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ABSTRACT

Humans can often perform a new task after observing a few demonstrations by
inferring the underlying intent. For robots, recovering the intent of the demon-
strator through a learned reward function can enable more efficient, interpretable,
and robust imitation through planning. A common paradigm for learning how
to plan-from-demonstration involves first solving for a reward via Inverse Rein-
forcement Learning (IRL) and then deploying it via Model Predictive Control
(MPC). In this work, we unify these two procedures by introducing planning-
based Adversarial Imitation Learning, which simultaneously learns a reward and
improves a planning-based agent through experience while using observation-only
demonstrations. We study advantages of planning-based AIL in generalization,
interpretability, robustness, and sample efficiency through experiments in simu-
lated control tasks and real-world navigation from few or single observation-only
demonstration.

1 INTRODUCTION

Discriminator

Planning & Control

Transitions

Value

Expert
States

Generator
States Returns

Figure 1: Model Predictive Adversarial Imitation
Learning (MPAIL) learns costs for a planning-
based, Model Predictive Control (MPC) agent
from observation-only demonstration. Interac-
tions with these costs are simultaneously used to
learn a value function for experience-based rea-
soning beyond the horizon of the planner.

Inverse Reinforcement Learning (IRL) offers a
principled approach to imitation learning by in-
ferring the underlying intent, or reward func-
tion, that explains expert behavior. A funda-
mental advantage of IRL is that this reward
is often readily generalizable beyond the sup-
port of the demonstration data, enabling the
discovery of new policies through interaction
and plans through self-prediction. Especially
when demonstrations are sparse, ambiguous, or
suboptimal, IRL’s interpretability is particularly
well-suited for domains where understand-
ing preferences and ensuring reliable plan-
ning are essential, such as routing on Google
Maps (Barnes et al., 2023), socially aware nav-
igation (Kretzschmar et al., 2016), and au-
tonomous driving (Bronstein et al., 2022).

For real-time systems, learned IRL and In-
verse Optimal Control (IOC) rewards are typ-
ically deployed via Model Predictive Control
(MPC) (Lee et al., 2022b; Rosbach et al., 2019; Triest et al., 2023; Das et al., 2021; Lee et al.,
2021; Kuderer et al., 2015; Lee et al., 2022a). Here, the offline IRL algorithm iteratively solves a
Reinforcement Learning (RL) problem in an inner loop, guided by the current reward estimate. An
outer loop then updates this reward to minimize the discrepancy between the agent’s and the ex-
pert’s behavior. Once training is complete, the resulting reward is integrated with MPC for real-time
planning and control.

Adversarial Imitation Learning (AIL) has made significant improvements over IRL in algorithmic
complexity and sample efficiency (Ho & Ermon, 2016; Baram et al., 2017). However, the reliance
on an RL policy in AIL methods complicates their use in applications with safety constraints (Lee
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et al., 2022b; Triest et al., 2023; Das et al., 2021). Further limited by partial observability, these
deployments will often prioritize planning using a model for the sake of real-time performance,
trustworthiness, and interpretability (Han et al., 2024a; Katrakazas et al., 2015; Choudhury et al.,
2018).

In this work, we derive planning-based AIL, yielding key benefits:

1. Planning-from-Observation (PfO). Towards interpretable yet scalable imitation learning,
a predictive model precludes the need for expert action data and enables access to the
agent’s optimization landscape. This grants crucial insight and steerability into the agent’s
decision making process even as it learns from ambiguous expert data. We further show that
this improves on out-of-distribution generalization, robustness, and sample efficiency when
compared to policy-based AIL. We also demonstrate how policy-based AIL is fundamentally
limited by the absence of reward deployment.

2. Unification of IRL and MPC. Otherwise considered independent training and deployment
procedures, planning-based AIL allows for end-to-end interactive learning of the entire
planner. Critical online settings (e.g., dynamics, preferences, control constraints) can thus
be brought into training while enabling experience-based reasoning beyond the planning
horizon, which we demonstrate in this work. We also find this induces a more effective
adversarial dynamic than policy-based generators when learning from partial observations
in the real world.

To our knowledge, this work presents the first end-to-end planning-from-observation (PfO) frame-
work, extending PfO to continuous spaces and interactive learning. By choosing Model Predictive
Path Integral control (MPPI) (Williams et al., 2017) as the embedded planner, we further gain the-
oretical perspective on planning-based AIL and its relationship to the seminal GAIL objective (Ho
& Ermon, 2016; Torabi et al., 2019a). Thus, we name this learning algorithm: Model Predictive
Adversarial Imitation Learning (MPAIL {impale}).

2 RELATED WORK

IRL-MPC. High-dimensional continuous control applications often require an online planner for
real-time control, trustworthiness, safety, or additional constraints. When using IRL to learn a re-
ward, online deployments of these reward functions tend to rely on an independent online MPC
procedure. To enable learning local costmaps across perception and control for off-road navigation,
Lee et al. (2022b) and Triest et al. (2023) similarly propose solving the forward RL problem by
using MPPI but deploy the learned reward on a different configuration more suitable for real-time
planning and control. This reward deployment framework of IRL-then-MPC is currently the domi-
nant approach for planning in high-dimensional continuous control tasks from demonstration (Lee
et al., 2022b; Rosbach et al., 2019; Triest et al., 2023; Das et al., 2021; Lee et al., 2021; Kuderer
et al., 2015; Lee et al., 2022a).

Model-Based IRL and Planning-Based RL. The proposed framework, MPAIL, might naively be
categorized as a model-based AIL approach. Various other works have also explored model-based
AIL (Baram et al., 2016; Bronstein et al., 2022; Sun et al., 2021). However, scope is directed
at training stabilization and policy optimization rather than examining planning with the learned
reward. When the reward is known, as in RL, planning-based algorithms have demonstrated consid-
erable improvement in simulation benchmarks over existing state-of-the-art RL algorithms through
developments such as: online trajectory optimization, value bootstrapping, latent state planning,
policy-like or learned sampling priors, and much more (Hansen et al., 2024; Bhardwaj et al., 2021;
Lowrey et al., 2019; Jawale et al., 2024). This work’s implementation of MPAIL performs online
trajectory optimization and value bootstrapping. This work does not implement latent state planning
nor a policy-based prior to better isolate our investigations in interpretability and planning (Fu et al.,
2018; Sun et al., 2021). Other existing integrations of planning-based RL with imitation learning
also rely on access to expert actions (Li et al., 2025; Yin et al., 2022). No aforementioned works,
save (Jawale et al., 2024), evaluate planning-based RL or AIL on a real world platform. However,
we find that it is precisely real-world and out-of-distribution settings in which planning and control
is most advantageous.
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3 MODEL PREDICTIVE ADVERSARIAL IMITATION LEARNING

3.1 THE POMDP SETTING AND THE MODEL PREDICTIVE AGENT

We adopt the Partially Observable Markov Decision Process (POMDP) to best consider highly desir-
able applications of IRL in which partial observability and model-based planning play crucial roles.
In an unknown world state sw ∈ Sw, the agent makes an observation o ∼ p(o|sw). From a history
of observations o0:t, the Agent perceives its state st ∼ p(s|o0:t). Actions a ∈ A and states s ∈ S
together allow the agent to self-predict forward in time using its predictive model f : S × A → S.
Note that these definitions crucially suggest the partial observability of s due to the implicit de-
pendency on the observation history o0:t through the agent’s perception (e.g. mapping (Jung et al.,
2024)). However, partial observations in S are desirably used for demonstrations to perform IRL
and AIL, as full observation history would quickly become intractable (Triest et al., 2023).

The planner itself is a model predictive agent. It is capable of performing model rollouts τ (H)
t =

{st′ , at′}t+Ht′=t such that st′+1 = f(st′ , at′), and each rollout can thus be evaluated with a cost C(τt).
The agent’s objective is to create an H-step action sequence at:t+H , or plan, that best minimizes the
plan’s corresponding trajectory cost. The true costs or rewards under which the expert is acting is not
known. Towards learning-from-observation (LfO) and lower-level policies, we consider expert data
in which only states are available, as actions may be challenging or impossible to observe (Torabi
et al., 2019b).

