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ABSTRACT

How can we learn generative models to sample data with arbitrary logical compo-
sitions of statistically independent attributes? The prevailing solution is to sample
from distributions expressed as a composition of attributes’ conditional marginal
distributions under the assumption that they are statistically independent. This pa-
per shows that standard conditional diffusion models violate this assumption, even
when all attribute compositions are observed during training. And, this violation
is significantly more severe when only a subset of the compositions is observed.
We propose COIND to address this problem. It explicitly enforces statistical inde-
pendence between the conditional marginal distributions by minimizing Fisher’s
divergence between the joint and marginal distributions. The theoretical advan-
tages of COIND are reflected in both qualitative and quantitative experiments,
demonstrating a significantly more faithful and controlled generation of samples
for arbitrary logical compositions of attributes. The benefit is more pronounced for
scenarios that current solutions relying on the assumption of conditionally inde-
pendent marginals struggle with, namely, logical compositions involving the NOT
operation and when only a subset of compositions are observed during training.

1 INTRODUCTION
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Figure 1: Generative Modeling of Logical Compositions. (a-c) Consider the task of generating
MNIST samples for any logical composition of digits and colors by learning on observational data of
different supports. (d) Standard diffusion models fail to generate data with arbitrary logical compo-
sitions of attributes. We generate data from simple unseen compositions (row 2), and more complex
logical compositions (rows 3,4) through COIND, even under non-uniform and partial support.

Many applications of generative models, including image editing (Kim et al., 2022; Brooks et al.,
2022), desire explicit and independent control over statistically independent attributes. For example,
in face generation, one might want to control the amount of hair, smile, etc., independently. Con-
sider the illustrative task in Fig. 1 of generating realistic samples of colored handwritten digits with
explicit and independent control over the composition of color and digit. For example, “generate
an image of digit 4 while excluding the colors green and pink”. This composition can be logically
expressed as “4∧¬[Green∨Pink]”, where ∧, ∨, and ¬ represent the three primitive logical operators
AND, OR, and NOT, respectively.

Existing solutions (Liu et al., 2023; Du et al., 2020; Nie et al., 2021) realize this goal by mapping the
logical expressions into a probability distribution involving the conditional marginal distributions
p(image | digit = 4), p(image | color ̸= Green), and p(image | color ̸= Pink), and sampling
from it. These marginal distributions are obtained either by learning separate energy-based models
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for each compositional attribute (Du et al., 2020; Nie et al., 2021) or by factorizing the attributes’
learned joint distribution Liu et al. (2023). Both approaches, however, are predicated on the critical
assumption that the conditional marginal distributions are statistically independent of each other.

Employing the approaches mentioned above, for instance Liu et al. (2023), to our illustrative ex-
ample, we observe that when the conditional diffusion model is learned on data with non-uniform
(Fig. 1b) or partial (Fig. 1c) support of the compositional attributes, the models fail to generate re-
alistic samples (columns 3 and 5 of row 2 in Fig. 1d) or generate realistic samples with logically
inaccurate compositions (columns 3 and 5 of rows 3 and 4 in Fig. 1d). This is true even for simple
unseen logical compositions of attributes (AND in row 2 of Fig. 1d) or for complex logical com-
positions (rows 3 and 4 of Fig. 1d involving a NOT operation). Such failure under partial support
was also observed by Du et al. (2020). Surprisingly, note that even when all compositions of the
attributes are observed, the model fails to generate realistic samples (column 1 of row 2 in Fig. 1d).

These observations naturally raise the following research questions that this paper seeks to answer:

– (RQ1) Why do standard classifier-free conditional diffusion models fail to generate data with
arbitrary logical compositions of attributes? We hypothesize that violating the assumption that the
conditional marginal distributions are statistically independent of each other will result in poor image
quality, diminished control over the generated image attributes, and, ultimately, failure to adhere to
the desired logical composition. We verify and confirm our hypothesis through a case study in § 3.

– (RQ2) How can we explicitly enable conditional diffusion models to generate data with arbitrary
logical compositions of attributes? We adopt the principle of independent causal mechanisms (Pe-
ters et al., 2017) to express the conditional data likelihood in terms of the constituent conditional
marginal distributions to ensure that the model does not learn non-existent statistical dependencies
from the training data.

Summary of contributions.
1. In Section 3, we show that conditional diffusion models trained to maximize the likelihood

of the observed data do not learn independent conditional marginal distributions, even when
all compositions of the attributes are uniformly (Fig. 1a) observed. Furthermore, this prob-
lem is exacerbated in more practical scenarios where we learn from non-uniform (Fig. 1b)
or partial (Fig. 1c) support of the compositional attributes. Instead, the models learn non-
existent statistical dependencies induced by unknown confounding factors.

2. Through causal modeling, we derive a training objective, COIND, comprising the standard
score-matching loss and a conditional independence violation loss required to enforce the
conditional independence relations necessary for enabling logical compositions in condi-
tional diffusion models.

3. Strong inductive biases, in the form of the conditional independence relations in COIND,
enable arbitrary logical compositionality in conditional diffusion models with fine-grained
control over conditioned attributes and diversity for unconditioned attributes. COIND
achieves these goals while being monolithic and is scalable with the number of attributes.

2 LOGICAL COMPOSITIONALITY IN DIFFUSION MODELS

We study the problem of generating data with attributes that satisfy a given logical relation between
them. We consider the case where the attributes are statistically independent of each other. However,
not all attribute compositions may be observed during training. To study this problem, we first
model the underlying data-generation process using a suitable causal model that relates data and
their independently varying attributes.

Notations. We use bold lowercase and uppercase characters to denote vectors (e.g., a) and ma-
trices (e.g., A) respectively. Random variables are denoted by uppercase Latin characters (e.g.,
X). The distribution of a random variable X is denoted as p(X), or as pθ(X) if the distribution is
parameterized by a vector θ.
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Data Generation Process. The data generation process consists of observed data X (e.g., im-
ages) and its attribute variables C1, C2, . . . , Cn. To have explicit control over these attributes

C1 C2 . . . Cn

X

Guid
an

ce

Unobserved Confounding

(a) True underly-
ing causal model

C1 C2 . . . Cn

X

Unobserved Confounding

(b) Causal model
during training

Figure 2: (a) C1, C2, . . . , Cn vary
freely and independently in the un-
derlying causal graph. (b) How-
ever, they become dependent dur-
ing training due to unknown and
unobserved confounding factors.

during generation, they should vary independently of each
other (Mathieu et al., 2016). Note that the attributes that we
wish to control in practice may be causally related to each
other. But, we limit our work to only those causal graphs
where they are not causally related to each other as shown
in Fig. 2a. Each Ci assumes values from a set Ci and the
joint set C = C1 × · · · × Cn is referred to as the attribute
space. These attributes generate the observed data X accord-
ing to the causal graph described in Fig. 2a. Functionally,
X = f(C1, . . . , Cn,UX) where f is the function that gen-
erates X , and UX collectively denotes the unobserved exoge-
nous variables that affect X . Outside of the graphical assump-
tions in Fig. 2a, we also assume that f is invertible w.r.t. the
attributes such that it is possible to estimate C1, . . . , Cn from
X . Last, we assume that C1, . . . , Cn affect X independently
of each other. As a result, C1, . . . , Cn are mutually independent given X .

Problem Statement. When the training data is sampled according to the causal graph in Fig. 2a,
all attribute compositions are equally likely to be observed. We refer to this scenario as uniform
support. Although the attributes can vary independently, sometimes they may not do so in the train-
ing dataset due to unobserved confounding such as sample selection bias (Storkey, 2008), leading to
an attribute shift. In such cases, the underlying causal model during training modifies as shown in
Fig. 2b, where blue dashed curves denote the unobserved confounding. Due to this confounding, the
attributes become dependent during training, i.e., Ptrain(C1, . . . , Cn) ̸=

∏n
i=1 Ptrain(Ci). As a result,

the conditional distribution of X | Ci does not match its true underlying distribution. In practice,
all attribute compositions may be observed with unequal probabilities. We refer to this scenario as
non-uniform support. In some cases, this dependence could lead to the training samples consisting
of only a subset of all attribute compositions as shown in Fig. 1c, i.e., Ctrain ⊂ C. We refer to this
scenario as partial support. We aim to learn conditional diffusion models under these scenarios to
generate samples with attributes that satisfy a given logical compositional relation between them.
The formal definitions of the densities in these scenarios are provided in App. D.4.

The attribute space in our problem statement has the following properties. (1) The attribute space
observed during training Ctrain covers C in the following sense:

Definition 1 (Support Cover). Let C = C1 × · · · × Cn be the Cartesian product of n finite sets
C1, . . . , Cn. Consider a subset Ctrain ⊂ C. Let Ctrain = {(c1j , . . . , cnj) : cij ∈ Ci, 1 ≤ i ≤ n, 1 ≤
j ≤ m} and C̃i = {cij : 1 ≤ j ≤ m} for 1 ≤ i ≤ n. The Cartesian product of these sets is
C̃train = C̃1 × · · · × C̃n. We say Ctrain covers C iff C = C̃train.

Informally, this assumption implies that every possible value that Ci can assume is present in the
training set, and open-set attribute compositions do not fall under this definition. For instance, in the
Colored MNIST example in Fig. 1, we are not interested in generating a digit with an unobserved
11th color. (2) For every ordered tuple c ∈ Ctrain, there is another c′ ∈ Ctrain such that c and c′ differ
on only one attribute. Similar assumptions were discussed in (Wiedemer et al., 2024).

Preliminaries on Score-based Models. In this work, we train conditional score-based mod-
els (Song et al., 2021) using classifier-free guidance (Ho & Salimans, 2022) to generate data cor-
responding to a given logical attribute composition. Score-based models learn the score of the ob-
served data distributions ptrain(X) and ptrain(X | C) through score matching (Hyvärinen & Dayan,
2005). Once the score of a distribution is learned, samples can be generated using Langevin dynam-
ics. For logical attribute compositional generation, the given attribute composition is decomposed
in terms of two primitive logical compositions: (1) AND operation (e.g., C1 = c1 ∧ C2 = c2 gen-
erates data where attributes C1 and C2 takes values c1 and c2 respectively), and (2) NOT operation
(e.g., C1 = ¬c1 generates data where the attribute C1 takes any value except c1). Liu et al. (2023)
proposed the following modifications during sampling to enable AND and NOT logical operations
between the attributes, assuming that the diffusion model learns the conditional independence rela-
tions from the underlying data-generation process, i.e., p(C1, . . . , Cn|X) =

∏n
i=1 p(Ci|X).
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Logical AND (∧) operation: Since pθ(C1 ∧ C2 | X) = pθ(C1 | X)pθ(C2 | X) samples are
generated for the logical composition C1 ∧ C2 by sampling from the following score:

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X) (1)

Logical NOT (¬) operation: Following the approximation pθ(¬C2 | X) ∝ 1
pθ(C2|X) , the score to

sample data for the logical composition C1 ∧ ¬C2 can be expressed as,

∇X log pθ(X | C1 ∧ ¬C2) = ∇X log pθ(X) +∇X log pθ(X | C1)−∇X log pθ(X | C2) (2)

Logical OR (∨) operation: From the rules of Boolean algebra, C1∨C2 operation can be expressed
in terms of ∧ and ¬ as ¬(¬C1 ∧ ¬C2). Following the approximation for ¬ from above, it follows
that p(¬(¬C1 ∧ ¬C2)) ≈ p(C1)p(C2).

