrate findings from Section B.1 with the AIL objective to theoretically validate
 1060 MPAIL as an AIL algorithm. Specifically, we observe that at optimality, we recover the log expert-
 1061 policy transition density ratio, which in turns yields a maximum entropy policy on state-transitions.
 1062 We then discuss the identifiability limits imposed by observing only (s, s') rather than (s, a, s') .
 1063 Throughout this section we make use of the state-transition occupancy measure, defined as $\rho_\pi : \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ where $\rho_\pi(s, s') = \sum_{t=1}^{\infty} \gamma^t \mathcal{T}(S_{t+1} = s', S_t = s | \pi)$ as in (Torabi et al., 2019a).
 1064

1065 **Proposition B.2.1.** *The optimal reward is*

$$1068 f_\theta^*(s, s') = \log \left(\frac{\rho_E(s, s')}{\rho_\pi(s, s')} \right) \quad (29)$$

1071 *Proof.* Note that the optimal discriminator is achieved when $D^*(s, s') = \frac{\rho_E(s, s')}{\rho_E(s, s') + \rho_\pi(s, s')}$ as used
 1072 in (Ghasemipour et al., 2020) and shown in (Goodfellow et al., 2014) Section 4 Proposition 1.
 1073

$$1075 f_\theta^*(s, s') = \log(D^*(s, s')) - \log(1 - D^*(s, s')) \quad (30)$$

$$1076 = \log \left(\frac{\rho_E(s, s')}{\rho_E(s, s') + \rho_\pi(s, s')} \right) - \log \left(\frac{\rho_\pi(s, s')}{\rho_E(s, s') + \rho_\pi(s, s')} \right) \quad (31)$$

$$1078 = \log \left(\frac{\rho_E(s, s')}{\rho_\pi(s, s')} \right) \quad \square$$

1080 This shows that, by setting $r(s, s') = f_\theta(s, s')$, the recovered reward function is the log-ratio of
 1081 state-transition occupancy measure from the expert to the policy.
 1082

1083 **Lemma B.2.2.** *MPAIL minimizes a regularized KL divergence between the policy’s state-transition
 1084 occupancy measure and the expert’s.*

1085 *Proof.* Recall from Proposition B.1.1 that while solving for the RL objective, MPPI finds a policy
 1086 of the form

$$\pi(a|s) \propto \bar{\pi}(a|s) e^{-\frac{1}{\beta} \bar{c}(s, a)} \quad (32)$$

1090 Applying Proposition B.2.1, we plug $c(s, s') = -f_\theta^*(s, s')$ into Equation (9) to obtain
 1091

$$\pi^*(s, a) \propto \bar{\pi}(s, a) \exp \left(-\frac{1}{\beta} \sum_{s' \in \mathcal{S}} \mathcal{T}(s'|s) [\log \rho_\pi - \log \rho_E] \right) \quad (33)$$

1096 Note that when the policy distribution ρ_π matches the expert distribution ρ_E the exponential term
 1097 collapses. Thus, when the occupancy measures match, the policy updates cease to have an effect
 1098 and the optimization attains a fixed point.

1099 In fact, we may note that for any fixed state $s \in \mathcal{S}$, the cost accumulated by the policy is
 1100

$$\sum_{s' \in \mathcal{S}} \rho_\pi(s, s') c^*(s, s') = \sum_{s' \in \mathcal{S}} \rho_\pi(s, s') \log \left(\frac{\rho_\pi(s, s')}{\rho_E(s, s')} \right) = \mathbb{KL}(\rho_\pi(s, \cdot) || \rho_E(s, \cdot)) \quad (34)$$

1105 Finally, the MPPI objective can be written as
 1106

$$\min_{\pi \in \Pi} \mathbb{KL}(\rho_\pi || \rho_E) + \beta \mathbb{KL}(\pi || \bar{\pi}) \quad (35)$$

1110 showing that the MPAIL procedure minimizes the entropy regularized KL Divergence between state-
 1111 transition occupancy measures. In this sense, we have shown that MPAIL can be indeed classified
 1112 as an AIL algorithm which seeks to match the expert’s occupancy measure through an MPPI Policy.
 1113 \square

1115 **Remark B.2.3.** *On Identifiability.* A question naturally arises about the limitations that being state-
 1116 only imposes. If state transitions are deterministic and invertible, observing (s, s') is the same as
 1117 observing the unique action a that caused it. Then $r(s, s') = r(s, a)$ and by the 1-1 corres-
 1118 pondence of policies with state-action occupancy measures (Ho & Ermon, 2016), the recovered policy
 1119 becomes unique.