3.2 ADVERSARIAL IMITATION LEARNING FROM OBSERVATION

IRL algorithms aim to learn a cost function that minimizes the cost of expert trajectories while
maximizing the cost of trajectories induced by other policies (Torabi et al., 2019a; Ho & Ermon,
2016). As the problem is ill-posed and many costs can correspond to a given set of demonstrations,
the principle of maximum entropy is imposed to obtain a uniquely optimal cost. It can be shown
that the entropy maximizing distribution is a Boltzmann distribution (Ziebart et al.). The state-only
IRL from observation problem can be formulated by costing state-transitions c(s, s′) rather than
state-actions c(s, a) as in (Torabi et al., 2019a):

IRLfOψ(πE) = argmax
c∈RS×S

−ψ(c) +
(
min
π∈Π
−λH(π) + Eπ[c(s, s′)]

)
− EπE

[c(s, s′)], (1)

where ψ(c) is a convex cost regularizer, πE is the expert policy, H(·) is the entropy, and Π is a family
of policies.

As shown in (Ho & Ermon, 2016; Torabi et al., 2019a), this objective can be shown to be dual to the
Adversarial Imitation Learning (AIL) objective under a specific choice of cost regularizer ψ,

min
π∈Π

max
D∈[0,1]S×S

Eπ[log(D(s, s′))] + EπE
[log(1−D(s, s′))]− λH(π), (2)

where D(·) is the discriminator function. The exact form of D has consequences on the policy ob-
jective and differs by AIL algorithm. Now equipped with the optimization objective, we continue in
our derivation of planning-based AIL by choosing the form of the policy class and reward function.

3.3 CHOOSING A POLICY AND REWARD

To reiterate, we set our sights on the AIL objective (Equation (2)) which aims to simultaneously learn
reward and policy from demonstration. However, the formulation remains intimately connected
with policy optimization through the assumption of an RL procedure. Towards planning-based
optimization, we proceed by modifying the RL formulation in Equation (1) as described in (Ho &
Ermon, 2016; Fu et al., 2018). Similar to (Bhardwaj et al.), we replace the entropy loss −λH(π)
with a Kullback-Leibeler (KL) divergence constraint on the previous policy π:

min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π). (3)

Note that this incorporates prior information about the policy (i.e. previous plans) while seeking the
next maximum entropy policy. Specifically, as shown in Section B.1, the closed form solution to
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Algorithm 1 Model Predictive Adversarial Imitation Learning

Require: Expert state-transitions DE = {(s, s′)}
Maximum-Entropy Planner πMPPI, Discriminator Dθ, Value Vϕ

1: while not converged do
2: Collect transitions (s, s′, rθ(·)) ∈ dπ by running πMPPI (Alg. 3) in the environment
3: Update Discriminator parameters θ with Binary Cross Entropy (BCE) loss:

∇θEs,s′∼dπ [log(Dθ(s, s
′))] +∇θEs,s′∼dπE [log(1−Dθ(s, s

′))] (5)

4: Update Value parameters ϕ using estimated returns:

∇ϕEs∼dπ [(Gt − Vϕ(s))2] (6)

5: end while

Equation (3) is π∗(a|s) ∝ π(a|s)e
−1
β c(s,a), where c(s, a) =

∑
s′∈S T (St+1 = s′|St = s)c(s, s′)

and T (St+1 = s′|St = s) denotes the transition probability from state s to s′.

We then observe that a choice of planner satisfies the RL objective as in Equation (3). By choosing
Model Predictive Path Integral (MPPI) as the planner, as proven in Section B.1, we solve an equiv-
alent problem provided the MDP is uniformly ergodic. Namely, MPPI solves for a KL-constrained
cost-minimizer over trajectories (Bhardwaj et al.):

min
π∈Π

Eτ∼π [C(τ) + βKL(π(τ) ||π(τ))] (4)

where C(τ) is the discounted cost of a trajectory and KL(π(τ)||π(τ)) is the discounted KL diver-
gence over a trajectory.

Model rollouts must practically be limited to some timestep lengthH , resulting in myopic plans and
limiting applications to short-horizon tasks (Bhardwaj et al., 2021). To resolve this, infinite-horizon
MPPI bootstraps the final states in the rollout using a terminal cost-to-go, or value, function (Bhard-
waj et al., 2021; Hatch & Boots, 2021; Lowrey et al., 2019) Vϕ : S → R that estimates the expected
return Gt of a state st as Gt = Eπ[Rt+1 + γRt+2 + ...|St = st], where Rt+1 = R(st, st+1). The
result of MPPI’s approximately global policy optimization at each timestep is what is referred to as
the MPPI policy, πMPPI. Section B.1 proves how this formulation can be equivalent to the entropy-
regularized RL objective, while also in the observation-only setting. Pseudocode for the MPPI
procedure can be found in Algorithm 2 as well as for its adaptation as an RL policy in Algorithm 3.
Figure 2 illustrates the policy.
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Figure 2: Illustration of πMPPI in MPAIL. (1) A set
of action sequences (plans) are sampled and rolled
out. (2) Plans are costed according to the discrim-
inator, shifting the distribution towards the expert.
Temperature λ optionally decays over episodes,
narrowing the distribution. (3) The policy πMPPI is
the result of a Gaussian fit to the optimized plans
and their respective first actions.

Our chosen AIL agent, infinite-horizon MPPI,
can be viewed as optimizing for a new policy at
every state. As in the online learning perspec-
tive (Wagener et al., 2019), these MPPI opti-
mizations can occur online rather than offline
as part of, for instance, a slower actor-critic up-
date. By deconstructing the agent this way, we
require not the policy to generalize but the re-
ward.

Provided the agent, we now proceed with se-
lecting its objective. Recent work has shown
many potential choices of valid policy ob-
jectives, each with various empirical trade-
offs (Orsini et al., 2021). We found the re-
ward as defined in Adversarial Inverse Rein-
forcement Learning (AIRL) (Fu et al., 2018)
to be most stable when combined with the
value function when applied to infinite-horizon
MPPI. In the state-only setting, the policy ob-
jective becomes r(s, s′) = log(D(s, s′)) − log(1 − D(s, s′)) and the discriminator D(s, s′) =
σ ◦ dθ(s, s′). Simply put, the reward is the logit of the discriminator r(s, s′) = dθ(s, s

′).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In short, our choice of πMPPI and r(s, s′) yields MPAIL. As proven in Section B.2, MPAIL is indeed
an AIL algorithm in the sense that it minimizes divergence from the expert policy. The procedure
(Algorithm 1) itself closely resembles the original GAIL procedure. However, upon updating the
value network, MPAIL does not require a policy update thereafter, since “policies” are in theory
solved online. In practice a temperature decay can be helpful for preventing early collapse, espe-
cially in the case of online model learning. We leave a theoretical justification for this choice for
future work. An overview of the training procedure can be found in Figure 1. A discussion of further
meaningful implementation details, like spectral normalization, can be found in Section C. Though,
these modifications are kept to a minimum towards our analysis of πMPPI in AIL.

4 EXPERIMENTAL RESULTS

Advancements in IRL and AIL continue to demonstrate improvements in sample efficiency. How-
ever, there remains an apparent gap with applications to robot learning. In addition to fundamental
investigations about the MPAIL algorithm itself, our experiments target evaluations critical towards
real-world robustness and generalization.

Without a policy, vanilla MPPI possesses no “memory” about actions taken in previous episodes,
save for those implied through the value Vϕ(s). And as discussed in Section 3, MPPI’s approximate
online optimization is more practical for robustness and generalization but potentially less accu-
rate for producing policies. These novelties raise a critical question about planning-based AIL; are
policies solved online through planning sufficient as adversarially generative policies? We find that
MPAIL indeed trains an effective imitator, provoking our follow-up questions:

Q1 What is the advantage of deploying an AIL planner over an AIL policy?