For example, to generate colored handwritten digits with the logical composition “4 ∧ ¬[Green ∨
Pink]”, the score of the logical composition can be decomposed into its constituent logical primitive
operations and further in terms of the score of marginals, which can be obtained from the trained
diffusion models. Therefore, ∇X log pθ(X | 4 ∧ ¬ [G ∨ P]) is given by:

= ∇X log pθ(X | C1 = 4 ∧ C2 = ¬G) +∇X log pθ(X | C1 = 4 ∧ C2 = ¬P)−∇X log pθ(X)

= 2∇X log pθ(X | C1 = 4)−∇X log pθ(X | C2 = G)−∇X log pθ(X | C2 = P) +∇X log pθ(X)

Notice that the scores to sample from these primitive logical compositions involve conditional
marginal likelihood terms X | Ci. Therefore, to perform logical composition, it is critical to ac-
curately learn the conditional marginals of the attributes. Note that we use the term “marginals” to
generally refer to p(X | Ci), and not p(Ci).

3 WHY DO CONDITIONAL DIFFUSION MODELS FAIL TO GENERATE DATA
WITH ARBITRARY LOGICAL COMPOSITIONS OF ATTRIBUTES?

To address (RQ1), we utilize the task of generating synthetic images from the Colored MNIST
dataset for any given combination of color and digit, as introduced in § 1. However, not all the de-
sired compositions may be observed during training. To study the effect of data support, we consider
the three training distributions of attribute compositions defined in § 2: (1) uniform support, where
every ordered pair in C has an equal chance of being observed (Fig. 1a), (2) non-uniform sup-
port, where every ordered pair in C appears but with unequal probabilities (Fig. 1b), and (3) partial
support, where only the ordered pairs from a subset Ctrain ⊂ C are observed (Fig. 1c).

For each scenario, we evaluate the conditional joint and marginal distributions of the attributes
learned by the model in terms of their accuracy in generating images with attributes that match
the desired compositions. During inference, the images are separately sampled from the joint distri-
bution, ∇X log pθ(X | C), and from the product of the learned marginals as shown in Eq. (1), fol-
lowing Liu et al. (2023). We refer to the former method as joint sampling and the latter as marginal
sampling. To evaluate these methods, we first infer attributes (ĉ1, . . . , ĉn) from the generated images
X̂ using attribute-specific classifiers ϕCi

and compare them against the expected attributes from the
logical composition (c1, . . . , cn). We refer to this accuracy as conformity score (CS) and is given
by CS(g) = Ep(C)p(U) [

∏n
i 1(Ci, ϕCi

(g(C,U)))] where 1(·, ·), g, and U are the indicator function,
diffusion model, and the stochastic noise in the generation process respectively. We provide more
details about conformity score in App. D.6.

Support Conformity Score JSD ↓
Joint ↑ Marginal ↑

Uniform 100.00 97.40 0.16
Non Uniform 100.00 82.60 0.33
Partial 65.27 17.90 2.76

Table 1: Conformity Scores and Jensen-Shannon
divergence for samples generated from joint and
marginal distributions learned by models under vari-
ous support settings for the Colored MNIST dataset.

Table 1 compares the joint and the marginal distributions learned by models trained under various
training scenarios. We draw the following conclusions.

Diffusion models struggle to generate unseen attribute compositions. From the conformity
scores of images sampled from the joint distribution, we conclude that while the models trained
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with uniform and non-uniform support generate images with accurate attribute compositions, those
trained with partial support struggle to generate images for unseen attribute compositions. This can
be explained through the standard training objective of diffusion models to maximize the likelihood
of conditional generation. Since every possible attribute composition is observed with uniform and
non-uniform support, the model accurately learns ptrain(X | C), i.e., pθ(X | C) ≈ ptrain(X | C)
However, with partial support, the model does not observe samples for every attribute composition
from ptrain(X | C). Therefore, the model does not accurately learn the density of the unobserved
support region. The drop in conformity score, when sampled from the product of marginals, is a
result of sampling from the product of inaccurate marginals. Refer to App. B.2. Moreover, even
when accurate and realistic samples of the unseen composition are successfully generated, it is by
accident rather than design.

The drop in conformity scores between the images sampled from the joint and the marginal distri-
butions of the models trained under non-uniform and partial support settings is due to the dispar-
ity between the joint distribution and the product of marginals, which in turn is due to the viola-
tion of independence relations from the underlying data-generation process in the learned model.
Refer to App. B.1 for a detailed description. We measure this violation as the disparity between
the conditional joint distribution pθ(C | X) and the product of conditional marginal distributions∏n

i pθ(Ci | X) learned by the guidance term in a model using Jensen-Shannon divergence (JSD)
as,

JSD = EC,X∼pdata

[
DJS

(
pθ(C | X) ||

n∏
i

pθ(Ci | X)

)]
(3)

where DJS is the Jensen-Shannon divergence and following (Li et al., 2023) pθ is obtained by eval-
uating the implicit classifier learned by the diffusion model. More details can be found in App. D.7.

Diffusion models do not respect the underlying causal relations. A positive JSD value suggests
that the model fails to adhere to the independence relations present in the underlying causal model.
Our findings indicate that as the training distribution of attribute compositions diverges from the true
underlying distribution – where attributes can vary independently – the trained models increasingly
violate these independence relations, as reflected by the JSD measurements.

Takeaway

Standard conditional diffusion models struggle to generate data with arbitrary logical com-
positions of attributes since they do not obey the independence relations in the underlying
causal data-generation process.

Based on these observations, we propose COIND to train diffusion models that explicitly enforce
the conditional independence dictated by the underlying causal data-generation process to encourage
the model to learn accurate marginal distributions of the attributes.

4 COIND: ENFORCING CONDITIONALLY INDEPENDENT MARGINAL TO
ENABLE LOGICAL COMPOSITIONALITY

In this section, we propose COIND to answer (RQ2) posed in § 1: How can we explicitly enable
conditional diffusion models to generate data with arbitrary logical compositions of attributes?

In the previous section, we observed that diffusion models do not obey the underlying causal rela-
tions, learning incorrect attribute marginals, and hence struggling to demonstrate logical composi-
tionally as we showed in Fig. 1. To remedy this, COIND uses a training objective that explicitly
enforces the causal factorization to ensure that the trained diffusion models obey the underlying
causal relations. Applying the principle of independent causal mechanisms (Peters et al., 2017) on
the causal graph in Fig. 2a along with the assumption of C1 ⊥⊥ . . . ⊥⊥ Cn | X mentioned in § 2,
we have p(X | C) = p(X)

p(C)

∏n
i

p(X|Ci)p(Ci)
p(X) . Note that the invariant p(X | C) is now expressed

as the product of marginals employed for sampling. Therefore, training the diffusion model by
maximizing this conditional likelihood is naturally more suited for learning accurate marginals for
the attributes. We minimize the distance between the true conditional likelihood and the learned
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conditional likelihood as,

Lcomp = W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(4)

where W2 is 2-Wasserstein distance. Applying the triangle inequality to Eq. (4) we have,

Lcomp ≤ W2 (p(X | C), pθ(X | C))︸ ︷︷ ︸
Distribution matching

+W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
︸ ︷︷ ︸

Conditional Independence

(5)

(Kwon et al., 2022) showed that the Wasserstein distance between p0(X), q0(X) is upper bounded
by the square root of the score-matching objective.

W2 (p0(X), q0(X)) ≤ K
√

Ep0(X) [||∇X log p0(X)−∇X log q0(X)||22]

Distribution matching: Following this result, the first term in Eq. (5) is upper bounded by the
standard score-matching objective of diffusion models (Song et al., 2021),

Lscore = Ep(X,C)∥∇X log pθ(X | C)−∇X log p(X | C)∥22 (6)

Conditional Independence: Similarly, the second term in Eq. (5) is upper bounded by score-
matching between the joint and product of marginals

LCI = E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22 (7)

Substituting Eq. (6), Eq. (7) in Eq. (5) will result in our final learning objective

Lcomp ≤ K1

√
Lscore +K2

√
LCI (8)

where K1,K2 are positive constants, i.e., the conditional independence objective LCI is incorporated
alongside the existing score-matching loss Lscore.

LCI, is the Fisher divergence between the joint and the product of marginals. From the prop-
erties of Fisher’s divergence Sánchez-Moreno et al. (2012). LCI = 0 iff pθ(X | C) =
pθ(X)
pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X) . Detailed derivation of the upper bound can be found in App. B.3.

Practical Implementation. A computational burden presented by LCI in Eq. (7) is that the re-
quired number of model evaluations increases linearly with the number of attributes. To mitigate
this burden, we approximate the mutual conditional independence with pairwise conditional inde-
pendence (Hammond & Sun, 2006). Thus, the modified LCI becomes,

LCI = Ep(X,C)Ej,k∥∇X log pθ(X | Cj , Ck)−∇X log pθ(X | Cj)−∇X log pθ(X | Ck) +∇X log pθ(X)∥22
The weighted sum of the square of the terms in Eq. (8) has shown stability. Therefore, COIND’s

training objective:
Lfinal = Lscore + λLCI (9)

where λ is the hyper-parameter that controls the strength of conditional independence. The reduction
to the practical version of the upper bound (Eq. (8)) is discussed in extensively in App. C. For
guidance on selecting hyper-parameters in a principled manner, please refer to App. C.3. Finally,
our proposed approach can be implemented with just a few lines of code, as outlined in Algorithm 1.

5 EXPERIMENTS

COIND encourages diffusion models to learn conditionally independent marginals of attributes,
and thereby improve their logical compositionality capabilities. In this section, we design exper-
iments to evaluate COIND on two questions: (1) does COIND effectively train diffusion models
that obey the underlying causal model?, and (2) does COIND improve the logical compositional-
ity of these models? We measure the JSD of the trained models to answer the first question. To
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answer the second question, we use two primitive logical compositional tasks: (a) ∧ (AND) compo-
sition and (b) ¬ (NOT) composition. In each case, the generative model is provided with a logical
relation between the attributes, and the task is to generate images with attributes that satisfy this
logical relation. To measure ∧ composition, the generative model produces samples that combine
all attributes,(c1, . . . , cn) using a conjunctive ∧ operation. To measure ¬ composition, the logical
relation excludes specific attribute values through ¬ operation. A more detailed description of task
construction can be found in App. D.2.

Datasets. We use the following image datasets with labeled attributes for our experiments: (1)
Colored MNIST dataset described in § 1, where the attributes of interest are digit and color,
(2) Shapes3d dataset (Burgess & Kim, 2018) containing images of 3D objects in various envi-
ronments where each image is labeled with six attributes of interest. Refer to App. D.5 for details.

Figure 3: Orthogo-
nal partial support

Observed training distributions. We evaluate COIND on four scenarios
where we observe different distributions of attribute compositions during
training: (1) Uniform support includes all combinations of attributes ob-
served with uniform probability (Fig. 1a). (2) Non-uniform support also
includes all combinations of attributes, but these compositions appear with
unequal probabilities due to dependence between attributes (Fig. 1b). (3) Di-
agonal partial support includes only the attribute compositions near a diag-
onal of the hypercube C (Fig. 1c),resulting in stronger dependence compared
to non-uniform full support. (4) Orthogonal partial support includes only
the attribute compositions along the axes originating from a corner of the hy-
percube C, following (Wiedemer et al., 2024) (Fig. 3). For Colored MNIST
experiments, we evaluate with uniform, non-uniform, and diagonal partial
support. For Shapes3d experiments, we evaluate with uniform and orthogonal partial support, fol-
lowing the compositional setup in (Schott et al., 2020).