1120 In general, this assumption has varying degrees of accuracy. When transitions are many to
 1121 one or stochastic, multiple actions can produce the same transition (s, s') . Then $\rho_\pi(s, s') =$
 1122 $\rho_\pi(s) \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{T}(s'|s, a)$ becomes a mixture over actions which induces a range of respec-
 1123 tive policies. For instance, if $\mathcal{T}(s'|s, a_1) = \mathcal{T}(s'|s, a_2)$ for actions a_1, a_2 , the expert could perform
 1124 either action and a state-transition based reward would not distinguish between them. Nonetheless,
 1125 IRL is already an ill-posed problem due to the many to one relationships between policies, rewards,
 1126 and demonstrations. Though the ambiguity is exacerbated by lack of demonstrated actions, it is still
 1127 inherent to the problem.

C IMPLEMENTATION

1132 In this section we provide further details about the algorithm implementation. Some features in-
 1133 corporated here are deemed well-known (i.e. spectral normalization) or not rigorously studied for
 statistical significance but included for completeness and transparency.

1134
1135 C.1 REGULARIZATION1136
1137 **Spectral Normalization.** As often found in GAN and AIL surveys (Orsini et al., 2021; Miyato
1138 et al., 2018), we corroborate that applying spectral normalization to the discriminator architecture
1139 appeared to have improved MPAIL training stability and performance. Application of spectral nor-
1140 malization to the value network did not appear to make a noticeable difference.1141
1142 **L2 Weight Regularization.** Some experimentation was done with L2 weight regularization, but
1143 it was ultimately *not used for any simulation results*. Instead, usage of the weight regularization
1144 for the real experiment (Section 4.2) appeared to help stabilize training and allow for more reliable
1145 model selection and deployment.

1146 C.2 HYPERPARAMETERS

1147
1148 Fundamentally derived from AIL and MPPI,
1149 we can etymologically partition hyperparame-
1150 ters into those induced by **AIL (orange)** and by
1151 **MPPI (blue)**. Remaining non-highlighted pa-
1152 rameters for this work are introduced and dis-
1153 cussed below.1154
1155 **Temperature Decay.** As noted in Section 3,
1156 we found that an initial temperature with a
1157 gradual decay (down to a minimum) was help-
1158 ful in preventing early and unrecoverable col-
1159 lapsed. The intuition for this decision is simi-
1160 lar to that of decaying policy noise injection in
1161 many popular RL frameworks (Lillicrap et al.,
1162 2019; Hansen et al., 2024), since the tempera-
1163 ture is directly related to the variance of the op-
1164 timized gaussian distribution. This component
1165 remains under investigation as its usage is not
1166 always necessary for meaningful convergence,
1167 but it is perhaps practically useful as it allevi-
1168 ates temperature tuning labor.1169
1170 **Value-to-Discriminator Update Ratio.** Com-
1171 mon to existing AIL (and GAN) implemen-
1172 tations, MPAIL benefits from a balancing of gen-
1173 erator and discriminator updates. Note that, like
1174 GANs, AIL tends to oscillate aggressively throughout training (Luo et al., 2024). As MPAIL does
1175 not enforce a constrained policy update each epoch (as TRPO does (Schulman et al., 2017a)), the
1176 policy is exposed more directly to the discriminator’s oscillations which can further hinder on-policy
1177 value estimation. A further converged value function is also theoretically more stationary from the
1178 perspective of π_{MPPI} as infinite-horizon MPPI.1179
1180 **Markup.** A notable quirk discovered during implemen-
1181 tation is the relationship between costs and
1182 rewards. While the two concepts are generally regarded as dual (with negation), it is worthwhile
1183 noting that discounting is not closed under negation. Meaning, it is not correct to apply the same
1184 discount factor to the costs as they are done to the summation of rewards in the return G_t . Consider
1185 the reward with a discount applied $r_1 = \gamma r(s, s')$ and the reward of a cost with a discount applied
1186 $r_2 = -\gamma c(s, s')$. Observe that for $\gamma < 1$, r_1 decreases while r_2 increases. Thus, when using costs,
1187 the H -step factor in the MPPI horizon, η , should not decrease over t' . In fact, when applying $\eta < 1$,
1188 we found that MPAIL does not meaningfully converge ever on the navigation task. (Geldenbott &
1189 Leung, 2024) names the usage of $\eta > 1$ as a markup. In our case, we apply a similar empirical
1190 factor such that $\eta := 1/\gamma > 1$. While we suspect a more rigorous relationship between η and γ ,
1191 we leave its derivation for future work. However, we remark that a reward-only variant of MPPI
1192 which precludes these relationships is equally possible as done in (Hansen et al., 2022). Costs are
1193 maintained in this work due to wider familiarity in practice (Han et al., 2024a; Williams et al., 2017;
1194 Morgan et al., 2021; Finn et al., 2016).