Q2 How does MPAIL help enable real-world planning capabilities from observation?

Q3 How does MPAIL compare to existing AIL algorithms?

Hyperparameter settings are kept consistent across all experiments. Exact values and other imple-
mentation details such as regularization and computation are reported and discussed in Section C.

SIMULATED NAVIGATION TASK

Figure 3: Four Expert
Trajectories in Navigation
Task. Cars initialized around
(0, 0).

For simulated evaluation, we design a navigation task with a 10-
DoF vehicle. Reward is proportional to the negative squared dis-
tance to (10, 10). Initial poses are within 1 m of (0, 0). The state
is 12-dimensions: position, orientation, linear velocity, and angu-
lar velocity. Actions include target velocity and steering angle.
MPAIL plans using an approximate prior model, the Kinematic Bi-
cycle Model (Han et al., 2024b). This approximate model is not
tuned to the agent dynamics. For instance, slipping and suspension
dynamics occur in simulation but are unmodeled.

The expert for this environment is obtained through running PPO
on a known reward (see Section D.2 for details) (Schulman et al.,
2017b). At convergence, the optimal policy occasionally circles
near the goal instead of remaining on it (see Figure 3). We choose
to use the circling demonstrations as expert data, because it is a more challenging behavior to im-
itate. This is corroborated by (Orsini et al., 2021), who stress that demonstrator suboptimality and
multimodality is a critical component in algorithm evaluation towards practical AIL from human
data.

This circling behavior acts as a critical “distractor mode”. In training, the policy may begin to only
circle around the origin. If the AIL algorithm is not able to sufficiently explore, training collapses
such that the policy continuously circles the origin, unable to return to the expert distribution which
requires the circling behavior to occur around the goal. For instance, we find that AIRL is unable
to successfully learn both behaviors likely due to the instability introduced by its logit shift (Orsini
et al., 2021).
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Figure 4: Comparison of policy-based and planning-based AIL in Out-of-Distribution (OOD)
states. Agents trained on the navigation task (Section 4) are placed uniformly with random orienta-
tion between a 40 × 40 m box centered on (0, 0). The policy and planner are run for 100 timesteps
in the environment. Data support of the expert exists mainly between (0, 0) and (10, 10)1. Quantita-
tive evaluation of this experiment can be found in Figure 5. A comparison which includes a learned
dynamics model can be found in Figure 8.

4.1 OUT-OF-DISTRIBUTION ROBUSTNESS THROUGH PLANNING – Q1

Figure 5: OOD Navigation Eval-
uation. Agent initial poses vary
from In-distribution (ID) to OOD
relative to the expert data and are
plotted with their final reward after
100 timesteps. Metric from (Liu
et al., 2020) (see Section D.2).

When deploying learning-based methods to the real-world, re-
liable performance in out-of-distribution (OOD) states are of
critical importance, especially in imitation learning when ex-
pert data can be extremely sparse. We show that planning-
based AIL (MPAIL) improves generalization capabilities
when OOD. In this experiment, we use the simulated nav-
igation environment but expand the region of uniformly dis-
tributed initial positions and orientations from a 1×1 square
to a large 40×40 m square around the origin (Figure 4). The
policy-based approach is represented by GAIL, as AIRL does
not meaningfully converge in the navigation task (Section 4).
Only four expert trajectories are used in training.

We find that planning-based AIL generalizes to significantly
more states than policy-based AIL when outside the support
of expert data. In this experiment, the planner’s horizon is a
maximum of 3 meters. As a result, the task horizon may be
up to 15 times longer than the planning horizon. Evidently, a
planner could not navigate to the goal if the learned optimiza-
tion landscape (induced by cost cθ and value Vϕ) did not also generalize to OOD states. These results
suggest a fundamental limitation of current AIL approaches and their single policy solution. The
trained reward and value are inefficiently underutilized in policy-based AIL and not utilized at all on
deployment. By contrast, MPAIL re-introduces the reward and value online to solve for new policies
each moment in time. These results illustrate that generalization in AIL is substantially improved
through reward deployment in addition to reward learning.

1Note that the state space is 12-dimensional; expert data support is extremely sparse in this environment.
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4.2 REAL-SIM-REAL NAVIGATION FROM A SINGLE OBSERVATION – Q2

Figure 6: Real-Sim-Real Experiment. Bottom Left
(MPAIL). Real-time (20 Hz) parallel model rollouts
and costing are visualized while the robot navigates
through the turn. Current optimal plan for the next 1
second in gold. Bottom Right. Trajectories performed
by MPAIL, GAIL, and IRL-MPC (see Table 2 for eval-
uation).

Real-world evaluation of AIL is currently
challenging. RL-like interaction efficiency
renders training in simulation more practi-
cal than in the real-world (Tai et al., 2018),
but demonstrations must realistically still
be from the real-world. Nonetheless, it
is imperative to evaluate AIL methods on
real-world suboptimal data and hardware
since results tend to diverge significantly
from ideal settings, synthetic data, and
simulation (Orsini et al., 2021; Tsurumine
& Matsubara, 2022).

Our hardware experiment evaluates GAIL,
IRL-MPC, and MPAIL through Real-to-
Sim-to-Real: 1) a single partially observ-
able (position and body-centric velocity)
trajectory is collected from the real-world
subject to sensor noise, 2) the method
is trained using interactions from simu-
lation, finally 3) the method is deployed
zero-shot to the real-world for evalua-
tion. This experiment uses a small-scale
RC car platform with an NVIDIA Jetson
Orin NX (Srinivasa et al., 2023). For
IRL-MPC, the reward and value is trained
through GAIL, which subsequently re-
quires hand-tuning for deployment on
MPPI (Triest et al., 2023).

We remark that the direction of travel can-
not be uniquely determined by a single
state s due to the partially observable
body-centric velocity. Only with the state-transition (sE , s

′
E) is it possible to deduce the direc-

tion of travel. This property is detailed in Section D.1. Partial observability and state-transitions
play critical roles in the recovery of a cost function for this task, presenting a necessary challenge
towards practical AIL (Orsini et al., 2021) and scalable Learning-from-Observation (LfO) (Torabi
et al., 2019b).

We find that MPAIL is able to qualitatively reproduce the expert trajectory with an average Rela-
tive Cross-Track-Error (CTE (Rounsaville et al.)) of 0.17 m while traveling an average of 0.3 m/s
slower. In addition, Figure 6 illustrates a key advantage of planning-based AIL. By granting access
to the agent’s optimization landscape, MPAIL significantly improves on the interpretability of agents
trained through observations of ambiguous and complex human data when compared to black-box
policies. Note the lower costing of on-track trajectories and final plan.

Reward r(s, s′) Policy Optimizer Deployment

GAIL log(D) PPO (Offline) Policy
AIRL log( D

1−D ) PPO (Offline) Policy
IRL-MPC log(D) PPO (Offline) Planner
MPAIL log( D

1−D ) MPPI (Online) Planner

Table 1: Summary of Baselines. The discrimina-
tor is denoted D := D(s, s′). Value estimation is
performed via GAE-λ (Schulman et al., 2018) for
all methods.

GAIL does not reliably converge to the ex-
pert even in training. During deployment,
GAIL’s policy consistently veers off-path or
collapses into driving in a circle. Various start-
ing configurations were attempted without suc-
cess. While literature on the evaluation of AIL
methods in the real-world are sparse, we find
that AIL policies can be extremely poor per-
forming in the real-world, as corroborated by
(Sun et al., 2021). A more detailed discussion
is provided in Section D.1.
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IRL-MPC acts as a middle-ground between MPAIL and GAIL; the learned reward and value are
exactly the same as GAIL’s and thus differs by the deployment of the reward through planning.
IRL-MPC’s improvements over GAIL provides evidence that: (i) model-based planning can grant
robustness to a model-free reward and, (ii) despite GAIL’s poor performance, the learned reward
was still meaningfully discriminative and suggests a failure of the policy to arrive at a solution under
the reward. On the other hand, IRL-MPC diverges from MPAIL by mainly learned reward and
value. As a result, we find that online policy optimization through πMPPI induces a more competitive
adversarial dynamic than offline policy optimization as in actor-critic RL. In this case, the end-to-end
inclusion of the planner enables training the reward and value to completion.