Baselines. LACE (Nie et al., 2021) and Composed GLIDE (Liu et al., 2023) are our primary
baselines. LACE trains distinct energy-based models (EBMs) for each attribute and combines them
following the compositional logic described in § 2 during sampling. A similar approach was pro-
posed by (Du et al., 2020). However, in our experimental evaluation for LACE, we train distinct
score-based models instead of EBMs. In contrast, Composed GLIDE samples from score-based
models by factorizing the joint distribution into marginals, assuming these models had implicitly
learned conditionally independent marginals of attributes. Additional details about the baselines are
delegated to App. D.3.

Metrics. We assess how accurately the models have captured the underlying data generation pro-
cess using the JSD, defined in § 3. To measure the accuracy of the attributes in the generated image
w.r.t. the input logical composition, we use conformity score (CS) from § 3. As a reminder, CS mea-
sures the accuracy with which the model adds the desired attributes to the generated image using
attribute-specific classifiers. In addition to the conformity score, since the Shapes3d dataset con-
tains unique ground truth images corresponding to the input logical relation, we directly compare
generated samples with reference images at the pixel level using the variance-weighted coefficient
of determination, R2. For uniform and non-uniform support, the generations for the input logical
relations correspond to attribute compositions that span the attribute space C. In other cases, the
generations for the input logical relations belong to the unseen compositional support, i.e., C \ Ctrain.

5.1 LEARNING INDEPENDENT MARGINALS ENABLES LOGICAL COMPOSITIONALITY

In this section, we compare COIND against the baselines under various training setups and different
composition tasks on Colored MNIST and Shapes3d datasets.

Table 4a compares COIND against the baselines on ∧ and ¬ composition tasks. “¬ Color” task cor-
responds to image generation for a logical composition with ¬ operator acting on the color attribute.
Similarly, the ¬ operator acts on the digit attribute in the “¬ Digit” task. From the results, we make
the following observations:

1. Conditional diffusion models do not learn accurate marginals for the attributes even
when all attribute compositions are observed during training with equal probability. This
is evident from the positive JSD of the methods trained with uniform support. Furthermore,
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Support Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑

Uniform

LACE - 99.04 91.90 91.97
Composed GLIDE 0.16 97.40 100.00 99.79
COIND (λ = 0.2) 0.14 99.50 100.00 99.86
COIND (λ = 1.0) 0.11 99.86 100.00 99.72

Non-uniform
LACE - 51.70 78.41 66.26
Composed GLIDE 0.33 82.60 98.44 89.06
COIND (λ = 1.0) 0.11 99.84 100.00 99.79

Partial
LACE - 22.94 15.41 7.39
Composed GLIDE 2.76 17.90 25.00 4.13
COIND (λ = 1.0) 1.07 55.16 55.47 53.34

(a) Results on Colored MNIST Dataset

10−1 100

JSD

20

40

60

80

100

C
S

(∧
)

(b) JSD vs CS

Figure 4: Results on Colored MNIST dataset. (a) We compare JSD and CS of COIND against
those of LACE and Composed GLIDE trained under various settings and on different compositional
tasks. (b) Plotting CS against JSD in the log scale of the models trained under different settings
reveals a negative correlation.

the conformity score (CS) is lower when JSD is higher. This observation has significant rami-
fications for compositional generative models.

(a) This result contradicts the intuitive expectation that uniformly observing the whole com-
positional support during training is sufficient to generate arbitrary logical compositions
of attributes. And, it suggests that even in this ideal yet impractical case, the current ob-
jectives for training diffusion models are insufficient for controllable and accurate closed-
set, let alone open-set, compositional generation. As such, we conjecture that scaling the
datasets without inductive biases (conditional independence of marginals in this case) is
insufficient for arbitrary logical compositional generation.

(b) Even methods like LACE that train separate diffusion models for each attribute fail for
¬ composition tasks. This suggests that softer inductive biases, such as learning separate
marginals for each attribute without paying heed to the desired independence relations,
are insufficient for logical compositionality.

2. In the more practical scenarios of non-uniform and partial support, JSD increases with non-
uniform support and worsens further with partial support due to incorrect marginals as dis-
cussed in § 3. This result suggests that current state-of-the-art models learned on finite datasets
likely operate in the non-uniform or partial support scenario and thus may fail to generate ac-
curate and realistic data for arbitrary logical compositions of attributes. Du et al. (2020) also
observed such failures under partial support.

3. Logical AND (∧) and NOT (¬) compositionality deteriorates with increasing dependence be-
tween the marginals. The negative correlation between JSD and CS was noted in § 3 and can
be observed in Fig. 4b, which shows JSD-vs-CS for ∧ compositions across different methods,
and under different settings for observed support. This negative correlation strongly suggests
that violation of conditional independence plays a major role in the diminished logical com-
positionality demonstrated by standard diffusion models.

4. By enforcing conditional independence between the attributes during training, COIND
achieves lower JSD and improves both ∧ and ¬ compositionality in non-uniform and par-
tial support.
– Even when trained on non-uniform support, COIND matches compositionality with the uni-
form support in terms of compositional score.
– Under partial support setting, COIND achieves ≈ 2− 10× fold improvement over the base-
lines on ∧ and ¬ compositions (17% to 55% and 4% to 53% respectively).
These results demonstrate that enforcing conditional independence between the marginals
is vital for enabling arbitrary logical compositions in conditional diffusion models.

COIND generates diverse samples. It is desirable that any attribute not part of the logical com-
position for generation assumes diverse values in the generated samples. In Fig. 5, we observe that
although COIND does not explicitly optimize for diversity, the samples generated by COIND for
the logical relation digit = 4 are significantly more diverse compared to the baselines. We quanti-
tatively measure the diversity of these images using the Shannon entropy H of the color attributes

8
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(a) LACE; H = 1.46 (b) Composed GLIDE; H = 2.38 (c) COIND; H = 3.26

Figure 5: Images generated by COIND for the logical composition digit = 4 under non-uniform
scenario are significantly diverse compared to the baselines although diversity was not COIND’s
objective. H is the Shannon entropy.
in the generated images. Higher Shannon entropy indicates more diversity. Entropy is maximum
for a uniform distribution with H(uniform) = log2(10) = 3.32, since there are 10 colors. We
observe that H(COIND) = 3.26, while H(LACE) = 1.46, H(Composed GLIDE) = 2.38. Al-
though COIND does not explicitly seek diversity, breaking the dependence induced by unknown
confounders exhibits diversity in attributes as a complementary benefit.

Support Method JSD ↓ ∧ Composition ¬ Composition

R2 ↑ CS ↑ R2↑ CS↑

Uniform
LACE - 0.97 91.19 0.85 50.00
Composed GLIDE 0.302 0.94 83.75 0.91 48.43
COIND (λ = 1.0) 0.215 0.98 95.31 0.92 55.46

Orthogonal
LACE - 0.88 62.07 0.70 30.10
Composed GLIDE 0.503 0.86 51.56 0.61 34.63
COIND (λ = 1.0) 0.287 0.97 91.10 0.92 53.90

(a) Results on Shapes3D Dataset

Expected
Composed

GLIDE LACECOIND

Uniform
∧ comp.

Partial
∧ comp.

Partial
¬ comp.

(b)

Figure 6: Results on Shapes3d dataset. (a) We compare JSD, R2, and CS of COIND against the
baselines trained with uniform and partial support on the Shapes3d dataset for ∧ and ¬ composition
tasks. (b) Samples generated by COIND match the expected image in all cases.

COIND is scalable with attributes. We use the Shapes3d dataset to evaluate the scalability of
COIND w.r.t. the number of attributes. As a reminder, every image in the Shapes3d dataset is
labeled with six attributes of interest. For the negation composition task, the ¬ operator is applied
to the shape attribute such that the attribute composition satisfying this logical relation is unique.
Detailed descriptions of the composition tasks are provided in App. D.2. Table 6a compares COIND
against the baselines for the uniform and orthogonal partial support scenarios. COIND leads to
a significant decrease in JSD and, consequently, a significant increase in the composition score.
When trained with orthogonal support, the performance (CS) of both LACE and Composed GLIDE
suffers significantly while COIND matches its performance when trained on uniform support. In
conclusion, COIND affords superior logical compositionality from a single monolithic model
in a sample-efficient manner even as the number of attributes increases.

5.2 GENERATING REAL-WORLD FACE IMAGES USING COIND

Method JSD ↓ “smiling male” “smiling”∧“male”

CS ↑ FID ↓ CS ↑ FID ↓
Composed GLIDE 0.394 6.50 60.36 19.53 98.70
COIND (λ = 100) 0.165 23.10 42.23 30.40 39.58

Table 2: Results on CelebA dataset. COIND out-
performs the baseline on both CS and FID across
various compositionality tasks.

In this section, we use COIND to generate face
images from the CelebA dataset (Liu et al.,
2015) where we provide the values for “smil-
ing” and “gender” attributes. To evaluate its
capability on unseen compositions, we sample
the training data such that the model does not
observe any images with gender = “male” and
smiling = “true”. This is equivalent to the or-
thogonal support scenario shown in Fig. 3. Dur-
ing inference, the model is asked to generate images with the unseen attribute combination gender
= “male” and smiling = “true” through both joint sampling and ∧ composition.

Tab. 2 compares COIND against Composed GLIDE in terms of CS and FID. (1) COIND outper-
forms the baseline by > 16% and > 10% CS in joint sampling and ∧ compositionality respec-
tively. (2) COIND does so while generating images closer to real images, as measured using FID. In
App. E.3, we show that COIND can be extended to text-to-image (T2I) models by fine-tuning Stable
Diffusion v1.5 (Rombach et al., 2022).

9
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Figure 7: COIND allows us to vary the
amount of “smile” in the generated im-
ages without affecting the gender-specific at-
tributes. However, Composed GLIDE asso-
ciates the smile attribute with the gender at-
tribute due to their association in the train-
ing data. Hence, it generates images with
gender-specific attributes such as long hair.

COIND provides fine-grained control over at-
tributes. In addition to merely generating samples
with conditioned attributes, COIND can also con-
trol the amount of attributes in the sample. For
example, in the task of generating face images of
smiling male celebrities, we may wish to adjust the
amount of smiling without affecting gender-specific
attributes as they are correlated in the training
dataset. To achieve this, we introduce an attribute
strength factor γ and modify the RHS of Eq. (1)
as ∇X log pθ(X | gender) + γ∇X log pθ(X |
smiling)− γ∇X log pθ(X). Fig. 7 shows the result
of increasing γ to increase the amount of smiling in
the generated image. The subjects in the face im-
ages generated by COIND smile more as γ increases
without any changes to any gender-specific attribute.
For instance, the images for γ = 1 show a soft smile
while the subjects in the images for γ = 6 show
teeth. However, those generated by Composed GLIDE contain gender-specific attributes such as
long hair and earrings. Refer to App. E.2 for more analysis on FID and CS of COIND.