Hyperparameter	Value
Disc. optimizer (θ)	Adam ($\beta_1 = 0.5, \beta_2 = 0.999$)
Disc. learning rate	1e-4
Disc. hidden width	32
Disc. hidden layers	2
Disc. L2 coefficient	0 (sim), 0.001 (real)
Value optimizer (ϕ)	Adam ($\beta_1 = 0.9, \beta_2 = 0.999$)
Value learning rate	1e-3
Value hidden width	32
Value hidden layers	2
Value loss clip	0.2
Discount (γ)	0.99
Generalized return (λ)	0.95
Value max grad norm	1.0
Mini batches	3
Epochs	3
Trajectories (N)	512
Planning horizon (H)	10
Iterations (J)	5
Sampling variance (Σ)	$diag([0.3 \dots])$
Initial temperature (λ_0)	1.0
Markup/Discount (η)	1.01
Temp. decay rate	0.01
Minimum temp.	1e-5
Value:Disc update ratio	3:1 (sim), 1:1 (real)

Table 3: **MPAIL Hyperparameters.** Used across all experiments unless specified otherwise.

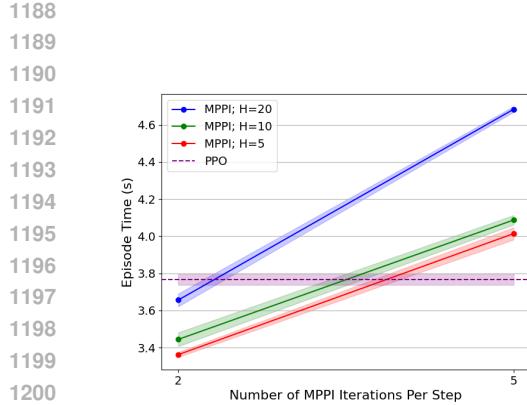


Figure 9: Comparing “Inference” Times for Navigation Task. Time taken to complete one episode of 100 timesteps with 64 parallel environments across varying horizon lengths and MPPI optimization iterations. PPO (in policy-based AIL) is used as implemented in the RSL library (Rudin et al., 2022). All training runs in this work are performed on an NVIDIA RTX 4090 GPU. Isaac Lab is chosen as our benchmarking and simulation environment due to its parallelization and robot learning extensions (Mittal et al., 2023; Han et al., 2025).

C.3 COMPUTATION

MPAIL is crucially implemented to be parallelized across environments in addition to trajectory optimization. In other words, in a single environment step, each parallel environment independently performs parallelized sampling, rollouts, and costing entirely on GPU without CPU multithreading. MPPI also allows for customizable computational budget, similar to (Hansen et al., 2024) (see Figure 9). For the navigation and cartpole tasks, we find that online trajectory optimization implemented this way induces little impact on training times. In exchange, MPPI can be more space intensive due to model rollouts having space complexity of $\mathcal{O}(HN|\mathcal{S}|)$ per agent. On the navigation task benchmark settings, this is an additional 245 kB per agent or 15.7 MB in total for 64 environments. Figure 9 shows benchmarks on training times that demonstrate comparable times to PPO’s policy inference. Overall, training runs for Section 4.3 between MPAIL and GAIL on the navigation task are comparable at about 45 minutes each for 500 iterations.