CTE (m)

Max Mean Average
Speed (m/s)

Expert - - 1.0
GAIL 1.29 0.56 0.37
IRL-MPC 1.28 0.37 0.30
MPAIL 0.76 0.17 0.70

Table 2: Evaluation of Real Ex-
periment. Relative Cross-Track
Error (CTE) and speed are com-
puted over the best five laps. AIRL
is excluded as it does not exhibit
meaningful behavior even in simu-
lation.

Meanwhile, MPAIL’s success and IRL-MPC’s improvement
over GAIL is attributed to model-based planning capabilities.
If the robot should find itself away from the expert distribution,
the online planner enables the agent to sample back onto the
demonstration. In this sense, an MPC-based (or any online-
optimizing) agent brings control-theoretic disturbance rejec-
tion online. Policies, on the other hand, are far more suscep-
tible to erratic behavior in the real-world due to open-loop ac-
tion prediction. This becomes especially important when the
demonstration data is severely under-defined as in this partially
observable setting, which results in ambiguous reward signal
in most states in the environment; recall that low discrimina-
tor confidence is reflected by low magnitude logit fθ (cost)
predictions. Real experiment cost values are in the range of
(−0.022,−0.0180) whereas cost values in benchmarking runs
with synthetic demonstrations are in the range of (−3, 3). On
real data, the discriminator also required more frequent up-
dates to provide more reliable signals (see Table 3).

4.3 EFFICIENCY – Q3

Figure 7: Benchmarking Results. Top row
rewards are computed across all demonstration
quantities and seeds. Bottom row rewards are the
average of the final 10 episodes computed across
seeds. See Figure 11 for de-aggregated plots.

As mentioned at the beginning of Section 4,
MPAIL does not possess a persistent “pol-
icy” as it employs a zeroth-order optimization
with bootstrapped value estimates (i.e. infinite-
horizon MPPI) to instead resolve these poli-
cies online. While we have shown that this
“deconstructed policy” significantly improves
generalization and robustness, concerns regard-
ing interaction efficiency may arise due to the
lack of gradient-based value optimization as
in actor-critic policy optimization (Schulman
et al., 2017b). Here, we perform additional
benchmarking experiments to evaluate these
hypotheses.

We train GAIL, AIRL, and MPAIL on the navi-
gation task and the cartpole task across varying
quantities of expert demonstrations and random
seeds as done in (Ho & Ermon, 2016; Kostrikov
et al., 2018). While MPAIL uses an approx-
imate prior model for the navigation task, we
choose to learn a model during training of the
cartpole task to demonstrate the generality of MPC and support future work on additional tasks.
This is represented by the label, MPAIL (OM), indicating that there is a fully Online Model. Imple-
mentation details of the learned model can be found in Section D.3.

On the navigation task, MPAIL reaches optimality in less than half the number of interactions when
compared to GAIL. We also observe MPAIL to train more stably than GAIL on this task. AIRL
struggles to learn from the multimodal data (see Section 4). In addition to alleviating concerns
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Figure 8: Out-of-Distribution (OOD) performance evaluation (as in Figure 4) at t = 100 with
MPAIL (OM) and Behavior Cloning (BC) included. **BC requires access to expert actions and
is not an LfO baseline. MPAIL (OM) indicates that a dynamics model is learned online and used
for planning in MPAIL. Without a prior model, MPAIL (OM) is limited to the same amount of total
information as GAIL; any improvement in OOD generalization over a policy network is purely a
result of learning a deconstructed policy for online planning. Details of MPAIL (OM) in Section 4.3
and Section D.3.

regarding efficiency, these results support MPAIL’s characterization as a model-based algorithm as
it is more sample-efficient when provided an (approximate) prior model.

On the cartpole task, expert demonstration data results in optimal-but-sparse state visitation and,
equivalently, AIL reward signal. It is likely that, due to online dynamics model learning, MPAIL
(OM) requires more exploratory interactions to combat a large local minima induced and rein-
forced by sparse discriminator reward, model bias, and task dynamics. Similar performance between
MPAIL and AIRL may also suggest that GAIL benefits from its inherent reward bias on this task
(Kostrikov et al., 2018). Importantly, MPAIL attains comparable performance while maintaining the
benefits of model-based planning, such as interpretability, transferability, and robustness.

ADDITIONAL RESULTS

In the Appendix, additional experiments are performed to holistically evaluate MPAIL for the
purposes of real-world deployment and robot learning. Wall clock time comparisons, architecture,
hyperparameters, model ablations, proofs, de-aggregated benchmark results, and more experiment
details and discussion can be found in the appendix. We briefly highlight some key auxiliary results:

Wall Clock Time. Our timing evaluations reveal that “inference” and training times of MPAIL can
be faster or slower than GAIL (PPO) depending mostly on the number of MPPI iterations per step
and the planning horizonH . ForH = 10, MPAIL is about 10% faster than GAIL at 2 iterations. At 5
iterations, the same horizon is about 10% slower. More settings are evaluated and shown in Figure 9.

MPAIL (OM) — OOD Experiment. Does OOD robustness hold when the dynamics model
is also learned? Figure 8 compares the final states of the OOD evaluation in Section 4.1 with
MPAIL (OM) included. Note that MPAIL (OM) has access to the same amount of information as
the policy-based method. Nevertheless, there is clear improvement in OOD performance by MPAIL
(OM) when compared to policy networks. These results crucially suggest that generalizability
advantages of the deconstructed policy extends to learned dynamics models in addition to reward
and value.

Even in the case of Behavior Cloning (BC), which is directly supervised with access to expert
actions, generalization of the policy network appears random and unpredictable. For policy networks
(BC and GAIL), there are numerous agents that are initialized near the expert distribution (within red
highlight) but remain there. These agents were often merely initialized facing away from the goal,
demonstrating that policy networks tend to learn incredibly brittle representations. Most MPAIL
(OM) agents that are seen far away from the goal will continue to slowly arrive at the goal, visually
evident by their orientations directed towards the goal. Contrasting with MPAIL, MPAIL (OM)

9
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agents tend to follow longer, less optimal paths when strongly OOD. This is likely a result of the
learned dynamics being OOD and disrupting planning.

5 CONCLUSION

This work adopts an imitation learning setting familiar to humans and animals in which: (1) ex-
pert actions are not known, (2) few demonstrations are observed, and (3) the agent infers intent and
improves through interaction. While work in Inverse Reinforcement Learning (IRL) and Adversar-
ial Imitation Learning (AIL) from Observation continue to advance these goals, their applications
to real-world robots lag behind. To bridge this gap, we observe that connections to model-based
planning offers potential towards (a) improved efficiency and transfer, (b) safe and steerable de-
sign, and (c) robustness through online optimization. We call this problem setting Planning-from-
Observation (PfO). We address PfO by introducing planning-based AIL as a unification of IRL and
MPC. Model Predictive Adversarial Imitation Learning (MPAIL) is then introduced as an imple-
mentation of planning-based AIL, where a planner is continually improved through cost and value
learning.

Towards robot learning applications, we conducted three elucidating evaluations. In Section 4.1,
we reveal that reward deployment—not only reward learning as in current AIL—is critical towards
generalizable imitation learning. Re-introducing the learned reward online alleviates the burden on
policies to generalize and requires the reward, or intent, to generalize instead. In Section 4.2, we see
that reward deployment must be met with online optimization for real-world robustness. Especially
in partially observable AIL, it may not be sufficient to utilize a planner only during deployment, but
the planner should also be included in the learning process to train the reward to completion. From
a single partially observable demonstration in real-world navigation, we find that MPAIL is the
only successful imitator when compared to policy-based AIL and IRL-MPC. MPAIL also employs
representations (e.g. model, reward, value) which grant direct access to the agent’s optimization
landscape and thus decision-making process—a powerful prerequisite towards safe and interpretable
robot learning. Finally, in Section 4.3, interaction efficiency benchmarks favorable to MPAIL with
an approximate prior model address concerns regarding MPPI’s zeroth-order policy optimization
and empirically supports MPAIL’s characterization as a model-based algorithm.