6 RELATED WORK

Our work concerns compositional generalization in generative models, where the goal is to generate
data with unseen attribute compositions expressed through logical relations between the attributes.
One class of approaches seek to achieve logical compositionality by combining distinct models
trained for each attribute (Du et al., 2020; Liu et al., 2021; Nie et al., 2021; Du et al., 2023). In
contrast, we are interested in monolithic compositional diffusion models that learn logical composi-
tionality even in the partial support case one encounters in practice. In addition to being expensive
and scaling linearly with the number of attributes, these models fail in the partial support scenario.
Liu et al. (2023) studied logical compositionality broadly without differentiating between various
attribute supports and proposed methods to represent logical compositions in terms of marginal
probabilities obtained through factorization of the joint distribution. However, these factorized sam-
pling methods fail since the underlying generative model learns inaccurate marginals, even when
the whole compositional support is observed. In comparison, COIND is monolithic, scales with the
number of attributes, and is trained to obey the independence relations from the underlying causal
graph. Lastly, (Wiedemer et al., 2024) theoretically study compositional generalization for super-
vised learning and provide sufficient conditions for compositionality. Our empirical observations in
the context of generative models are consistent with their theoretical observations, suggesting that
their theoretical results could perhaps be extended to conditional diffusion models.

7 CONCLUSION

Conditional diffusion models struggle to generate data for arbitrary attribute compositions, even
when all attribute compositions are observed during training. Existing methods represent logical
relations in terms of the learned marginal distributions, assuming that the diffusion model learns
the underlying conditional independence relations. We showed that this assumption does not hold in
practice and worsens when only a subset of these attribute compositions are observed during training.
To mitigate this problem, we proposed COIND to train diffusion models by maximizing conditional
data likelihood in terms of the marginal distributions that are obtained from the underlying causal
graph using the principle of independent causal mechanisms. Our causal modeling provides COIND
a natural advantage in logical compositionality by ensuring it learns accurate marginals. Our ex-
periments on synthetic image datasets highlight the theoretical benefits of COIND. Unlike existing
methods, COIND is monolithic, easy to implement, and demonstrates superior logical composi-
tionality. COIND shows that adequate inductive biases such as conditional independence between
marginals are necessary for effective logical compositionality. Refer to Apps. F.3 and G for more
discussions and analysis of COIND, including its limitations.
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A PRELIMINARIES OF SCORE-BASED MODELS

Score-based models Score-based models (Song et al., 2021) learn the score of the observed data
distribution, Ptrain(X) through score matching (Hyvärinen & Dayan, 2005). The score function
sθ(x) = ∇x log pθ(x) is learned by a neural network parameterized by θ.

Lscore = Ex∼ptrain

[
∥sθ(x)−∇x log ptrain(x)∥22

]
(10)

During inference, sampling is performed using Langevin dynamics:

xt = xt−1 +
η

2
∇x log pθ(xt−1) +

√
ηϵt, ϵt ∼ N (0, 1) (11)

where η > 0 is the step size. As η → 0 and T → ∞, the samples xt converge to pθ(X) under
certain regularity conditions (Welling & Teh, 2011).

Diffusion models Song & Ermon (2019) proposed a scalable variant that involves adding noise
to the data Ho et al. (2020) has shown its equivalence to Diffusion models. Diffusion models are
trained by adding noise to the image x according to a noise schedule, and then neural network, ϵθ is
used to predict the noise from the noisy image, xt. The training objective of the diffusion models is
given by:

Lscore = Ex∼ptrainEt∼[0,T ] ∥ϵ− ϵθ (xt, t)∥2 (12)

Here, the perturbed data xt is expressed as: xt =
√
ᾱtx +

√
1− ᾱtϵ where ᾱt =

∏T
i=1 αi, for a

pre-specified noise schedule αt. The score can be obtained using,

sθ(xt, t) ≈ − ϵθ(xt, t)√
1− ᾱt

(13)

Langevin dynamics can be used to sample from the sθ(xt, t) to generate samples from p(X). The
conditional score (Dhariwal & Nichol, 2021) is used to obtain samples from the conditional distri-
bution pθ(X | C) as:

∇Xt
log p(Xt | C) = ∇Xt

log pθ(Xt)︸ ︷︷ ︸
Unconditional score

+γ∇Xt
log pθ(C | Xt)︸ ︷︷ ︸

noisy classifier

where γ is the classifier strength. Instead of training a separate noisy classifier, Ho & Salimans have
extended to conditional generation by training ∇Xt

log pθ(Xt | C) = sθ(Xt, t, C). The sampling
can be performed using the following equation:

∇Xt log p(Xt | C) = (1− γ)∇Xt log pθ(Xt) + γ∇Xt log pθ(Xt | C) (14)

However, the sampling needs access to unconditional scores as well. Instead of modelling
∇Xt log pθ(Xt), ∇Xt log pθ(Xt|C) as two different models Ho & Salimans have amortize train-
ing a separate classifier training a conditional model sθ(xt, t, c) jointly with unconditional model
trained by setting c = ∅.

In the general case of classifier-free guidance, a single model can be effectively trained to accom-
modate all subsets of attribute distributions. During the training phase, each attribute ci is randomly
set to ∅ with a probability puncond. This approach ensures that the model learns to match all possible
subsets of attribute distributions. Essentially, through this formulation, we use the same network to
model all the possible subsets of conditional probability.

Once trained, the model can generate samples conditioned on specific attributes, such as ci
and cj , by setting all other conditions to ∅. The conditional score is then computed as,
∇Xt log pθ(Xt|ci, cj) = xt, c

i,j), where ci,j represents the condition vector with all values other
than i and j set to ∅. This method allows for flexible and efficient sampling across various attribute
combinations.

Estimating Guidance Once the diffusion model is trained, we investigate the implicit classifier,
pθ(C|X), learned by the model. This will give us insights into the learning process of the diffusion
models. (Li et al., 2023) have shown a way to calculate pθ(Ci = ci | X = x), borrowing equation
(5), (6) from (Li et al., 2023).

pθ(Ci = ci | x) =
p(ci) pθ(x | ci)∑
k p(ck) pθ(x | ck)

14
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pθ(Ci = ci | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i)∥2]}
ECi

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci)∥2]}]
(15)

Likewise, we can extend it to joint distribution by

pθ(Ci = ci, Cj = cj | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i,j)∥2]}
ECi,Cj

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci,j)∥2]}]
(16)

Practical Implementation The authors Li et al.. have showed many axproximations to compute
Et,ϵ. However, we use a different approximation inspired by Kynkäänniemi et al. (2024), where we
sample 5 time-steps between [300,600] instead of these time-steps spread over the [0, T].

B PROOFS FOR CLAIMS

In this section, we detail the mathematical derivations for case study from § 3 in App. B.1, relate the
origin of the conditional independence violation to the loss function of vanilla diffusion models in
App. B.2, and then derive the final loss function of COIND in App. B.3.

B.1 PROOF FOR THE CASE STUDY IN § 3

In this section, we prove that failure of compositionality in diffusion models is due to the violation
of conditional independence.

The causal graph shown in Fig. 2a provides us with the following conditional independence relation:

p(C | X) =
∏
i

p(Ci | X) (CI relation)

This CI relation is used by several works (Liu et al., 2023; Nie et al., 2021), including ours, to derive
the expression for the joint distribution p(X | C) in terms of the marginals p(X | Ci) for logi-
cal compositionality. As a reminder, logical compositionality is preferred over simple conditional
generation as it (1) provides fine-grained control over the attributes, (2) facilitates NOT relations on
attributes, and (3) is more interpretable. The joint likelihood is written in terms of the marginals
using the CI relation and the causal factorization as,

p(X | C) =
p(X)

p(C)

∏
i

(
p(X | Ci)p(Ci)

p(X)

)
(JM relation)

Note that CI relation is crucial for JM relation to hold. We sample from joint likelihood using the
score of LHS of JM relation, referred to as joint sampling in § 3. Similarly, we sample using the
score of RHS of JM relation, referred to as marginal sampling in § 3. If the learned generative
model satisfies the JM relation, then there should not be any difference in the CS between joint
sampling and marginal sampling. However, in Tab. 1, we see a drop in CS, implying JM relation is
not satisfied in the learned model.

JM relation must hold in the learned generative model if CI relation is true in the learned generative
model. Therefore, we check if the CI relation holds in the generative model by measuring JSD
between LHS and RHS of CI relation as shown in Eq. (3) in the main paper. The results Tab. 1
confirm that the CI relation does not hold in the learned model. This is a significant finding since
existing works (Liu et al., 2023; Nie et al., 2021) blindly trust the model to satisfy CI relation,
leading to severe performance drop when the training support is non-uniform or partial.

The CI relation is violated in the learned model because the standard training objective is not suitable
for compositionality, as it does not account for the incorrect ptrain(X | Ci). The proof is detailed in
the next section App. B.2. Therefore, we proposed COIND to ensure the JM relation was satisfied
by explicitly learning the marginal likelihood according to the causal factorization.

B.2 STANDARD DIFFUSION MODEL OBJECTIVE IS NOT SUITABLE FOR LOGICAL
COMPOSITIONALITY

This section proves that the violation in conditional independence in diffusion models is due to
learning incorrect marginals, ptrain(X | Ci) under Ci ⊥̸⊥ Cj . We leverage the causal invariance

15
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property: ptrain(X | C) = ptrue(X | C), where ptrain is the training distribution and ptrue is the true
underlying distribution.

Consider the training objective of the score-based models in classifier free formulation Eq. (10). For
the classifier-free guidance, a single model sθ(x, C) is effectively trained to match the score of all
subsets of attribute distributions. Therefore, the effective formulation for classifier-free guidance
can be written as,

Lscore = Ex∼ptrainES

[
∥∇x log pθ(x | cS)−∇x log ptrain(x | cS)∥22

]
(17)

where S is the power set of attributes.

From the properties of Fisher divergence, Lscore = 0 iff pθ(X | cS) = ptrain(X | cS), ∀S. In the
case of marginals, pθ(X | Ci) i.e. S = {Ci} for some 1 ≤ i ≤ n,

pθ(X | Ci) = ptrain(X | Ci)

=
∑
C−i

ptrain(X | Ci, C−i)ptrain(C−i | Ci)

=
∑
C−i

ptrue(X | Ci, C−i)ptrain(C−i | Ci)

̸=
∑
C−i

ptrue(X | Ci, C−i)ptrue(C−i) = ptrue(X | Ci)

=⇒ pθ(X | Ci) ̸= ptrue(X | Ci) (18)

Where C−i =
∏n

j=1
j ̸=i

Cj , which is every attribute except Ci. Therefore, the objective of the score-

based models is to maximize the likelihood of the marginals of training data and not the true marginal
distribution, which is different from the training distribution when Ci ⊥̸⊥ Cj .