D EXPERIMENTAL DETAILS

D.1 REAL-SIM-REAL NAVIGATION

Setup Details. Before continuing with the discussion of our results, we provide further details about the setup of the experiment. The platform itself is an open-source MuSHR platform as detailed in (Srinivasa et al., 2023). Notably, the compute has been replaced with an NVIDIA Jetson Orin NX as mentioned in Section 4.2. Poses (position, orientation; $[x \ y \ z \ r \ p \ y]$) are provided by a motion-capture system at a rate of 20 Hz. Velocities are body-centric as estimated by onboard wheel encoders ($\mathbf{v} = v_x \mathbf{b}_1 + v_y \mathbf{b}_2 + v_z \mathbf{b}_3$, such that \mathbf{b}_1 points forward, \mathbf{b}_2 points left, and \mathbf{b}_3 completes the right-hand frame; basis vectors are rigidly attached to the vehicle (Han et al., 2024a)). Note that the vehicle is operated without slipping nor reversing such that $v_y \approx v_z \approx 0$ and $v_x > 0$ (Han

```

MPAILPolicy initialized. Total number of params: 3779
Dynamics: 0
Sampling: 0
Cost: 3778
Temperature: 1
MPAILPolicy(
  (dynamics): KinematicBicycleModel()
  (costs): TDCost(
    (ss_cost): GAILCost(
      (reward): Sequential(
        (0): Linear(in_features=24, out_features=32,
          bias=True)
        (1): LeakyReLU(negative_slope=0.01)
        (2): Linear(in_features=32, out_features=32,
          bias=True)
        (3): LeakyReLU(negative_slope=0.01)
        (4): Linear(in_features=32, out_features=1,
          bias=True)
      )
    )
    (ts_cost): CostToGo(
      (value): Sequential(
        (0): Linear(in_features=12, out_features=32,
          bias=True)
        (1): ReLU()
        (2): Linear(in_features=32, out_features=32,
          bias=True)
        (3): ReLU()
        (4): Linear(in_features=32, out_features=1,
          bias=True)
      )
    )
  )
  (sampling): DeltaSampling()
)

```

Figure 10: PyTorch (Paszke et al., 2019) Model Architecture from Train Log. MPAIL readily admits other well-studied components of the model-based planning framework (e.g. sampling, dynamics) (Vlahov et al., 2025; 2024). This work focuses on costing from demonstration.

et al., 2024b). The recorded states used for the expert demonstration data is 240 timesteps long. Altogether, the data can be written as $s_E \in \{(x_t, y_t, z_t, v_{x,t}, v_{y,t}, v_{z,t})\}_{t=1}^{240}$.

A remark: GAIL for this task is necessarily implemented with “asymmetry” between actor and reward. Since, the discriminator must receive as input expert observations s_E while the agent is provided (r, p, y) in addition to observations in s_E . In theory, there should be no conflict with the IRLfO (Equation (1)) formulation as this remains a valid reward but on a subset of the state.

Additional Discussion of Results.

To understand the role of partial observability in the experiment design, consider a simplified hand-designed cost using the partially observable expert data $c(s, s'|s_E, s'_E)$. A reference vector can be computed through the difference of positions between s' and s then scaled by the demonstrated velocities: $c(s, s'|s_E, s'_E) := \|\mathcal{I}\mathbf{v}(s, s') - v_{xE}[(x'_E - x_E)\mathbf{e}_1 + (y'_E - y_E)\mathbf{e}_2]\|_2$ where \mathbf{e}_i are global basis vectors for global frame \mathcal{I} and $\mathcal{I}\mathbf{v}(s, s')$ is the robot velocity in \mathcal{I} . Of course, this example assumes the ability to correctly choose the corresponding (s_E, s'_E) pair for input (s, s') out of the entirety of the expert dataset d^E . It should be clear that partial observability and state-transitions play critical roles in the recovery of this non-trivial cost function. This experiment presents a necessary challenge towards practical AIL (Orsini et al., 2021) and scalable Learning-from-Observation (LfO) (Torabi et al., 2019b).

IRL-MPC was evaluated across three ablations: (a) reward-only, (b) value-only, and (c) reward-and-value. The results in Figure 6 reflect the performance of (a) reward-only. The other implementations were distinctly worse than (a) and frequently devolved into turning in circles much like GAIL.