MPAIL is derived from, and naturally admits, abstractions from Model Predictive Control, model-
based RL, and imitation learning. Thus, its open-source implementation aims to reflect this and
offers common ground for instantiating the many possible extensions to adjacent work through
these connections: off-policy value estimation for improved sample efficiency or offline learn-
ing (Kostrikov et al., 2018), policy-like proposal distributions and latent dynamics for scaling MPPI
to higher dimensional spaces (Hansen et al., 2024), model-free and model-based reward blending
for alleviating model bias (Bhardwaj et al., 2021), diffusion-inspired MPPI for improved online op-
timization (Xue et al., 2024), and much more. We envision that this work can provide a theoretically
and empirically justified foundation for future work at the intersection of MPC, RL, and Imitation
Learning.
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REPRODUCIBILITY

Included in the supplementary material and to be released publicly, the code for MPAIL is developed
with the intention to be released as a standalone package. Configuration files and hyperparameters
for experiments are almost entirely “flat” (viewable in the code) and are as presented in Table 3. Sim-
ulation environment is built with Isaac Lab (Mittal et al., 2023) and one of its extensions, Wheeled
Lab (Han et al., 2025). Instructions for installation can be found in their respective GitHub reposito-
ries. Hardware deployment code is also included for the (open-source) platform, MuSHR (Srinivasa
et al., 2023); an example script detailing how to save and load an MPAIL planner onto the hardware
can be found in the supplementary as well. More details explaning source code organization, as well
as experiment videos, can be found in the README.md. We welcome efforts towards reproducibil-
ity and encourage practitioners to correspond regarding difficulties.
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APPENDIX

A INFINITE HORIZON MODEL PREDICTIVE PATH INTEGRAL

In this section we present the full algorithm in detail, including MPPI as described in (Williams
et al., 2017). Modifications to “conventional” MPPI for MPAIL are highlighted in blue. Where
applicable, (x)i indicates the ith entry of x (in its first dimension, if x is a tensor).

Algorithm 2 MPPI

Require:
Number of trajectories to sample N ;
Planning horizon H;
Number of optimization iterations J
Fixed action sampling variance Σ;
Previous optimal plan a∗t−1 = {(a∗t−1)t′}Ht′=0;
Current state st;
Dynamics model fψ(s, a)
Costs cθ(s, s′)
Value Vϕ(s)

1: Procedure MPPI(st,a∗t−1)

2: (at)
0
i ← (a∗t−1)i+1 ▷ Roll previous plan one timestep forward

3: (at)
0
H ← 0 ▷ Set sampling mean to 0 for last timestep

4: for j ← 0 to J − 1 do
5: for k ← 0 to N − 1 do ▷ Model rollouts and costing (parallelized)
6: s̃k0 ← st
7: for t′ ← 0 to H − 1 do
8: akt′ ∼ N ((at)t′ ,Σ) ▷ Sample action at predicted state
9: s̃kt′+1 ← fψ(s̃

k
t′ , a

k
t′) ▷ Predict next state

10: ckt′ ← cθ(s
k
t′ , s

k
t′+1) ▷ Compute state-transition costs

11: end for
12: C(τk)←−ηHVϕ(s̃kH) +

∑H−1
t′=0 η

t′ckt′ ▷ Total trajectory cost
13: end for
14: β ← mink[C(τk)]
15: Z ←

∑n
k=1 exp−

1
λC(τk)

16: for k ← 0 to N − 1 do ▷ Weight using exponential negative cost
17: w(τk)← 1

Z exp− 1
λC(τk)

18: end for
19: for t′ ← 0 to H − 1 do ▷ Optimal plan from weighted-average actions
20: (ajt )t′ ←

∑N−1
k=0 w(τk)a

k
t′

21: end for
22: end for
23: for i← 0 to |A| do ▷ Compute optimized standard deviations for policy

24: (σt)i ←
√∑N−1

k=0 w(τk)[((a
J
t )0)i − (ak0)i]

2

25: end for
26: return aJt , σt
27: End Procedure

B PROOFS

In Section 3, we introduce the replacement of the entropy loss in Equation (2) with a KL divergence
loss. This replacement allows the MPPI planner, in place of a policy, to solve the required forward
RL problem. Integrated with the AIL objective in Equation (2), we further show that this allows
MPAIL to correctly recover the expert state occupancy distribution ρE(s, s′). In this section, we
prove both of these claims.
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Algorithm 3 πMPPI

Require:
Reward rθ := −cθ;
Value Vϕ;
MPPI(s,a) = MPPI(s,a;N,H, J,Σ, fψ, cθ, Vϕ) (Algorithm 2);
T length of episode

1: a∗0 ← 0 ▷ Initialize optimal plan
2: B ← {}
3: for t← 1 to T do
4: st ∼ T (·|st−1, at−1) ▷ Step and perceive environment
5: a∗t , σt ← MPPI(st,a∗t−1)
6: if Train then
7: at ∼ N ((a∗t )0, Iσt)
8: else if Deploy then
9: at ← (a∗t )0

10: end if
11: rt ← rθ(st, st+1) ▷ Reward from discriminator
12: B ← B ∪ (st, at, rt, st+1)
13: end for
14: return B

B.1 MPPI AS A POLICY

In this section we justify claims regarding MPPI in the forward RL problem. For completeness, we
also verify that known results remain consistent with our state-only restriction.

Proposition B.1.1. The closed form solution of Equation (3),
min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π), (3)

is
π∗(a|s) ∝ π(a|s)e

−1
β c(s,a) where c(s, a) =

∑
s′∈S
T (St+1 = s′|St = s)c(s, s′) (7)

Proof. We begin by noting that

Eπ[c(s, s′)|St = s] =
∑
a∈A

π(a|s)c(s, a) (8)

where the weighted cost c(s, a) is defined as

c(s, a) :=
∑
s′∈S
T (St+1 = s′|St = s)c(s, s′) (9)

Then for a fixed state s ∈ S, noting that the policy is normalized over actions
∑
a∈A π(a|s) = 1,

we may form the Lagrangian with respect to the objective in Equation (3) as:

L(π, β, λ) =
∑
a∈A

π(a|s)c(s, a) + β
∑
a∈A

π(a|s) log π(a|s)
π(a|s)

+ λ
∑
a∈A

π(a|s) − 1 (10)

Taking the partial derivative with respect to π(a|s) and setting to 0 we have
∂L

∂π(a|s)
= c(s, a) + β log

π(a|s)
π(a|s)

+ 1 + λ = 0 (11)

Finally,

β log
π(a|s)
π(a|s)

= −c(s, a)− 1− λ (12)

π(a|s) ∝ π(a|s)e−
1
β (c(s,a)+1+λ) (13)

π(a|s) ∝ π(a|s)e−
1
β c(s,a)
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Remark B.1.2. Given a uniform policy prior, the KL Objective in Equation (3),

min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π), (3)

is equivalent to the Entropy Objective,

min
π∈Π

Eπ[c(s, s′)]− λH(π). (14)

Proof. In order to prove this, it suffices to note that minimizing KL is equivalent to maximizing
entropy:

KL(π||π) =
∑
s∈S

dπ(s)
∑
a∈A

π(a|s) log π(a|s)
π(a|s)

(15)

=
∑
s∈S

dπ(s)

[
−H(π(·|s))−

∑
a∈A

π(a|s) log π(a|s)

]
(16)

= −
∑
s∈S

dπ(s)H(π(·|s))−
∑
s∈S

∑
a∈A

π(a|s) log π(a|s) (17)

= −H(π)−
∑
s∈S

log ks (18)

where ks = π(a|s) for any a ∈ A. Note that the sum on the left collapses by definition and the inner
sum on the right collapses since the probability of taking an action in any given state is 1. Finally,
since all the ks are constant, the second term on the right hand side is constant. Since both objectives
differ by a constant, minimizing the KL is equivalent to maximizing the Entropy given a uniform
policy prior.