B.3 STEP-BY-STEP DERIVATION OF COIND IN § 4

The objective is to train the model by explicitly modeling the joint likelihood following the causal
factorization from Eq. (JM relation). The minimization for this objective can be written as,

Lcomp = W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(19)

where W2 is 2-Wasserstein distance. Applying the triangle inequality to Eq. (19) we have,

Lcomp ≤ W2 (p(X | C), pθ(X | C))︸ ︷︷ ︸
Distribution matching

+W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
︸ ︷︷ ︸

Conditional Independence

(20)

(Kwon et al., 2022) showed that under some conditions, the Wasserstein distance between
p0(X), q0(X) is upper bounded by the square root of the score-matching objective. Rewriting
Equation 16 from (Kwon et al., 2022)

W2 (p0(X), q0(X)) ≤ K
√
Ep0(X) [||∇X log p0(X)−∇X log q0(X)||22] (21)

Distribution matching Following Eq. (21) result, the first term in Eq. (20), replacing p0 as p and
q0 as pθ will result in

W2 (p(X | C), pθ(X | C)) ≤ K1

√
Ep0(X) [||∇X log p(X | C)−∇X log pθ(X)||22]

= K1

√
Lscore (22)

16
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Conditional Independence Following Eq. (21) result, the second term in Eq. (20), replacing p0
as pθ and q0(X) as pθ(X)

pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X)

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤

√√√√E∥∇X log pθ(X | C)−∇X log
pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
∥22

Further simplifying and incorporating ∇X log pθ(Ci) = 0 and ∇X log pθ(C) = 0 will result in

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤ K2

√√√√√E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22︸ ︷︷ ︸
LCI

= K2

√
LCI (23)

Substituting Eq. (22), Eq. (23) in Eq. (20) will result in our final learning objective

Lcomp ≤ K1

√
Lscore +K2

√
LCI (24)

where K1,K2 are positive constants, i.e., the conditional independence objective LCI is incorporated
alongside the existing score-matching loss Lscore.

Note that Eq. (23) is the Fisher divergence between the joint pθ(X | C) and the causal factorization
pθ(X)
pθ(C)

∏
i
pθ(X|Ci)pθ(Ci)

pθ(X) from Eq. (JM relation). From the properties of Fisher divergence (Sánchez-

Moreno et al., 2012), LCI = 0 iff pθ(X | C) = pθ(X)
pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X) and further implying,∏

i pθ(Ci | X) = ptrain(C | X)

When Lcomp = 0: Pθ(X | C) = Ptrain(X | C) = P (X | C), and
∏

i pθ(Ci | X) = ptrain(C |
X). This implies that the learned marginals obey the causal independence relations from the data-
generation process, leading to more accurate marginals.

C PRACTICAL CONSIDERATIONS

To facilitate scalability and numerical stability for optimization, we introduce two approximations
to the upper bound of our objective function Eq. (8).

C.1 SCALABILITY OF LCI

A key computational challenge posed by Eq. (7) is that the number of model evaluations grows
linearly with the number of attributes. The Eq. (7) is derived from conditional independence formu-
lation as follows:

pθ(C | X) =
∏
i

pθ(Ci | X). (25)

By applying Bayes’ theorem to all terms, we obtain,
pθ(X | C)pθ(C)

pθ(X)
=
∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
(26)

Note that this formulation is equal to the causal factorization. From this, by applying logarithm and
differentiating w.r.t. X , we derive the score formulation.

∇X log pθ(X | C) = ∇X log
∑
i

pθ(X | Ci)−∇X log pθ(X) (27)
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The L2 norm of the difference between LHS and RHS of the objective in Eq. (27) is given by, which
forms our LCI objective.

LCI = ∥∇X log pθ(X | C)−
(
∇X log

∑
i

pθ(X | Ci)−∇X log pθ(X)

)
∥22 (28)

Due to the
∑

i, in the equation, the number of model evaluations grows linearly with the number
of attributes (n). This O(n) computational complexity hinders the approach’s applicability at scale.
To address this, we leverage the results of (Hammond & Sun, 2006), which shows conditional in-
dependence is equivalent to pairwise independence under large n to reduce the complexity to O(1)
in expectation. This allows for a significant improvement in scalability while maintaining computa-
tional efficiency. Using this result, we modify Eq. (25) to:

pθ(Ci, Cj | X) = pθ(Ci | X)pθ(Cj | X). ∀i, j
Accordingly, we can simplify the loss function for conditional independence as follows:

LCI = Ep(X,C)Ej,k∥∇X [log pθ(X|Cj , Ck)− log pθ(X|Cj)− log pθ(X|Ck) + log pθ(X)]∥22.
(29)

In score-based models, which are typically neural networks, the final objective is given as:

LCI = Ep(X,C)Ej,k∥sθ(X, Cj , Ck)− sθ(X, Cj)− sθ(X, Ck) + sθ(X,∅)∥22 (30)

where sθ(·) := ∇X log pθ(·) is the score of the distribution modeled by the neural network. We
leverage classifier-free guidance to train the conditional score sθ(X, Ci) by setting Ck = ∅ for all
k ̸= i, and likewise for sθ(X, Ci, Cj), we set Ck = ∅ for all k ̸∈ {i, j}.

C.2 SIMPLIFICATION OF THEORETICAL LOSS

In Eq. (8), we showed that the 2-Wassertein distance between the true joint distribution p(X | C)
and the causal factorization in terms of the marginals p(X | Ci) is upper bounded by the weighted
sum of the square roots of Lscore and LCI as Lcomp ≤ K1

√Lscore + K2

√LCI. In practice, how-
ever, we minimized a simple weighted sum of Lscore and LCI, given by Lfinal = Lscore + λLCI as
shown in Eq. (9) instead of Eq. (8). We used Eq. (9) to avoid the instability caused by larger gra-
dient magnitudes (due to the square root). Eq. (9) also provided the following practical advantages:
(1) the simplicity of the loss function that made hyperparameter tuning easier, and (2) the similarity
of Eq. (9) to the loss functions of pre-trained diffusion models allowing us to reuse existing hyper-
parameter settings from these models. We did not observe any significant difference in conclusion
between the models trained on Eq. (8) and Eq. (9) as shown in Tabs. 3 and 4. Both approaches
significantly outperformed the baselines.

Support Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑
LACE - 99.04 91.90 91.97
Composed GLIDE 0.16 97.40 100.00 99.79

Uniform Theoretical COIND Eq. (8) 0.12 98.44 100.00 81.25
COIND (λ = 0.2) 0.14 99.50 100.00 99.86
COIND (λ = 1.0) 0.11 99.86 100.00 99.72

LACE - 51.70 78.41 66.26
Composed GLIDE 0.33 82.60 98.44 89.06

Non-uniform Theoretical COIND Eq. (8) 0.17 96.88 93.75 72.66
COIND (λ = 1.0) 0.11 99.84 100.00 99.79
LACE - 22.94 15.41 7.39
Composed GLIDE 2.76 17.90 25.00 4.13

Partial Theoretical COIND Eq. (8) 1.11 23.44 64.84 53.12
COIND (λ = 1.0) 1.07 55.16 55.47 53.34

Table 3: Results on Colored MNIST to directly minimize the upper bound (K1 = 1,K2 = 0.1)
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Support Method JSD ↓ ∧ Composition ¬ Composition

R2 ↑ CS ↑ R2↑ CS↑
LACE - 0.97 91.19 0.85 50.00
Composed GLIDE 0.302 0.94 83.75 0.91 48.43

Uniform Theoretical COIND Eq. (8) 0.270 0.98 92.19 0.92 64.06
COIND (λ = 1.0) 0.215 0.98 95.31 0.92 55.46
LACE - 0.88 62.07 0.70 30.10
Composed GLIDE 0.503 0.86 51.56 0.61 34.63

Partial Theoretical COIND Eq. (8) 0.450 0.93 78.13 0.88 51.56
COIND (λ = 1.0) 0.287 0.97 91.10 0.92 53.90

Table 4: Results on Shapes3D with objective of directly minimizing the upper bound(K1 = 1,K2 =
0.1)

C.3 CHOICE OF HYPERPARAMETER λ

Effect of λ on the Learned Conditional Independence.

COIND enforces conditional independence between the marginals of the attributes learned
by the model by minimizing LCI defined in Eq. (30). Here, we investigate the ef-
fect of LCI on the effectiveness of logical compositionality by varying its strength
through λ in Eq. (9). Figure 8 plots JSD and CS (∧) as functions of λ for mod-
els trained on the Colored MNIST dataset under the diagonal partial support setting.

0 2
λ

0.20

1.09

1.99

2.88

JS
D

16.04

29.70

43.36

57.02

C
S

(∧
)

Figure 8: Effect of λ on logi-
cal compositionality under di-
agonal partial support on the
Colored MNIST dataset.

When λ = 0, training relies solely on the score matching loss, re-
sulting in higher conditional dependence between Ci | X . As λ
increases, CS improves since ensuring conditional independence
between the marginals also encourages more accurate learning of
the true marginals. However, when λ takes large values, the model
learns truly independent conditional distribution C | X but effec-
tively ignores the input compositions and generates samples based
solely on the prior distribution pθ(X). As a result, CS drops.

The value for the hyperparameter λ is chosen such that the gradi-
ents from the score-matching objective Lscore and the conditional
independence objective LCI are balanced in magnitude. One way
to choose λ is by training a vanilla diffusion model and setting λ =
Lscore

LCI
. As a rule of thumb, we recommend the simplified setting:

λ = Lscore × 4000. We used two values for λ in our experiments and noticed that they gave similar
results, indicating that the approach was stable for various values of λ.

D EXPERIMENT DETAILS

D.1 COIND ALGORITHM

To compute pairwise independence in a scalable fashion, we randomly select two attributes, i and j,
for a sample in the batch and enforce independence between them. As the score in Eq. (13) is given
by ϵθ(xt,t)√

1−ᾱt
. The final equation for enforcing LCI will be:

LCI =
1

1− ᾱt

∥∥ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)
∥∥2
2

We follow Ho et al. (2020) to weight the term by 1 − ᾱt. This results in an algorithm for COIND,
requiring only a few modifications of lines from (Ho & Salimans, 2022), highlighted below. Prac-
tical Implementation In our experiments, we have used puncond = 0.3 and for Shapes3D instead
of enforcing Ci ⊥⊥ Cj | X , for all i, j enforcing Ci ⊥⊥ C−i | X for all i have led to slightly better
results.
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Algorithm 1 COIND Training
1: repeat
2: (c,x0) ∼ ptrain(c, x)

3: ck ← ∅ with probability puncond ▷ Set element of index,k i.e, ck to ∅ with puncond∀k ∈ [0, N ]

probability
4: i ∼ Uniform({0, . . . , N}), j ∼ Uniform({0, . . . , N} \ {i}) ▷ Select two random attribute indices
5: t ∼ Uniform({1, . . . , T})
6: ϵ ∼ N (0, I)
7: xt =

√
ᾱtx0 +

√
1− ᾱtϵ

8: ci, cj , ci,j ← c

9: ci ← {ck = ∅ | k ̸= i}, cj ← {ck = ∅ | k ̸= j}, ci,j ← {ck = ∅ | k ̸∈ {i, j}}, c∅ ← ∅

10: LCI = ||ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)||22
11: Take gradient descent step one

∇θ[∥ϵ− ϵθ(xt, t, c)∥2 +λLCI ]
12: until converged

D.2 DETAILS OF LOGICAL COMPOSITIONALITY TASK

We designed the following task to evaluate two primitive logical compositions. (1) AND Composi-
tion ∧, (2) NOT Composition ¬
AND Composition To evaluate the ∧ composition, we apply the ∧ operation over all the attributes
to generate a respective image. Consider an image from the Shapes3D dataset (see Figure Fig. 9).
The image is generated by some function, f , with the input c = [ 6 8 4 6 2 11 ]. The
following image can be queried using the logical expression C1 = 6 ∧ . . . ∧ C6 = 11. We follow
Equation Eq. (1) to sample from the above logical composition. To reiterate, for the ∧ composition
task on Shapes3D, the sampling equation is given by ∇Xpθ(X | C1 = 6 ∧ . . . ∧ C6 = 11):

∇X log pθ(X) +
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] (31)

Similarly, to evaluate the AND composition for the Colored MNIST dataset, we perform the ∧
operation over digit C1 and color C2.