In both cases of GAIL and MPAIL, we find that the agents occasionally travel counter-clockwise (where the expert travels clockwise) during training, suggesting that (s_E, s'_E) appears close to (s'_E, s_E) through the discriminator. As the data is collected through real hardware, it is suspected that state estimation noise introduces blurring between states that are separated by only 50 ms. GAIL is otherwise known to perform poorly in the existence of multi-modal data (Li et al., 2017). This is further corroborated by its unstable performance on the navigation benchmark. And, to the best of our knowledge, similar Real-Sim-Real applications of AIL appear sparse if existent at all. Adjacent works which use real demonstration data but train in real include (Tsurumine & Matsubara, 2022; Sun et al., 2021). Even while training in real, GAIL’s performance drops significantly (90% \rightarrow 20%) when presented with imperfect demonstrations for even straightforward tasks like reaching (Tsurumine & Matsubara, 2022; Sun et al., 2021). These observations might suggest why the GAIL discriminator is unable to learn meaningfully in simulation and produces a poor policy.

D.2 SIMULATED NAVIGATION TASK DETAILS

Reward and Data. The exact form of the reward used for training PPO and for metrics is given by

$$r(s) := \sqrt{10^2 + 10^2} - \sqrt{(x - 10)^2 + (y - 10)^2}.$$

Figure 3 visualizes four demonstrations from the converged PPO “expert” policy. Additional demonstrations are generated by playing more environments from this policy for one episode such that each demonstration is distinct. Each episode is 100 timesteps long, where each timestep is 0.1 seconds.

OOD Experiment. OOD Energy in Figure 5 is computed as described by Liu et al. (2020). Namely, with respect to the expert data d^E , we fit a reference distribution using $\tilde{P}_E = \mathcal{N}(\bar{\mu}_E, \bar{\Sigma}_E)$. Then, the OOD energy is given by $E(s; p_E) = \log p_E(s)$. Some limitations of this procedure can be observed given that ID points for GAIL do not receive as much reward as one might expect. However, this remains reasonable considering that the GAIL policy may forget ID behavior, which can be seen in Figure 4 by agents clearly ID remaining static throughout the episode. Future work might better explore quantifying OOD towards measuring AIL generalization through direct usage of the discriminator.

D.3 PREDICTIVE MODEL LEARNING TOWARDS GENERALIZABLE MPAIL

For tasks beyond navigation (see also Section D.5 for the Ant environment), planning rollouts were generated from a deterministic dynamics model $f_\psi(s, a)$ learned entirely online. The dynamics

model was trained to minimize the mean squared error between the predicted and observed s_{t+1} , given s_t and a_t . The loss being optimized can be written as:

$$\hat{s}_{i+1} = f_\psi(s_i, a_i), \quad L = \frac{1}{H_B} \sum_{s, a \in B} (s_{i+1} - \hat{s}_{i+1})^T (s_{i+1} - \hat{s}_{i+1}) \quad (36)$$

with model parameters ψ , transition buffer B , and a mini-batch of size H_B sampled from B . If used, the update for the model occurs after line 4 in Algorithm 1.

Training augmentations. Several training augmentations were made to improve model accuracy and stability. A transition replay buffer, which stored transitions from multiple episodes, was used to train the dynamics model for multiple epochs during each MPAIL training iteration. After each episode, the buffer was updated by randomly replacing old transitions with those from the latest episode. This off-policy buffer helped stabilize training and prevent overfitting when training using multiple epochs. Furthermore, applying a step-based learning rate decay improved convergence speed. Dynamics model-specific hyperparameters are listed in Table 4.

D.4 ABLATIONS

Figure 12 shows the results of an ablation study, investigating the effect of including costs or values in the MPAIL formulation. We find that including both is necessary for reasonable behavior across varying horizon lengths. We observe that value-only planning can quickly improve but is highly unstable and is unreliable as a generator. As expected, cost-only planning performs progressively better at longer planning horizons. However, should the agent find itself off-distribution, it is not able to return to the distribution until it randomly samples back in, which may potentially never occur. For instance, many agents which are initialized facing the opposite direction drive randomly without ever returning to the distribution. Without a value function guiding the agent, the discriminator (i.e. cost) does not provide a significant reward signal for returning to the distribution. This can be observed in the $H = 10$ plot where the performance of cost-only planning quickly drops as the discriminator is further refined on the expert data, decreasing the likelihood of randomly sampling into distribution. In this sense, the combination of cost and value operates as intended: *costing* is necessary for defining and staying inside the expert distribution, while *value* is necessary for generalizing the reward beyond the support of the expert elsewhere in the environment.