Proposition B.1.3. Provided the MDP is uniformly ergodic, the MPPI objective in Equation (4),

min
π∈Π

Eτ∼π [C(τ) + βKL(π(τ) ||π(τ))] (4)

is equivalent to the RL objective in Equation (3),

min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π). (3)

Proof. Before continuing, we verify that infinite horizon MPPI indeed predicts an infinite horizon
estimate of the return. For simplicity, we momentarily revert to a reward only formulation, replacing
the cost cθ(s, s′) with the reward Rθ(s, s

′) and the control discount η with γ. We proceed by
expanding the return,

Eτ∼π[R(τ)] = Eτ∼π[γHVϕ(sH) +

H−1∑
t=1

γtR(st, st+1)] (19)

= Eτ∼π[Eπ[
∞∑
t=H

γtR(st, st+1)|SH = sH ] +

H−1∑
t=1

γtR(st, st+1)] (20)

= Eτ∼π[
∞∑
t=H

γtR(st, st+1) +

H−1∑
t=1

γtR(st, st+1)] (21)

= Eτ∼π[
∞∑
t=1

γtR(st, st+1)] (22)

where we have made use of the definition of a value function Vϕ (Equations 18 to 19) and the tower
property of expectation (Equations 19 to 20).
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Let f(s, s′) = c(s, s′) + βKL(π(·|s)||π(·|s)). For either objective to be valid the cost and KL
Divergence would have to be bounded. Thus, we may safely assume that f is uniformly bounded
||f ||∞ ≤ K. Let δt = Est,st+1∼dt [f(st, st+1)]− Es,s′∼dπ [f(s, s′)] be the error between estimates
of the objective.

Since the MDP is uniformly ergodic, we may bound the rate of convergence of the state distribution
at a time t, dt to the stationary distribution dπ

∃λ ∈ (0, 1),M ∈ N s.t ||dt − dπ||TV ≤Mλt (23)

where || · ||TV is the total variation metric.

Continuing by bounding error δt,

|δt| ≤ ||f ||∞||dt − dπ||TV ≤ KMλt (24)

We then have that |
∑∞
t=0 η

tδt| ≤ KM
∑∞
t=0(ηλ)

t = KM
1−ηλ = C <∞.

We may now begin working with the MPPI Objective in Equation (4)

Eτ∼π[C(τ)+βKL(π(τ) ||π(τ))] (25)

=

∞∑
t=0

ηt Est,st+1∼dt [f(st, st+1)] (26)

=

∞∑
t=0

ηt [Es,s′∼dπ [f(s, s′)] + δt] (27)

=
1

1− η
Es,s′∼dπ [f(s, s′)] +

∞∑
t=0

ηtδt (28)

Note that the MPPI objective and Entropy Regularized RL objective differ by scaling and a bounded
additive constant, independent of π. Thus, minimizing both objectives are equivalent.

B.2 MPAIL AS AN ADVERSARIAL IMITATION LEARNING ALGORITHM

In this section, we integrate findings from Section B.1 with the AIL objective to theoretically validate
MPAIL as an AIL algorithm. Specifically, we observe that at optimality, we recover the log expert-
policy transition density ratio, which in turns yields a maximum entropy policy on state-transitions.
We then discuss the identifiability limits imposed by observing only (s, s′) rather than (s, a, s′).
Throughout this section we make use of the state-transition occupancy measure, defined as ρπ :
S × S → R where ρπ(s, s′) =

∑∞
t=1 γ

tT (St+1 = s′, St = s |π) as in (Torabi et al., 2019a).

Proposition B.2.1. The optimal reward is

f∗θ (s, s
′) = log

(
ρE(s, s

′)

ρπ(s, s′)

)
(29)

Proof. Note that the optimal discriminator is achieved when D∗(s, s′) = ρE(s,s′)
ρE(s,s′)+ρπ(s,s′)

as used
in (Ghasemipour et al., 2020) and shown in (Goodfellow et al., 2014) Section 4 Proposition 1.

f∗θ (s, s
′) = log(D∗(s, s′))− log(1−D∗(s, s′)) (30)

= log

(
ρE(s, s

′)

ρE(s, s′) + ρπ(s, s′)

)
− log

(
ρπ(s, s

′)

ρE(s, s′) + ρπ(s, s′)

)
(31)

= log

(
ρE(s, s

′)

ρπ(s, s′)

)
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This shows that, by setting r(s, s′) = fθ(s, s
′), the recovered reward function is the log-ratio of

state-transition occupancy measure from the expert to the policy.

Lemma B.2.2. MPAIL minimizes a regularized KL divergence between the policy’s state-transition
occupancy measure and the expert’s.

Proof. Recall from Proposition B.1.1 that while solving for the RL objective, MPPI finds a policy
of the form

π(a|s) ∝ π(a|s)e−
1
β c(s,a) (32)

Applying Proposition B.2.1, we plug c(s, s′) = −f∗θ (s, s′) into Equation (9) to obtain

π∗(s, a) ∝ π(s, a) exp

(
− 1

β

∑
s′∈S
T (s′|s)[log ρπ − log ρE)]

)
(33)

Note that when the policy distribution ρπ matches the expert distribution ρE the exponential term
collapses. Thus, when the occupancy measures match, the policy updates cease to have an effect
and the optimization attains a fixed point.

In fact, we may note that for any fixed state s ∈ S, the cost accumulated by the policy is

∑
s′∈S

ρπ(s, s
′)c∗(s, s′) =

∑
s′∈S

ρπ(s, s
′) log

(
ρπ(s, s

′)

ρE(s, s′)

)
= KL(ρπ(s, ·)||ρE(s, ·)) (34)

Finally, the MPPI objective can be written as

min
π∈Π

KL(ρπ||ρE) + β KL(π ||π) (35)

showing that the MPAIL procedure minimizes the entropy regularized KL Divergence between state-
transition occupancy measures. In this sense, we have shown that MPAIL can be indeed classified
as an AIL algorithm which seeks to match the expert’s occupancy measure through an MPPI Policy.

Remark B.2.3. On Identifiability. A question naturally arises about the limitations that being state-
only imposes. If state transitions are deterministic and invertible, observing (s, s′) is the same as
observing the unique action a that caused it. Then r(s, s′) = r(s, a) and by the 1-1 correspon-
dence of policies with state-action occupancy measures (Ho & Ermon, 2016), the recovered policy
becomes unique.

In general, this assumption has varying degrees of accuracy. When transitions are many to
one or stochastic, multiple actions can produce the same transition (s, s′). Then ρπ(s, s

′) =
ρπ(s)

∑
a∈A π(a|s)T (s′|s, a) becomes a mixture over actions which induces a range of respec-

tive policies. For instance, if T (s′|s, a1) = T (s′|s, a2) for actions a1, a2, the expert could perform
either action and a state-transition based reward would not distinguish between them. Nonetheless,
IRL is already an ill-posed problem due to the many to one relationships between policies, rewards,
and demonstrations. Though the ambiguity is exacerbated by lack of demonstrated actions, it is still
inherent to the problem.

C IMPLEMENTATION

In this section we provide further details about the algorithm implementation. Some features in-
corporated here are deemed well-known (i.e. spectral normalization) or not rigorously studied for
statistical significance but included for completeness and transparency.
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C.1 REGULARIZATION

Spectral Normalization. As often found in GAN and AIL surveys (Orsini et al., 2021; Miyato
et al., 2018), we corroborate that applying spectral normalization to the discriminator architecture
appeared to have improved MPAIL training stability and performance. Application of spectral nor-
malization to the value network did not appear to make a noticeable difference.

L2 Weight Regularization. Some experimentation was done with L2 weight regularization, but
it was ultimately not used for any simulation results. Instead, usage of the weight regularization
for the real experiment (Section 4.2) appeared to help stabilize training and allow for more reliable
model selection and deployment.