Figure 9: Image from
Shapes3d with attributes
c = [6, 8, 4, 6, 2, 11]

NOT Composition To evaluate the ¬ compositions, the image is
queried as an AND on all the attributes except the object attribute,
which is queried by its negation. For example, consider the same im-
age from Figure Fig. 9, where the object sphere (C5 = 2) can be ex-
pressed as C5 = ¬[0 ∨ 1 ∨ 3], because the object class can only take
four possible values. Therefore, the same image can be described as
C1 = 6 ∧ . . . ∧ C5 = ¬[0 ∨ 1 ∨ 3] . . . ∧ C6 = 11. The only possible
generation that meets these criteria is the image displayed as expected.

The sampling equation for a test image with attributes
C1, C2, C3, C4, C5, C6 can be written as C1 = 6 ∧ C2 = 8 ∧ C3 =
4 ∧ C4 = 6 ∧ C5 = ¬[0 ∨ 1 ∨ 3] ∧ C6 = 11. Following Eq. (2), the
sampling equation is written as follows:

∇X log pθ(X|C1 = 6)+∇X log pθ(X|C2 = 8)+∇X log pθ(X|C3 = 4)

+∇X log pθ(X|C4 = 6)+∇X log pθ(X|C6 = 11)−∇X log pθ(X|C5 = 0)

−∇X log pθ(X|C5 = 1)−∇X log pθ(X|C5 = 3)−∇X log pθ(X)

Similarly, for Colored MNIST, we perform two kinds of negation operations: one on digit and
another on color. In Section § 2, we have shown negation on color 4 ∧ ¬[Green ∨ Pink], along with
its sampling equation. A similar logic can be followed for negation on color; an example of negation
on digit is ¬[3 ∨ 4] ∧ Pink.

For ∧ and ¬, evaluations are strictly restricted to unseen compositions under orthogonal partial
support for Shapes3D and under diagonal partial support for Colored MNIST. This approach allows
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us to explore how effectively the model handles logical operations through unseen image generation.
Additionally, we evaluate compositions observed during training with less frequency under non-
uniform support.

D.3 TRAINING DETAILS, ARCHITECTURE, AND SAMPLING

Training Composed GLIDE & COIND We train the diffusion model using the DDPM noise
scheduler. The model architecture and hyperparameters used for all experiments are detailed in
Tab. 5.

Training LACE The LACE method involves training multiple energy-based models for each
attribute and sampling according to logical compositional equations. However, we use score-based
models instead. We follow the architecture outlined in Tab. 5 for each attribute to train multiple
score-based models. For Colored MNIST, which has two attributes, we create two models—one
for each attribute—using the same architecture as other methods, effectively doubling the model
size. Similarly, for Shapes3D with six attributes, we develop six models. We reduce the Block Out
Channels for each attribute model to fit these into memory while keeping all other hyperparameters
consistent. Since we train a single model per attribute, we do not match the joint distribution,
preventing us from evaluating it and measuring the JSD.

Sampling To generate samples for a given logical composition, we sample from equations from
App. D.2 using DDIM (Song et al., 2020) with 150 steps.

Hyperparameter Colored MNIST Shapes3D

COIND & Composed GLIDE LACE COIND & Composed GLIDE LACE

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 2.0× 10−4 2.0× 10−4 2.0× 10−4 2.0× 10−4

Num Training Steps 50000 100000 100000 100000
Train Noise Scheduler DDPM DDPM DDPM DDPM
Train Noise Schedule Linear Linear Linear Linear
Train Noise Steps 1000 1000 1000 1000
Sampling Noise Schedule DDIM DDIM DDIM DDIM
Sampling Steps 150 150 150 150
Model U-Net U-Net U-Net U-Net
Layers per block 2 2 2 2
Beta Schedule Linear Linear Linear Linear
Sample Size 28x3x3 28x3x3 64x3x3 64x3x3
Block Out Channels [56,112,168] [56,112,168] [56,112,168,224] [56,112,168]
Dropout Rate 0.1 0.1 0.1 0.1
Attention Head Dimension 8 8 8 8
Norm Num Groups 8 8 8 8
Number of Parameters 8.2M 8.2M × 2 17.2M 8.2M × 6

Table 5: Hyperparameters for Colored MNIST and Shapes3D used by COIND, Composed GLIDE,
and LACE

CelebA To generate CelebA images, we scale the image size to 128 × 128. We use the latent
encoder of Stable Diffusion 3 (SD3) to encode the images to a latent space and perform diffusion in
the latent space. The architecture is similar to the Colored MNIST and Shapes3D, except that Block
out Channels are scaled as [224, 448, 672, 896]. We use a learning rate of 1.0× 10−4 and train the
model for 500,000 steps on one A6000 GPU.

FID Measure To evaluate both the generation quality and how well the generated samples align
with the natural distribution of ’smiling male celebrities’, we use the FID metric (Seitzer, 2020).
Notably, we calculate the FID score specifically on the subset of ’smiling male celebrities,’ as our
primary objective is to assess the model’s ability to generate these unseen compositions. We generate
3000 samples to evaluate FID.

T2I: Finetuning SDv1.5 We finetune SDv1.5 with the data constructed from CelebA, where the
labels are converted to text. For example, a label of (male=1, smiling=1) is converted to a “photo of
a smiling male celebrity.”
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D.4 ANALYTICAL FORMS OF SUPPORT SETTINGS

Below are the analytical expressions for the densities under the various support settings that we
considered in the paper. Let ni be the number of categories for the attribute Ci. For non-uniform
and diagonal partial support settings, we assume that ni = nj = n, ∀i, j, i ̸= j.

• Uniform setting: p(Ci = c1) =
1
ni

and p(Ci = c1, Cj = c2) = p(Ci = c1)p(Cj = c2) =
1

ninj
.

• Orthogonal support setting: p(Ci = c1, Cj = c2) =

{
1

ni+nj−1 , c1 = 0 or c2 = 0

0, otherwise

• Non-uniform setting: p(Ci = c1, Cj = c2) =

{
a, c2 ≤ c1 ≤ c2 + 1

b, otherwise
, where 1

n2 ≤ b < a ≤
1

2n−1 .

• Diagonal partial support setting: p(Ci = c1, Cj = c2) =

{
1

2n−1 , c2 ≤ c1 ≤ c2 + 1

0, otherwise
.

D.5 DATASETS

Colored MNIST Dataset In Section § 1, we introduced the Colored MNIST dataset. Here, we
will detail the dataset generation process. We selected 10 visually distinct colors 1, taking the value
C2 ∈ [0, 9]. The dataset is constructed by coloring the grayscale images from MNIST by converting
them into three channels and applying one of the ten colors to non-zero grayscale values.

The training data is composed of three types of support:

• Uniform Support: A digit and a color are randomly selected to create an image.

• Diagonal Partial Support: A digit is selected, and during training, it is only assigned one
of two colors, C2 ∈ {d, d + 1}, except for 9, which only takes one color. This creates a
dataset where compositions observed during training are along the diagonal of the C space,
meaning each digit is seen only with its corresponding colors.

• Non-uniform Support: All compositions are observed, but combining a digit and its cor-
responding colors occurs with a higher probability (0.5). The remaining color space is
distributed evenly among other colors, resulting in approximately a 0.25 probability for
each corresponding color and a 0.0625 probability for each remaining color.

Shapes3D Full support for Shapes3D consists of all samples from the dataset. For orthogonal
support, we use the composition split of Shapes3D as described by Schott et al.., whose code is
publicly available 2.

D.6 CONFORMITY SCORE (CS)

In Section 3, we described the Conformity Score (CS) to quantify the accuracy of the generation
per the prompt. To measure the CS, we train a single ResNet-18 (He et al., 2016) classifier with
multiple classification heads, one corresponding to each attribute, and trained on the full support.
This classifier estimates the attributes in the generated image, x, and extracts these attributes as
ϕ(x) = [ĉ1, . . . , ĉn]. These attributes are matched against the input prompt that generated the image
to obtain accuracy.

To explain further, for example, if the prompt is to generate “4 ∧ ¬[Green ∨ Pink]”, the generated
sample will have a CS of 1 if ĉ1 = 4 and ĉ2 ̸∈ {Green,Pink}. We average this across all the prompts
in the test set, which determines the CS for a given task.

The effectiveness of the classifier in predicting the attributes is reported in Table 10.

1https://mokole.com/palette.html
2https://github.com/bethgelab/InDomainGeneralizationBenchmark
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Feature Attributes Possible Values Accuracy

C1 Digit 0-9 98.93
C2 color 10 values 100

(a) Colored MNIST Dataset

Feature Attributes Possible Values Accuracy

C1 Gender {0,1} 98.2
C2 Smile {0,1} 92.1

(b) CelebA Dataset

Feature Attributes Possible Values Accuracy

C1 floor hue 10 values in [0, 1] 100
C2 wall hue 10 values in [0, 1] 100
C3 object hue 10 values in [0, 1] 100
C4 scale 8 values in [0, 1] 100
C5 shape 4 values in [0-3] 100
C6 orientation 15 values in [-30, 30] 100

(c) Shapes3D Dataset

Figure 10: Independent attribute, their possible values, and the classifier accuracy in estimating them
for different datasets

D.7 COMPUTING JSD

We are interested in understanding the causal structure learned by diffusion models. Specifically,
we aim to determine whether the learned model captures the conditional independence between
attributes, allowing them to vary independently. This raises the question: Do diffusion models learn
the conditional independence between attributes? The conditional independence is defined by:

pθ(Ci, Cj | X) = pθ(Ci | X)pθ(Cj | X) (32)

We aim to measure the violation of this equality using the Jensen-Shannon divergence (JSD) to
quantify the divergence between two probability distributions:

JSD = Epdata [DJS (pθ(C | X) || pθ(Ci | X)pθ(Cj | X))] (33)

The joint distribution, pθ(Ci, Cj | X), and the marginal distributions, pθ(Ci | X) and pθ(Cj | X),
are evaluated at all possible values that Ci and Cj can take to obtain the probability mass function
(pmf). The probability for each value is calculated using Equation Eq. (16) for the joint distribution
and Equation Eq. (15) for the marginals.

Practical Implementation For the diffusion model with multiple attributes, the violation in con-
ditional mutual independence should be calculated using all subset distributions. However, we focus
on pairwise independence. We further approximate this in our experiments by computing JSD be-
tween the first two attributes, C1 and C2. We have observed that computing JSD between any
attribute pair does not change our examples’ conclusion.

D.8 MEASURING DIVERSITY IN ATTRIBUTES

To achieve explicit control over certain attributes during the generation process, these attributes must
vary independently. Therefore, an ideal generative model must be able to produce samples where all
except the controlled attributes take diverse values. This diversity can be measured by the entropy of
the uncontrolled attributes in the generated samples, where higher entropy suggests greater diversity.
Therefore, the accurate generation of controlled and diverse uncontrolled attributes indicates that the
model has successfully learned the correct marginal likelihood of the controlled attributes.