D.5 TOWARDS HIGH-DIMENSIONAL TASKS FROM DEMONSTRATION WITH SAMPLED-BASED MPC

Figure 13 provides an experiment of MPAIL training an agent in the Isaac Lab implementation of the Ant-v2 environment as a step towards high-dimensional applications. As expected, MPPI's (vanilla) sampling procedure struggles to be competitive with policy-based optimization in higher-dimensional spaces. However, MPAIL demonstrates signs of life in enabling MPPI to optimize a state space otherwise considered extremely challenging for sample-based planning. Note that Isaac Lab's Ant implementation prescribes a 60-dimensional observation and 8-dimensional action space, rather than Mujoco's 26-dimensional observation. Thus, the space is 120-dimensional for costing $c_\theta(s, s')$ and 80-dimensional for MPPI with a planning horizon of 10 timesteps. Despite this, a learned cost is capable of guiding a real-

Dynamics Model Hyperparameter	Value
Optimizer	Adam($\beta_1 = 0.9, \beta_2 = 0.999$)
Learning rate	1e-3
LR decay rate	0.9
LR decay frequency (ep.)	25 (Ant), 15 (Cartpole)
Min. LR	1e-6
Hidden width	256 (Ant), 64 (Cartpole)
Hidden layers	3

Table 4: **Dynamics Learning Hyperparameters.**

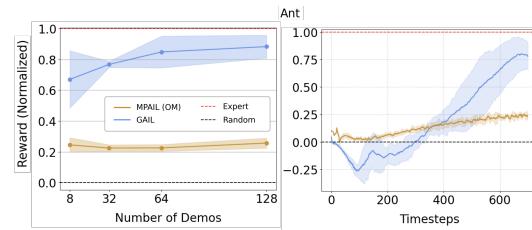


Figure 13: **Isaac Lab Ant-v2 Experiment with MPAIL (OM) and GAIL.**

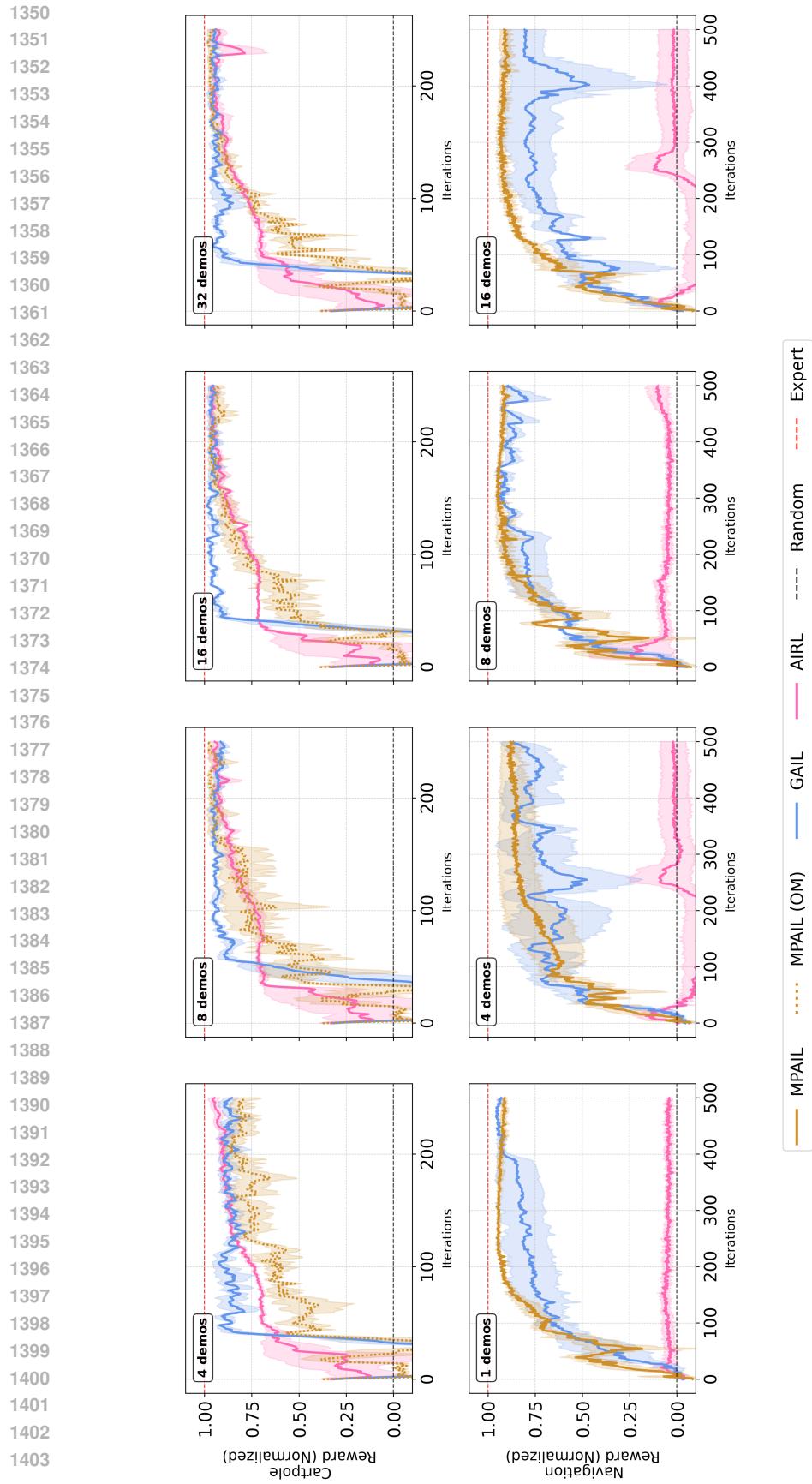


Figure 11: Benchmark results from Figure 7 de-aggregated across number of demonstrations. MPAIL results for the Cartpole task is differentiated MPAIL (OM) to clarify that its Model is learned fully Online.