C.2 HYPERPARAMETERS

Hyperparameter Value
Disc. optimizer (θ) Adam (β1 = 0.5, β2 = 0.999)
Disc. learning rate 1e-4
Disc. hidden width 32
Disc. hidden layers 2
Disc. L2 coefficient 0 (sim), 0.001 (real)
Value optimizer (ϕ) Adam (β1 = 0.9, β2 = 0.999)
Value learning rate 1e-3
Value hidden width 32
Value hidden layers 2

Value loss clip 0.2
Discount (γ) 0.99

Generalized return (λ) 0.95
Value max grad norm 1.0

Mini batches 3
Epochs 3

Trajectories (N ) 512
Planning horizon (H) 10

Iterations (J) 5
Sampling variance (Σ) diag([0.3 . . . ])
Initial temperature (λ0) 1.0
Markup/Discount (η) 1.01

Temp. decay rate 0.01
Minimum temp. 1e-5

Value:Disc update ratio 3:1 (sim), 1:1 (real)

Table 3: MPAIL Hyperparameters. Used across
all experiments unless specified otherwise.

Fundamentally derived from AIL and MPPI,
we can etymologically partition hyperparame-
ters into those induced by AIL (orange) and by
MPPI (blue). Remaining non-highlighted pa-
rameters for this work are introduced and dis-
cussed below.

Temperature Decay. As noted in Section 3,
we found that an initial temperature with a
gradual decay (down to a minimum) was help-
ful in preventing early and unrecoverable col-
lapse. The intuition for this decision is simi-
lar to that of decaying policy noise injection in
many popular RL frameworks (Lillicrap et al.,
2019; Hansen et al., 2024), since the tempera-
ture is directly related to the variance of the op-
timized gaussian distribution. This component
remains under investigation as its usage is not
always necessary for meaningful convergence,
but it is perhaps practically useful as it allevi-
ates temperature tuning labor.

Value-to-Discriminator Update Ratio. Com-
mon to existing AIL (and GAN) implementa-
tions, MPAIL benefits from a balancing of gen-
erator and discriminator updates. Note that, like
GANs, AIL tends to oscillate aggressively throughout training (Luo et al., 2024). As MPAIL does
not enforce a constrained policy update each epoch (as TRPO does (Schulman et al., 2017a)), the
policy is exposed more directly to the discriminator’s oscillations which can further hinder on-policy
value estimation. A further converged value function is also theoretically more stationary from the
perspective of πMPPI as infinite-horizon MPPI.

Markup. A notable quirk discovered during implementation is the relationship between costs and
rewards. While the two concepts are generally regarded as dual (with negation), it is worthwhile
noting that discounting is not closed under negation. Meaning, it is not correct to apply the same
discount factor to the costs as they are done to the summation of rewards in the return Gt. Consider
the reward with a discount applied r1 = γ r(s, s′) and the reward of a cost with a discount applied
r2 = −γ c(s, s′). Observe that for γ < 1, r1 decreases while r2 increases. Thus, when using costs,
the H-step factor in the MPPI horizon, η, should not decrease over t′. In fact, when applying η < 1,
we found that MPAIL does not meaningfully converge ever on the navigation task. (Geldenbott &
Leung, 2024) names the usage of η > 1 as a markup. In our case, we apply a similar empirical
factor such that η := 1/γ > 1. While we suspect a more rigorous relationship between η and γ,
we leave its derivation for future work. However, we remark that a reward-only variant of MPPI
which precludes these relationships is equally possible as done in (Hansen et al., 2022). Costs are
maintained in this work due to wider familiarity in practice (Han et al., 2024a; Williams et al., 2017;
Morgan et al., 2021; Finn et al., 2016).
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Figure 9: Comparing “Inference” Times
for Navigation Task. Time taken to com-
plete one episode of 100 timesteps with 64
parallel environments across varying hori-
zon lengths and MPPI optimization itera-
tions. PPO (in policy-based AIL) is used as
implemented in the RSL library (Rudin et al.,
2022). All training runs in this work are
performed on an NVIDIA RTX 4090 GPU.
Isaac Lab is chosen as our benchmarking
and simulation environment due to its paral-
lelization and robot learning extensions (Mit-
tal et al., 2023; Han et al., 2025).

MPAILPolicy initialized. Total number of params: 3779
Dynamics: 0
Sampling: 0
Cost: 3778
Temperature: 1
MPAILPolicy(

(dynamics): KinematicBicycleModel()
(costs): TDCost(

(ss_cost): GAIfOCost(
(reward): Sequential(

(0): Linear(in_features=24, out_features=32,
bias=True)

(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=32, out_features=32,

bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=32, out_features=1,

bias=True)
)

)
(ts_cost): CostToGo(

(value): Sequential(
(0): Linear(in_features=12, out_features=32,

bias=True)
(1): ReLU()
(2): Linear(in_features=32, out_features=32,

bias=True)
(3): ReLU()
(4): Linear(in_features=32, out_features=1,

bias=True)
)

)
)
(sampling): DeltaSampling()

)

Figure 10: PyTorch (Paszke et al., 2019) Model
Architecture from Train Log. MPAIL read-
ily admits other well-studied components of the
model-based planning framework (e.g. sampling,
dynamics) (Vlahov et al., 2025; 2024). This work
focuses on costing from demonstration.

C.3 COMPUTATION

MPAIL is crucially implemented to be parallelized across environments in addition to trajectory op-
timization. In other words, in a single environment step, each parallel environment independently
performs parallelized sampling, rollouts, and costing entirely on GPU without CPU multithread-
ing. MPPI also allows for customize-able computational budget, similar to (Hansen et al., 2024)
(see Figure 9). For the navigation and cartpole tasks, we find that online trajectory optimization
implemented this way induces little impact on training times. In exchange, MPPI can be more space
intensive due to model rollouts having space complexity ofO(HN |S|) per agent. On the navigation
task benchmark settings, this is an additional 245 kB per agent or 15.7 MB in total for 64 environ-
ments. Figure 9 shows benchmarks on training times that demonstrate comparable times to PPO’s
policy inference. Overall, training runs for Section 4.3 between MPAIL and GAIL on the navigation
task are comparable at about 45 minutes each for 500 iterations.

D EXPERIMENTAL DETAILS

D.1 REAL-SIM-REAL NAVIGATION

Setup Details. Before continuing with the discussion of our results, we provide further details about
the setup of the experiment. The platform itself is an open-source MuSHR platform as detailed in
(Srinivasa et al., 2023). Notably, the compute has been replaced with an NVIDIA Jetson Orin NX
as mentioned in Section 4.2. Poses (position, orientation; [x y z r p y]) are provided by a
motion-capture system at a rate of 20 Hz. Velocities are body-centric as estimated by onboard wheel
encoders (v = vxb1 + vyb2 + vzb3, such that b1 points forward, b2 points left, and b3 completes
the right-hand frame; basis vectors are rigidly attached to the vehicle (Han et al., 2024a)). Note that
the vehicle is operated without slipping nor reversing such that vy ≈ vz ≈ 0 and vx > 0 (Han
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et al., 2024b). The recorded states used for the expert demonstration data is 240 timesteps long.
Altogether, the data can be written as sE ∈ {(xt, yt, zt, vx,t, vy,t, vz,t)}240t=1.

A remark: GAIL for this task is necessarily implemented with “asymmetry” between actor and
reward. Since, the discriminator must receive as input expert observations sE while the agent is
provided (r, p, y) in addition to observations in sE . In theory, there should be no conflict with the
IRLfO (Equation (1)) formulation as this remains a valid reward but on a subset of the state.

Additional Discussion of Results.