For example, consider the generation of colored MNIST digits. In this case, controllability means
that the model has learned that digit and color attributes are independent. When prompted to generate
a specific digit (controlled attribute), the model should generate this digit in all possible colors
(uncontrolled attribute) with equal likelihood, implying maximum entropy for the color attribute
and diverse generation. We measure this entropy by generating samples xi ∼ pθ(X | c1 = 4) and
passing them through a near-perfect classifier to obtain the color predictions p(Ĉ2) = p(ϕ2(x

i)).
The diversity is then quantified as: H = Eĉ2∼p(Ĉ2)

[log2 p(ĉ2)]

Ensuring diversity through explicit control has applications in bias detection and mitigation in gen-
erative models. For example, a biased model may generate images of predominantly male doctors
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when asked to generate images of “doctors”. Ensuring diversity in uncontrolled attributes like gen-
der or race can limit such biases.

E COIND FOR FACE IMAGE GENERATION

In § 5, we demonstrated that COIND outperforms baseline methods on the unseen logical com-
positionality task using synthetic datasets. In App. E.1, we showcase the success of COIND in
generating face images from the CelebA dataset (Liu et al., 2015), where COIND demonstrates su-
perior control over attributes compared to the baseline. COIND also allows us to adjust the strength
of various attributes and thus provides more fine-grained control over the compositional attributes,
as shown in App. E.2. Finally, in App. E.3, we extend COIND to text-to-image (T2I) models widely
used in practice to generate face images by providing the desired attributes as logical expressions of
text prompts.

Problem Setup We choose the CelebA dataset to evaluate COIND’s ability to generate real-world
images. We choose the binary attributes “smiling” and “gender” as the attributes we wish to control.
During training, all combinations of these attributes except gender = “male” and smiling = “true” are
observed, similar to the orthogonal support shown in Fig. 3. During inference, the model is tasked
to generate images with the attribute combination gender = “male” and smiling = “true”, which was
not observed during training.

Metrics Similar to the experiments on the synthetic image datasets in § 5, we assess the accuracy
of the generation w.r.t. the input desired attribute combination CS (conformity score). We also
measure the violation of the learned conditional independence using JSD. In addition to CS, we
compute FID (Fréchet inception distance) between the generated images and the real samples in
the CelebA dataset where gender = “male” and smiling = “true”. A lower FID implies that the
distribution of generated samples is closer to the real distribution of the images in the validation
dataset.

E.1 COIND CAN SUCCESSFULLY GENERATE REAL-WORLD FACE IMAGES

Tab. 2 shows the quantitative results of COIND and Composed GLIDE trained from scratch in the
tasks of joint sampling and ∧ composition. Similar to our observations from previous experiments,
COIND achieves better CS in both tasks by learning accurate marginals as demonstrated by lower
JSD. When sampled from the joint likelihood, COIND achieves a nearly 4× improvement in CS over
the baseline, while it achieves > 10% improvement in CS over the baseline, for ∧ compositionality.

E.2 COIND PROVIDES FINE-GRAINED CONTROL OVER ATTRIBUTES

So far, we studied the capabilities of COIND to dictate the presence and absence of attributes in the
task of controllable image generation. However, there are applications where we desire fine-grained
control over the attributes. Specifically, we may want to control the amount of each attribute in the
generated sample. We can mathematically formulate this task by revisiting the formulation of logical
expressions of attributes in terms of the score functions of marginal likelihood. As an example, the
∧ operation can be written as,

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X)

Here, to adjust the amount of attribute added to the generated sample, we can weigh the score
functions using some scalar γ, as follows,

∇X log pθ(X | C1) + γ∇X log pθ(X | C2)− γ∇X log pθ(X) (34)

where γ controls for the amount of C2 attribute.

Fig. 11 shows the effect of increasing γ to adjust the amount of smiling in the generated image. Ide-
ally, we expect increasing γ to increase the amount of smiling without affecting the gender attribute.
When γ = 0 (top row), both COIND and Composed GLIDE generate images of men who are not
smiling. As γ increases, we notice that the samples generated by COIND show an increase in the
amount of smiling, going from a short smile to a wider smile to one where teeth are visible. Note
that the training dataset did not include any images of smiling men or fine-grained annotations for
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Figure 11: By adjusting γ, COIND allows us to the vary the amount of “smile” in the generated
images. However, Composed GLIDE associates the smile attribute with the gender attribute due to
their association in the training data. Hence, the images generated by Composed GLIDE contain
gender-specific attributes such as long hair and earrings.
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(b) Variation of CS with γ

Figure 12: Effect of γ on FID and CS: Varying the amount of smile in a generated image through
γ does not affect the FID of COIND. However, the smiles in the generated images become more
apparent, leading to easier detection by the smile classifier and improved CS.

the amount of smiling in each image. This conclusion is strengthened by Fig. 12b that shows an
increase in CS when γ increases. CS increases when it is easier for the smile classifier to detect the
smile. COIND provides this fine-grained control over the smiling attribute without any effect on the
realism of the images, as shown by the minimal changes in FID in Fig. 12a.

In contrast, the images generated by Composed GLIDE show an increase in the amount of smiling
while adding gender-specific attributes such as long hair and makeup. We conclude that, by strictly
enforcing a conditional independence loss between the attributes, COIND provides fine-grained
control over the attributes, allowing us to adjust the intensity of the attribute in the image without
additional training. As shown in Tab. 2, COIND outperforms the baselines for generating unseen
compositions. Tuning γ further improves the generation.
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E.3 FINETUNING T2I MODELS WITH COIND IMPROVES LOGICAL COMPOSITIONALITY

“smiling male” “smiling” AND “male” “smiling” NOT “female”

Composed
GLIDE

COIND

Figure 13: Samples generated after fine-tuning SDv1.5 on CelebA. The first row shows images gen-
erated by SDv1.5 fine-tuned on CelebA, while the second row shows images generated by SDv1.5
fine-tuned with COIND. Columns indicate samples generated from the respective prompts indicated
above.

We proposed COIND to improve control over the attributes in an image through logical expressions
of these attributes. Since larger pre-trained diffusion models such as Stable Diffusion (Rombach
et al., 2022) have become more accessible, we seek to incorporate the benefits of COIND in these
models. This section shows that text-to-image (T2I) models can be fine-tuned to generate images
using logical expressions of text prompts. Specifically, we use Stable Diffusion v1.5 (SDv1.5) to
generate face images from the CelebA dataset where smiling and gender attributes can be controlled.
We consider both joint and marginal sampling, similar to our case study in § 3. For joint sampling,
we provide SDv1.5 with the prompt “photo of a smiling male celebrity”. In the marginal sampling,
we provide the values for smiling and gender attributes using separate prompts – “Photo of a smiling
celebrity” ∧ “Photo of a male celebrity”. Then, we sample from these marginal likelihoods resulting
from these prompts following Eq. (1). To evaluate ¬ capabilities, we use the prompts “Photo of a
smiling celebrity” ¬ “Photo of a female celebrity” and follow Eq. (2).

Support Method JSD ↓ Joint ∧ Composition ¬ Composition

CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

Orthogonal Composed GLIDE 0.57 56.57 58.31 14.19 73.53 11.02 115.95
COIND (λ = 1.0) 0.37 58.57 58.19 49.15 61.16 18.80 86.31

Table 6: Results on SDv1.5 fine-tuning. COIND outperforms the baseline on all the metrics.

Discussion

1. In Tab. 6, COIND improves performance across all metrics – achieving 3.46× and 2× im-
provement in CS over Composed GLIDE in ∧ and ¬ composition tasks. The images generated
by COIND have better FID than those from the baseline.

2. Visual inspection of the generated samples for the same random seed provides insights into
how Composed GLIDE and COIND perceive the prompts. Images in columns 1, 3, and 5 of
Fig. 13 were generated with the same random seed. Similarly, those in columns 2 and 4 share
the random seed. We note the following observations:

– Both Composed GLIDE and COIND generated images with the desired attributes when
sampled from the joint likelihood using “photo of a smiling male celebrity”. The images
generated by these models from the same random seed were also visually similar. This
shows that both models can aptly set attributes in the generated images and have identical
stochastic profiles, leading to unspecified attributes that assume similar values.
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– When the attributes were passed as the ∧ expression “smiling” ∧ “male”, COIND gen-
erated images that were visually similar to those with matching random seeds generated
from joint sampling. This implies that COIND learned accurate marginals that help it to
correctly model the joint likelihood.

– When tasked with generating images for “smiling” ∧ “male”, Composed GLIDE gener-
ated images of smiling persons with gender-specific attributes such as thinner eyebrows,
commonly seen in photos of female celebrities. These gender-specific features increase
when the task is to generate images of “smiling” ¬ “female”. In contrast, COIND gen-
erates images of smiling celebrities while adding attributes such as a beard. Thus, we
conclude that COIND offers better control over the desired attributes without affecting
correlated attributes.

F DISCUSSION ON COIND

F.1 COMPOSITIONAL VS MONOLITHIC MODELS

Our findings echo the prior observations (Du & Kaelbling, 2024) that composite models consisting
of separate diffusion models trained on individual factors (e.g., LACE) demonstrate better ∧ compo-
sitionality under partial support than sampling from factorized distributions learned by monolithic
models (e.g., Composed GLIDE). However, we found that monolithic models can be significantly
improved by enforcing the conditional independence constraints necessary for enabling logical com-
positionality. For instance, COIND achieved a 2.4× better CS on Colored MNIST with diagonal
partial support and a 1.4× improvement on orthogonal partial support on Shapes3D compared to
LACE.

F.2 CONNECTION TO COMPOSITIONAL GENERATION FROM FIRST PRINCIPLES

Compositional generation from first principles Wiedemer et al. (2024) have shown that restricting
the function to a certain compositional form will perform better than a single large model. In this
section, we show that, by enforcing conditional independence, we restrict the function to encourage
compositionality.

Let c1, c2, . . . , cn be independent components such that c1, c2, . . . , cn ∈ R. Consider an injective
function f : Rn → Rd defined by f(c) = x. If the components, c are conditionally independent
given x the cumulative functions, F must satisfy the following constraint:

FCi,Cj ,...,Cn|X=x(ci, cj , . . . , cn) =
∏
i

FCi|X=x(ci) (35)

F−1
Ci,Cj ,...,Cn|X=x(x) = inf{ci, cj , . . . , cn | F (ci, cj , . . . , cn) ≥ x}, where F−1

ci,cj ,...,Cn|X=x is a
generalized inverse distribution function.

f(ci, cj , . . . , cn) = (f ◦ F−1
ci,cj ,...,Cn|X=x)(

∏
i

FCi|X=x(ci))

= (f ◦ F−1
ci,cj ,...,Cn|X=x ◦ e)(

∑
i

logFCi|X=x(ci))

= g(
∑
i

ϕi(ci))

Therefore, we are restricting f to take a certain functional form. However, it is difficult to show
that the data generating process, f , meets the rank condition on the Jacobian for the sufficient sup-
port assumption Wiedemer et al. (2024), which is also the limitation discussed in their approach.
Therefore, we cannot provide guarantees. However, this section provides a functional perspective of
COIND.

F.3 LIMITATIONS

This paper considered compositions of a closed set of attributes. As such, COIND requires pre-
defined attributes and access to data labeled with the corresponding attributes. Moreover, COIND
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must be enforced during training, which requires retraining the model whenever the attribute space
changes to include additional values. Instead, state-of-the-art generative models seek to operate
without pre-defined attributes or labeled data and generate open-set compositions. Despite the seem-
ingly restricted setting of our work, our findings provide valuable insights into a critical limitation of
current generative models, namely their failure to generalize for unseen compositions, by identifying
the source of this limitation and proposing an effective solution to mitigate it.