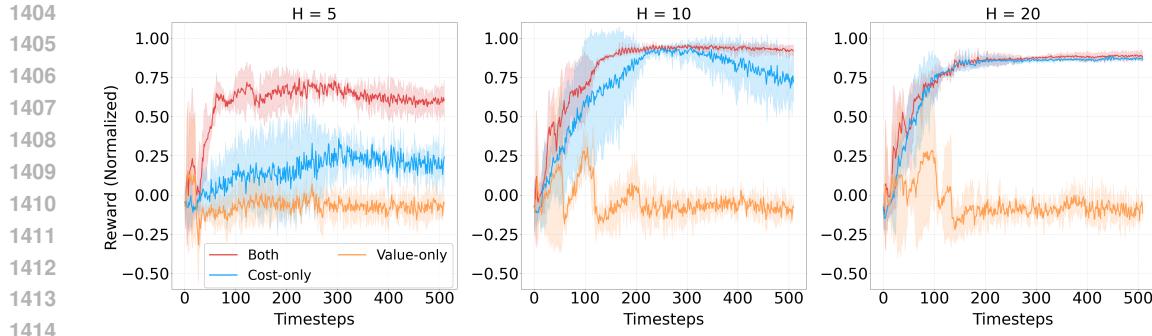


Figure 12: **Ablating single-step costs c_θ and value V_ϕ across different Horizon (H) lengths.** “Cost-only” experiments are performed by *not evaluating* V_ϕ on the final state in each model rollout. “Value-only” experiments are performed by *not evaluating* c_θ on the H -step state-transitions. See Algorithm 2, line 12 for exact usage.

time vanilla MPPI optimization to execute walking behaviors in the ant task, albeit slower, even from few demonstrations.

“Remembering” locally optimal policies through a learned policy-like proposal distribution may help planning capabilities generalize to higher-dimensional spaces. Additionally, modeling dynamics in latent-space and using model ensembles have been shown to significantly improve performance in model-based reinforcement learning (Hansen et al., 2022) and are promising directions for future work for high-dimensional tasks. Finally, Figure 10 illustrates a key takeaway of this framework: learning costs through MPAIL remains orthogonal to other works which seek to improve sample-based MPC through sampling (Xue et al., 2024; Vlahov et al., 2024; Sacks & Boots, 2023), optimization (Vlahov et al., 2024; Sacks et al., 2024), and dynamics (Hansen et al., 2024). We believe that integration of developments in MPC along with application-specific cost regularization (Finn et al., 2016) may be critical for exploring the full potential of planning from observation.