To understand the role of partial observability in the experiment design, consider a simplified hand-
designed cost using the partially observable expert data c(s, s′|sE , s′E). A reference vector can be
computed through the difference of positions between s′ and s then scaled by the demonstrated
velocities: c(s, s′|sE , s′E) := ∥Iv(s, s′)− vxE [(x′E −xE)e1+(y′E − yE)e2]∥2 where ei are global
basis vectors for global frame I and Iv(s, s′) is the robot velocity in I. Of course, this example
assumes the ability to correctly choose the corresponding (sE , s

′
E) pair for input (s, s′) out of the

entirety of the expert dataset dE . It should be clear that partial observability and state-transitions play
critical roles in the recovery of this non-trivial cost function. This experiment presents a necessary
challenge towards practical AIL (Orsini et al., 2021) and scalable Learning-from-Observation (LfO)
(Torabi et al., 2019b).

IRL-MPC was evaluated across three ablations: (a) reward-only, (b) value-only, and (c) reward-and-
value. The results in Figure 6 reflect the performance of (a) reward-only. The other implementations
were distinctly worse than (a) and frequently devolved into turning in circles much like GAIL.

In both cases of GAIL and MPAIL, we find that the agents occasionally travel counter-clockwise
(where the expert travels clockwise) during training, suggesting that (sE , s

′
E) appears close to

(s′E , sE) through the discriminator. As the data is collected through real hardware, it is suspected
that state estimation noise introduces blurring between states that are separated by only 50 ms. GAIL
is otherwise known to perform poorly in the existence of multi-modal data (Li et al., 2017). This is
further corroborated by its unstable performance on the navigation benchmark. And, to the best of
our knowledge, similar Real-Sim-Real applications of AIL appear sparse if existent at all. Adjacent
works which use real demonstration data but train in real include (Tsurumine & Matsubara, 2022;
Sun et al., 2021). Even while training in real, GAIL’s performance drops signficantly (90%→ 20%)
when presented with imperfect demonstrations for even straightforward tasks like reaching (Tsu-
rumine & Matsubara, 2022; Sun et al., 2021). These observations might suggest why the GAIL
discriminator is unable to learn meaningfully in simulation and produces a poor policy.

D.2 SIMULATED NAVIGATION TASK DETAILS

Reward and Data. The exact form of the reward used for training PPO and for metrics is given by

r(s) :=
√
102 + 102 −

√
(x− 10)2 + (y − 10)2.

Figure 3 visualizes four demonstrations from the converged PPO “expert” policy. Additional demon-
strations are generated by playing more environments from this policy for one episode such that each
demonstration is distinct. Each episode is 100 timesteps long, where each timestep is 0.1 seconds.

OOD Experiment. OOD Energy in Figure 5 is computed as described by Liu et al. (2020). Namely,
with respect to the expert data dE , we fit a reference distribution using P̃E = N (µ̄E , Σ̄E). Then,
the OOD energy is given by E(s; pE) = log pE(s). Some limitations of this procedure can be ob-
served given that ID points for GAIL do not receive as much reward as one might expect. However,
this remains reasonable considering that the GAIL policy may forget ID behavior, which can be
seen in Figure 4 by agents clearly ID remaining static throughout the episode. Future work might
better explore quantifying OOD towards measuring AIL generalization through direct usage of the
discriminator.

D.3 PREDICTIVE MODEL LEARNING TOWARDS GENERALIZABLE MPAIL

For tasks beyond navigation (see also Section D.5 for the Ant environment), planning rollouts were
generated from a deterministic dynamics model fψ(s, a) learned entirely online. The dynamics
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model was trained to minimize the mean squared error between the predicted and observed st+1,
given st and at. The loss being optimized can be written as:

ŝi+1 = fψ(si, ai), L =
1

HB

∑
s,a∈B

(si+1 − ŝi+1)
T (si+1 − ŝi+1) (36)

with model parameters ψ, transition buffer B, and a mini-batch of size HB sampled from B. If
used, the update for the model occurs after line 4 in Algorithm 1.

Dynamics Model Hyperparameter Value
Optimizer Adam(β1 = 0.9, β2 = 0.999)

Learning rate 1e-3
LR decay rate 0.9

LR decay frequency (ep.) 25 (Ant), 15 (Cartpole)
Min. LR 1e-6

Hidden width 256 (Ant), 64 (Cartpole)
Hidden layers 3

Table 4: Dynamics Learning Hyperparameters.

Training augmentations. Several train-
ing augmentations were made to improve
model accuracy and stability. A transi-
tion replay buffer, which stored transitions
from multiple episodes, was used to train
the dynamics model for multiple epochs
during each MPAIL training iteration. Af-
ter each episode, the buffer was updated
by randomly replacing old transitions with
those from the latest episode. This off-
policy buffer helped stabilize training and
prevent overfitting when training using multiple epochs. Furthermore, applying a step-based learn-
ing rate decay improved convergence speed. Dynamics model-specific hyperparameters are listed in
Table 4.

D.4 ABLATIONS

Figure 12 shows the results of an ablation study, investigating the effect of including costs or values
in the MPAIL formulation. We find that including both is necessary for reasonable behavior across
varying horizon lengths. We observe that value-only planning can quickly improve but is highly
unstable and is unreliable as a generator. As expected, cost-only planning performs progressively
better at longer planning horizons. However, should the agent find itself off-distribution, it is not able
to return to the distribution until it randomly samples back in, which may potentially never occur.
For instance, many agents which are initialized facing the opposite direction drive randomly without
ever returning to the distribution. Without a value function guiding the agent, the discriminator (i.e.
cost) does not provide a significant reward signal for returning to the distribution. This can be
observed in the H = 10 plot where the performance of cost-only planning quickly drops as the
discriminator is further refined on the expert data, decreasing the likelihood of randomly sampling
into distribution. In this sense, the combination of cost and value operates as intended: costing
is necessary for defining and staying inside the expert distribution, while value is necessary for
generalizing the reward beyond the support of the expert elsewhere in the environment.

D.5 TOWARDS HIGH-DIMENSIONAL TASKS FROM DEMONSTRATION WITH
SAMPLED-BASED MPC

Figure 13: Isaac Lab Ant-v2 Experiment with
MPAIL (OM) and GAIL.

Figure 13 provides an experiment of MPAIL
training an agent in the Isaac Lab implemen-
tation of the Ant-v2 environment as a step to-
wards high-dimensional applications. As ex-
pected, MPPI’s (vanilla) sampling procedure
struggles to be competitive with policy-based
optimization in higher-dimensional spaces.
However, MPAIL demonstrates signs of life
in enabling MPPI to optimize a state space
otherwise considered extremely challenging
for sample-based planning. Note that Isaac
Lab’s Ant implementation prescribes a 60-
dimensional observation and 8-dimensional action space, rather than Mujoco’s 26-dimensional ob-
servation. Thus, the space is 120-dimensional for costing cθ(s, s′) and 80-dimensional for MPPI
with a planning horizon of 10 timesteps. Despite this, a learned cost is capable of guiding a real-
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Figure 12: Ablating single-step costs cθ and value Vϕ across different Horizon (H) lengths.
“Cost-only” experiments are performed by not evaluating Vϕ on the final state in each model rollout.
“Value-only” experiments are performed by not evaluating cθ on the H-step state-transitions. See
Algorithm 2, line 12 for exact usage.

time vanilla MPPI optimization to execute walking behaviors in the ant task, albeit slower, even
from few demonstrations.

“Remembering” locally optimal policies through a learned policy-like proposal distribution may
help planning capabilities generalize to higher-dimensional spaces. Additionally, modeling dynam-
ics in latent-space and using model ensembles have been shown to significantly improve perfor-
mance in model-based reinforcement learning (Hansen et al., 2022) and are promising directions for
future work for high-dimensional tasks. Finally, Figure 10 illustrates a key takeaway of this frame-
work: learning costs through MPAIL remains orthogonal to other works which seek to improve
sample-based MPC through sampling (Xue et al., 2024; Vlahov et al., 2024; Sacks & Boots, 2023),
optimization (Vlahov et al., 2024; Sacks et al., 2024), and dynamics (Hansen et al., 2024). We be-
lieve that integration of developments in MPC along with application-specific cost regularization
(Finn et al., 2016) may be critical for exploring the full potential of planning from observation.
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