G ADDITIONAL RESULTS AND DISCUSSION ON COIND

G.1 LEARNING UNDER NON-UNIFORM p(Ci)

0 1 2 3 4 5 6 7 8 9
Digit (C1)

C
ol

or
(C

2)

(a) Gaussian support

Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑
LACE - 89.22 58.59 57.81
Composed GLIDE 0.27 91.74 88.91 78.39
COIND (λ = 1.0) 0.16 99.61 98.51 83.03

(b) Quantitative results for Gaussian support
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(c) p(C2 | C1 = 4) vs pθ(C2 |
C1 = 4)

Figure 14: Results on Gaussian support: When the independent attributes have non-uniform cat-
egorical distributions, the joint distribution of attribute combinations is not uniform. Even in this
case, COIND learns pθ(Ci | Cj) accurately.

In our experiments, we considered the uniform support setting as an example where the attribute
variables are independent of each other in the training data, i.e., C1 ⊥⊥ C2 | X during training.
However, uniform support is not the only scenario that can arise from independent attribute variables.
In this section, we show that COIND can learn accurate marginals irrespective of the distribution of
Ci.

We designed an experiment using the Colored MNIST images where the attributes C1 and C2 as-
sume values from a non-uniform categorical distribution that resembles a discrete Gaussian distri-
bution. The resulting joint distribution of the attributes, which we refer to as Gaussian support, is
illustrated in Fig. 14a. We trained COIND and baselines on this dataset and evaluated on ∧ and
¬ compositionality tasks. Apart from comparing the CS of baselines and COIND on these com-
positionality tasks, we also evaluate if COIND accurately learns p(Ci) by comparing the learned
pθ(Ci | Cj) against the true p(Ci | Cj). Intuitively, this verifies if COIND generates images with
uncontrolled attributes matching their distribution in the training dataset.

Fig. 14b quantitatively compares COIND against Composed GLIDE on CS in both ∧ and ¬ compo-
sitionality tasks. Like our previous experiments, COIND outperforms Composed GLIDE w.r.t. CS
in all tasks. In Fig. 14c, we verify if COIND has learned pθ(C2 | C1) accurately by comparing it
against the true distribution p(C2 | C1). pθ(C2 | C1 = c∗) = pϕ(C2 | X)pθ(X | C1 = c∗) is ob-
tained as the histogram density of the attributes that appear in the generated images when C1 = c∗.
We observe that the learned distribution pθ(C2 | C1 = 4) is close to the true distribution, forming a
bell shape.

G.2 FAILURE EXAMPLES OF COIND

Here, we examine some samples generated by COIND where it failed to include the desired at-
tributes. We show these failure cases from each dataset, i.e., Colored MNIST, Shapes3d, and
CelebA datasets. Samples from Colored MNIST and Shapes3d datasets are taken from the par-
tial support setting, while the ones from the CelebA dataset are taken from the orthogonal support
setting. Fig. 15a shows some failure samples from the Colored MNIST dataset. The images in the
first row contain digits with colors leaking from the nearby seen attribute combination. Those in the
second row correspond to ¬ approximation and have wrong attributes due to the approximation in
the probabilistic formulation in Eq. (2). Some images, like those in the third row, are unrealistic,
although they may contain the desired attributes. We observe similar failures in Shapes3d samples
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shown in Fig. 15b where the COIND deviates from the desired compositions (column 1). Some
failed samples from the CelebA dataset are shown in Fig. 15c. The samples correspond to the task
of “smile” ∧ “male”. In the top image, it is hard to distinguish if the subject is smiling or laughing.
In some samples, we observed only a weak or soft smile. This could be because a smile is difficult
to control due to its limited spatial presence in an image.

7 ∧ Dark Green Red ¬ (1 ∨ 2)

9 ¬ Cream Yellow ¬ (2 ∨ 3)

4 ∧ Cream 8 ¬ (Cream ∨ Blue)

Si
m

ila
rc

ol
or

W
ro

ng
at

tr
ib

ut
es

¬
co

m
po

si
tio

ns
U

nr
ea

lis
tic

(a) Failure samples from Colored
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Figure 15: Some samples generated by COIND where it could not enforce the desired attributes.

G.3 CONFORMITY SCORE FOR EACH ATTRIBUTE COMBINATION
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Figure 16: Heatmap showing CS for each at-
tribute combination in the ∧ compositional-
ity task in Colored MNIST generation with
partial support (row 10 in Fig. 4a)

In all our experiments, we report CS as the primary
metric to evaluate if the generative model produced
images with accurate attributes. However, CS is the
average accuracy across all unseen attribute combi-
nations. Not all attribute combinations may be gen-
erated with equal accuracy.

For instance, Fig. 16 shows the CS for each attribute
combination in the ∧ compositionality task in Col-
ored MNIST image generation with partial support
setting (row 10 in Fig. 4a). As a reminder, COIND
achieved 55% CS on unseen attribute combinations
in this task. We can see that COIND can successfully
generate all seen attribute combinations that appear
on the diagonal. Some unseen attribute combina-
tions achieve > 90% CS, while others have nearly
0% CS. We do not observe the model struggling to
generate images with any specific attribute or digit,
although some colors have a generally lower CS than
others. For example, colors 2 and 3 have zero CS
with more digits than others. On the other hand, col-
ors 4, 5, and 6 have high CS with all digits. We hy-
pothesize that this disparity in CS could depend on
the nature of attributes and the similarity between the values they can take.

G.4 COIND ALSO IMPROVES CONDITIONAL GENERATION

Given an ordered n-tuple from the attribute space not observed during training, can COIND generate
images corresponding to this sampled from joint distribution, Pθ(X|C)? To answer this question,
we train COIND and the baselines on Colored MNIST and Shapes3d datasets. Tab. 7 shows the
results. As expected, the vanilla model, under full support, generates samples corresponding to the
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Support Configuration CS

Uniform Vanilla 100
Uniform COIND(λ = 1) 100
Non-uniform Vanilla 100
Non-uniform COIND(λ = 1) 100

Diagonal partial Vanilla 65.27
Diagonal partial COIND(λ = 1) 73.35

(a) Colored MNIST

Support Configuration R2 CS

Uniform Vanilla 0.99 100
Uniform COIND(λ = 1) 0.99 100

Orthogonal partial Vanilla 0.97 95.88
Orthogonal partial COIND(λ = 1) 0.99 99.57

(b) Shapes3D

Table 7: Overall Performance Metrics for Conditional generation

joint distribution. However, as demonstrated in § 3, models trained on partial support fail to generate
samples for unseen attribute compositions. In addition to the improved performance on logical
compositionality, enforcing conditional independence explicitly improves conditional generation as
well and produces better results on partial support compared to vanilla diffusion models for both
Colored MNIST and Shapes3D datasets.

G.5 COIND CAN INTERPOLATE BETWEEN DISCRETE ATTRIBUTES

In some cases, it may be necessary to have control over continuous-valued attributes such as height
or thickness. However, the datasets with continuous annotations may not be available to train such
models. Or we may be interested in using a pre-trained model that was trained to generate images
with discrete attributes. In such cases, can we generate samples where attributes take arbitrary
values that do not belong to the set of training annotations? We show that COIND can interpolate
between the discrete values of an attribute on which it was originally trained and thus essentially
produce images with continuous-valued attributes.

ObservedObserved Interpolated

26◦ 28◦ 30◦

Figure 17: Although COIND was only
trained to generate images with orienta-
tions 26◦ and 30◦, it successfully gener-
ated a sample with 28◦ orientation.

As mentioned in the main paper, we trained COIND to
generate images from the Shapes3d dataset using the la-
bels provided in (Burgess & Kim, 2018). The labels pro-
vided for the orientation attribute were discrete, although
orientation itself is continuous.

In Fig. 17, we highlight the images generated by COIND
where the subject has orientations 26◦ and 30◦. We inter-
polate between observed discrete values linearly and gen-
erate the samples shown in the second column of Fig. 17.
By carefully observing the variation in the gap between
the corner of the cube and the corner of the room, we
notice that COIND generated an image where the orien-
tation of the cube is midway between those of 26◦ and
30◦. This demonstrates that COIND offers a promising
direction where training on datasets with discrete annotations is sufficient to generate samples with
continuous-valued attributes.

G.6 QUALITATIVE EXAMINATION OF GENERATED COLORED MNIST SAMPLES

We inspect the images generated by COIND trained under different settings against Composed
GLIDE on the Colored MNIST dataset in Fig. 1d. The images in the top row correspond to the
attribute composition 4 ∧ Pink that appears in every scenario. Therefore, both Composed GLIDE
and COIND successfully generate the image for the logical composition. The remaining rows corre-
spond to attribute compositions observed with lower frequency or not at all. We note that Composed
GLIDE fails to generate realistic images for the ∧ composition 4 ∧ Cyan, while COIND generates
a realistic image with accurate composition. Moreover, Composed GLIDE fails to adhere to the
negation operation in the third and fourth rows. COIND, on the other hand, generates realistic and
accurate samples in all logical composition tasks.
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G.7 QUALITATIVE EVALUATION OF GENERATED SHAPES3D SAMPLES

Fig. 6b compares the samples generated by COIND against those from the baselines when trained
on the uniform and orthogonal supports. Even in the uniform support case, where all attribute
compositions are observed, the LACE and Composed GLIDE baselines struggle to generate an
image with the expected logical composition. Moreover, the visual quality of samples from the
baselines worsens in the partial support case. In contrast, COIND successfully generates images
with realistic and accurate compositions for arbitrary attribute compositions.

31


	Introduction
	Logical Compositionality in Diffusion Models
	Why do conditional diffusion models fail to generate data with arbitrary logical compositions of attributes?
	CoInD: Enforcing Conditionally Independent Marginal to Enable Logical Compositionality
	Experiments
	Learning Independent Marginals Enables Logical Compositionality
	Generating Real-World Face Images using CoInD

	Related Work
	Conclusion
	Appendix
	 Appendix
	Preliminaries of Score-based Models
	Proofs for Claims
	Proof for the case study in sec:case-study
	Standard diffusion model objective is not suitable for logical compositionality
	Step-by-step derivation of CoInD in sec:method

	Practical Considerations
	Scalability of LCI
	Simplification of Theoretical Loss
	Choice of Hyperparameter  

	Experiment Details
	CoInD Algorithm
	Details of Logical Compositionality Task
	Training details, Architecture, and Sampling
	Analytical Forms of Support Settings
	Datasets
	Conformity Score (CS) 
	Computing JSD
	Measuring Diversity in Attributes

	CoInD for Face Image Generation
	CoInD can successfully generate real-world face images
	CoInD provides fine-grained control over attributes
	Finetuning T2I models with CoInD improves logical compositionality

	Discussion on CoInD
	Compositional vs Monolithic models
	Connection to compositional generation from first principles 
	Limitations

	Additional Results and Discussion on CoInD
	Learning under non-uniform p(Ci)
	Failure examples of CoInD
	Conformity score for each attribute combination
	CoInD also improves conditional generation
	CoInD can interpolate between discrete attributes
	Qualitative Examination of Generated Colored MNIST samples
	Qualitative Evaluation of Generated Shapes3d Samples



